1 /*
2  * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
3  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
4  * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *	- Redistributions of source code must retain the above
17  *	  copyright notice, this list of conditions and the following
18  *	  disclaimer.
19  *
20  *	- Redistributions in binary form must reproduce the above
21  *	  copyright notice, this list of conditions and the following
22  *	  disclaimer in the documentation and/or other materials
23  *	  provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38 
39 #include "iscsi_iser.h"
40 
41 #define ISCSI_ISER_MAX_CONN	8
42 #define ISER_MAX_RX_LEN		(ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
43 #define ISER_MAX_TX_LEN		(ISER_QP_MAX_REQ_DTOS  * ISCSI_ISER_MAX_CONN)
44 #define ISER_MAX_CQ_LEN		(ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
45 				 ISCSI_ISER_MAX_CONN)
46 
47 static int iser_cq_poll_limit = 512;
48 
49 static void iser_cq_tasklet_fn(unsigned long data);
50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
51 
52 static void iser_cq_event_callback(struct ib_event *cause, void *context)
53 {
54 	iser_err("cq event %s (%d)\n",
55 		 ib_event_msg(cause->event), cause->event);
56 }
57 
58 static void iser_qp_event_callback(struct ib_event *cause, void *context)
59 {
60 	iser_err("qp event %s (%d)\n",
61 		 ib_event_msg(cause->event), cause->event);
62 }
63 
64 static void iser_event_handler(struct ib_event_handler *handler,
65 				struct ib_event *event)
66 {
67 	iser_err("async event %s (%d) on device %s port %d\n",
68 		 ib_event_msg(event->event), event->event,
69 		 event->device->name, event->element.port_num);
70 }
71 
72 /**
73  * iser_create_device_ib_res - creates Protection Domain (PD), Completion
74  * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
75  * the adapator.
76  *
77  * returns 0 on success, -1 on failure
78  */
79 static int iser_create_device_ib_res(struct iser_device *device)
80 {
81 	struct ib_device_attr *dev_attr = &device->dev_attr;
82 	int ret, i, max_cqe;
83 
84 	ret = ib_query_device(device->ib_device, dev_attr);
85 	if (ret) {
86 		pr_warn("Query device failed for %s\n", device->ib_device->name);
87 		return ret;
88 	}
89 
90 	ret = iser_assign_reg_ops(device);
91 	if (ret)
92 		return ret;
93 
94 	device->comps_used = min_t(int, num_online_cpus(),
95 				 device->ib_device->num_comp_vectors);
96 
97 	device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
98 				GFP_KERNEL);
99 	if (!device->comps)
100 		goto comps_err;
101 
102 	max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
103 
104 	iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
105 		  device->comps_used, device->ib_device->name,
106 		  device->ib_device->num_comp_vectors, max_cqe);
107 
108 	device->pd = ib_alloc_pd(device->ib_device);
109 	if (IS_ERR(device->pd))
110 		goto pd_err;
111 
112 	for (i = 0; i < device->comps_used; i++) {
113 		struct ib_cq_init_attr cq_attr = {};
114 		struct iser_comp *comp = &device->comps[i];
115 
116 		comp->device = device;
117 		cq_attr.cqe = max_cqe;
118 		cq_attr.comp_vector = i;
119 		comp->cq = ib_create_cq(device->ib_device,
120 					iser_cq_callback,
121 					iser_cq_event_callback,
122 					(void *)comp,
123 					&cq_attr);
124 		if (IS_ERR(comp->cq)) {
125 			comp->cq = NULL;
126 			goto cq_err;
127 		}
128 
129 		if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
130 			goto cq_err;
131 
132 		tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
133 			     (unsigned long)comp);
134 	}
135 
136 	device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE |
137 				   IB_ACCESS_REMOTE_WRITE |
138 				   IB_ACCESS_REMOTE_READ);
139 	if (IS_ERR(device->mr))
140 		goto dma_mr_err;
141 
142 	INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
143 				iser_event_handler);
144 	if (ib_register_event_handler(&device->event_handler))
145 		goto handler_err;
146 
147 	return 0;
148 
149 handler_err:
150 	ib_dereg_mr(device->mr);
151 dma_mr_err:
152 	for (i = 0; i < device->comps_used; i++)
153 		tasklet_kill(&device->comps[i].tasklet);
154 cq_err:
155 	for (i = 0; i < device->comps_used; i++) {
156 		struct iser_comp *comp = &device->comps[i];
157 
158 		if (comp->cq)
159 			ib_destroy_cq(comp->cq);
160 	}
161 	ib_dealloc_pd(device->pd);
162 pd_err:
163 	kfree(device->comps);
164 comps_err:
165 	iser_err("failed to allocate an IB resource\n");
166 	return -1;
167 }
168 
169 /**
170  * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
171  * CQ and PD created with the device associated with the adapator.
