1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RDMA Transport Layer 4 * 5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved. 6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved. 7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved. 8 */ 9 10 #undef pr_fmt 11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt 12 13 #include <linux/module.h> 14 #include <linux/rculist.h> 15 #include <linux/random.h> 16 17 #include "rtrs-clt.h" 18 #include "rtrs-log.h" 19 20 #define RTRS_CONNECT_TIMEOUT_MS 30000 21 /* 22 * Wait a bit before trying to reconnect after a failure 23 * in order to give server time to finish clean up which 24 * leads to "false positives" failed reconnect attempts 25 */ 26 #define RTRS_RECONNECT_BACKOFF 1000 27 /* 28 * Wait for additional random time between 0 and 8 seconds 29 * before starting to reconnect to avoid clients reconnecting 30 * all at once in case of a major network outage 31 */ 32 #define RTRS_RECONNECT_SEED 8 33 34 #define FIRST_CONN 0x01 35 /* limit to 128 * 4k = 512k max IO */ 36 #define RTRS_MAX_SEGMENTS 128 37 38 MODULE_DESCRIPTION("RDMA Transport Client"); 39 MODULE_LICENSE("GPL"); 40 41 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops; 42 static struct rtrs_rdma_dev_pd dev_pd = { 43 .ops = &dev_pd_ops 44 }; 45 46 static struct workqueue_struct *rtrs_wq; 47 static struct class *rtrs_clt_dev_class; 48 49 static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt) 50 { 51 struct rtrs_clt_sess *sess; 52 bool connected = false; 53 54 rcu_read_lock(); 55 list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) 56 connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED; 57 rcu_read_unlock(); 58 59 return connected; 60 } 61 62 static struct rtrs_permit * 63 __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type) 64 { 65 size_t max_depth = clt->queue_depth; 66 struct rtrs_permit *permit; 67 int bit; 68 69 /* 70 * Adapted from null_blk get_tag(). Callers from different cpus may 71 * grab the same bit, since find_first_zero_bit is not atomic. 72 * But then the test_and_set_bit_lock will fail for all the 73 * callers but one, so that they will loop again. 74 * This way an explicit spinlock is not required. 75 */ 76 do { 77 bit = find_first_zero_bit(clt->permits_map, max_depth); 78 if (bit >= max_depth) 79 return NULL; 80 } while (test_and_set_bit_lock(bit, clt->permits_map)); 81 82 permit = get_permit(clt, bit); 83 WARN_ON(permit->mem_id != bit); 84 permit->cpu_id = raw_smp_processor_id(); 85 permit->con_type = con_type; 86 87 return permit; 88 } 89 90 static inline void __rtrs_put_permit(struct rtrs_clt *clt, 91 struct rtrs_permit *permit) 92 { 93 clear_bit_unlock(permit->mem_id, clt->permits_map); 94 } 95 96 /** 97 * rtrs_clt_get_permit() - allocates permit for future RDMA operation 98 * @clt: Current session 99 * @con_type: Type of connection to use with the permit 100 * @can_wait: Wait type 101 * 102 * Description: 103 * Allocates permit for the following RDMA operation. Permit is used 104 * to preallocate all resources and to propagate memory pressure 105 * up earlier. 106 * 107 * Context: 108 * Can sleep if @wait == RTRS_PERMIT_WAIT 109 */ 110 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt, 111 enum rtrs_clt_con_type con_type, 112 enum wait_type can_wait) 113 { 114 struct rtrs_permit *permit; 115 DEFINE_WAIT(wait); 116 117 permit = __rtrs_get_permit(clt, con_type); 118 if (permit || !can_wait) 119 return permit; 120 121 do { 122 prepare_to_wait(&clt->permits_wait, &wait, 123 TASK_UNINTERRUPTIBLE); 124 permit = __rtrs_get_permit(clt, con_type); 125 if (permit) 126 break; 127 128 io_schedule(); 129 } while (1); 130 131 finish_wait(&clt->permits_wait, &wait); 132 133 return permit; 134 } 135 EXPORT_SYMBOL(rtrs_clt_get_permit); 136 137 /** 138 * rtrs_clt_put_permit() - puts allocated permit 139 * @clt: Current session 140 * @permit: Permit to be freed 141 * 142 * Context: 143 * Does not matter 144 */ 145 void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit) 146 { 147 if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map))) 148 return; 149 150 __rtrs_put_permit(clt, permit); 151 152 /* 153 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list 154 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping 155 * it must have added itself to &clt->permits_wait before 156 * __rtrs_put_permit() finished. 157 * Hence it is safe to guard wake_up() with a waitqueue_active() test. 158 */ 159 if (waitqueue_active(&clt->permits_wait)) 160 wake_up(&clt->permits_wait); 161 } 162 EXPORT_SYMBOL(rtrs_clt_put_permit); 163 164 /** 165 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit 166 * @sess: client session pointer 167 * @permit: permit for the allocation of the RDMA buffer 168 * Note: 169 * IO connection starts from 1. 170 * 0 connection is for user messages. 171 */ 172 static 173 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess, 174 struct rtrs_permit *permit) 175 { 176 int id = 0; 177 178 if (permit->con_type == RTRS_IO_CON) 179 id = (permit->cpu_id % (sess->s.irq_con_num - 1)) + 1; 180 181 return to_clt_con(sess->s.con[id]); 182 } 183 184 /** 185 * rtrs_clt_change_state() - change the session state through session state 186 * machine. 187 * 188 * @sess: client session to change the state of. 189 * @new_state: state to change to. 190 * 191 * returns true if sess's state is changed to new state, otherwise return false. 192 * 193 * Locks: 194 * state_wq lock must be hold. 195 */ 196 static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess, 197 enum rtrs_clt_state new_state) 198 { 199 enum rtrs_clt_state old_state; 200 bool changed = false; 201 202 lockdep_assert_held(&sess->state_wq.lock); 203 204 old_state = sess->state; 205 switch (new_state) { 206 case RTRS_CLT_CONNECTING: 207 switch (old_state) { 208 case RTRS_CLT_RECONNECTING: 209 changed = true; 210 fallthrough; 211 default: 212 break; 213 } 214 break; 215 case RTRS_CLT_RECONNECTING: 216 switch (old_state) { 217 case RTRS_CLT_CONNECTED: 218 case RTRS_CLT_CONNECTING_ERR: 219 case RTRS_CLT_CLOSED: 220 changed = true; 221 fallthrough; 222 default: 223 break; 224 } 225 break; 226 case RTRS_CLT_CONNECTED: 227 switch (old_state) { 228 case RTRS_CLT_CONNECTING: 229 changed = true; 230 fallthrough; 231 default: 232 break; 233 } 234 break; 235 case RTRS_CLT_CONNECTING_ERR: 236 switch (old_state) { 237 case RTRS_CLT_CONNECTING: 238 changed = true; 239 fallthrough; 240 default: 241 break; 242 } 243 break; 244 case RTRS_CLT_CLOSING: 245 switch (old_state) { 246 case RTRS_CLT_CONNECTING: 247 case RTRS_CLT_CONNECTING_ERR: 248 case RTRS_CLT_RECONNECTING: 249 case RTRS_CLT_CONNECTED: 250 changed = true; 251 fallthrough; 252 default: 253 break; 254 } 255 break; 256 case RTRS_CLT_CLOSED: 257 switch (old_state) { 258 case RTRS_CLT_CLOSING: 259 changed = true; 260 fallthrough; 261 default: 262 break; 263 } 264 break; 265 case RTRS_CLT_DEAD: 266 switch (old_state) { 267 case RTRS_CLT_CLOSED: 268 changed = true; 269 fallthrough; 270 default: 271 break; 272 } 273 break; 274 default: 275 break; 276 } 277 if (changed) { 278 sess->state = new_state; 279 wake_up_locked(&sess->state_wq); 280 } 281 282 return changed; 283 } 284 285 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess, 286 enum rtrs_clt_state old_state, 287 enum rtrs_clt_state new_state) 288 { 289 bool changed = false; 290 291 spin_lock_irq(&sess->state_wq.lock); 292 if (sess->state == old_state) 293 changed = rtrs_clt_change_state(sess, new_state); 294 spin_unlock_irq(&sess->state_wq.lock); 295 296 return changed; 297 } 298 299 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con) 300 { 301 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 302 303 if (rtrs_clt_change_state_from_to(sess, 304 RTRS_CLT_CONNECTED, 305 RTRS_CLT_RECONNECTING)) { 306 struct rtrs_clt *clt = sess->clt; 307 unsigned int delay_ms; 308 309 /* 310 * Normal scenario, reconnect if we were successfully connected 311 */ 312 delay_ms = clt->reconnect_delay_sec * 1000; 313 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 314 msecs_to_jiffies(delay_ms + 315 prandom_u32() % RTRS_RECONNECT_SEED)); 316 } else { 317 /* 318 * Error can happen just on establishing new connection, 319 * so notify waiter with error state, waiter is responsible 320 * for cleaning the rest and reconnect if needed. 321 */ 322 rtrs_clt_change_state_from_to(sess, 323 RTRS_CLT_CONNECTING, 324 RTRS_CLT_CONNECTING_ERR); 325 } 326 } 327 328 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc) 329 { 330 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 331 332 if (wc->status != IB_WC_SUCCESS) { 333 rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n", 334 ib_wc_status_msg(wc->status)); 335 rtrs_rdma_error_recovery(con); 336 } 337 } 338 339 static struct ib_cqe fast_reg_cqe = { 340 .done = rtrs_clt_fast_reg_done 341 }; 342 343 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno, 344 bool notify, bool can_wait); 345 346 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 347 { 348 struct rtrs_clt_io_req *req = 349 container_of(wc->wr_cqe, typeof(*req), inv_cqe); 350 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 351 352 if (wc->status != IB_WC_SUCCESS) { 353 rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n", 354 ib_wc_status_msg(wc->status)); 355 rtrs_rdma_error_recovery(con); 356 } 357 req->need_inv = false; 358 if (req->need_inv_comp) 359 complete(&req->inv_comp); 360 else 361 /* Complete request from INV callback */ 362 complete_rdma_req(req, req->inv_errno, true, false); 363 } 364 365 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req) 366 { 367 struct rtrs_clt_con *con = req->con; 368 struct ib_send_wr wr = { 369 .opcode = IB_WR_LOCAL_INV, 370 .wr_cqe = &req->inv_cqe, 371 .send_flags = IB_SEND_SIGNALED, 372 .ex.invalidate_rkey = req->mr->rkey, 373 }; 374 req->inv_cqe.done = rtrs_clt_inv_rkey_done; 375 376 return ib_post_send(con->c.qp, &wr, NULL); 377 } 378 379 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno, 380 bool notify, bool can_wait) 381 { 382 struct rtrs_clt_con *con = req->con; 383 struct rtrs_clt_sess *sess; 384 int err; 385 386 if (WARN_ON(!req->in_use)) 387 return; 388 if (WARN_ON(!req->con)) 389 return; 390 sess = to_clt_sess(con->c.sess); 391 392 if (req->sg_cnt) { 393 if (req->dir == DMA_FROM_DEVICE && req->need_inv) { 394 /* 395 * We are here to invalidate read requests 396 * ourselves. In normal scenario server should 397 * send INV for all read requests, but 398 * we are here, thus two things could happen: 399 * 400 * 1. this is failover, when errno != 0 401 * and can_wait == 1, 402 * 403 * 2. something totally bad happened and 404 * server forgot to send INV, so we 405 * should do that ourselves. 406 */ 407 408 if (can_wait) { 409 req->need_inv_comp = true; 410 } else { 411 /* This should be IO path, so always notify */ 412 WARN_ON(!notify); 413 /* Save errno for INV callback */ 414 req->inv_errno = errno; 415 } 416 417 refcount_inc(&req->ref); 418 err = rtrs_inv_rkey(req); 419 if (err) { 420 rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n", 421 req->mr->rkey, err); 422 } else if (can_wait) { 423 wait_for_completion(&req->inv_comp); 424 } else { 425 /* 426 * Something went wrong, so request will be 427 * completed from INV callback. 