1 /* 2 * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. 3 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 4 * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/slab.h> 37 #include <linux/delay.h> 38 39 #include "iscsi_iser.h" 40 41 #define ISCSI_ISER_MAX_CONN 8 42 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN) 43 #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN) 44 #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \ 45 ISCSI_ISER_MAX_CONN) 46 47 static int iser_cq_poll_limit = 512; 48 49 static void iser_cq_tasklet_fn(unsigned long data); 50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context); 51 52 static void iser_cq_event_callback(struct ib_event *cause, void *context) 53 { 54 iser_err("got cq event %d \n", cause->event); 55 } 56 57 static void iser_qp_event_callback(struct ib_event *cause, void *context) 58 { 59 iser_err("got qp event %d\n",cause->event); 60 } 61 62 static void iser_event_handler(struct ib_event_handler *handler, 63 struct ib_event *event) 64 { 65 iser_err("async event %d on device %s port %d\n", event->event, 66 event->device->name, event->element.port_num); 67 } 68 69 /** 70 * iser_create_device_ib_res - creates Protection Domain (PD), Completion 71 * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with 72 * the adapator. 73 * 74 * returns 0 on success, -1 on failure 75 */ 76 static int iser_create_device_ib_res(struct iser_device *device) 77 { 78 struct ib_device_attr *dev_attr = &device->dev_attr; 79 int ret, i, max_cqe; 80 81 ret = ib_query_device(device->ib_device, dev_attr); 82 if (ret) { 83 pr_warn("Query device failed for %s\n", device->ib_device->name); 84 return ret; 85 } 86 87 /* Assign function handles - based on FMR support */ 88 if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr && 89 device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) { 90 iser_info("FMR supported, using FMR for registration\n"); 91 device->iser_alloc_rdma_reg_res = iser_create_fmr_pool; 92 device->iser_free_rdma_reg_res = iser_free_fmr_pool; 93 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr; 94 device->iser_unreg_rdma_mem = iser_unreg_mem_fmr; 95 } else 96 if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) { 97 iser_info("FastReg supported, using FastReg for registration\n"); 98 device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool; 99 device->iser_free_rdma_reg_res = iser_free_fastreg_pool; 100 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg; 101 device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg; 102 } else { 103 iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n"); 104 return -1; 105 } 106 107 device->comps_used = min_t(int, num_online_cpus(), 108 device->ib_device->num_comp_vectors); 109 110 device->comps = kcalloc(device->comps_used, sizeof(*device->comps), 111 GFP_KERNEL); 112 if (!device->comps) 113 goto comps_err; 114 115 max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe); 116 117 iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n", 118 device->comps_used, device->ib_device->name, 119 device->ib_device->num_comp_vectors, max_cqe); 120 121 device->pd = ib_alloc_pd(device->ib_device); 122 if (IS_ERR(device->pd)) 123 goto pd_err; 124 125 for (i = 0; i < device->comps_used; i++) { 126 struct iser_comp *comp = &device->comps[i]; 127 128 comp->device = device; 129 comp->cq = ib_create_cq(device->ib_device, 130 iser_cq_callback, 131 iser_cq_event_callback, 132 (void *)comp, 133 max_cqe, i); 134 if (IS_ERR(comp->cq)) { 135 comp->cq = NULL; 136 goto cq_err; 137 } 138 139 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP)) 140 goto cq_err; 141 142 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn, 143 (unsigned long)comp); 144 } 145 146 device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE | 147 IB_ACCESS_REMOTE_WRITE | 148 IB_ACCESS_REMOTE_READ); 149 if (IS_ERR(device->mr)) 150 goto dma_mr_err; 151 152 INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device, 153 iser_event_handler); 154 if (ib_register_event_handler(&device->event_handler)) 155 goto handler_err; 156 157 return 0; 158 159 handler_err: 160 ib_dereg_mr(device->mr); 161 dma_mr_err: 162 for (i = 0; i < device->comps_used; i++) 163 tasklet_kill(&device->comps[i].tasklet); 164 cq_err: 165 for (i = 0; i < device->comps_used; i++) { 166 struct iser_comp *comp = &device->comps[i]; 167 168 if (comp->cq) 169 ib_destroy_cq(comp->cq); 170 } 171 ib_dealloc_pd(device->pd); 172 pd_err: 173 kfree(device->comps); 174 comps_err: 175 iser_err("failed to allocate an IB resource\n"); 176 return -1; 177 } 178 179 /** 180 * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR, 181 * CQ and PD created with the device associated with the adapator. 