172  */
173 static void iser_free_device_ib_res(struct iser_device *device)
174 {
175 	int i;
176 	BUG_ON(device->mr == NULL);
177 
178 	for (i = 0; i < device->comps_used; i++) {
179 		struct iser_comp *comp = &device->comps[i];
180 
181 		tasklet_kill(&comp->tasklet);
182 		ib_destroy_cq(comp->cq);
183 		comp->cq = NULL;
184 	}
185 
186 	(void)ib_unregister_event_handler(&device->event_handler);
187 	(void)ib_dereg_mr(device->mr);
188 	ib_dealloc_pd(device->pd);
189 
190 	kfree(device->comps);
191 	device->comps = NULL;
192 
193 	device->mr = NULL;
194 	device->pd = NULL;
195 }
196 
197 /**
198  * iser_alloc_fmr_pool - Creates FMR pool and page_vector
199  *
200  * returns 0 on success, or errno code on failure
201  */
202 int iser_alloc_fmr_pool(struct ib_conn *ib_conn,
203 			unsigned cmds_max,
204 			unsigned int size)
205 {
206 	struct iser_device *device = ib_conn->device;
207 	struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
208 	struct iser_page_vec *page_vec;
209 	struct iser_fr_desc *desc;
210 	struct ib_fmr_pool *fmr_pool;
211 	struct ib_fmr_pool_param params;
212 	int ret;
213 
214 	INIT_LIST_HEAD(&fr_pool->list);
215 	spin_lock_init(&fr_pool->lock);
216 
217 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
218 	if (!desc)
219 		return -ENOMEM;
220 
221 	page_vec = kmalloc(sizeof(*page_vec) + (sizeof(u64) * size),
222 			   GFP_KERNEL);
223 	if (!page_vec) {
224 		ret = -ENOMEM;
225 		goto err_frpl;
226 	}
227 
228 	page_vec->pages = (u64 *)(page_vec + 1);
229 
230 	params.page_shift        = SHIFT_4K;
231 	params.max_pages_per_fmr = size;
232 	/* make the pool size twice the max number of SCSI commands *
233 	 * the ML is expected to queue, watermark for unmap at 50%  */
234 	params.pool_size	 = cmds_max * 2;
235 	params.dirty_watermark	 = cmds_max;
236 	params.cache		 = 0;
237 	params.flush_function	 = NULL;
238 	params.access		 = (IB_ACCESS_LOCAL_WRITE  |
239 				    IB_ACCESS_REMOTE_WRITE |
240 				    IB_ACCESS_REMOTE_READ);
241 
242 	fmr_pool = ib_create_fmr_pool(device->pd, &params);
243 	if (IS_ERR(fmr_pool)) {
244 		ret = PTR_ERR(fmr_pool);
245 		iser_err("FMR allocation failed, err %d\n", ret);
246 		goto err_fmr;
247 	}
248 
249 	desc->rsc.page_vec = page_vec;
250 	desc->rsc.fmr_pool = fmr_pool;
251 	list_add(&desc->list, &fr_pool->list);
252 
253 	return 0;
254 
255 err_fmr:
256 	kfree(page_vec);
257 err_frpl:
258 	kfree(desc);
259 
260 	return ret;
261 }
262 
263 /**
264  * iser_free_fmr_pool - releases the FMR pool and page vec
265  */
266 void iser_free_fmr_pool(struct ib_conn *ib_conn)
267 {
268 	struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
269 	struct iser_fr_desc *desc;
270 
271 	desc = list_first_entry(&fr_pool->list,
272 				struct iser_fr_desc, list);
273 	list_del(&desc->list);
274 
275 	iser_info("freeing conn %p fmr pool %p\n",
276 		  ib_conn, desc->rsc.fmr_pool);
277 
278 	ib_destroy_fmr_pool(desc->rsc.fmr_pool);
279 	kfree(desc->rsc.page_vec);
280 	kfree(desc);
281 }