428 */ 429 WARN_ON_ONCE(1); 430 431 return; 432 } 433 if (!refcount_dec_and_test(&req->ref)) 434 return; 435 } 436 ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist, 437 req->sg_cnt, req->dir); 438 } 439 if (!refcount_dec_and_test(&req->ref)) 440 return; 441 if (req->mp_policy == MP_POLICY_MIN_INFLIGHT) 442 atomic_dec(&sess->stats->inflight); 443 444 req->in_use = false; 445 req->con = NULL; 446 447 if (errno) { 448 rtrs_err_rl(con->c.sess, "IO request failed: error=%d path=%s [%s:%u] notify=%d\n", 449 errno, kobject_name(&sess->kobj), sess->hca_name, 450 sess->hca_port, notify); 451 } 452 453 if (notify) 454 req->conf(req->priv, errno); 455 } 456 457 static int rtrs_post_send_rdma(struct rtrs_clt_con *con, 458 struct rtrs_clt_io_req *req, 459 struct rtrs_rbuf *rbuf, u32 off, 460 u32 imm, struct ib_send_wr *wr) 461 { 462 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 463 enum ib_send_flags flags; 464 struct ib_sge sge; 465 466 if (!req->sg_size) { 467 rtrs_wrn(con->c.sess, 468 "Doing RDMA Write failed, no data supplied\n"); 469 return -EINVAL; 470 } 471 472 /* user data and user message in the first list element */ 473 sge.addr = req->iu->dma_addr; 474 sge.length = req->sg_size; 475 sge.lkey = sess->s.dev->ib_pd->local_dma_lkey; 476 477 /* 478 * From time to time we have to post signalled sends, 479 * or send queue will fill up and only QP reset can help. 480 */ 481 flags = atomic_inc_return(&con->c.wr_cnt) % sess->s.signal_interval ? 482 0 : IB_SEND_SIGNALED; 483 484 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr, 485 req->sg_size, DMA_TO_DEVICE); 486 487 return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1, 488 rbuf->rkey, rbuf->addr + off, 489 imm, flags, wr, NULL); 490 } 491 492 static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id, 493 s16 errno, bool w_inval) 494 { 495 struct rtrs_clt_io_req *req; 496 497 if (WARN_ON(msg_id >= sess->queue_depth)) 498 return; 499 500 req = &sess->reqs[msg_id]; 501 /* Drop need_inv if server responded with send with invalidation */ 502 req->need_inv &= !w_inval; 503 complete_rdma_req(req, errno, true, false); 504 } 505 506 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc) 507 { 508 struct rtrs_iu *iu; 509 int err; 510 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 511 512 WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0); 513 iu = container_of(wc->wr_cqe, struct rtrs_iu, 514 cqe); 515 err = rtrs_iu_post_recv(&con->c, iu); 516 if (err) { 517 rtrs_err(con->c.sess, "post iu failed %d\n", err); 518 rtrs_rdma_error_recovery(con); 519 } 520 } 521 522 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc) 523 { 524 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 525 struct rtrs_msg_rkey_rsp *msg; 526 u32 imm_type, imm_payload; 527 bool w_inval = false; 528 struct rtrs_iu *iu; 529 u32 buf_id; 530 int err; 531 532 WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0); 533 534 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 535 536 if (wc->byte_len < sizeof(*msg)) { 537 rtrs_err(con->c.sess, "rkey response is malformed: size %d\n", 538 wc->byte_len); 539 goto out; 540 } 541 ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr, 542 iu->size, DMA_FROM_DEVICE); 543 msg = iu->buf; 544 if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) { 545 rtrs_err(sess->clt, "rkey response is malformed: type %d\n", 546 le16_to_cpu(msg->type)); 547 goto out; 548 } 549 buf_id = le16_to_cpu(msg->buf_id); 550 if (WARN_ON(buf_id >= sess->queue_depth)) 551 goto out; 552 553 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload); 554 if (imm_type == RTRS_IO_RSP_IMM || 555 imm_type == RTRS_IO_RSP_W_INV_IMM) { 556 u32 msg_id; 557 558 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM); 559 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err); 560 561 if (WARN_ON(buf_id != msg_id)) 562 goto out; 563 sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey); 564 process_io_rsp(sess, msg_id, err, w_inval); 565 } 566 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr, 567 iu->size, DMA_FROM_DEVICE); 568 return rtrs_clt_recv_done(con, wc); 569 out: 570 rtrs_rdma_error_recovery(con); 571 } 572 573 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc); 574 575 static struct ib_cqe io_comp_cqe = { 576 .done = rtrs_clt_rdma_done 577 }; 578 579 /* 580 * Post x2 empty WRs: first is for this RDMA with IMM, 581 * second is for RECV with INV, which happened earlier. 582 */ 583 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe) 584 { 585 struct ib_recv_wr wr_arr[2], *wr; 586 int i; 587 588 memset(wr_arr, 0, sizeof(wr_arr)); 589 for (i = 0; i < ARRAY_SIZE(wr_arr); i++) { 590 wr = &wr_arr[i]; 591 wr->wr_cqe = cqe; 592 if (i) 593 /* Chain backwards */ 594 wr->next = &wr_arr[i - 1]; 595 } 596 597 return ib_post_recv(con->qp, wr, NULL); 598 } 599 600 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc) 601 { 602 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 603 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 604 u32 imm_type, imm_payload; 605 bool w_inval = false; 606 int err; 607 608 if (wc->status != IB_WC_SUCCESS) { 609 if (wc->status != IB_WC_WR_FLUSH_ERR) { 610 rtrs_err(sess->clt, "RDMA failed: %s\n", 611 ib_wc_status_msg(wc->status)); 612 rtrs_rdma_error_recovery(con); 613 } 614 return; 615 } 616 rtrs_clt_update_wc_stats(con); 617 618 switch (wc->opcode) { 619 case IB_WC_RECV_RDMA_WITH_IMM: 620 /* 621 * post_recv() RDMA write completions of IO reqs (read/write) 622 * and hb 623 */ 624 if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done)) 625 return; 626 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), 627 &imm_type, &imm_payload); 628 if (imm_type == RTRS_IO_RSP_IMM || 629 imm_type == RTRS_IO_RSP_W_INV_IMM) { 630 u32 msg_id; 631 632 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM); 633 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err); 634 635 process_io_rsp(sess, msg_id, err, w_inval); 636 } else if (imm_type == RTRS_HB_MSG_IMM) { 637 WARN_ON(con->c.cid); 638 rtrs_send_hb_ack(&sess->s); 639 if (sess->flags & RTRS_MSG_NEW_RKEY_F) 640 return rtrs_clt_recv_done(con, wc); 641 } else if (imm_type == RTRS_HB_ACK_IMM) { 642 WARN_ON(con->c.cid); 643 sess->s.hb_missed_cnt = 0; 644 sess->s.hb_cur_latency = 645 ktime_sub(ktime_get(), sess->s.hb_last_sent); 646 if (sess->flags & RTRS_MSG_NEW_RKEY_F) 647 return rtrs_clt_recv_done(con, wc); 648 } else { 649 rtrs_wrn(con->c.sess, "Unknown IMM type %u\n", 650 imm_type); 651 } 652 if (w_inval) 653 /* 654 * Post x2 empty WRs: first is for this RDMA with IMM, 655 * second is for RECV with INV, which happened earlier. 656 */ 657 err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe); 658 else 659 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); 660 if (err) { 661 rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n", 662 err); 663 rtrs_rdma_error_recovery(con); 664 } 665 break; 666 case IB_WC_RECV: 667 /* 668 * Key invalidations from server side 669 */ 670 WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE || 671 wc->wc_flags & IB_WC_WITH_IMM)); 672 WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done); 673 if (sess->flags & RTRS_MSG_NEW_RKEY_F) { 674 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) 675 return rtrs_clt_recv_done(con, wc); 676 677 return rtrs_clt_rkey_rsp_done(con, wc); 678 } 679 break; 680 case IB_WC_RDMA_WRITE: 681 /* 682 * post_send() RDMA write completions of IO reqs (read/write) 683 * and hb. 684 */ 685 break; 686 687 default: 688 rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode); 689 return; 690 } 691 } 692 693 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size) 694 { 695 int err, i; 696 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 697 698 for (i = 0; i < q_size; i++) { 699 if (sess->flags & RTRS_MSG_NEW_RKEY_F) { 700 struct rtrs_iu *iu = &con->rsp_ius[i]; 701 702 err = rtrs_iu_post_recv(&con->c, iu); 703 } else { 704 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); 705 } 706 if (err) 707 return err; 708 } 709 710 return 0; 711 } 712 713 static int post_recv_sess(struct rtrs_clt_sess *sess) 714 { 715 size_t q_size = 0; 716 int err, cid; 717 718 for (cid = 0; cid < sess->s.con_num; cid++) { 719 if (cid == 0) 720 q_size = SERVICE_CON_QUEUE_DEPTH; 721 else 722 q_size = sess->queue_depth; 723 724 /* 725 * x2 for RDMA read responses + FR key invalidations, 726 * RDMA writes do not require any FR registrations. 727 */ 728 q_size *= 2; 729 730 err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size); 731 if (err) { 732 rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err); 733 return err; 734 } 735 } 736 737 return 0; 738 } 739 740 struct path_it { 741 int i; 742 struct list_head skip_list; 743 struct rtrs_clt *clt; 744 struct rtrs_clt_sess *(*next_path)(struct path_it *it); 745 }; 746 747 /** 748 * list_next_or_null_rr_rcu - get next list element in round-robin fashion. 749 * @head: the head for the list. 750 * @ptr: the list head to take the next element from. 751 * @type: the type of the struct this is embedded in. 752 * @memb: the name of the list_head within the struct. 753 * 754 * Next element returned in round-robin fashion, i.e. head will be skipped, 755 * but if list is observed as empty, NULL will be returned. 756 * 757 * This primitive may safely run concurrently with the _rcu list-mutation 758 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 759 */ 760 #define list_next_or_null_rr_rcu(head, ptr, type, memb) \ 761 ({ \ 762 list_next_or_null_rcu(head, ptr, type, memb) ?: \ 763 list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \ 764 type, memb); \ 765 }) 766 767 /** 768 * get_next_path_rr() - Returns path in round-robin fashion. 769 * @it: the path pointer 770 * 771 * Related to @MP_POLICY_RR 772 * 773 * Locks: 774 * rcu_read_lock() must be hold. 775 */ 776 static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it) 777 { 778 struct rtrs_clt_sess __rcu **ppcpu_path; 779 struct rtrs_clt_sess *path; 780 struct rtrs_clt *clt; 781 782 clt = it->clt; 783 784 /* 785 * Here we use two RCU objects: @paths_list and @pcpu_path 786 * pointer. See rtrs_clt_remove_path_from_arr() for details 787 * how that is handled. 788 */ 789 790 ppcpu_path = this_cpu_ptr(clt->pcpu_path); 791 path = rcu_dereference(*ppcpu_path); 792 if (!path) 793 path = list_first_or_null_rcu(&clt->paths_list, 794 typeof(*path), s.entry); 795 else 796 path = list_next_or_null_rr_rcu(&clt->paths_list, 797 &path->s.entry, 798 typeof(*path), 799 s.entry); 800 rcu_assign_pointer(*ppcpu_path, path); 801 802 return path; 803 } 804 805 /** 806 * get_next_path_min_inflight() - Returns path with minimal inflight count. 807 * @it: the path pointer 808 * 809 * Related to @MP_POLICY_MIN_INFLIGHT 810 * 811 * Locks: 812 * rcu_read_lock() must be hold. 813 */ 814 static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it) 815 { 816 struct rtrs_clt_sess *min_path = NULL; 817 struct rtrs_clt *clt = it->clt; 818 struct rtrs_clt_sess *sess; 819 int min_inflight = INT_MAX; 820 int inflight; 821 822 list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) { 823 if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED) 824 continue; 825 826 if (!list_empty(raw_cpu_ptr(sess->mp_skip_entry))) 827 continue; 828 829 inflight = atomic_read(&sess->stats->inflight); 830 831 if (inflight < min_inflight) { 832 min_inflight = inflight; 833 min_path = sess; 834 } 835 } 836 837 /* 838 * add the path to the skip list, so that next time we can get 839 * a different one 840 */ 841 if (min_path) 842 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list); 843 844 return min_path; 845 } 846 847 /** 848 * get_next_path_min_latency() - Returns path with minimal latency. 