182 */ 183 static void iser_free_device_ib_res(struct iser_device *device) 184 { 185 int i; 186 BUG_ON(device->mr == NULL); 187 188 for (i = 0; i < device->comps_used; i++) { 189 struct iser_comp *comp = &device->comps[i]; 190 191 tasklet_kill(&comp->tasklet); 192 ib_destroy_cq(comp->cq); 193 comp->cq = NULL; 194 } 195 196 (void)ib_unregister_event_handler(&device->event_handler); 197 (void)ib_dereg_mr(device->mr); 198 (void)ib_dealloc_pd(device->pd); 199 200 kfree(device->comps); 201 device->comps = NULL; 202 203 device->mr = NULL; 204 device->pd = NULL; 205 } 206 207 /** 208 * iser_create_fmr_pool - Creates FMR pool and page_vector 209 * 210 * returns 0 on success, or errno code on failure 211 */ 212 int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max) 213 { 214 struct iser_device *device = ib_conn->device; 215 struct ib_fmr_pool_param params; 216 int ret = -ENOMEM; 217 218 ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) + 219 (sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)), 220 GFP_KERNEL); 221 if (!ib_conn->fmr.page_vec) 222 return ret; 223 224 ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1); 225 226 params.page_shift = SHIFT_4K; 227 /* when the first/last SG element are not start/end * 228 * page aligned, the map whould be of N+1 pages */ 229 params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1; 230 /* make the pool size twice the max number of SCSI commands * 231 * the ML is expected to queue, watermark for unmap at 50% */ 232 params.pool_size = cmds_max * 2; 233 params.dirty_watermark = cmds_max; 234 params.cache = 0; 235 params.flush_function = NULL; 236 params.access = (IB_ACCESS_LOCAL_WRITE | 237 IB_ACCESS_REMOTE_WRITE | 238 IB_ACCESS_REMOTE_READ); 239 240 ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, ¶ms); 241 if (!IS_ERR(ib_conn->fmr.pool)) 242 return 0; 243 244 /* no FMR => no need for page_vec */ 245 kfree(ib_conn->fmr.page_vec); 246 ib_conn->fmr.page_vec = NULL; 247 248 ret = PTR_ERR(ib_conn->fmr.pool); 249 ib_conn->fmr.pool = NULL; 250 if (ret != -ENOSYS) { 251 iser_err("FMR allocation failed, err %d\n", ret); 252 return ret; 253 } else { 254 iser_warn("FMRs are not supported, using unaligned mode\n"); 255 return 0; 256 } 257 } 258 259 /** 260 * iser_free_fmr_pool - releases the FMR pool and page vec 261 */ 262 void iser_free_fmr_pool(struct ib_conn *ib_conn) 263 { 264 iser_info("freeing conn %p fmr pool %p\n", 265 ib_conn, ib_conn->fmr.pool); 266 267 if (ib_conn->fmr.pool != NULL) 268 ib_destroy_fmr_pool(ib_conn->fmr.pool); 269 270 ib_conn->fmr.pool = NULL; 271 272 kfree(ib_conn->fmr.page_vec); 273 ib_conn->fmr.page_vec = NULL; 274 } 275 276 static int 277 iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd, 278 bool pi_enable, struct fast_reg_descriptor *desc) 279 { 280 int ret; 281 282 desc->data_frpl = ib_alloc_fast_reg_page_list(ib_device, 283 ISCSI_ISER_SG_TABLESIZE + 1); 284 if (IS_ERR(desc->data_frpl)) { 285 ret = PTR_ERR(desc->data_frpl); 286 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n", 287 ret); 288 return PTR_ERR(desc->data_frpl); 289 } 290 291 desc->data_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1); 292 if (IS_ERR(desc->data_mr)) { 293 ret = PTR_ERR(desc->data_mr); 294 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret); 295 goto fast_reg_mr_failure; 296 } 297 desc->reg_indicators |= ISER_DATA_KEY_VALID; 298 299 if (pi_enable) { 300 struct ib_mr_init_attr mr_init_attr = {0}; 301 struct iser_pi_context *pi_ctx = NULL; 302 303 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL); 304 if (!desc->pi_ctx) { 305 iser_err("Failed to allocate pi context\n"); 306 ret = -ENOMEM; 307 goto pi_ctx_alloc_failure; 308 } 309 pi_ctx = desc->pi_ctx; 310 311 pi_ctx->prot_frpl = ib_alloc_fast_reg_page_list(ib_device, 312 ISCSI_ISER_SG_TABLESIZE); 313 if (IS_ERR(pi_ctx->prot_frpl)) { 314 ret = PTR_ERR(pi_ctx->prot_frpl); 315 iser_err("Failed to allocate prot frpl ret=%d\n", 316 ret); 317 goto prot_frpl_failure; 318 } 319 320 pi_ctx->prot_mr = ib_alloc_fast_reg_mr(pd, 321 ISCSI_ISER_SG_TABLESIZE + 1); 322 if (IS_ERR(pi_ctx->prot_mr)) { 323 ret = PTR_ERR(pi_ctx->prot_mr); 324 iser_err("Failed to allocate prot frmr ret=%d\n", 325 ret); 326 goto prot_mr_failure; 327 } 328 desc->reg_indicators |= ISER_PROT_KEY_VALID; 329 330 mr_init_attr.max_reg_descriptors = 2; 331 mr_init_attr.flags |= IB_MR_SIGNATURE_EN; 332 pi_ctx->sig_mr = ib_create_mr(pd, &mr_init_attr); 333 if (IS_ERR(pi_ctx->sig_mr)) { 334 ret = PTR_ERR(pi_ctx->sig_mr); 335 iser_err("Failed to allocate signature enabled mr err=%d\n", 336 ret); 337 goto sig_mr_failure; 338 } 339 desc->reg_indicators |= ISER_SIG_KEY_VALID; 340 } 341 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED; 342 343 iser_dbg("Create fr_desc %p page_list %p\n", 344 desc, desc->data_frpl->page_list); 345 346 return 0; 347 sig_mr_failure: 348 ib_dereg_mr(desc->pi_ctx->prot_mr); 349 prot_mr_failure: 350 ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl); 351 prot_frpl_failure: 352 kfree(desc->pi_ctx); 353 pi_ctx_alloc_failure: 354 ib_dereg_mr(desc->data_mr); 355 fast_reg_mr_failure: 356 ib_free_fast_reg_page_list(desc->data_frpl); 357 358 return ret; 359 } 360 361 /** 362 * iser_create_fastreg_pool - Creates pool of fast_reg descriptors 363 * for fast registration work requests. 