282 
283 static int
284 iser_alloc_reg_res(struct ib_device *ib_device,
285 		   struct ib_pd *pd,
286 		   struct iser_reg_resources *res,
287 		   unsigned int size)
288 {
289 	int ret;
290 
291 	res->frpl = ib_alloc_fast_reg_page_list(ib_device, size);
292 	if (IS_ERR(res->frpl)) {
293 		ret = PTR_ERR(res->frpl);
294 		iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n",
295 			 ret);
296 		return PTR_ERR(res->frpl);
297 	}
298 
299 	res->mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, size);
300 	if (IS_ERR(res->mr)) {
301 		ret = PTR_ERR(res->mr);
302 		iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
303 		goto fast_reg_mr_failure;
304 	}
305 	res->mr_valid = 1;
306 
307 	return 0;
308 
309 fast_reg_mr_failure:
310 	ib_free_fast_reg_page_list(res->frpl);
311 
312 	return ret;
313 }
314 
315 static void
316 iser_free_reg_res(struct iser_reg_resources *rsc)
317 {
318 	ib_dereg_mr(rsc->mr);
319 	ib_free_fast_reg_page_list(rsc->frpl);
320 }
321 
322 static int
323 iser_alloc_pi_ctx(struct ib_device *ib_device,
324 		  struct ib_pd *pd,
325 		  struct iser_fr_desc *desc,
326 		  unsigned int size)
327 {
328 	struct iser_pi_context *pi_ctx = NULL;
329 	int ret;
330 
331 	desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
332 	if (!desc->pi_ctx)
333 		return -ENOMEM;
334 
335 	pi_ctx = desc->pi_ctx;
336 
337 	ret = iser_alloc_reg_res(ib_device, pd, &pi_ctx->rsc, size);
338 	if (ret) {
339 		iser_err("failed to allocate reg_resources\n");
340 		goto alloc_reg_res_err;
341 	}
342 
343 	pi_ctx->sig_mr = ib_alloc_mr(pd, IB_MR_TYPE_SIGNATURE, 2);
344 	if (IS_ERR(pi_ctx->sig_mr)) {
345 		ret = PTR_ERR(pi_ctx->sig_mr);
346 		goto sig_mr_failure;
347 	}
348 	pi_ctx->sig_mr_valid = 1;
349 	desc->pi_ctx->sig_protected = 0;
350 
351 	return 0;
352 
353 sig_mr_failure:
354 	iser_free_reg_res(&pi_ctx->rsc);
355 alloc_reg_res_err:
356 	kfree(desc->pi_ctx);
357 
358 	return ret;
359 }
360 
361 static void
362 iser_free_pi_ctx(struct iser_pi_context *pi_ctx)
363 {
364 	iser_free_reg_res(&pi_ctx->rsc);
365 	ib_dereg_mr(pi_ctx->sig_mr);
366 	kfree(pi_ctx);
367 }
368 
369 static struct iser_fr_desc *
370 iser_create_fastreg_desc(struct ib_device *ib_device,
371 			 struct ib_pd *pd,
372 			 bool pi_enable,
373 			 unsigned int size)
374 {
375 	struct iser_fr_desc *desc;
376 	int ret;
377 
378 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
379 	if (!desc)
380 		return ERR_PTR(-ENOMEM);
381 
382 	ret = iser_alloc_reg_res(ib_device, pd, &desc->rsc, size);
383 	if (ret)
384 		goto reg_res_alloc_failure;
385 
386 	if (pi_enable) {
387 		ret = iser_alloc_pi_ctx(ib_device, pd, desc, size);
388 		if (ret)
389 			goto pi_ctx_alloc_failure;
390 	}
391 
392 	return desc;
393 
394 pi_ctx_alloc_failure:
395 	iser_free_reg_res(&desc->rsc);
396 reg_res_alloc_failure:
397 	kfree(desc);
398 
399 	return ERR_PTR(ret);
400 }
401 
402 /**
403  * iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors
404  * for fast registration work requests.