849 * @it: the path pointer 850 * 851 * Return: a path with the lowest latency or NULL if all paths are tried 852 * 853 * Locks: 854 * rcu_read_lock() must be hold. 855 * 856 * Related to @MP_POLICY_MIN_LATENCY 857 * 858 * This DOES skip an already-tried path. 859 * There is a skip-list to skip a path if the path has tried but failed. 860 * It will try the minimum latency path and then the second minimum latency 861 * path and so on. Finally it will return NULL if all paths are tried. 862 * Therefore the caller MUST check the returned 863 * path is NULL and trigger the IO error. 864 */ 865 static struct rtrs_clt_sess *get_next_path_min_latency(struct path_it *it) 866 { 867 struct rtrs_clt_sess *min_path = NULL; 868 struct rtrs_clt *clt = it->clt; 869 struct rtrs_clt_sess *sess; 870 ktime_t min_latency = INT_MAX; 871 ktime_t latency; 872 873 list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) { 874 if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED) 875 continue; 876 877 if (!list_empty(raw_cpu_ptr(sess->mp_skip_entry))) 878 continue; 879 880 latency = sess->s.hb_cur_latency; 881 882 if (latency < min_latency) { 883 min_latency = latency; 884 min_path = sess; 885 } 886 } 887 888 /* 889 * add the path to the skip list, so that next time we can get 890 * a different one 891 */ 892 if (min_path) 893 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list); 894 895 return min_path; 896 } 897 898 static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt) 899 { 900 INIT_LIST_HEAD(&it->skip_list); 901 it->clt = clt; 902 it->i = 0; 903 904 if (clt->mp_policy == MP_POLICY_RR) 905 it->next_path = get_next_path_rr; 906 else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT) 907 it->next_path = get_next_path_min_inflight; 908 else 909 it->next_path = get_next_path_min_latency; 910 } 911 912 static inline void path_it_deinit(struct path_it *it) 913 { 914 struct list_head *skip, *tmp; 915 /* 916 * The skip_list is used only for the MIN_INFLIGHT policy. 917 * We need to remove paths from it, so that next IO can insert 918 * paths (->mp_skip_entry) into a skip_list again. 919 */ 920 list_for_each_safe(skip, tmp, &it->skip_list) 921 list_del_init(skip); 922 } 923 924 /** 925 * rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information 926 * about an inflight IO. 927 * The user buffer holding user control message (not data) is copied into 928 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will 929 * also hold the control message of rtrs. 930 * @req: an io request holding information about IO. 931 * @sess: client session 932 * @conf: conformation callback function to notify upper layer. 933 * @permit: permit for allocation of RDMA remote buffer 934 * @priv: private pointer 935 * @vec: kernel vector containing control message 936 * @usr_len: length of the user message 937 * @sg: scater list for IO data 938 * @sg_cnt: number of scater list entries 939 * @data_len: length of the IO data 940 * @dir: direction of the IO. 941 */ 942 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req, 943 struct rtrs_clt_sess *sess, 944 void (*conf)(void *priv, int errno), 945 struct rtrs_permit *permit, void *priv, 946 const struct kvec *vec, size_t usr_len, 947 struct scatterlist *sg, size_t sg_cnt, 948 size_t data_len, int dir) 949 { 950 struct iov_iter iter; 951 size_t len; 952 953 req->permit = permit; 954 req->in_use = true; 955 req->usr_len = usr_len; 956 req->data_len = data_len; 957 req->sglist = sg; 958 req->sg_cnt = sg_cnt; 959 req->priv = priv; 960 req->dir = dir; 961 req->con = rtrs_permit_to_clt_con(sess, permit); 962 req->conf = conf; 963 req->need_inv = false; 964 req->need_inv_comp = false; 965 req->inv_errno = 0; 966 refcount_set(&req->ref, 1); 967 req->mp_policy = sess->clt->mp_policy; 968 969 iov_iter_kvec(&iter, READ, vec, 1, usr_len); 970 len = _copy_from_iter(req->iu->buf, usr_len, &iter); 971 WARN_ON(len != usr_len); 972 973 reinit_completion(&req->inv_comp); 974 } 975 976 static struct rtrs_clt_io_req * 977 rtrs_clt_get_req(struct rtrs_clt_sess *sess, 978 void (*conf)(void *priv, int errno), 979 struct rtrs_permit *permit, void *priv, 980 const struct kvec *vec, size_t usr_len, 981 struct scatterlist *sg, size_t sg_cnt, 982 size_t data_len, int dir) 983 { 984 struct rtrs_clt_io_req *req; 985 986 req = &sess->reqs[permit->mem_id]; 987 rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len, 988 sg, sg_cnt, data_len, dir); 989 return req; 990 } 991 992 static struct rtrs_clt_io_req * 993 rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess, 994 struct rtrs_clt_io_req *fail_req) 995 { 996 struct rtrs_clt_io_req *req; 997 struct kvec vec = { 998 .iov_base = fail_req->iu->buf, 999 .iov_len = fail_req->usr_len 1000 }; 1001 1002 req = &alive_sess->reqs[fail_req->permit->mem_id]; 1003 rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit, 1004 fail_req->priv, &vec, fail_req->usr_len, 1005 fail_req->sglist, fail_req->sg_cnt, 1006 fail_req->data_len, fail_req->dir); 1007 return req; 1008 } 1009 1010 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con, 1011 struct rtrs_clt_io_req *req, 1012 struct rtrs_rbuf *rbuf, bool fr_en, 1013 u32 size, u32 imm, struct ib_send_wr *wr, 1014 struct ib_send_wr *tail) 1015 { 1016 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1017 struct ib_sge *sge = req->sge; 1018 enum ib_send_flags flags; 1019 struct scatterlist *sg; 1020 size_t num_sge; 1021 int i; 1022 struct ib_send_wr *ptail = NULL; 1023 1024 if (fr_en) { 1025 i = 0; 1026 sge[i].addr = req->mr->iova; 1027 sge[i].length = req->mr->length; 1028 sge[i].lkey = req->mr->lkey; 1029 i++; 1030 num_sge = 2; 1031 ptail = tail; 1032 } else { 1033 for_each_sg(req->sglist, sg, req->sg_cnt, i) { 1034 sge[i].addr = sg_dma_address(sg); 1035 sge[i].length = sg_dma_len(sg); 1036 sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey; 1037 } 1038 num_sge = 1 + req->sg_cnt; 1039 } 1040 sge[i].addr = req->iu->dma_addr; 1041 sge[i].length = size; 1042 sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey; 1043 1044 /* 1045 * From time to time we have to post signalled sends, 1046 * or send queue will fill up and only QP reset can help. 1047 */ 1048 flags = atomic_inc_return(&con->c.wr_cnt) % sess->s.signal_interval ? 1049 0 : IB_SEND_SIGNALED; 1050 1051 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr, 1052 size, DMA_TO_DEVICE); 1053 1054 return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge, 1055 rbuf->rkey, rbuf->addr, imm, 1056 flags, wr, ptail); 1057 } 1058 1059 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count) 1060 { 1061 int nr; 1062 1063 /* Align the MR to a 4K page size to match the block virt boundary */ 1064 nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K); 1065 if (nr < 0) 1066 return nr; 1067 if (nr < req->sg_cnt) 1068 return -EINVAL; 1069 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1070 1071 return nr; 1072 } 1073 1074 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req) 1075 { 1076 struct rtrs_clt_con *con = req->con; 1077 struct rtrs_sess *s = con->c.sess; 1078 struct rtrs_clt_sess *sess = to_clt_sess(s); 1079 struct rtrs_msg_rdma_write *msg; 1080 1081 struct rtrs_rbuf *rbuf; 1082 int ret, count = 0; 1083 u32 imm, buf_id; 1084 struct ib_reg_wr rwr; 1085 struct ib_send_wr inv_wr; 1086 struct ib_send_wr *wr = NULL; 1087 bool fr_en = false; 1088 1089 const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len; 1090 1091 if (tsize > sess->chunk_size) { 1092 rtrs_wrn(s, "Write request failed, size too big %zu > %d\n", 1093 tsize, sess->chunk_size); 1094 return -EMSGSIZE; 1095 } 1096 if (req->sg_cnt) { 1097 count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist, 1098 req->sg_cnt, req->dir); 1099 if (!count) { 1100 rtrs_wrn(s, "Write request failed, map failed\n"); 1101 return -EINVAL; 1102 } 1103 } 1104 /* put rtrs msg after sg and user message */ 1105 msg = req->iu->buf + req->usr_len; 1106 msg->type = cpu_to_le16(RTRS_MSG_WRITE); 1107 msg->usr_len = cpu_to_le16(req->usr_len); 1108 1109 /* rtrs message on server side will be after user data and message */ 1110 imm = req->permit->mem_off + req->data_len + req->usr_len; 1111 imm = rtrs_to_io_req_imm(imm); 1112 buf_id = req->permit->mem_id; 1113 req->sg_size = tsize; 1114 rbuf = &sess->rbufs[buf_id]; 1115 1116 if (count) { 1117 ret = rtrs_map_sg_fr(req, count); 1118 if (ret < 0) { 1119 rtrs_err_rl(s, 1120 "Write request failed, failed to map fast reg. data, err: %d\n", 1121 ret); 1122 ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist, 1123 req->sg_cnt, req->dir); 1124 return ret; 1125 } 1126 inv_wr = (struct ib_send_wr) { 1127 .opcode = IB_WR_LOCAL_INV, 1128 .wr_cqe = &req->inv_cqe, 1129 .send_flags = IB_SEND_SIGNALED, 1130 .ex.invalidate_rkey = req->mr->rkey, 1131 }; 1132 req->inv_cqe.done = rtrs_clt_inv_rkey_done; 1133 rwr = (struct ib_reg_wr) { 1134 .wr.opcode = IB_WR_REG_MR, 1135 .wr.wr_cqe = &fast_reg_cqe, 1136 .mr = req->mr, 1137 .key = req->mr->rkey, 1138 .access = (IB_ACCESS_LOCAL_WRITE), 1139 }; 1140 wr = &rwr.wr; 1141 fr_en = true; 1142 refcount_inc(&req->ref); 1143 } 1144 /* 1145 * Update stats now, after request is successfully sent it is not 1146 * safe anymore to touch it. 1147 */ 1148 rtrs_clt_update_all_stats(req, WRITE); 1149 1150 ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en, 1151 req->usr_len + sizeof(*msg), 1152 imm, wr, &inv_wr); 1153 if (ret) { 1154 rtrs_err_rl(s, 1155 "Write request failed: error=%d path=%s [%s:%u]\n", 1156 ret, kobject_name(&sess->kobj), sess->hca_name, 1157 sess->hca_port); 1158 if (req->mp_policy == MP_POLICY_MIN_INFLIGHT) 1159 atomic_dec(&sess->stats->inflight); 1160 if (req->sg_cnt) 1161 ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist, 1162 req->sg_cnt, req->dir); 1163 } 1164 1165 return ret; 1166 } 1167 1168 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req) 1169 { 1170 struct rtrs_clt_con *con = req->con; 1171 struct rtrs_sess *s = con->c.sess; 1172 struct rtrs_clt_sess *sess = to_clt_sess(s); 1173 struct rtrs_msg_rdma_read *msg; 1174 struct rtrs_ib_dev *dev = sess->s.dev; 1175 1176 struct ib_reg_wr rwr; 1177 struct ib_send_wr *wr = NULL; 1178 1179 int ret, count = 0; 1180 u32 imm, buf_id; 1181 1182 const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len; 1183 1184 if (tsize > sess->chunk_size) { 1185 rtrs_wrn(s, 1186 "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n", 1187 tsize, sess->chunk_size); 1188 return -EMSGSIZE; 1189 } 1190 1191 if (req->sg_cnt) { 1192 count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt, 1193 req->dir); 1194 if (!count) { 1195 rtrs_wrn(s, 1196 "Read request failed, dma map failed\n"); 1197 return -EINVAL; 1198 } 1199 } 1200 /* put our message into req->buf after user message*/ 1201 msg = req->iu->buf + req->usr_len; 1202 msg->type = cpu_to_le16(RTRS_MSG_READ); 1203 msg->usr_len = cpu_to_le16(req->usr_len); 1204 1205 if (count) { 1206 ret = rtrs_map_sg_fr(req, count); 1207 if (ret < 0) { 1208 rtrs_err_rl(s, 1209 "Read request failed, failed to map fast reg. data, err: %d\n", 1210 ret); 1211 ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt, 1212 req->dir); 1213 return ret; 1214 } 1215 rwr = (struct ib_reg_wr) { 1216 .wr.opcode = IB_WR_REG_MR, 1217 .wr.wr_cqe = &fast_reg_cqe, 1218 .mr = req->mr, 1219 .key = req->mr->rkey, 1220 .access = (IB_ACCESS_LOCAL_WRITE | 1221 IB_ACCESS_REMOTE_WRITE), 1222 }; 1223 wr = &rwr.wr; 1224 1225 msg->sg_cnt = cpu_to_le16(1); 1226 msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F); 1227 1228 msg->desc[0].addr = cpu_to_le64(req->mr->iova); 1229 msg->desc[0].key = cpu_to_le32(req->mr->rkey); 1230 msg->desc[0].len = cpu_to_le32(req->mr->length); 1231 1232 /* Further invalidation is required */ 1233 req->need_inv = !!RTRS_MSG_NEED_INVAL_F; 1234 1235 } else { 1236 msg->sg_cnt = 0; 1237 msg->flags = 0; 1238 } 1239 /* 1240 * rtrs message will be after the space reserved for disk data and 1241 * user message 1242 */ 1243 imm = req->permit->mem_off + req->data_len + req->usr_len; 1244 imm = rtrs_to_io_req_imm(imm); 1245 buf_id = req->permit->mem_id; 1246 1247 req->sg_size = sizeof(*msg); 1248 req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc); 1249 req->sg_size += req->usr_len; 1250 1251 /* 1252 * Update stats now, after request is successfully sent it is not 1253 * safe anymore to touch it. 1254 */ 1255 rtrs_clt_update_all_stats(req, READ); 1256 1257 ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id], 1258 req->data_len, imm, wr); 1259 if (ret) { 1260 rtrs_err_rl(s, 1261 "Read request failed: error=%d path=%s [%s:%u]\n", 1262 ret, kobject_name(&sess->kobj), sess->hca_name, 1263 sess->hca_port); 1264 if (req->mp_policy == MP_POLICY_MIN_INFLIGHT) 1265 atomic_dec(&sess->stats->inflight); 1266 req->need_inv = false; 1267 if (req->sg_cnt) 1268 ib_dma_unmap_sg(dev->ib_dev, req->sglist, 1269 req->sg_cnt, req->dir); 1270 } 1271 1272 return ret; 1273 } 1274 1275 /** 1276 * rtrs_clt_failover_req() - Try to find an active path for a failed request 1277 * @clt: clt context 1278 * @fail_req: a failed io request. 1279 */ 1280 static int rtrs_clt_failover_req(struct rtrs_clt *clt, 1281 struct rtrs_clt_io_req *fail_req) 1282 { 1283 struct rtrs_clt_sess *alive_sess; 1284 struct rtrs_clt_io_req *req; 1285 int err = -ECONNABORTED; 1286 struct path_it it; 1287 1288 rcu_read_lock(); 1289 for (path_it_init(&it, clt); 1290 (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num; 1291 it.i++) { 1292 if (READ_ONCE(alive_sess->state) != RTRS_CLT_CONNECTED) 1293 continue; 1294 req = rtrs_clt_get_copy_req(alive_sess, fail_req); 1295 if (req->dir == DMA_TO_DEVICE) 1296 err = rtrs_clt_write_req(req); 1297 else 1298 err = rtrs_clt_read_req(req); 1299 if (err) { 1300 req->in_use = false; 1301 continue; 1302 } 1303 /* Success path */ 1304 rtrs_clt_inc_failover_cnt(alive_sess->stats); 1305 break; 1306 } 1307 path_it_deinit(&it); 1308 rcu_read_unlock(); 1309 1310 return err; 1311 } 1312 1313 static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess) 1314 { 1315 struct rtrs_clt *clt = sess->clt; 1316 struct rtrs_clt_io_req *req; 1317 int i, err; 1318 1319 if (!sess->reqs) 1320 return; 1321 for (i = 0; i < sess->queue_depth; ++i) { 1322 req = &sess->reqs[i]; 1323 if (!req->in_use) 1324 continue; 1325 1326 /* 1327 * Safely (without notification) complete failed request. 1328 * After completion this request is still useble and can 1329 * be failovered to another path. 1330 */ 1331 complete_rdma_req(req, -ECONNABORTED, false, true); 1332 1333 err = rtrs_clt_failover_req(clt, req); 1334 if (err) 1335 /* Failover failed, notify anyway */ 1336 req->conf(req->priv, err); 1337 } 1338 } 1339 1340 static void free_sess_reqs(struct rtrs_clt_sess *sess) 1341 { 1342 struct rtrs_clt_io_req *req; 1343 int i; 1344 1345 if (!sess->reqs) 1346 return; 1347 for (i = 0; i < sess->queue_depth; ++i) { 1348 req = &sess->reqs[i]; 1349 if (req->mr) 1350 ib_dereg_mr(req->mr); 1351 kfree(req->sge); 1352 rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1); 1353 } 1354 kfree(sess->reqs); 1355 sess->reqs = NULL; 1356 } 1357 1358 static int alloc_sess_reqs(struct rtrs_clt_sess *sess) 1359 { 1360 struct rtrs_clt_io_req *req; 1361 int i, err = -ENOMEM; 1362 1363 sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs), 1364 GFP_KERNEL); 1365 if (!sess->reqs) 1366 return -ENOMEM; 1367 1368 for (i = 0; i < sess->queue_depth; ++i) { 1369 req = &sess->reqs[i]; 1370 req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL, 1371 sess->s.dev->ib_dev, 1372 DMA_TO_DEVICE, 1373 rtrs_clt_rdma_done); 1374 if (!req->iu) 1375 goto out; 1376 1377 req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL); 1378 if (!req->sge) 1379 goto out; 1380 1381 req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG, 1382 sess->max_pages_per_mr); 1383 if (IS_ERR(req->mr)) { 1384 err = PTR_ERR(req->mr); 1385 req->mr = NULL; 1386 pr_err("Failed to alloc sess->max_pages_per_mr %d\n", 1387 sess->max_pages_per_mr); 1388 goto out; 1389 } 1390 1391 init_completion(&req->inv_comp); 1392 } 1393 1394 return 0; 1395 1396 out: 1397 free_sess_reqs(sess); 1398 1399 return err; 1400 } 1401 1402 static int alloc_permits(struct rtrs_clt *clt) 1403 { 1404 unsigned int chunk_bits; 1405 int err, i; 1406 1407 clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth), 1408 sizeof(long), GFP_KERNEL); 1409 if (!clt->permits_map) { 1410 err = -ENOMEM; 1411 goto out_err; 1412 } 1413 clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL); 1414 if (!clt->permits) { 1415 err = -ENOMEM; 1416 goto err_map; 1417 } 1418 chunk_bits = ilog2(clt->queue_depth - 1) + 1; 1419 for (i = 0; i < clt->queue_depth; i++) { 1420 struct rtrs_permit *permit; 1421 1422 permit = get_permit(clt, i); 1423 permit->mem_id = i; 1424 permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits); 1425 } 1426 1427 return 0; 1428 1429 err_map: 1430 kfree(clt->permits_map); 1431 clt->permits_map = NULL; 1432 out_err: 1433 return err; 1434 } 1435 1436 static void free_permits(struct rtrs_clt *clt) 1437 { 1438 if (clt->permits_map) { 1439 size_t sz = clt->queue_depth; 1440 1441 wait_event(clt->permits_wait, 1442 find_first_bit(clt->permits_map, sz) >= sz); 1443 } 1444 kfree(clt->permits_map); 1445 clt->permits_map = NULL; 1446 kfree(clt->permits); 1447 clt->permits = NULL; 1448 } 1449 1450 static void query_fast_reg_mode(struct rtrs_clt_sess *sess) 1451 { 1452 struct ib_device *ib_dev; 1453 u64 max_pages_per_mr; 1454 int mr_page_shift; 1455 1456 ib_dev = sess->s.dev->ib_dev; 1457 1458 /* 1459 * Use the smallest page size supported by the HCA, down to a 1460 * minimum of 4096 bytes. We're unlikely to build large sglists 1461 * out of smaller entries. 1462 */ 1463 mr_page_shift = max(12, ffs(ib_dev->attrs.page_size_cap) - 1); 1464 max_pages_per_mr = ib_dev->attrs.max_mr_size; 1465 do_div(max_pages_per_mr, (1ull << mr_page_shift)); 1466 sess->max_pages_per_mr = 1467 min3(sess->max_pages_per_mr, (u32)max_pages_per_mr, 1468 ib_dev->attrs.max_fast_reg_page_list_len); 1469 sess->clt->max_segments = 1470 min(sess->max_pages_per_mr, sess->clt->max_segments); 1471 } 1472 1473 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess, 1474 enum rtrs_clt_state new_state, 1475 enum rtrs_clt_state *old_state) 1476 { 1477 bool changed; 1478 1479 spin_lock_irq(&sess->state_wq.lock); 1480 if (old_state) 1481 *old_state = sess->state; 1482 changed = rtrs_clt_change_state(sess, new_state); 1483 spin_unlock_irq(&sess->state_wq.lock); 1484 1485 return changed; 1486 } 1487 1488 static void rtrs_clt_hb_err_handler(struct rtrs_con *c) 1489 { 1490 struct rtrs_clt_con *con = container_of(c, typeof(*con), c); 1491 1492 rtrs_rdma_error_recovery(con); 1493 } 1494 1495 static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess) 1496 { 1497 rtrs_init_hb(&sess->s, &io_comp_cqe, 1498 RTRS_HB_INTERVAL_MS, 1499 RTRS_HB_MISSED_MAX, 1500 rtrs_clt_hb_err_handler, 1501 rtrs_wq); 1502 } 1503 1504 static void rtrs_clt_reconnect_work(struct work_struct *work); 1505 static void rtrs_clt_close_work(struct work_struct *work); 1506 1507 static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt, 1508 const struct rtrs_addr *path, 1509 size_t con_num, u32 nr_poll_queues) 1510 { 1511 struct rtrs_clt_sess *sess; 1512 int err = -ENOMEM; 1513 int cpu; 1514 size_t total_con; 1515 1516 sess = kzalloc(sizeof(*sess), GFP_KERNEL); 1517 if (!sess) 1518 goto err; 1519 1520 /* 1521 * irqmode and poll 1522 * +1: Extra connection for user messages 1523 */ 1524 total_con = con_num + nr_poll_queues + 1; 1525 sess->s.con = kcalloc(total_con, sizeof(*sess->s.con), GFP_KERNEL); 1526 if (!sess->s.con) 1527 goto err_free_sess; 1528 1529 sess->s.con_num = total_con; 1530 sess->s.irq_con_num = con_num + 1; 1531 1532 sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL); 1533 if (!sess->stats) 1534 goto err_free_con; 1535 1536 mutex_init(&sess->init_mutex); 1537 uuid_gen(&sess->s.uuid); 1538 memcpy(&sess->s.dst_addr, path->dst, 1539 rdma_addr_size((struct sockaddr *)path->dst)); 1540 1541 /* 1542 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which 1543 * checks the sa_family to be non-zero. If user passed src_addr=NULL 1544 * the sess->src_addr will contain only zeros, which is then fine. 1545 */ 1546 if (path->src) 1547 memcpy(&sess->s.src_addr, path->src, 1548 rdma_addr_size((struct sockaddr *)path->src)); 1549 strscpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname)); 1550 sess->clt = clt; 1551 sess->max_pages_per_mr = RTRS_MAX_SEGMENTS; 1552 init_waitqueue_head(&sess->state_wq); 1553 sess->state = RTRS_CLT_CONNECTING; 1554 atomic_set(&sess->connected_cnt, 0); 1555 INIT_WORK(&sess->close_work, rtrs_clt_close_work); 1556 INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work); 1557 rtrs_clt_init_hb(sess); 1558 1559 sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry)); 1560 if (!sess->mp_skip_entry) 1561 goto err_free_stats; 1562 1563 for_each_possible_cpu(cpu) 1564 INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu)); 1565 1566 err = rtrs_clt_init_stats(sess->stats); 1567 if (err) 1568 goto err_free_percpu; 1569 1570 return sess; 1571 1572 err_free_percpu: 1573 free_percpu(sess->mp_skip_entry); 1574 err_free_stats: 1575 kfree(sess->stats); 1576 err_free_con: 1577 kfree(sess->s.con); 1578 err_free_sess: 1579 kfree(sess); 1580 err: 1581 return ERR_PTR(err); 1582 } 1583 1584 void free_sess(struct rtrs_clt_sess *sess) 1585 { 1586 free_percpu(sess->mp_skip_entry); 1587 mutex_destroy(&sess->init_mutex); 1588 kfree(sess->s.con); 1589 kfree(sess->rbufs); 1590 kfree(sess); 1591 } 1592 1593 static int create_con(struct rtrs_clt_sess *sess, unsigned int cid) 1594 { 1595 struct rtrs_clt_con *con; 1596 1597 con = kzalloc(sizeof(*con), GFP_KERNEL); 1598 if (!con) 1599 return -ENOMEM; 1600 1601 /* Map first two connections to the first CPU */ 1602 con->cpu = (cid ? cid - 1 : 0) % nr_cpu_ids; 1603 con->c.cid = cid; 1604 con->c.sess = &sess->s; 1605 /* Align with srv, init as 1 */ 1606 atomic_set(&con->c.wr_cnt, 1); 1607 mutex_init(&con->con_mutex); 1608 1609 sess->s.con[cid] = &con->c; 1610 1611 return 0; 1612 } 1613 1614 static void destroy_con(struct rtrs_clt_con *con) 1615 { 1616 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1617 1618 sess->s.con[con->c.cid] = NULL; 1619 mutex_destroy(&con->con_mutex); 1620 kfree(con); 1621 } 1622 1623 static int create_con_cq_qp(struct rtrs_clt_con *con) 1624 { 1625 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1626 u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit; 1627 int err, cq_vector; 1628 struct rtrs_msg_rkey_rsp *rsp; 1629 1630 lockdep_assert_held(&con->con_mutex); 1631 if (con->c.cid == 0) { 1632 max_send_sge = 1; 1633 /* We must be the first here */ 1634 if (WARN_ON(sess->s.dev)) 1635 return -EINVAL; 1636 1637 /* 1638 * The whole session uses device from user connection. 