364 * returns 0 on success, or errno code on failure 365 */ 366 int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max) 367 { 368 struct iser_device *device = ib_conn->device; 369 struct fast_reg_descriptor *desc; 370 int i, ret; 371 372 INIT_LIST_HEAD(&ib_conn->fastreg.pool); 373 ib_conn->fastreg.pool_size = 0; 374 for (i = 0; i < cmds_max; i++) { 375 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 376 if (!desc) { 377 iser_err("Failed to allocate a new fast_reg descriptor\n"); 378 ret = -ENOMEM; 379 goto err; 380 } 381 382 ret = iser_create_fastreg_desc(device->ib_device, device->pd, 383 ib_conn->pi_support, desc); 384 if (ret) { 385 iser_err("Failed to create fastreg descriptor err=%d\n", 386 ret); 387 kfree(desc); 388 goto err; 389 } 390 391 list_add_tail(&desc->list, &ib_conn->fastreg.pool); 392 ib_conn->fastreg.pool_size++; 393 } 394 395 return 0; 396 397 err: 398 iser_free_fastreg_pool(ib_conn); 399 return ret; 400 } 401 402 /** 403 * iser_free_fastreg_pool - releases the pool of fast_reg descriptors 404 */ 405 void iser_free_fastreg_pool(struct ib_conn *ib_conn) 406 { 407 struct fast_reg_descriptor *desc, *tmp; 408 int i = 0; 409 410 if (list_empty(&ib_conn->fastreg.pool)) 411 return; 412 413 iser_info("freeing conn %p fr pool\n", ib_conn); 414 415 list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) { 416 list_del(&desc->list); 417 ib_free_fast_reg_page_list(desc->data_frpl); 418 ib_dereg_mr(desc->data_mr); 419 if (desc->pi_ctx) { 420 ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl); 421 ib_dereg_mr(desc->pi_ctx->prot_mr); 422 ib_destroy_mr(desc->pi_ctx->sig_mr); 423 kfree(desc->pi_ctx); 424 } 425 kfree(desc); 426 ++i; 427 } 428 429 if (i < ib_conn->fastreg.pool_size) 430 iser_warn("pool still has %d regions registered\n", 431 ib_conn->fastreg.pool_size - i); 432 } 433 434 /** 435 * iser_create_ib_conn_res - Queue-Pair (QP) 436 * 437 * returns 0 on success, -1 on failure 438 */ 439 static int iser_create_ib_conn_res(struct ib_conn *ib_conn) 440 { 441 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, 442 ib_conn); 443 struct iser_device *device; 444 struct ib_device_attr *dev_attr; 445 struct ib_qp_init_attr init_attr; 446 int ret = -ENOMEM; 447 int index, min_index = 0; 448 449 BUG_ON(ib_conn->device == NULL); 450 451 device = ib_conn->device; 452 dev_attr = &device->dev_attr; 453 454 memset(&init_attr, 0, sizeof init_attr); 455 456 mutex_lock(&ig.connlist_mutex); 457 /* select the CQ with the minimal number of usages */ 458 for (index = 0; index < device->comps_used; index++) { 459 if (device->comps[index].active_qps < 460 device->comps[min_index].active_qps) 461 min_index = index; 462 } 463 ib_conn->comp = &device->comps[min_index]; 464 ib_conn->comp->active_qps++; 465 mutex_unlock(&ig.connlist_mutex); 466 iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn); 467 468 init_attr.event_handler = iser_qp_event_callback; 469 init_attr.qp_context = (void *)ib_conn; 470 init_attr.send_cq = ib_conn->comp->cq; 471 init_attr.recv_cq = ib_conn->comp->cq; 472 init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS; 473 init_attr.cap.max_send_sge = 2; 474 init_attr.cap.max_recv_sge = 1; 475 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 476 init_attr.qp_type = IB_QPT_RC; 477 if (ib_conn->pi_support) { 478 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1; 479 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN; 480 iser_conn->max_cmds = 481 ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS); 482 } else { 483 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) { 484 init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1; 485 iser_conn->max_cmds = 486 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS); 487 } else { 488 init_attr.cap.max_send_wr = dev_attr->max_qp_wr; 489 iser_conn->max_cmds = 490 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr); 491 iser_dbg("device %s supports max_send_wr %d\n", 492 device->ib_device->name, dev_attr->max_qp_wr); 493 } 494 } 495 496 ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr); 497 if (ret) 498 goto out_err; 499 500 ib_conn->qp = ib_conn->cma_id->qp; 501 iser_info("setting conn %p cma_id %p qp %p\n", 502 ib_conn, ib_conn->cma_id, 503 ib_conn->cma_id->qp); 504 return ret; 505 506 out_err: 507 mutex_lock(&ig.connlist_mutex); 508 ib_conn->comp->active_qps--; 509 mutex_unlock(&ig.connlist_mutex); 510 iser_err("unable to alloc mem or create resource, err %d\n", ret); 511 