405  * returns 0 on success, or errno code on failure
406  */
407 int iser_alloc_fastreg_pool(struct ib_conn *ib_conn,
408 			    unsigned cmds_max,
409 			    unsigned int size)
410 {
411 	struct iser_device *device = ib_conn->device;
412 	struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
413 	struct iser_fr_desc *desc;
414 	int i, ret;
415 
416 	INIT_LIST_HEAD(&fr_pool->list);
417 	spin_lock_init(&fr_pool->lock);
418 	fr_pool->size = 0;
419 	for (i = 0; i < cmds_max; i++) {
420 		desc = iser_create_fastreg_desc(device->ib_device, device->pd,
421 						ib_conn->pi_support, size);
422 		if (IS_ERR(desc)) {
423 			ret = PTR_ERR(desc);
424 			goto err;
425 		}
426 
427 		list_add_tail(&desc->list, &fr_pool->list);
428 		fr_pool->size++;
429 	}
430 
431 	return 0;
432 
433 err:
434 	iser_free_fastreg_pool(ib_conn);
435 	return ret;
436 }
437 
438 /**
439  * iser_free_fastreg_pool - releases the pool of fast_reg descriptors
440  */
441 void iser_free_fastreg_pool(struct ib_conn *ib_conn)
442 {
443 	struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
444 	struct iser_fr_desc *desc, *tmp;
445 	int i = 0;
446 
447 	if (list_empty(&fr_pool->list))
448 		return;
449 
450 	iser_info("freeing conn %p fr pool\n", ib_conn);
451 
452 	list_for_each_entry_safe(desc, tmp, &fr_pool->list, list) {
453 		list_del(&desc->list);
454 		iser_free_reg_res(&desc->rsc);
455 		if (desc->pi_ctx)
456 			iser_free_pi_ctx(desc->pi_ctx);
457 		kfree(desc);
458 		++i;
459 	}
460 
461 	if (i < fr_pool->size)
462 		iser_warn("pool still has %d regions registered\n",
463 			  fr_pool->size - i);
464 }
465 
466 /**
467  * iser_create_ib_conn_res - Queue-Pair (QP)
468  *
469  * returns 0 on success, -1 on failure
470  */
471 static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
472 {
473 	struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
474 						   ib_conn);
475 	struct iser_device	*device;
476 	struct ib_device_attr *dev_attr;
477 	struct ib_qp_init_attr	init_attr;
478 	int			ret = -ENOMEM;
479 	int index, min_index = 0;
480 
481 	BUG_ON(ib_conn->device == NULL);
482 
483 	device = ib_conn->device;
484 	dev_attr = &device->dev_attr;
485 
486 	memset(&init_attr, 0, sizeof init_attr);
487 
488 	mutex_lock(&ig.connlist_mutex);
489 	/* select the CQ with the minimal number of usages */
490 	for (index = 0; index < device->comps_used; index++) {
491 		if (device->comps[index].active_qps <
492 		    device->comps[min_index].active_qps)
493 			min_index = index;
494 	}
495 	ib_conn->comp = &device->comps[min_index];
496 	ib_conn->comp->active_qps++;
497 	mutex_unlock(&ig.connlist_mutex);
498 	iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
499 
500 	init_attr.event_handler = iser_qp_event_callback;
501 	init_attr.qp_context	= (void *)ib_conn;
502 	init_attr.send_cq	= ib_conn->comp->cq;
503 	init_attr.recv_cq	= ib_conn->comp->cq;
504 	init_attr.cap.max_recv_wr  = ISER_QP_MAX_RECV_DTOS;
505 	init_attr.cap.max_send_sge = 2;
506 	init_attr.cap.max_recv_sge = 1;
507 	init_attr.sq_sig_type	= IB_SIGNAL_REQ_WR;
508 	init_attr.qp_type	= IB_QPT_RC;
509 	if (ib_conn->pi_support) {
510 		init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
511 		init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
512 		iser_conn->max_cmds =
513 			ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
514 	} else {
515 		if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
516 			init_attr.cap.max_send_wr  = ISER_QP_MAX_REQ_DTOS + 1;
517 			iser_conn->max_cmds =
518 				ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
519 		} else {
520 			init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
521 			iser_conn->max_cmds =
522 				ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
523 			iser_dbg("device %s supports max_send_wr %d\n",
524 				 device->ib_device->name, dev_attr->max_qp_wr);
525 		}
526 	}
527 
528 	ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
529 	if (ret)
530 		goto out_err;
531 
532 	ib_conn->qp = ib_conn->cma_id->qp;
533 	iser_info("setting conn %p cma_id %p qp %p\n",
534 		  ib_conn, ib_conn->cma_id,
535 		  ib_conn->cma_id->qp);
536 	return ret;
537 
538 out_err:
539 	mutex_lock(&ig.connlist_mutex);
540 	ib_conn->comp->active_qps--;
541 	mutex_unlock(&ig.connlist_mutex);
542 	iser_err("unable to alloc mem or create resource, err %d\n", ret);
543 
544 	return ret;
545 }
546 
547 /**
548  * based on the resolved device node GUID see if there already allocated
549  * device for this device. If there's no such, create one.