1639 * Be careful not to close user connection before ib dev 1640 * is gracefully put. 1641 */ 1642 sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device, 1643 &dev_pd); 1644 if (!sess->s.dev) { 1645 rtrs_wrn(sess->clt, 1646 "rtrs_ib_dev_find_get_or_add(): no memory\n"); 1647 return -ENOMEM; 1648 } 1649 sess->s.dev_ref = 1; 1650 query_fast_reg_mode(sess); 1651 wr_limit = sess->s.dev->ib_dev->attrs.max_qp_wr; 1652 /* 1653 * Two (request + registration) completion for send 1654 * Two for recv if always_invalidate is set on server 1655 * or one for recv. 1656 * + 2 for drain and heartbeat 1657 * in case qp gets into error state. 1658 */ 1659 max_send_wr = 1660 min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2); 1661 max_recv_wr = max_send_wr; 1662 } else { 1663 /* 1664 * Here we assume that session members are correctly set. 1665 * This is always true if user connection (cid == 0) is 1666 * established first. 1667 */ 1668 if (WARN_ON(!sess->s.dev)) 1669 return -EINVAL; 1670 if (WARN_ON(!sess->queue_depth)) 1671 return -EINVAL; 1672 1673 wr_limit = sess->s.dev->ib_dev->attrs.max_qp_wr; 1674 /* Shared between connections */ 1675 sess->s.dev_ref++; 1676 max_send_wr = min_t(int, wr_limit, 1677 /* QD * (REQ + RSP + FR REGS or INVS) + drain */ 1678 sess->queue_depth * 3 + 1); 1679 max_recv_wr = min_t(int, wr_limit, 1680 sess->queue_depth * 3 + 1); 1681 max_send_sge = 2; 1682 } 1683 atomic_set(&con->c.sq_wr_avail, max_send_wr); 1684 cq_num = max_send_wr + max_recv_wr; 1685 /* alloc iu to recv new rkey reply when server reports flags set */ 1686 if (sess->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) { 1687 con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp), 1688 GFP_KERNEL, sess->s.dev->ib_dev, 1689 DMA_FROM_DEVICE, 1690 rtrs_clt_rdma_done); 1691 if (!con->rsp_ius) 1692 return -ENOMEM; 1693 con->queue_num = cq_num; 1694 } 1695 cq_num = max_send_wr + max_recv_wr; 1696 cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors; 1697 if (con->c.cid >= sess->s.irq_con_num) 1698 err = rtrs_cq_qp_create(&sess->s, &con->c, max_send_sge, 1699 cq_vector, cq_num, max_send_wr, 1700 max_recv_wr, IB_POLL_DIRECT); 1701 else 1702 err = rtrs_cq_qp_create(&sess->s, &con->c, max_send_sge, 1703 cq_vector, cq_num, max_send_wr, 1704 max_recv_wr, IB_POLL_SOFTIRQ); 1705 /* 1706 * In case of error we do not bother to clean previous allocations, 1707 * since destroy_con_cq_qp() must be called. 1708 */ 1709 return err; 1710 } 1711 1712 static void destroy_con_cq_qp(struct rtrs_clt_con *con) 1713 { 1714 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1715 1716 /* 1717 * Be careful here: destroy_con_cq_qp() can be called even 1718 * create_con_cq_qp() failed, see comments there. 1719 */ 1720 lockdep_assert_held(&con->con_mutex); 1721 rtrs_cq_qp_destroy(&con->c); 1722 if (con->rsp_ius) { 1723 rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_num); 1724 con->rsp_ius = NULL; 1725 con->queue_num = 0; 1726 } 1727 if (sess->s.dev_ref && !--sess->s.dev_ref) { 1728 rtrs_ib_dev_put(sess->s.dev); 1729 sess->s.dev = NULL; 1730 } 1731 } 1732 1733 static void stop_cm(struct rtrs_clt_con *con) 1734 { 1735 rdma_disconnect(con->c.cm_id); 1736 if (con->c.qp) 1737 ib_drain_qp(con->c.qp); 1738 } 1739 1740 static void destroy_cm(struct rtrs_clt_con *con) 1741 { 1742 rdma_destroy_id(con->c.cm_id); 1743 con->c.cm_id = NULL; 1744 } 1745 1746 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con) 1747 { 1748 struct rtrs_sess *s = con->c.sess; 1749 int err; 1750 1751 mutex_lock(&con->con_mutex); 1752 err = create_con_cq_qp(con); 1753 mutex_unlock(&con->con_mutex); 1754 if (err) { 1755 rtrs_err(s, "create_con_cq_qp(), err: %d\n", err); 1756 return err; 1757 } 1758 err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS); 1759 if (err) 1760 rtrs_err(s, "Resolving route failed, err: %d\n", err); 1761 1762 return err; 1763 } 1764 1765 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con) 1766 { 1767 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1768 struct rtrs_clt *clt = sess->clt; 1769 struct rtrs_msg_conn_req msg; 1770 struct rdma_conn_param param; 1771 1772 int err; 1773 1774 param = (struct rdma_conn_param) { 1775 .retry_count = 7, 1776 .rnr_retry_count = 7, 1777 .private_data = &msg, 1778 .private_data_len = sizeof(msg), 1779 }; 1780 1781 msg = (struct rtrs_msg_conn_req) { 1782 .magic = cpu_to_le16(RTRS_MAGIC), 1783 .version = cpu_to_le16(RTRS_PROTO_VER), 1784 .cid = cpu_to_le16(con->c.cid), 1785 .cid_num = cpu_to_le16(sess->s.con_num), 1786 .recon_cnt = cpu_to_le16(sess->s.recon_cnt), 1787 }; 1788 msg.first_conn = sess->for_new_clt ? FIRST_CONN : 0; 1789 uuid_copy(&msg.sess_uuid, &sess->s.uuid); 1790 uuid_copy(&msg.paths_uuid, &clt->paths_uuid); 1791 1792 err = rdma_connect_locked(con->c.cm_id, ¶m); 1793 if (err) 1794 rtrs_err(clt, "rdma_connect_locked(): %d\n", err); 1795 1796 return err; 1797 } 1798 1799 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con, 1800 struct rdma_cm_event *ev) 1801 { 1802 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1803 struct rtrs_clt *clt = sess->clt; 1804 const struct rtrs_msg_conn_rsp *msg; 1805 u16 version, queue_depth; 1806 int errno; 1807 u8 len; 1808 1809 msg = ev->param.conn.private_data; 1810 len = ev->param.conn.private_data_len; 1811 if (len < sizeof(*msg)) { 1812 rtrs_err(clt, "Invalid RTRS connection response\n"); 1813 return -ECONNRESET; 1814 } 1815 if (le16_to_cpu(msg->magic) != RTRS_MAGIC) { 1816 rtrs_err(clt, "Invalid RTRS magic\n"); 1817 return -ECONNRESET; 1818 } 1819 version = le16_to_cpu(msg->version); 1820 if (version >> 8 != RTRS_PROTO_VER_MAJOR) { 1821 rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n", 1822 version >> 8, RTRS_PROTO_VER_MAJOR); 1823 return -ECONNRESET; 1824 } 1825 errno = le16_to_cpu(msg->errno); 1826 if (errno) { 1827 rtrs_err(clt, "Invalid RTRS message: errno %d\n", 1828 errno); 1829 return -ECONNRESET; 1830 } 1831 if (con->c.cid == 0) { 1832 queue_depth = le16_to_cpu(msg->queue_depth); 1833 1834 if (sess->queue_depth > 0 && queue_depth != sess->queue_depth) { 1835 rtrs_err(clt, "Error: queue depth changed\n"); 1836 1837 /* 1838 * Stop any more reconnection attempts 1839 */ 1840 sess->reconnect_attempts = -1; 1841 rtrs_err(clt, 1842 "Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n"); 1843 return -ECONNRESET; 1844 } 1845 1846 if (!sess->rbufs) { 1847 sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs), 1848 GFP_KERNEL); 1849 if (!sess->rbufs) 1850 return -ENOMEM; 1851 } 1852 sess->queue_depth = queue_depth; 1853 sess->s.signal_interval = min_not_zero(queue_depth, 1854 (unsigned short) SERVICE_CON_QUEUE_DEPTH); 1855 sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size); 1856 sess->max_io_size = le32_to_cpu(msg->max_io_size); 1857 sess->flags = le32_to_cpu(msg->flags); 1858 sess->chunk_size = sess->max_io_size + sess->max_hdr_size; 1859 1860 /* 1861 * Global IO size is always a minimum. 1862 * If while a reconnection server sends us a value a bit 1863 * higher - client does not care and uses cached minimum. 1864 * 1865 * Since we can have several sessions (paths) restablishing 1866 * connections in parallel, use lock. 1867 */ 1868 mutex_lock(&clt->paths_mutex); 1869 clt->queue_depth = sess->queue_depth; 1870 clt->max_io_size = min_not_zero(sess->max_io_size, 1871 clt->max_io_size); 1872 mutex_unlock(&clt->paths_mutex); 1873 1874 /* 1875 * Cache the hca_port and hca_name for sysfs 1876 */ 1877 sess->hca_port = con->c.cm_id->port_num; 1878 scnprintf(sess->hca_name, sizeof(sess->hca_name), 1879 sess->s.dev->ib_dev->name); 1880 sess->s.src_addr = con->c.cm_id->route.addr.src_addr; 1881 /* set for_new_clt, to allow future reconnect on any path */ 1882 sess->for_new_clt = 1; 1883 } 1884 1885 return 0; 1886 } 1887 1888 static inline void flag_success_on_conn(struct rtrs_clt_con *con) 1889 { 1890 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 1891 1892 atomic_inc(&sess->connected_cnt); 1893 con->cm_err = 1; 1894 } 1895 1896 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con, 1897 struct rdma_cm_event *ev) 1898 { 1899 struct rtrs_sess *s = con->c.sess; 1900 const struct rtrs_msg_conn_rsp *msg; 1901 const char *rej_msg; 1902 int status, errno; 1903 u8 data_len; 1904 1905 status = ev->status; 1906 rej_msg = rdma_reject_msg(con->c.cm_id, status); 1907 msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len); 1908 1909 if (msg && data_len >= sizeof(*msg)) { 1910 errno = (int16_t)le16_to_cpu(msg->errno); 1911 if (errno == -EBUSY) 1912 rtrs_err(s, 1913 "Previous session is still exists on the server, please reconnect later\n"); 1914 else 1915 rtrs_err(s, 1916 "Connect rejected: status %d (%s), rtrs errno %d\n", 1917 status, rej_msg, errno); 1918 } else { 1919 rtrs_err(s, 1920 "Connect rejected but with malformed message: status %d (%s)\n", 1921 status, rej_msg); 1922 } 1923 1924 return -ECONNRESET; 1925 } 1926 1927 void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait) 1928 { 1929 if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSING, NULL)) 1930 queue_work(rtrs_wq, &sess->close_work); 1931 if (wait) 1932 flush_work(&sess->close_work); 1933 } 1934 1935 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err) 1936 { 1937 if (con->cm_err == 1) { 1938 struct rtrs_clt_sess *sess; 1939 1940 sess = to_clt_sess(con->c.sess); 1941 if (atomic_dec_and_test(&sess->connected_cnt)) 1942 1943 wake_up(&sess->state_wq); 1944 } 1945 con->cm_err = cm_err; 1946 } 1947 1948 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id, 1949 struct rdma_cm_event *ev) 1950 { 1951 struct rtrs_clt_con *con = cm_id->context; 1952 struct rtrs_sess *s = con->c.sess; 1953 struct rtrs_clt_sess *sess = to_clt_sess(s); 1954 int cm_err = 0; 1955 1956 switch (ev->event) { 1957 case RDMA_CM_EVENT_ADDR_RESOLVED: 1958 cm_err = rtrs_rdma_addr_resolved(con); 1959 break; 1960 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1961 cm_err = rtrs_rdma_route_resolved(con); 1962 break; 1963 case RDMA_CM_EVENT_ESTABLISHED: 1964 cm_err = rtrs_rdma_conn_established(con, ev); 1965 if (!cm_err) { 1966 /* 1967 * Report success and wake up. Here we abuse state_wq, 1968 * i.e. wake up without state change, but we set cm_err. 1969 */ 1970 flag_success_on_conn(con); 1971 wake_up(&sess->state_wq); 1972 return 0; 1973 } 1974 break; 1975 case RDMA_CM_EVENT_REJECTED: 1976 cm_err = rtrs_rdma_conn_rejected(con, ev); 1977 break; 1978 case RDMA_CM_EVENT_DISCONNECTED: 1979 /* No message for disconnecting */ 1980 cm_err = -ECONNRESET; 1981 break; 1982 case RDMA_CM_EVENT_CONNECT_ERROR: 1983 case RDMA_CM_EVENT_UNREACHABLE: 1984 case RDMA_CM_EVENT_ADDR_CHANGE: 1985 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1986 rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n", 1987 rdma_event_msg(ev->event), ev->status); 1988 cm_err = -ECONNRESET; 1989 break; 1990 case RDMA_CM_EVENT_ADDR_ERROR: 1991 case RDMA_CM_EVENT_ROUTE_ERROR: 1992 rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n", 1993 rdma_event_msg(ev->event), ev->status); 1994 cm_err = -EHOSTUNREACH; 1995 break; 1996 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1997 /* 1998 * Device removal is a special case. Queue close and return 0. 