512 return ret; 513 } 514 515 /** 516 * based on the resolved device node GUID see if there already allocated 517 * device for this device. If there's no such, create one. 518 */ 519 static 520 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id) 521 { 522 struct iser_device *device; 523 524 mutex_lock(&ig.device_list_mutex); 525 526 list_for_each_entry(device, &ig.device_list, ig_list) 527 /* find if there's a match using the node GUID */ 528 if (device->ib_device->node_guid == cma_id->device->node_guid) 529 goto inc_refcnt; 530 531 device = kzalloc(sizeof *device, GFP_KERNEL); 532 if (device == NULL) 533 goto out; 534 535 /* assign this device to the device */ 536 device->ib_device = cma_id->device; 537 /* init the device and link it into ig device list */ 538 if (iser_create_device_ib_res(device)) { 539 kfree(device); 540 device = NULL; 541 goto out; 542 } 543 list_add(&device->ig_list, &ig.device_list); 544 545 inc_refcnt: 546 device->refcount++; 547 out: 548 mutex_unlock(&ig.device_list_mutex); 549 return device; 550 } 551 552 /* if there's no demand for this device, release it */ 553 static void iser_device_try_release(struct iser_device *device) 554 { 555 mutex_lock(&ig.device_list_mutex); 556 device->refcount--; 557 iser_info("device %p refcount %d\n", device, device->refcount); 558 if (!device->refcount) { 559 iser_free_device_ib_res(device); 560 list_del(&device->ig_list); 561 kfree(device); 562 } 563 mutex_unlock(&ig.device_list_mutex); 564 } 565 566 /** 567 * Called with state mutex held 568 **/ 569 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn, 570 enum iser_conn_state comp, 571 enum iser_conn_state exch) 572 { 573 int ret; 574 575 ret = (iser_conn->state == comp); 576 if (ret) 577 iser_conn->state = exch; 578 579 return ret; 580 } 581 582 void iser_release_work(struct work_struct *work) 583 { 584 struct iser_conn *iser_conn; 585 586 iser_conn = container_of(work, struct iser_conn, release_work); 587 588 /* Wait for conn_stop to complete */ 589 wait_for_completion(&iser_conn->stop_completion); 590 /* Wait for IB resouces cleanup to complete */ 591 wait_for_completion(&iser_conn->ib_completion); 592 593 mutex_lock(&iser_conn->state_mutex); 594 iser_conn->state = ISER_CONN_DOWN; 595 mutex_unlock(&iser_conn->state_mutex); 596 597 iser_conn_release(iser_conn); 598 } 599 600 /** 601 * iser_free_ib_conn_res - release IB related resources 602 * @iser_conn: iser connection struct 603 * @destroy_device: indicator if we need to try to release 604 * the iser device (only iscsi shutdown and DEVICE_REMOVAL 605 * will use this. 606 * 607 * This routine is called with the iser state mutex held 608 * so the cm_id removal is out of here. It is Safe to 609 * be invoked multiple times. 610 */ 611 static void iser_free_ib_conn_res(struct iser_conn *iser_conn, 612 bool destroy_device) 613 { 614 struct ib_conn *ib_conn = &iser_conn->ib_conn; 615 struct iser_device *device = ib_conn->device; 616 617 iser_info("freeing conn %p cma_id %p qp %p\n", 618 iser_conn, ib_conn->cma_id, ib_conn->qp); 619 620 iser_free_rx_descriptors(iser_conn); 621 622 if (ib_conn->qp != NULL) { 623 ib_conn->comp->active_qps--; 624 rdma_destroy_qp(ib_conn->cma_id); 625 ib_conn->qp = NULL; 626 } 627 628 if (destroy_device && device != NULL) { 629 iser_device_try_release(device); 630 ib_conn->device = NULL; 631 } 632 } 633 634 /** 635 * Frees all conn objects and deallocs conn descriptor 636 */ 637 void iser_conn_release(struct iser_conn *iser_conn) 638 { 639 struct ib_conn *ib_conn = &iser_conn->ib_conn; 640 641 mutex_lock(&ig.connlist_mutex); 642 list_del(&iser_conn->conn_list); 643 mutex_unlock(&ig.connlist_mutex); 644 645 mutex_lock(&iser_conn->state_mutex); 646 if (iser_conn->state != ISER_CONN_DOWN) { 647 iser_warn("iser conn %p state %d, expected state down.\n", 648 iser_conn, iser_conn->state); 649 iser_conn->state = ISER_CONN_DOWN; 650 } 651 /* 652 * In case we never got to bind stage, we still need to 653 * release IB resources (which is safe to call more than once). 654 */ 655 iser_free_ib_conn_res(iser_conn, true); 656 mutex_unlock(&iser_conn->state_mutex); 657 658 if (ib_conn->cma_id != NULL) { 659 rdma_destroy_id(ib_conn->cma_id); 660 ib_conn->cma_id = NULL; 661 } 662 663 kfree(iser_conn); 664 } 665 666 /** 667 * triggers start of the disconnect procedures and wait for them to be done 668 * Called with state mutex held 669 */ 670 int iser_conn_terminate(struct iser_conn *iser_conn) 671 { 672 struct ib_conn *ib_conn = &iser_conn->ib_conn; 673 struct ib_send_wr *bad_wr; 674 int err = 0; 675 676 /* terminate the iser conn only if the conn state is UP */ 677 if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP, 678 ISER_CONN_TERMINATING)) 679 return 0; 680 681 iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state); 682 683 /* suspend queuing of new iscsi commands */ 684 if (iser_conn->iscsi_conn) 685 iscsi_suspend_queue(iser_conn->iscsi_conn); 686 687 /* 688 * In case we didn't already clean up the cma_id (peer initiated 689 * a disconnection), we need to Cause the CMA to change the QP 690 * state to ERROR. 