550  */
551 static
552 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
553 {
554 	struct iser_device *device;
555 
556 	mutex_lock(&ig.device_list_mutex);
557 
558 	list_for_each_entry(device, &ig.device_list, ig_list)
559 		/* find if there's a match using the node GUID */
560 		if (device->ib_device->node_guid == cma_id->device->node_guid)
561 			goto inc_refcnt;
562 
563 	device = kzalloc(sizeof *device, GFP_KERNEL);
564 	if (device == NULL)
565 		goto out;
566 
567 	/* assign this device to the device */
568 	device->ib_device = cma_id->device;
569 	/* init the device and link it into ig device list */
570 	if (iser_create_device_ib_res(device)) {
571 		kfree(device);
572 		device = NULL;
573 		goto out;
574 	}
575 	list_add(&device->ig_list, &ig.device_list);
576 
577 inc_refcnt:
578 	device->refcount++;
579 out:
580 	mutex_unlock(&ig.device_list_mutex);
581 	return device;
582 }
583 
584 /* if there's no demand for this device, release it */
585 static void iser_device_try_release(struct iser_device *device)
586 {
587 	mutex_lock(&ig.device_list_mutex);
588 	device->refcount--;
589 	iser_info("device %p refcount %d\n", device, device->refcount);
590 	if (!device->refcount) {
591 		iser_free_device_ib_res(device);
592 		list_del(&device->ig_list);
593 		kfree(device);
594 	}
595 	mutex_unlock(&ig.device_list_mutex);
596 }
597 
598 /**
599  * Called with state mutex held
600  **/
601 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
602 				     enum iser_conn_state comp,
603 				     enum iser_conn_state exch)
604 {
605 	int ret;
606 
607 	ret = (iser_conn->state == comp);
608 	if (ret)
609 		iser_conn->state = exch;
610 
611 	return ret;
612 }
613 
614 void iser_release_work(struct work_struct *work)
615 {
616 	struct iser_conn *iser_conn;
617 
618 	iser_conn = container_of(work, struct iser_conn, release_work);
619 
620 	/* Wait for conn_stop to complete */
621 	wait_for_completion(&iser_conn->stop_completion);
622 	/* Wait for IB resouces cleanup to complete */
623 	wait_for_completion(&iser_conn->ib_completion);
624 
625 	mutex_lock(&iser_conn->state_mutex);
626 	iser_conn->state = ISER_CONN_DOWN;
627 	mutex_unlock(&iser_conn->state_mutex);
628 
629 	iser_conn_release(iser_conn);
630 }
631 
632 /**
633  * iser_free_ib_conn_res - release IB related resources
634  * @iser_conn: iser connection struct
635  * @destroy: indicator if we need to try to release the
636  *     iser device and memory regoins pool (only iscsi
637  *     shutdown and DEVICE_REMOVAL will use this).
638  *
639  * This routine is called with the iser state mutex held
640  * so the cm_id removal is out of here. It is Safe to
641  * be invoked multiple times.