1999 */ 2000 rtrs_clt_close_conns(sess, false); 2001 return 0; 2002 default: 2003 rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n", 2004 rdma_event_msg(ev->event), ev->status); 2005 cm_err = -ECONNRESET; 2006 break; 2007 } 2008 2009 if (cm_err) { 2010 /* 2011 * cm error makes sense only on connection establishing, 2012 * in other cases we rely on normal procedure of reconnecting. 2013 */ 2014 flag_error_on_conn(con, cm_err); 2015 rtrs_rdma_error_recovery(con); 2016 } 2017 2018 return 0; 2019 } 2020 2021 static int create_cm(struct rtrs_clt_con *con) 2022 { 2023 struct rtrs_sess *s = con->c.sess; 2024 struct rtrs_clt_sess *sess = to_clt_sess(s); 2025 struct rdma_cm_id *cm_id; 2026 int err; 2027 2028 cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con, 2029 sess->s.dst_addr.ss_family == AF_IB ? 2030 RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC); 2031 if (IS_ERR(cm_id)) { 2032 err = PTR_ERR(cm_id); 2033 rtrs_err(s, "Failed to create CM ID, err: %d\n", err); 2034 2035 return err; 2036 } 2037 con->c.cm_id = cm_id; 2038 con->cm_err = 0; 2039 /* allow the port to be reused */ 2040 err = rdma_set_reuseaddr(cm_id, 1); 2041 if (err != 0) { 2042 rtrs_err(s, "Set address reuse failed, err: %d\n", err); 2043 goto destroy_cm; 2044 } 2045 err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr, 2046 (struct sockaddr *)&sess->s.dst_addr, 2047 RTRS_CONNECT_TIMEOUT_MS); 2048 if (err) { 2049 rtrs_err(s, "Failed to resolve address, err: %d\n", err); 2050 goto destroy_cm; 2051 } 2052 /* 2053 * Combine connection status and session events. This is needed 2054 * for waiting two possible cases: cm_err has something meaningful 2055 * or session state was really changed to error by device removal. 2056 */ 2057 err = wait_event_interruptible_timeout( 2058 sess->state_wq, 2059 con->cm_err || sess->state != RTRS_CLT_CONNECTING, 2060 msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS)); 2061 if (err == 0 || err == -ERESTARTSYS) { 2062 if (err == 0) 2063 err = -ETIMEDOUT; 2064 /* Timedout or interrupted */ 2065 goto errr; 2066 } 2067 if (con->cm_err < 0) { 2068 err = con->cm_err; 2069 goto errr; 2070 } 2071 if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) { 2072 /* Device removal */ 2073 err = -ECONNABORTED; 2074 goto errr; 2075 } 2076 2077 return 0; 2078 2079 errr: 2080 stop_cm(con); 2081 mutex_lock(&con->con_mutex); 2082 destroy_con_cq_qp(con); 2083 mutex_unlock(&con->con_mutex); 2084 destroy_cm: 2085 destroy_cm(con); 2086 2087 return err; 2088 } 2089 2090 static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess) 2091 { 2092 struct rtrs_clt *clt = sess->clt; 2093 int up; 2094 2095 /* 2096 * We can fire RECONNECTED event only when all paths were 2097 * connected on rtrs_clt_open(), then each was disconnected 2098 * and the first one connected again. That's why this nasty 2099 * game with counter value. 2100 */ 2101 2102 mutex_lock(&clt->paths_ev_mutex); 2103 up = ++clt->paths_up; 2104 /* 2105 * Here it is safe to access paths num directly since up counter 2106 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is 2107 * in progress, thus paths removals are impossible. 2108 */ 2109 if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num) 2110 clt->paths_up = clt->paths_num; 2111 else if (up == 1) 2112 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED); 2113 mutex_unlock(&clt->paths_ev_mutex); 2114 2115 /* Mark session as established */ 2116 sess->established = true; 2117 sess->reconnect_attempts = 0; 2118 sess->stats->reconnects.successful_cnt++; 2119 } 2120 2121 static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess) 2122 { 2123 struct rtrs_clt *clt = sess->clt; 2124 2125 if (!sess->established) 2126 return; 2127 2128 sess->established = false; 2129 mutex_lock(&clt->paths_ev_mutex); 2130 WARN_ON(!clt->paths_up); 2131 if (--clt->paths_up == 0) 2132 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED); 2133 mutex_unlock(&clt->paths_ev_mutex); 2134 } 2135 2136 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess) 2137 { 2138 struct rtrs_clt_con *con; 2139 unsigned int cid; 2140 2141 WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED); 2142 2143 /* 2144 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes 2145 * exactly in between. Start destroying after it finishes. 2146 */ 2147 mutex_lock(&sess->init_mutex); 2148 mutex_unlock(&sess->init_mutex); 2149 2150 /* 2151 * All IO paths must observe !CONNECTED state before we 2152 * free everything. 2153 */ 2154 synchronize_rcu(); 2155 2156 rtrs_stop_hb(&sess->s); 2157 2158 /* 2159 * The order it utterly crucial: firstly disconnect and complete all 2160 * rdma requests with error (thus set in_use=false for requests), 2161 * then fail outstanding requests checking in_use for each, and 2162 * eventually notify upper layer about session disconnection. 2163 */ 2164 2165 for (cid = 0; cid < sess->s.con_num; cid++) { 2166 if (!sess->s.con[cid]) 2167 break; 2168 con = to_clt_con(sess->s.con[cid]); 2169 stop_cm(con); 2170 } 2171 fail_all_outstanding_reqs(sess); 2172 free_sess_reqs(sess); 2173 rtrs_clt_sess_down(sess); 2174 2175 /* 2176 * Wait for graceful shutdown, namely when peer side invokes 2177 * rdma_disconnect(). 'connected_cnt' is decremented only on 2178 * CM events, thus if other side had crashed and hb has detected 2179 * something is wrong, here we will stuck for exactly timeout ms, 2180 * since CM does not fire anything. That is fine, we are not in 2181 * hurry. 2182 */ 2183 wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt), 2184 msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS)); 2185 2186 for (cid = 0; cid < sess->s.con_num; cid++) { 2187 if (!sess->s.con[cid]) 2188 break; 2189 con = to_clt_con(sess->s.con[cid]); 2190 mutex_lock(&con->con_mutex); 2191 destroy_con_cq_qp(con); 2192 mutex_unlock(&con->con_mutex); 2193 destroy_cm(con); 2194 destroy_con(con); 2195 } 2196 } 2197 2198 static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path, 2199 struct rtrs_clt_sess *sess, 2200 struct rtrs_clt_sess *next) 2201 { 2202 struct rtrs_clt_sess **ppcpu_path; 2203 2204 /* Call cmpxchg() without sparse warnings */ 2205 ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path; 2206 return sess == cmpxchg(ppcpu_path, sess, next); 2207 } 2208 2209 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess) 2210 { 2211 struct rtrs_clt *clt = sess->clt; 2212 struct rtrs_clt_sess *next; 2213 bool wait_for_grace = false; 2214 int cpu; 2215 2216 mutex_lock(&clt->paths_mutex); 2217 list_del_rcu(&sess->s.entry); 2218 2219 /* Make sure everybody observes path removal. */ 2220 synchronize_rcu(); 2221 2222 /* 2223 * At this point nobody sees @sess in the list, but still we have 2224 * dangling pointer @pcpu_path which _can_ point to @sess. Since 2225 * nobody can observe @sess in the list, we guarantee that IO path 2226 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal 2227 * to @sess, but can never again become @sess. 2228 */ 2229 2230 /* 2231 * Decrement paths number only after grace period, because 2232 * caller of do_each_path() must firstly observe list without 2233 * path and only then decremented paths number. 2234 * 2235 * Otherwise there can be the following situation: 2236 * o Two paths exist and IO is coming. 2237 * o One path is removed: 2238 * CPU#0 CPU#1 2239 * do_each_path(): rtrs_clt_remove_path_from_arr(): 2240 * path = get_next_path() 2241 * ^^^ list_del_rcu(path) 2242 * [!CONNECTED path] clt->paths_num-- 2243 * ^^^^^^^^^ 2244 * load clt->paths_num from 2 to 1 2245 * ^^^^^^^^^ 2246 * sees 1 2247 * 2248 * path is observed as !CONNECTED, but do_each_path() loop 2249 * ends, because expression i < clt->paths_num is false. 2250 */ 2251 clt->paths_num--; 2252 2253 /* 2254 * Get @next connection from current @sess which is going to be 2255 * removed. If @sess is the last element, then @next is NULL. 2256 */ 2257 rcu_read_lock(); 2258 next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry, 2259 typeof(*next), s.entry); 2260 rcu_read_unlock(); 2261 2262 /* 2263 * @pcpu paths can still point to the path which is going to be 2264 * removed, so change the pointer manually. 2265 */ 2266 for_each_possible_cpu(cpu) { 2267 struct rtrs_clt_sess __rcu **ppcpu_path; 2268 2269 ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu); 2270 if (rcu_dereference_protected(*ppcpu_path, 2271 lockdep_is_held(&clt->paths_mutex)) != sess) 2272 /* 2273 * synchronize_rcu() was called just after deleting 2274 * entry from the list, thus IO code path cannot 2275 * change pointer back to the pointer which is going 2276 * to be removed, we are safe here. 2277 */ 2278 continue; 2279 2280 /* 2281 * We race with IO code path, which also changes pointer, 2282 * thus we have to be careful not to overwrite it. 2283 */ 2284 if (xchg_sessions(ppcpu_path, sess, next)) 2285 /* 2286 * @ppcpu_path was successfully replaced with @next, 2287 * that means that someone could also pick up the 2288 * @sess and dereferencing it right now, so wait for 2289 * a grace period is required. 2290 */ 2291 wait_for_grace = true; 2292 } 2293 if (wait_for_grace) 2294 synchronize_rcu(); 2295 2296 mutex_unlock(&clt->paths_mutex); 2297 } 2298 2299 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess) 2300 { 2301 struct rtrs_clt *clt = sess->clt; 2302 2303 mutex_lock(&clt->paths_mutex); 2304 clt->paths_num++; 2305 2306 list_add_tail_rcu(&sess->s.entry, &clt->paths_list); 2307 mutex_unlock(&clt->paths_mutex); 2308 } 2309 2310 static void rtrs_clt_close_work(struct work_struct *work) 2311 { 2312 struct rtrs_clt_sess *sess; 2313 2314 sess = container_of(work, struct rtrs_clt_sess, close_work); 2315 2316 cancel_delayed_work_sync(&sess->reconnect_dwork); 2317 rtrs_clt_stop_and_destroy_conns(sess); 2318 rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSED, NULL); 2319 } 2320 2321 static int init_conns(struct rtrs_clt_sess *sess) 2322 { 2323 unsigned int cid; 2324 int err; 2325 2326 /* 2327 * On every new session connections increase reconnect counter 2328 * to avoid clashes with previous sessions not yet closed 2329 * sessions on a server side. 2330 */ 2331 sess->s.recon_cnt++; 2332 2333 /* Establish all RDMA connections */ 2334 for (cid = 0; cid < sess->s.con_num; cid++) { 2335 err = create_con(sess, cid); 2336 if (err) 2337 goto destroy; 2338 2339 err = create_cm(to_clt_con(sess->s.con[cid])); 2340 if (err) { 2341 destroy_con(to_clt_con(sess->s.con[cid])); 2342 goto destroy; 2343 } 2344 } 2345 err = alloc_sess_reqs(sess); 2346 if (err) 2347 goto destroy; 2348 2349 rtrs_start_hb(&sess->s); 2350 2351 return 0; 2352 2353 destroy: 2354 while (cid--) { 2355 struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]); 2356 2357 stop_cm(con); 2358 2359 mutex_lock(&con->con_mutex); 2360 destroy_con_cq_qp(con); 2361 mutex_unlock(&con->con_mutex); 2362 destroy_cm(con); 2363 destroy_con(con); 2364 } 2365 /* 2366 * If we've never taken async path and got an error, say, 2367 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state 2368 * manually to keep reconnecting. 