691 */ 692 if (ib_conn->cma_id) { 693 err = rdma_disconnect(ib_conn->cma_id); 694 if (err) 695 iser_err("Failed to disconnect, conn: 0x%p err %d\n", 696 iser_conn, err); 697 698 /* post an indication that all flush errors were consumed */ 699 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr); 700 if (err) { 701 iser_err("conn %p failed to post beacon", ib_conn); 702 return 1; 703 } 704 705 wait_for_completion(&ib_conn->flush_comp); 706 } 707 708 return 1; 709 } 710 711 /** 712 * Called with state mutex held 713 **/ 714 static void iser_connect_error(struct rdma_cm_id *cma_id) 715 { 716 struct iser_conn *iser_conn; 717 718 iser_conn = (struct iser_conn *)cma_id->context; 719 iser_conn->state = ISER_CONN_DOWN; 720 } 721 722 /** 723 * Called with state mutex held 724 **/ 725 static void iser_addr_handler(struct rdma_cm_id *cma_id) 726 { 727 struct iser_device *device; 728 struct iser_conn *iser_conn; 729 struct ib_conn *ib_conn; 730 int ret; 731 732 iser_conn = (struct iser_conn *)cma_id->context; 733 if (iser_conn->state != ISER_CONN_PENDING) 734 /* bailout */ 735 return; 736 737 ib_conn = &iser_conn->ib_conn; 738 device = iser_device_find_by_ib_device(cma_id); 739 if (!device) { 740 iser_err("device lookup/creation failed\n"); 741 iser_connect_error(cma_id); 742 return; 743 } 744 745 ib_conn->device = device; 746 747 /* connection T10-PI support */ 748 if (iser_pi_enable) { 749 if (!(device->dev_attr.device_cap_flags & 750 IB_DEVICE_SIGNATURE_HANDOVER)) { 751 iser_warn("T10-PI requested but not supported on %s, " 752 "continue without T10-PI\n", 753 ib_conn->device->ib_device->name); 754 ib_conn->pi_support = false; 755 } else { 756 ib_conn->pi_support = true; 757 } 758 } 759 760 ret = rdma_resolve_route(cma_id, 1000); 761 if (ret) { 762 iser_err("resolve route failed: %d\n", ret); 763 iser_connect_error(cma_id); 764 return; 765 } 766 } 767 768 /** 769 * Called with state mutex held 770 **/ 771 static void iser_route_handler(struct rdma_cm_id *cma_id) 772 { 773 struct rdma_conn_param conn_param; 774 int ret; 775 struct iser_cm_hdr req_hdr; 776 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 777 struct ib_conn *ib_conn = &iser_conn->ib_conn; 778 struct iser_device *device = ib_conn->device; 779 780 if (iser_conn->state != ISER_CONN_PENDING) 781 /* bailout */ 782 return; 783 784 ret = iser_create_ib_conn_res(ib_conn); 785 if (ret) 786 goto failure; 787 788 memset(&conn_param, 0, sizeof conn_param); 789 conn_param.responder_resources = device->dev_attr.max_qp_rd_atom; 790 conn_param.initiator_depth = 1; 791 conn_param.retry_count = 7; 792 conn_param.rnr_retry_count = 6; 793 794 memset(&req_hdr, 0, sizeof(req_hdr)); 795 req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED | 796 ISER_SEND_W_INV_NOT_SUPPORTED); 797 conn_param.private_data = (void *)&req_hdr; 798 conn_param.private_data_len = sizeof(struct iser_cm_hdr); 799 800 ret = rdma_connect(cma_id, &conn_param); 801 if (ret) { 802 iser_err("failure connecting: %d\n", ret); 803 goto failure; 804 } 805 806 return; 807 failure: 808 iser_connect_error(cma_id); 809 } 810 811 static void iser_connected_handler(struct rdma_cm_id *cma_id) 812 { 813 struct iser_conn *iser_conn; 814 struct ib_qp_attr attr; 815 struct ib_qp_init_attr init_attr; 816 817 iser_conn = (struct iser_conn *)cma_id->context; 818 if (iser_conn->state != ISER_CONN_PENDING) 819 /* bailout */ 820 return; 821 822 (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr); 823 iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num); 824 825 iser_conn->state = ISER_CONN_UP; 826 complete(&iser_conn->up_completion); 827 } 828 829 static void iser_disconnected_handler(struct rdma_cm_id *cma_id) 830 { 831 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 832 833 if (iser_conn_terminate(iser_conn)) { 834 if (iser_conn->iscsi_conn) 835 iscsi_conn_failure(iser_conn->iscsi_conn, 836 ISCSI_ERR_CONN_FAILED); 837 else 838 iser_err("iscsi_iser connection isn't bound\n"); 839 } 840 } 841 842 static void iser_cleanup_handler(struct rdma_cm_id *cma_id, 843 bool destroy_device) 844 { 845 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 846 847 /* 848 * We are not guaranteed that we visited disconnected_handler 849 * by now, call it here to be safe that we handle CM drep 850 * and flush errors. 