642  */
643 static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
644 				  bool destroy)
645 {
646 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
647 	struct iser_device *device = ib_conn->device;
648 
649 	iser_info("freeing conn %p cma_id %p qp %p\n",
650 		  iser_conn, ib_conn->cma_id, ib_conn->qp);
651 
652 	if (ib_conn->qp != NULL) {
653 		ib_conn->comp->active_qps--;
654 		rdma_destroy_qp(ib_conn->cma_id);
655 		ib_conn->qp = NULL;
656 	}
657 
658 	if (destroy) {
659 		if (iser_conn->rx_descs)
660 			iser_free_rx_descriptors(iser_conn);
661 
662 		if (device != NULL) {
663 			iser_device_try_release(device);
664 			ib_conn->device = NULL;
665 		}
666 	}
667 }
668 
669 /**
670  * Frees all conn objects and deallocs conn descriptor
671  */
672 void iser_conn_release(struct iser_conn *iser_conn)
673 {
674 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
675 
676 	mutex_lock(&ig.connlist_mutex);
677 	list_del(&iser_conn->conn_list);
678 	mutex_unlock(&ig.connlist_mutex);
679 
680 	mutex_lock(&iser_conn->state_mutex);
681 	/* In case we endup here without ep_disconnect being invoked. */
682 	if (iser_conn->state != ISER_CONN_DOWN) {
683 		iser_warn("iser conn %p state %d, expected state down.\n",
684 			  iser_conn, iser_conn->state);
685 		iscsi_destroy_endpoint(iser_conn->ep);
686 		iser_conn->state = ISER_CONN_DOWN;
687 	}
688 	/*
689 	 * In case we never got to bind stage, we still need to
690 	 * release IB resources (which is safe to call more than once).
691 	 */
692 	iser_free_ib_conn_res(iser_conn, true);
693 	mutex_unlock(&iser_conn->state_mutex);
694 
695 	if (ib_conn->cma_id != NULL) {
696 		rdma_destroy_id(ib_conn->cma_id);
697 		ib_conn->cma_id = NULL;
698 	}
699 
700 	kfree(iser_conn);
701 }
702 
703 /**
704  * triggers start of the disconnect procedures and wait for them to be done
705  * Called with state mutex held
706  */
707 int iser_conn_terminate(struct iser_conn *iser_conn)
708 {
709 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
710 	struct ib_send_wr *bad_wr;
711 	int err = 0;
712 
713 	/* terminate the iser conn only if the conn state is UP */
714 	if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
715 				       ISER_CONN_TERMINATING))
716 		return 0;
717 
718 	iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
719 
720 	/* suspend queuing of new iscsi commands */
721 	if (iser_conn->iscsi_conn)
722 		iscsi_suspend_queue(iser_conn->iscsi_conn);
723 
724 	/*
725 	 * In case we didn't already clean up the cma_id (peer initiated
726 	 * a disconnection), we need to Cause the CMA to change the QP
727 	 * state to ERROR.
728 	 */
729 	if (ib_conn->cma_id) {
730 		err = rdma_disconnect(ib_conn->cma_id);
731 		if (err)
732 			iser_err("Failed to disconnect, conn: 0x%p err %d\n",
733 				 iser_conn, err);
734 
735 		/* post an indication that all flush errors were consumed */
736 		err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
737 		if (err) {
738 			iser_err("conn %p failed to post beacon", ib_conn);
739 			return 1;
740 		}
741 
742 		wait_for_completion(&ib_conn->flush_comp);
743 	}
744 
745 	return 1;
746 }
747 
748 /**
749  * Called with state mutex held
750  **/
751 static void iser_connect_error(struct rdma_cm_id *cma_id)
752 {
753 	struct iser_conn *iser_conn;
754 
755 	iser_conn = (struct iser_conn *)cma_id->context;
756 	iser_conn->state = ISER_CONN_TERMINATING;
757 }
758 
759 static void
760 iser_calc_scsi_params(struct iser_conn *iser_conn,
761 		      unsigned int max_sectors)
762 {
763 	struct iser_device *device = iser_conn->ib_conn.device;
764 	unsigned short sg_tablesize, sup_sg_tablesize;
765 
766 	sg_tablesize = DIV_ROUND_UP(max_sectors * 512, SIZE_4K);
767 	sup_sg_tablesize = min_t(unsigned, ISCSI_ISER_MAX_SG_TABLESIZE,
768 				 device->dev_attr.max_fast_reg_page_list_len);
769 
770 	if (sg_tablesize > sup_sg_tablesize) {
771 		sg_tablesize = sup_sg_tablesize;
772 		iser_conn->scsi_max_sectors = sg_tablesize * SIZE_4K / 512;
773 	} else {
774 		iser_conn->scsi_max_sectors = max_sectors;