2369 */ 2370 rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL); 2371 2372 return err; 2373 } 2374 2375 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc) 2376 { 2377 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 2378 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 2379 struct rtrs_iu *iu; 2380 2381 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 2382 rtrs_iu_free(iu, sess->s.dev->ib_dev, 1); 2383 2384 if (wc->status != IB_WC_SUCCESS) { 2385 rtrs_err(sess->clt, "Sess info request send failed: %s\n", 2386 ib_wc_status_msg(wc->status)); 2387 rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL); 2388 return; 2389 } 2390 2391 rtrs_clt_update_wc_stats(con); 2392 } 2393 2394 static int process_info_rsp(struct rtrs_clt_sess *sess, 2395 const struct rtrs_msg_info_rsp *msg) 2396 { 2397 unsigned int sg_cnt, total_len; 2398 int i, sgi; 2399 2400 sg_cnt = le16_to_cpu(msg->sg_cnt); 2401 if (!sg_cnt || (sess->queue_depth % sg_cnt)) { 2402 rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n", 2403 sg_cnt); 2404 return -EINVAL; 2405 } 2406 2407 /* 2408 * Check if IB immediate data size is enough to hold the mem_id and 2409 * the offset inside the memory chunk. 2410 */ 2411 if ((ilog2(sg_cnt - 1) + 1) + (ilog2(sess->chunk_size - 1) + 1) > 2412 MAX_IMM_PAYL_BITS) { 2413 rtrs_err(sess->clt, 2414 "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n", 2415 MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size); 2416 return -EINVAL; 2417 } 2418 total_len = 0; 2419 for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) { 2420 const struct rtrs_sg_desc *desc = &msg->desc[sgi]; 2421 u32 len, rkey; 2422 u64 addr; 2423 2424 addr = le64_to_cpu(desc->addr); 2425 rkey = le32_to_cpu(desc->key); 2426 len = le32_to_cpu(desc->len); 2427 2428 total_len += len; 2429 2430 if (!len || (len % sess->chunk_size)) { 2431 rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi, 2432 len); 2433 return -EINVAL; 2434 } 2435 for ( ; len && i < sess->queue_depth; i++) { 2436 sess->rbufs[i].addr = addr; 2437 sess->rbufs[i].rkey = rkey; 2438 2439 len -= sess->chunk_size; 2440 addr += sess->chunk_size; 2441 } 2442 } 2443 /* Sanity check */ 2444 if (sgi != sg_cnt || i != sess->queue_depth) { 2445 rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n"); 2446 return -EINVAL; 2447 } 2448 if (total_len != sess->chunk_size * sess->queue_depth) { 2449 rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len); 2450 return -EINVAL; 2451 } 2452 2453 return 0; 2454 } 2455 2456 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc) 2457 { 2458 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 2459 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess); 2460 struct rtrs_msg_info_rsp *msg; 2461 enum rtrs_clt_state state; 2462 struct rtrs_iu *iu; 2463 size_t rx_sz; 2464 int err; 2465 2466 state = RTRS_CLT_CONNECTING_ERR; 2467 2468 WARN_ON(con->c.cid); 2469 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 2470 if (wc->status != IB_WC_SUCCESS) { 2471 rtrs_err(sess->clt, "Sess info response recv failed: %s\n", 2472 ib_wc_status_msg(wc->status)); 2473 goto out; 2474 } 2475 WARN_ON(wc->opcode != IB_WC_RECV); 2476 2477 if (wc->byte_len < sizeof(*msg)) { 2478 rtrs_err(sess->clt, "Sess info response is malformed: size %d\n", 2479 wc->byte_len); 2480 goto out; 2481 } 2482 ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr, 2483 iu->size, DMA_FROM_DEVICE); 2484 msg = iu->buf; 2485 if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) { 2486 rtrs_err(sess->clt, "Sess info response is malformed: type %d\n", 2487 le16_to_cpu(msg->type)); 2488 goto out; 2489 } 2490 rx_sz = sizeof(*msg); 2491 rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt); 2492 if (wc->byte_len < rx_sz) { 2493 rtrs_err(sess->clt, "Sess info response is malformed: size %d\n", 2494 wc->byte_len); 2495 goto out; 2496 } 2497 err = process_info_rsp(sess, msg); 2498 if (err) 2499 goto out; 2500 2501 err = post_recv_sess(sess); 2502 if (err) 2503 goto out; 2504 2505 state = RTRS_CLT_CONNECTED; 2506 2507 out: 2508 rtrs_clt_update_wc_stats(con); 2509 rtrs_iu_free(iu, sess->s.dev->ib_dev, 1); 2510 rtrs_clt_change_state_get_old(sess, state, NULL); 2511 } 2512 2513 static int rtrs_send_sess_info(struct rtrs_clt_sess *sess) 2514 { 2515 struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]); 2516 struct rtrs_msg_info_req *msg; 2517 struct rtrs_iu *tx_iu, *rx_iu; 2518 size_t rx_sz; 2519 int err; 2520 2521 rx_sz = sizeof(struct rtrs_msg_info_rsp); 2522 rx_sz += sizeof(struct rtrs_sg_desc) * sess->queue_depth; 2523 2524 tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL, 2525 sess->s.dev->ib_dev, DMA_TO_DEVICE, 2526 rtrs_clt_info_req_done); 2527 rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev, 2528 DMA_FROM_DEVICE, rtrs_clt_info_rsp_done); 2529 if (!tx_iu || !rx_iu) { 2530 err = -ENOMEM; 2531 goto out; 2532 } 2533 /* Prepare for getting info response */ 2534 err = rtrs_iu_post_recv(&usr_con->c, rx_iu); 2535 if (err) { 2536 rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err); 2537 goto out; 2538 } 2539 rx_iu = NULL; 2540 2541 msg = tx_iu->buf; 2542 msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ); 2543 memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname)); 2544 2545 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr, 2546 tx_iu->size, DMA_TO_DEVICE); 2547 2548 /* Send info request */ 2549 err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL); 2550 if (err) { 2551 rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err); 2552 goto out; 2553 } 2554 tx_iu = NULL; 2555 2556 /* Wait for state change */ 2557 wait_event_interruptible_timeout(sess->state_wq, 2558 sess->state != RTRS_CLT_CONNECTING, 2559 msecs_to_jiffies( 2560 RTRS_CONNECT_TIMEOUT_MS)); 2561 if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED) { 2562 if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR) 2563 err = -ECONNRESET; 2564 else 2565 err = -ETIMEDOUT; 2566 } 2567 2568 out: 2569 if (tx_iu) 2570 rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1); 2571 if (rx_iu) 2572 rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1); 2573 if (err) 2574 /* If we've never taken async path because of malloc problems */ 2575 rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL); 2576 2577 return err; 2578 } 2579 2580 /** 2581 * init_sess() - establishes all session connections and does handshake 2582 * @sess: client session. 2583 * In case of error full close or reconnect procedure should be taken, 2584 * because reconnect or close async works can be started. 2585 */ 2586 static int init_sess(struct rtrs_clt_sess *sess) 2587 { 2588 int err; 2589 char str[NAME_MAX]; 2590 struct rtrs_addr path = { 2591 .src = &sess->s.src_addr, 2592 .dst = &sess->s.dst_addr, 2593 }; 2594 2595 rtrs_addr_to_str(&path, str, sizeof(str)); 2596 2597 mutex_lock(&sess->init_mutex); 2598 err = init_conns(sess); 2599 if (err) { 2600 rtrs_err(sess->clt, 2601 "init_conns() failed: err=%d path=%s [%s:%u]\n", err, 2602 str, sess->hca_name, sess->hca_port); 2603 goto out; 2604 } 2605 err = rtrs_send_sess_info(sess); 2606 if (err) { 2607 rtrs_err( 2608 sess->clt, 2609 "rtrs_send_sess_info() failed: err=%d path=%s [%s:%u]\n", 2610 err, str, sess->hca_name, sess->hca_port); 2611 goto out; 2612 } 2613 rtrs_clt_sess_up(sess); 2614 out: 2615 mutex_unlock(&sess->init_mutex); 2616 2617 return err; 2618 } 2619 2620 static void rtrs_clt_reconnect_work(struct work_struct *work) 2621 { 2622 struct rtrs_clt_sess *sess; 2623 struct rtrs_clt *clt; 2624 unsigned int delay_ms; 2625 int err; 2626 2627 sess = container_of(to_delayed_work(work), struct rtrs_clt_sess, 2628 reconnect_dwork); 2629 clt = sess->clt; 2630 2631 if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING) 2632 return; 2633 2634 if (sess->reconnect_attempts >= clt->max_reconnect_attempts) { 2635 /* Close a session completely if max attempts is reached */ 2636 rtrs_clt_close_conns(sess, false); 2637 return; 2638 } 2639 sess->reconnect_attempts++; 2640 2641 /* Stop everything */ 2642 rtrs_clt_stop_and_destroy_conns(sess); 2643 msleep(RTRS_RECONNECT_BACKOFF); 2644 if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING, NULL)) { 2645 err = init_sess(sess); 2646 if (err) 2647 goto reconnect_again; 2648 } 2649 2650 return; 2651 2652 reconnect_again: 2653 if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING, NULL)) { 2654 sess->stats->reconnects.fail_cnt++; 2655 delay_ms = clt->reconnect_delay_sec * 1000; 2656 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 2657 msecs_to_jiffies(delay_ms + 2658 prandom_u32() % 2659 RTRS_RECONNECT_SEED)); 2660 } 2661 } 2662 2663 static void rtrs_clt_dev_release(struct device *dev) 2664 { 2665 struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev); 2666 2667 kfree(clt); 2668 } 2669 2670 static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num, 2671 u16 port, size_t pdu_sz, void *priv, 2672 void (*link_ev)(void *priv, 2673 enum rtrs_clt_link_ev ev), 2674 unsigned int reconnect_delay_sec, 2675 unsigned int max_reconnect_attempts) 2676 { 2677 struct rtrs_clt *clt; 2678 int err; 2679 2680 if (!paths_num || paths_num > MAX_PATHS_NUM) 2681 return ERR_PTR(-EINVAL); 2682 2683 if (strlen(sessname) >= sizeof(clt->sessname)) 2684 return ERR_PTR(-EINVAL); 2685 2686 clt = kzalloc(sizeof(*clt), GFP_KERNEL); 2687 if (!clt) 2688 return ERR_PTR(-ENOMEM); 2689 2690 clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path)); 2691 if (!clt->pcpu_path) { 2692 kfree(clt); 2693 return ERR_PTR(-ENOMEM); 2694 } 2695 2696 uuid_gen(&clt->paths_uuid); 2697 INIT_LIST_HEAD_RCU(&clt->paths_list); 2698 clt->paths_num = paths_num; 2699 clt->paths_up = MAX_PATHS_NUM; 2700 clt->port = port; 2701 clt->pdu_sz = pdu_sz; 2702 clt->max_segments = RTRS_MAX_SEGMENTS; 2703 clt->reconnect_delay_sec = reconnect_delay_sec; 2704 clt->max_reconnect_attempts = max_reconnect_attempts; 2705 clt->priv = priv; 2706 clt->link_ev = link_ev; 2707 clt->mp_policy = MP_POLICY_MIN_INFLIGHT; 2708 strscpy(clt->sessname, sessname, sizeof(clt->sessname)); 2709 init_waitqueue_head(&clt->permits_wait); 2710 mutex_init(&clt->paths_ev_mutex); 2711 mutex_init(&clt->paths_mutex); 2712 2713 clt->dev.class = rtrs_clt_dev_class; 2714 clt->dev.release = rtrs_clt_dev_release; 2715 err = dev_set_name(&clt->dev, "%s", sessname); 2716 if (err) 2717 goto err; 2718 /* 2719 * Suppress user space notification until 2720 * sysfs files are created 2721 */ 2722 dev_set_uevent_suppress(&clt->dev, true); 2723 err = device_register(&clt->dev); 2724 if (err) { 2725 put_device(&clt->dev); 2726 goto err; 2727 } 2728 2729 clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj); 2730 if (!clt->kobj_paths) { 2731 err = -ENOMEM; 2732 goto err_dev; 2733 } 2734 err = rtrs_clt_create_sysfs_root_files(clt); 2735 if (err) { 2736 kobject_del(clt->kobj_paths); 2737 kobject_put(clt->kobj_paths); 2738 goto err_dev; 2739 } 2740 dev_set_uevent_suppress(&clt->dev, false); 2741 kobject_uevent(&clt->dev.kobj, KOBJ_ADD); 2742 2743 return clt; 2744 err_dev: 2745 device_unregister(&clt->dev); 2746 err: 2747 free_percpu(clt->pcpu_path); 2748 kfree(clt); 2749 return ERR_PTR(err); 2750 } 2751 2752 static void free_clt(struct rtrs_clt *clt) 2753 { 2754 free_permits(clt); 2755 free_percpu(clt->pcpu_path); 2756 mutex_destroy(&clt->paths_ev_mutex); 2757 mutex_destroy(&clt->paths_mutex); 2758 /* release callback will free clt in last put */ 2759 device_unregister(&clt->dev); 2760 } 2761 2762 /** 2763 * rtrs_clt_open() - Open a session to an RTRS server 2764 * @ops: holds the link event callback and the private pointer. 2765 * @sessname: name of the session 2766 * @paths: Paths to be established defined by their src and dst addresses 2767 * @paths_num: Number of elements in the @paths array 2768 * @port: port to be used by the RTRS session 2769 * @pdu_sz: Size of extra payload which can be accessed after permit allocation. 