851 */ 852 iser_disconnected_handler(cma_id); 853 iser_free_ib_conn_res(iser_conn, destroy_device); 854 complete(&iser_conn->ib_completion); 855 }; 856 857 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) 858 { 859 struct iser_conn *iser_conn; 860 int ret = 0; 861 862 iser_conn = (struct iser_conn *)cma_id->context; 863 iser_info("event %d status %d conn %p id %p\n", 864 event->event, event->status, cma_id->context, cma_id); 865 866 mutex_lock(&iser_conn->state_mutex); 867 switch (event->event) { 868 case RDMA_CM_EVENT_ADDR_RESOLVED: 869 iser_addr_handler(cma_id); 870 break; 871 case RDMA_CM_EVENT_ROUTE_RESOLVED: 872 iser_route_handler(cma_id); 873 break; 874 case RDMA_CM_EVENT_ESTABLISHED: 875 iser_connected_handler(cma_id); 876 break; 877 case RDMA_CM_EVENT_ADDR_ERROR: 878 case RDMA_CM_EVENT_ROUTE_ERROR: 879 case RDMA_CM_EVENT_CONNECT_ERROR: 880 case RDMA_CM_EVENT_UNREACHABLE: 881 case RDMA_CM_EVENT_REJECTED: 882 iser_connect_error(cma_id); 883 break; 884 case RDMA_CM_EVENT_DISCONNECTED: 885 case RDMA_CM_EVENT_ADDR_CHANGE: 886 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 887 iser_cleanup_handler(cma_id, false); 888 break; 889 case RDMA_CM_EVENT_DEVICE_REMOVAL: 890 /* 891 * we *must* destroy the device as we cannot rely 892 * on iscsid to be around to initiate error handling. 893 * also if we are not in state DOWN implicitly destroy 894 * the cma_id. 895 */ 896 iser_cleanup_handler(cma_id, true); 897 if (iser_conn->state != ISER_CONN_DOWN) { 898 iser_conn->ib_conn.cma_id = NULL; 899 ret = 1; 900 } 901 break; 902 default: 903 iser_err("Unexpected RDMA CM event (%d)\n", event->event); 904 break; 905 } 906 mutex_unlock(&iser_conn->state_mutex); 907 908 return ret; 909 } 910 911 void iser_conn_init(struct iser_conn *iser_conn) 912 { 913 iser_conn->state = ISER_CONN_INIT; 914 iser_conn->ib_conn.post_recv_buf_count = 0; 915 init_completion(&iser_conn->ib_conn.flush_comp); 916 init_completion(&iser_conn->stop_completion); 917 init_completion(&iser_conn->ib_completion); 918 init_completion(&iser_conn->up_completion); 919 INIT_LIST_HEAD(&iser_conn->conn_list); 920 spin_lock_init(&iser_conn->ib_conn.lock); 921 mutex_init(&iser_conn->state_mutex); 922 } 923 924 /** 925 * starts the process of connecting to the target 926 * sleeps until the connection is established or rejected 927 */ 928 int iser_connect(struct iser_conn *iser_conn, 929 struct sockaddr *src_addr, 930 struct sockaddr *dst_addr, 931 int non_blocking) 932 { 933 struct ib_conn *ib_conn = &iser_conn->ib_conn; 934 int err = 0; 935 936 mutex_lock(&iser_conn->state_mutex); 937 938 sprintf(iser_conn->name, "%pISp", dst_addr); 939 940 iser_info("connecting to: %s\n", iser_conn->name); 941 942 /* the device is known only --after-- address resolution */ 943 ib_conn->device = NULL; 944 945 iser_conn->state = ISER_CONN_PENDING; 946 947 ib_conn->beacon.wr_id = ISER_BEACON_WRID; 948 ib_conn->beacon.opcode = IB_WR_SEND; 949 950 ib_conn->cma_id = rdma_create_id(iser_cma_handler, 951 (void *)iser_conn, 952 RDMA_PS_TCP, IB_QPT_RC); 953 if (IS_ERR(ib_conn->cma_id)) { 954 err = PTR_ERR(ib_conn->cma_id); 955 iser_err("rdma_create_id failed: %d\n", err); 956 goto id_failure; 957 } 958 959 err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000); 960 if (err) { 961 iser_err("rdma_resolve_addr failed: %d\n", err); 962 goto addr_failure; 963 } 964 965 if (!non_blocking) { 966 wait_for_completion_interruptible(&iser_conn->up_completion); 967 968 if (iser_conn->state != ISER_CONN_UP) { 969 err = -EIO; 970 goto connect_failure; 971 } 972 } 973 mutex_unlock(&iser_conn->state_mutex); 974 975 mutex_lock(&ig.connlist_mutex); 976 list_add(&iser_conn->conn_list, &ig.connlist); 977 mutex_unlock(&ig.connlist_mutex); 978 return 0; 979 980 id_failure: 981 ib_conn->cma_id = NULL; 982 addr_failure: 983 iser_conn->state = ISER_CONN_DOWN; 984 connect_failure: 985 mutex_unlock(&iser_conn->state_mutex); 986 iser_conn_release(iser_conn); 987 return err; 988 } 989 990 /** 991 * iser_reg_page_vec - Register physical memory 992 * 993 * returns: 0 on success, errno code on failure 994 */ 995 int iser_reg_page_vec(struct ib_conn *ib_conn, 996 struct iser_page_vec *page_vec, 997 struct iser_mem_reg *mem_reg) 998 { 999 struct ib_pool_fmr *mem; 1000 u64 io_addr; 1001 u64 *page_list; 1002 int status; 1003 1004 page_list = page_vec->pages; 1005 io_addr = page_list[0]; 1006 1007 mem = ib_fmr_pool_map_phys(ib_conn->fmr.pool, 1008 page_list, 1009 page_vec->length, 1010 io_addr); 1011 1012 if (IS_ERR(mem)) { 1013 status = (int)PTR_ERR(mem); 1014 iser_err("ib_fmr_pool_map_phys failed: %d\n", status); 1015 return status; 1016 } 1017 1018 mem_reg->lkey = mem->fmr->lkey; 1019 mem_reg->rkey = mem->fmr->rkey; 1020 mem_reg->len = page_vec->length * SIZE_4K; 1021 mem_reg->va = io_addr; 1022 mem_reg->mem_h = (void *)mem; 1023 1024 mem_reg->va += page_vec->offset; 1025 mem_reg->len = page_vec->data_size; 1026 1027 iser_dbg("PHYSICAL Mem.register, [PHYS p_array: 0x%p, sz: %d, " 1028 "entry[0]: (0x%08lx,%ld)] -> " 1029 "[lkey: 0x%08X mem_h: 0x%p va: 0x%08lX sz: %ld]\n", 1030 page_vec, page_vec->length, 1031 (unsigned long)page_vec->pages[0], 1032 (unsigned long)page_vec->data_size, 1033 (unsigned int)mem_reg->lkey, mem_reg->mem_h, 1034 (unsigned long)mem_reg->va, (unsigned long)mem_reg->len); 1035 return 0; 1036 } 1037 1038 /** 1039 * Unregister (previosuly registered using FMR) memory. 