775 	}
776 
777 	iser_conn->scsi_sg_tablesize = sg_tablesize;
778 
779 	iser_dbg("iser_conn %p, sg_tablesize %u, max_sectors %u\n",
780 		 iser_conn, iser_conn->scsi_sg_tablesize,
781 		 iser_conn->scsi_max_sectors);
782 }
783 
784 /**
785  * Called with state mutex held
786  **/
787 static void iser_addr_handler(struct rdma_cm_id *cma_id)
788 {
789 	struct iser_device *device;
790 	struct iser_conn   *iser_conn;
791 	struct ib_conn   *ib_conn;
792 	int    ret;
793 
794 	iser_conn = (struct iser_conn *)cma_id->context;
795 	if (iser_conn->state != ISER_CONN_PENDING)
796 		/* bailout */
797 		return;
798 
799 	ib_conn = &iser_conn->ib_conn;
800 	device = iser_device_find_by_ib_device(cma_id);
801 	if (!device) {
802 		iser_err("device lookup/creation failed\n");
803 		iser_connect_error(cma_id);
804 		return;
805 	}
806 
807 	ib_conn->device = device;
808 
809 	/* connection T10-PI support */
810 	if (iser_pi_enable) {
811 		if (!(device->dev_attr.device_cap_flags &
812 		      IB_DEVICE_SIGNATURE_HANDOVER)) {
813 			iser_warn("T10-PI requested but not supported on %s, "
814 				  "continue without T10-PI\n",
815 				  ib_conn->device->ib_device->name);
816 			ib_conn->pi_support = false;
817 		} else {
818 			ib_conn->pi_support = true;
819 		}
820 	}
821 
822 	iser_calc_scsi_params(iser_conn, iser_max_sectors);
823 
824 	ret = rdma_resolve_route(cma_id, 1000);
825 	if (ret) {
826 		iser_err("resolve route failed: %d\n", ret);
827 		iser_connect_error(cma_id);
828 		return;
829 	}
830 }
831 
832 /**
833  * Called with state mutex held
834  **/
835 static void iser_route_handler(struct rdma_cm_id *cma_id)
836 {
837 	struct rdma_conn_param conn_param;
838 	int    ret;
839 	struct iser_cm_hdr req_hdr;
840 	struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
841 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
842 	struct iser_device *device = ib_conn->device;
843 
844 	if (iser_conn->state != ISER_CONN_PENDING)
845 		/* bailout */
846 		return;
847 
848 	ret = iser_create_ib_conn_res(ib_conn);
849 	if (ret)
850 		goto failure;
851 
852 	memset(&conn_param, 0, sizeof conn_param);
853 	conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
854 	conn_param.initiator_depth     = 1;
855 	conn_param.retry_count	       = 7;
856 	conn_param.rnr_retry_count     = 6;
857 
858 	memset(&req_hdr, 0, sizeof(req_hdr));
859 	req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
860 			ISER_SEND_W_INV_NOT_SUPPORTED);
861 	conn_param.private_data		= (void *)&req_hdr;
862 	conn_param.private_data_len	= sizeof(struct iser_cm_hdr);
863 
864 	ret = rdma_connect(cma_id, &conn_param);
865 	if (ret) {
866 		iser_err("failure connecting: %d\n", ret);
867 		goto failure;
868 	}
869 
870 	return;
871 failure:
872 	iser_connect_error(cma_id);
873 }
874 
875 static void iser_connected_handler(struct rdma_cm_id *cma_id)
876 {
877 	struct iser_conn *iser_conn;
878 	struct ib_qp_attr attr;
879 	struct ib_qp_init_attr init_attr;
880 
881 	iser_conn = (struct iser_conn *)cma_id->context;
882 	if (iser_conn->state != ISER_CONN_PENDING)
883 		/* bailout */
884 		return;
885 
886 	(void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
887 	iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
888 
889 	iser_conn->state = ISER_CONN_UP;
890 	complete(&iser_conn->up_completion);
891 }
892 
893 static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
894 {
895 	struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
896 
897 	if (iser_conn_terminate(iser_conn)) {
898 		if (iser_conn->iscsi_conn)
899 			iscsi_conn_failure(iser_conn->iscsi_conn,
900 					   ISCSI_ERR_CONN_FAILED);
901 		else
902 			iser_err("iscsi_iser connection isn't bound\n");
903 	}
904 }
905 
906 static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
907 				 bool destroy)
908 {
909 	struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
910 
911 	/*
912 	 * We are not guaranteed that we visited disconnected_handler
913 	 * by now, call it here to be safe that we handle CM drep
914 	 * and flush errors.