2770 * @reconnect_delay_sec: time between reconnect tries 2771 * @max_reconnect_attempts: Number of times to reconnect on error before giving 2772 * up, 0 for * disabled, -1 for forever 2773 * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag 2774 * 2775 * Starts session establishment with the rtrs_server. The function can block 2776 * up to ~2000ms before it returns. 2777 * 2778 * Return a valid pointer on success otherwise PTR_ERR. 2779 */ 2780 struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops, 2781 const char *sessname, 2782 const struct rtrs_addr *paths, 2783 size_t paths_num, u16 port, 2784 size_t pdu_sz, u8 reconnect_delay_sec, 2785 s16 max_reconnect_attempts, u32 nr_poll_queues) 2786 { 2787 struct rtrs_clt_sess *sess, *tmp; 2788 struct rtrs_clt *clt; 2789 int err, i; 2790 2791 clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv, 2792 ops->link_ev, 2793 reconnect_delay_sec, 2794 max_reconnect_attempts); 2795 if (IS_ERR(clt)) { 2796 err = PTR_ERR(clt); 2797 goto out; 2798 } 2799 for (i = 0; i < paths_num; i++) { 2800 struct rtrs_clt_sess *sess; 2801 2802 sess = alloc_sess(clt, &paths[i], nr_cpu_ids, 2803 nr_poll_queues); 2804 if (IS_ERR(sess)) { 2805 err = PTR_ERR(sess); 2806 goto close_all_sess; 2807 } 2808 if (!i) 2809 sess->for_new_clt = 1; 2810 list_add_tail_rcu(&sess->s.entry, &clt->paths_list); 2811 2812 err = init_sess(sess); 2813 if (err) { 2814 list_del_rcu(&sess->s.entry); 2815 rtrs_clt_close_conns(sess, true); 2816 free_percpu(sess->stats->pcpu_stats); 2817 kfree(sess->stats); 2818 free_sess(sess); 2819 goto close_all_sess; 2820 } 2821 2822 err = rtrs_clt_create_sess_files(sess); 2823 if (err) { 2824 list_del_rcu(&sess->s.entry); 2825 rtrs_clt_close_conns(sess, true); 2826 free_percpu(sess->stats->pcpu_stats); 2827 kfree(sess->stats); 2828 free_sess(sess); 2829 goto close_all_sess; 2830 } 2831 } 2832 err = alloc_permits(clt); 2833 if (err) 2834 goto close_all_sess; 2835 2836 return clt; 2837 2838 close_all_sess: 2839 list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) { 2840 rtrs_clt_destroy_sess_files(sess, NULL); 2841 rtrs_clt_close_conns(sess, true); 2842 kobject_put(&sess->kobj); 2843 } 2844 rtrs_clt_destroy_sysfs_root(clt); 2845 free_clt(clt); 2846 2847 out: 2848 return ERR_PTR(err); 2849 } 2850 EXPORT_SYMBOL(rtrs_clt_open); 2851 2852 /** 2853 * rtrs_clt_close() - Close a session 2854 * @clt: Session handle. Session is freed upon return. 2855 */ 2856 void rtrs_clt_close(struct rtrs_clt *clt) 2857 { 2858 struct rtrs_clt_sess *sess, *tmp; 2859 2860 /* Firstly forbid sysfs access */ 2861 rtrs_clt_destroy_sysfs_root(clt); 2862 2863 /* Now it is safe to iterate over all paths without locks */ 2864 list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) { 2865 rtrs_clt_close_conns(sess, true); 2866 rtrs_clt_destroy_sess_files(sess, NULL); 2867 kobject_put(&sess->kobj); 2868 } 2869 free_clt(clt); 2870 } 2871 EXPORT_SYMBOL(rtrs_clt_close); 2872 2873 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess) 2874 { 2875 enum rtrs_clt_state old_state; 2876 int err = -EBUSY; 2877 bool changed; 2878 2879 changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING, 2880 &old_state); 2881 if (changed) { 2882 sess->reconnect_attempts = 0; 2883 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0); 2884 } 2885 if (changed || old_state == RTRS_CLT_RECONNECTING) { 2886 /* 2887 * flush_delayed_work() queues pending work for immediate 2888 * execution, so do the flush if we have queued something 2889 * right now or work is pending. 2890 */ 2891 flush_delayed_work(&sess->reconnect_dwork); 2892 err = (READ_ONCE(sess->state) == 2893 RTRS_CLT_CONNECTED ? 0 : -ENOTCONN); 2894 } 2895 2896 return err; 2897 } 2898 2899 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess, 2900 const struct attribute *sysfs_self) 2901 { 2902 enum rtrs_clt_state old_state; 2903 bool changed; 2904 2905 /* 2906 * Continue stopping path till state was changed to DEAD or 2907 * state was observed as DEAD: 2908 * 1. State was changed to DEAD - we were fast and nobody 2909 * invoked rtrs_clt_reconnect(), which can again start 2910 * reconnecting. 2911 * 2. State was observed as DEAD - we have someone in parallel 2912 * removing the path. 2913 */ 2914 do { 2915 rtrs_clt_close_conns(sess, true); 2916 changed = rtrs_clt_change_state_get_old(sess, 2917 RTRS_CLT_DEAD, 2918 &old_state); 2919 } while (!changed && old_state != RTRS_CLT_DEAD); 2920 2921 if (changed) { 2922 rtrs_clt_remove_path_from_arr(sess); 2923 rtrs_clt_destroy_sess_files(sess, sysfs_self); 2924 kobject_put(&sess->kobj); 2925 } 2926 2927 return 0; 2928 } 2929 2930 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value) 2931 { 2932 clt->max_reconnect_attempts = (unsigned int)value; 2933 } 2934 2935 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt) 2936 { 2937 return (int)clt->max_reconnect_attempts; 2938 } 2939 2940 /** 2941 * rtrs_clt_request() - Request data transfer to/from server via RDMA. 2942 * 2943 * @dir: READ/WRITE 2944 * @ops: callback function to be called as confirmation, and the pointer. 2945 * @clt: Session 2946 * @permit: Preallocated permit 2947 * @vec: Message that is sent to server together with the request. 2948 * Sum of len of all @vec elements limited to <= IO_MSG_SIZE. 2949 * Since the msg is copied internally it can be allocated on stack. 2950 * @nr: Number of elements in @vec. 2951 * @data_len: length of data sent to/from server 2952 * @sg: Pages to be sent/received to/from server. 2953 * @sg_cnt: Number of elements in the @sg 2954 * 2955 * Return: 2956 * 0: Success 2957 * <0: Error 2958 * 2959 * On dir=READ rtrs client will request a data transfer from Server to client. 2960 * The data that the server will respond with will be stored in @sg when 2961 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event. 2962 * On dir=WRITE rtrs client will rdma write data in sg to server side. 2963 */ 2964 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops, 2965 struct rtrs_clt *clt, struct rtrs_permit *permit, 2966 const struct kvec *vec, size_t nr, size_t data_len, 2967 struct scatterlist *sg, unsigned int sg_cnt) 2968 { 2969 struct rtrs_clt_io_req *req; 2970 struct rtrs_clt_sess *sess; 2971 2972 enum dma_data_direction dma_dir; 2973 int err = -ECONNABORTED, i; 2974 size_t usr_len, hdr_len; 2975 struct path_it it; 2976 2977 /* Get kvec length */ 2978 for (i = 0, usr_len = 0; i < nr; i++) 2979 usr_len += vec[i].iov_len; 2980 2981 if (dir == READ) { 2982 hdr_len = sizeof(struct rtrs_msg_rdma_read) + 2983 sg_cnt * sizeof(struct rtrs_sg_desc); 2984 dma_dir = DMA_FROM_DEVICE; 2985 } else { 2986 hdr_len = sizeof(struct rtrs_msg_rdma_write); 2987 dma_dir = DMA_TO_DEVICE; 2988 } 2989 2990 rcu_read_lock(); 2991 for (path_it_init(&it, clt); 2992 (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) { 2993 if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED) 2994 continue; 2995 2996 if (usr_len + hdr_len > sess->max_hdr_size) { 2997 rtrs_wrn_rl(sess->clt, 2998 "%s request failed, user message size is %zu and header length %zu, but max size is %u\n", 2999 dir == READ ? "Read" : "Write", 3000 usr_len, hdr_len, sess->max_hdr_size); 3001 err = -EMSGSIZE; 3002 break; 3003 } 3004 req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv, 3005 vec, usr_len, sg, sg_cnt, data_len, 3006 dma_dir); 3007 if (dir == READ) 3008 err = rtrs_clt_read_req(req); 3009 else 3010 err = rtrs_clt_write_req(req); 3011 if (err) { 3012 req->in_use = false; 3013 continue; 3014 } 3015 /* Success path */ 3016 break; 3017 } 3018 path_it_deinit(&it); 3019 rcu_read_unlock(); 3020 3021 return err; 3022 } 3023 EXPORT_SYMBOL(rtrs_clt_request); 3024 3025 int rtrs_clt_rdma_cq_direct(struct rtrs_clt *clt, unsigned int index) 3026 { 3027 /* If no path, return -1 for block layer not to try again */ 3028 int cnt = -1; 3029 struct rtrs_con *con; 3030 struct rtrs_clt_sess *sess; 3031 struct path_it it; 3032 3033 rcu_read_lock(); 3034 for (path_it_init(&it, clt); 3035 (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) { 3036 if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED) 3037 continue; 3038 3039 con = sess->s.con[index + 1]; 3040 cnt = ib_process_cq_direct(con->cq, -1); 3041 if (cnt) 3042 break; 3043 } 3044 path_it_deinit(&it); 3045 rcu_read_unlock(); 3046 3047 return cnt; 3048 } 3049 EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct); 3050 3051 /** 3052 * rtrs_clt_query() - queries RTRS session attributes 3053 *@clt: session pointer 3054 *@attr: query results for session attributes. 3055 * Returns: 3056 * 0 on success 3057 * -ECOMM no connection to the server 3058 */ 3059 int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr) 3060 { 3061 if (!rtrs_clt_is_connected(clt)) 3062 return -ECOMM; 3063 3064 attr->queue_depth = clt->queue_depth; 3065 attr->max_segments = clt->max_segments; 3066 /* Cap max_io_size to min of remote buffer size and the fr pages */ 3067 attr->max_io_size = min_t(int, clt->max_io_size, 3068 clt->max_segments * SZ_4K); 3069 3070 return 0; 3071 } 3072 EXPORT_SYMBOL(rtrs_clt_query); 3073 3074 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt, 3075 struct rtrs_addr *addr) 3076 { 3077 struct rtrs_clt_sess *sess; 3078 int err; 3079 3080 sess = alloc_sess(clt, addr, nr_cpu_ids, 0); 3081 if (IS_ERR(sess)) 3082 return PTR_ERR(sess); 3083 3084 mutex_lock(&clt->paths_mutex); 3085 if (clt->paths_num == 0) { 3086 /* 3087 * When all the paths are removed for a session, 3088 * the addition of the first path is like a new session for 3089 * the storage server 3090 */ 3091 sess->for_new_clt = 1; 3092 } 3093 3094 mutex_unlock(&clt->paths_mutex); 3095 3096 /* 3097 * It is totally safe to add path in CONNECTING state: coming 3098 * IO will never grab it. Also it is very important to add 3099 * path before init, since init fires LINK_CONNECTED event. 3100 */ 3101 rtrs_clt_add_path_to_arr(sess); 3102 3103 err = init_sess(sess); 3104 if (err) 3105 goto close_sess; 3106 3107 err = rtrs_clt_create_sess_files(sess); 3108 if (err) 3109 goto close_sess; 3110 3111 return 0; 3112 3113 close_sess: 3114 rtrs_clt_remove_path_from_arr(sess); 3115 rtrs_clt_close_conns(sess, true); 3116 free_percpu(sess->stats->pcpu_stats); 3117 kfree(sess->stats); 3118 free_sess(sess); 3119 3120 return err; 3121 } 3122 3123 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev) 3124 { 3125 if (!(dev->ib_dev->attrs.device_cap_flags & 3126 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 3127 pr_err("Memory registrations not supported.\n"); 3128 return -ENOTSUPP; 3129 } 3130 3131 return 0; 3132 } 3133 3134 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = { 3135 .init = rtrs_clt_ib_dev_init 3136 }; 3137 3138 static int __init rtrs_client_init(void) 3139 { 3140 rtrs_rdma_dev_pd_init(0, &dev_pd); 3141 3142 rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client"); 3143 if (IS_ERR(rtrs_clt_dev_class)) { 3144 pr_err("Failed to create rtrs-client dev class\n"); 3145 return PTR_ERR(rtrs_clt_dev_class); 3146 } 3147 rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0); 3148 if (!rtrs_wq) { 3149 class_destroy(rtrs_clt_dev_class); 3150 return -ENOMEM; 3151 } 3152 3153 return 0; 3154 } 3155 3156 static void __exit rtrs_client_exit(void) 3157 { 3158 destroy_workqueue(rtrs_wq); 3159 class_destroy(rtrs_clt_dev_class); 3160 rtrs_rdma_dev_pd_deinit(&dev_pd); 3161 } 3162 3163 module_init(rtrs_client_init); 3164 module_exit(rtrs_client_exit); 3165