1040 * If memory is non-FMR does nothing. 1041 */ 1042 void iser_unreg_mem_fmr(struct iscsi_iser_task *iser_task, 1043 enum iser_data_dir cmd_dir) 1044 { 1045 struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg; 1046 int ret; 1047 1048 if (!reg->mem_h) 1049 return; 1050 1051 iser_dbg("PHYSICAL Mem.Unregister mem_h %p\n",reg->mem_h); 1052 1053 ret = ib_fmr_pool_unmap((struct ib_pool_fmr *)reg->mem_h); 1054 if (ret) 1055 iser_err("ib_fmr_pool_unmap failed %d\n", ret); 1056 1057 reg->mem_h = NULL; 1058 } 1059 1060 void iser_unreg_mem_fastreg(struct iscsi_iser_task *iser_task, 1061 enum iser_data_dir cmd_dir) 1062 { 1063 struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg; 1064 struct iser_conn *iser_conn = iser_task->iser_conn; 1065 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1066 struct fast_reg_descriptor *desc = reg->mem_h; 1067 1068 if (!desc) 1069 return; 1070 1071 reg->mem_h = NULL; 1072 spin_lock_bh(&ib_conn->lock); 1073 list_add_tail(&desc->list, &ib_conn->fastreg.pool); 1074 spin_unlock_bh(&ib_conn->lock); 1075 } 1076 1077 int iser_post_recvl(struct iser_conn *iser_conn) 1078 { 1079 struct ib_recv_wr rx_wr, *rx_wr_failed; 1080 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1081 struct ib_sge sge; 1082 int ib_ret; 1083 1084 sge.addr = iser_conn->login_resp_dma; 1085 sge.length = ISER_RX_LOGIN_SIZE; 1086 sge.lkey = ib_conn->device->mr->lkey; 1087 1088 rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf; 1089 rx_wr.sg_list = &sge; 1090 rx_wr.num_sge = 1; 1091 rx_wr.next = NULL; 1092 1093 ib_conn->post_recv_buf_count++; 1094 ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed); 1095 if (ib_ret) { 1096 iser_err("ib_post_recv failed ret=%d\n", ib_ret); 1097 ib_conn->post_recv_buf_count--; 1098 } 1099 return ib_ret; 1100 } 1101 1102 int iser_post_recvm(struct iser_conn *iser_conn, int count) 1103 { 1104 struct ib_recv_wr *rx_wr, *rx_wr_failed; 1105 int i, ib_ret; 1106 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1107 unsigned int my_rx_head = iser_conn->rx_desc_head; 1108 struct iser_rx_desc *rx_desc; 1109 1110 for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) { 1111 rx_desc = &iser_conn->rx_descs[my_rx_head]; 1112 rx_wr->wr_id = (uintptr_t)rx_desc; 1113 rx_wr->sg_list = &rx_desc->rx_sg; 1114 rx_wr->num_sge = 1; 1115 rx_wr->next = rx_wr + 1; 1116 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask; 1117 } 1118 1119 rx_wr--; 1120 rx_wr->next = NULL; /* mark end of work requests list */ 1121 1122 ib_conn->post_recv_buf_count += count; 1123 ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed); 1124 if (ib_ret) { 1125 iser_err("ib_post_recv failed ret=%d\n", ib_ret); 1126 ib_conn->post_recv_buf_count -= count; 1127 } else 1128 iser_conn->rx_desc_head = my_rx_head; 1129 return ib_ret; 1130 } 1131 1132 1133 /** 1134 * iser_start_send - Initiate a Send DTO operation 1135 * 1136 * returns 0 on success, -1 on failure 1137 */ 1138 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc, 1139 bool signal) 1140 { 1141 int ib_ret; 1142 struct ib_send_wr send_wr, *send_wr_failed; 1143 1144 ib_dma_sync_single_for_device(ib_conn->device->ib_device, 1145 tx_desc->dma_addr, ISER_HEADERS_LEN, 1146 DMA_TO_DEVICE); 1147 1148 send_wr.next = NULL; 1149 send_wr.wr_id = (uintptr_t)tx_desc; 1150 send_wr.sg_list = tx_desc->tx_sg; 1151 send_wr.num_sge = tx_desc->num_sge; 1152 send_wr.opcode = IB_WR_SEND; 1153 send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0; 1154 1155 ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed); 1156 if (ib_ret) 1157 iser_err("ib_post_send failed, ret:%d\n", ib_ret); 1158 1159 return ib_ret; 1160 } 1161 1162 /** 1163 * is_iser_tx_desc - Indicate if the completion wr_id 1164 * is a TX descriptor or not. 1165 * @iser_conn: iser connection 1166 * @wr_id: completion WR identifier 1167 * 1168 * Since we cannot rely on wc opcode in FLUSH errors 1169 * we must work around it by checking if the wr_id address 1170 * falls in the iser connection rx_descs buffer. If so 1171 * it is an RX descriptor, otherwize it is a TX. 1172 */ 1173 static inline bool 1174 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id) 1175 { 1176 void *start = iser_conn->rx_descs; 1177 int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs); 1178 1179 if (wr_id >= start && wr_id < start + len) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 /** 1186 * iser_handle_comp_error() - Handle error completion 1187 * @ib_conn: connection RDMA resources 1188 * @wc: work completion 1189 * 1190 * Notes: We may handle a FLUSH error completion and in this case 1191 * we only cleanup in case TX type was DATAOUT. For non-FLUSH 1192 * error completion we should also notify iscsi layer that 1193 * connection is failed (in case we passed bind stage). 1194 */ 1195 static void 1196 iser_handle_comp_error(struct ib_conn *ib_conn, 1197 struct ib_wc *wc) 1198 { 1199 void *wr_id = (void *)(uintptr_t)wc->wr_id; 1200 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, 1201 ib_conn); 1202 1203 if (wc->status != IB_WC_WR_FLUSH_ERR) 1204 if (iser_conn->iscsi_conn) 1205 iscsi_conn_failure(iser_conn->iscsi_conn, 1206 ISCSI_ERR_CONN_FAILED); 1207 1208 if (is_iser_tx_desc(iser_conn, wr_id)) { 1209 struct iser_tx_desc *desc = wr_id; 1210 1211 if (desc->type == ISCSI_TX_DATAOUT) 1212 kmem_cache_free(ig.desc_cache, desc); 1213 } else { 1214 ib_conn->post_recv_buf_count--; 1215 } 1216 } 1217 1218 /** 1219 * iser_handle_wc - handle a single work completion 1220 * @wc: work completion 1221 * 1222 * Soft-IRQ context, work completion can be either 1223 * SEND or RECV, and can turn out successful or 1224 * with error (or flush error). 1225 */ 1226 static void iser_handle_wc(struct ib_wc *wc) 1227 { 1228 struct ib_conn *ib_conn; 1229 struct iser_tx_desc *tx_desc; 1230 struct iser_rx_desc *rx_desc; 1231 1232 ib_conn = wc->qp->qp_context; 1233 if (likely(wc->status == IB_WC_SUCCESS)) { 1234 if (wc->opcode == IB_WC_RECV) { 1235 rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id; 1236 iser_rcv_completion(rx_desc, wc->byte_len, 1237 ib_conn); 1238 } else 1239 if (wc->opcode == IB_WC_SEND) { 1240 tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id; 1241 iser_snd_completion(tx_desc, ib_conn); 1242 } else { 1243 iser_err("Unknown wc opcode %d\n", wc->opcode); 1244 } 1245 } else { 1246 if (wc->status != IB_WC_WR_FLUSH_ERR) 1247 iser_err("wr id %llx status %d vend_err %x\n", 1248 wc->wr_id, wc->status, wc->vendor_err); 1249 else 1250 iser_dbg("flush error: wr id %llx\n", wc->wr_id); 1251 1252 if (wc->wr_id != ISER_FASTREG_LI_WRID && 1253 wc->wr_id != ISER_BEACON_WRID) 1254 iser_handle_comp_error(ib_conn, wc); 1255 1256 /* complete in case all flush errors were consumed */ 1257 if (wc->wr_id == ISER_BEACON_WRID) 1258 complete(&ib_conn->flush_comp); 1259 } 1260 } 1261 1262 /** 1263 * iser_cq_tasklet_fn - iSER completion polling loop 1264 * @data: iSER completion context 1265 * 1266 * Soft-IRQ context, polling connection CQ until 1267 * either CQ was empty or we exausted polling budget 1268 */ 1269 static void iser_cq_tasklet_fn(unsigned long data) 1270 { 1271 struct iser_comp *comp = (struct iser_comp *)data; 1272 struct ib_cq *cq = comp->cq; 1273 struct ib_wc *const wcs = comp->wcs; 1274 int i, n, completed = 0; 1275 1276 while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) { 1277 for (i = 0; i < n; i++) 1278 iser_handle_wc(&wcs[i]); 1279 1280 completed += n; 1281 if (completed >= iser_cq_poll_limit) 1282 break; 1283 } 1284 1285 /* 1286 * It is assumed here that arming CQ only once its empty 1287 * would not cause interrupts to be missed. 1288 */ 1289 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1290 1291 iser_dbg("got %d completions\n", completed); 1292 } 1293 1294 static void iser_cq_callback(struct ib_cq *cq, void *cq_context) 1295 { 1296 struct iser_comp *comp = cq_context; 1297 1298 tasklet_schedule(&comp->tasklet); 1299 } 1300 1301 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task, 1302 enum iser_data_dir cmd_dir, sector_t *sector) 1303 { 1304 struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg; 1305 struct fast_reg_descriptor *desc = reg->mem_h; 1306 unsigned long sector_size = iser_task->sc->device->sector_size; 1307 struct ib_mr_status mr_status; 1308 int ret; 1309 1310 if (desc && desc->reg_indicators & ISER_FASTREG_PROTECTED) { 1311 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED; 1312 ret = ib_check_mr_status(desc->pi_ctx->sig_mr, 1313 IB_MR_CHECK_SIG_STATUS, &mr_status); 1314 if (ret) { 1315 pr_err("ib_check_mr_status failed, ret %d\n", ret); 1316 goto err; 1317 } 1318 1319 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 1320 sector_t sector_off = mr_status.sig_err.sig_err_offset; 1321 1322 do_div(sector_off, sector_size + 8); 1323 *sector = scsi_get_lba(iser_task->sc) + sector_off; 1324 1325 pr_err("PI error found type %d at sector %llx " 1326 "expected %x vs actual %x\n", 1327 mr_status.sig_err.err_type, 1328 (unsigned long long)*sector, 1329 mr_status.sig_err.expected, 1330 mr_status.sig_err.actual); 1331 1332 switch (mr_status.sig_err.err_type) { 1333 case IB_SIG_BAD_GUARD: 1334 return 0x1; 1335 case IB_SIG_BAD_REFTAG: 1336 return 0x3; 1337 case IB_SIG_BAD_APPTAG: 1338 return 0x2; 1339 } 1340 } 1341 } 1342 1343 return 0; 1344 err: 1345 /* Not alot we can do here, return ambiguous guard error */ 1346 return 0x1; 1347 } 1348