915 	 */
916 	iser_disconnected_handler(cma_id);
917 	iser_free_ib_conn_res(iser_conn, destroy);
918 	complete(&iser_conn->ib_completion);
919 };
920 
921 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
922 {
923 	struct iser_conn *iser_conn;
924 	int ret = 0;
925 
926 	iser_conn = (struct iser_conn *)cma_id->context;
927 	iser_info("%s (%d): status %d conn %p id %p\n",
928 		  rdma_event_msg(event->event), event->event,
929 		  event->status, cma_id->context, cma_id);
930 
931 	mutex_lock(&iser_conn->state_mutex);
932 	switch (event->event) {
933 	case RDMA_CM_EVENT_ADDR_RESOLVED:
934 		iser_addr_handler(cma_id);
935 		break;
936 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
937 		iser_route_handler(cma_id);
938 		break;
939 	case RDMA_CM_EVENT_ESTABLISHED:
940 		iser_connected_handler(cma_id);
941 		break;
942 	case RDMA_CM_EVENT_ADDR_ERROR:
943 	case RDMA_CM_EVENT_ROUTE_ERROR:
944 	case RDMA_CM_EVENT_CONNECT_ERROR:
945 	case RDMA_CM_EVENT_UNREACHABLE:
946 	case RDMA_CM_EVENT_REJECTED:
947 		iser_connect_error(cma_id);
948 		break;
949 	case RDMA_CM_EVENT_DISCONNECTED:
950 	case RDMA_CM_EVENT_ADDR_CHANGE:
951 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
952 		iser_cleanup_handler(cma_id, false);
953 		break;
954 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
955 		/*
956 		 * we *must* destroy the device as we cannot rely
957 		 * on iscsid to be around to initiate error handling.
958 		 * also if we are not in state DOWN implicitly destroy
959 		 * the cma_id.
960 		 */
961 		iser_cleanup_handler(cma_id, true);
962 		if (iser_conn->state != ISER_CONN_DOWN) {
963 			iser_conn->ib_conn.cma_id = NULL;
964 			ret = 1;
965 		}
966 		break;
967 	default:
968 		iser_err("Unexpected RDMA CM event: %s (%d)\n",
969 			 rdma_event_msg(event->event), event->event);
970 		break;
971 	}
972 	mutex_unlock(&iser_conn->state_mutex);
973 
974 	return ret;
975 }
976 
977 void iser_conn_init(struct iser_conn *iser_conn)
978 {
979 	iser_conn->state = ISER_CONN_INIT;
980 	iser_conn->ib_conn.post_recv_buf_count = 0;
981 	init_completion(&iser_conn->ib_conn.flush_comp);
982 	init_completion(&iser_conn->stop_completion);
983 	init_completion(&iser_conn->ib_completion);
984 	init_completion(&iser_conn->up_completion);
985 	INIT_LIST_HEAD(&iser_conn->conn_list);
986 	mutex_init(&iser_conn->state_mutex);
987 }
988 
989  /**
990  * starts the process of connecting to the target
991  * sleeps until the connection is established or rejected
992  */
993 int iser_connect(struct iser_conn   *iser_conn,
994 		 struct sockaddr    *src_addr,
995 		 struct sockaddr    *dst_addr,
996 		 int                 non_blocking)
997 {
998 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
999 	int err = 0;
1000 
1001 	mutex_lock(&iser_conn->state_mutex);
1002 
1003 	sprintf(iser_conn->name, "%pISp", dst_addr);
1004 
1005 	iser_info("connecting to: %s\n", iser_conn->name);
1006 
1007 	/* the device is known only --after-- address resolution */
1008 	ib_conn->device = NULL;
1009 
1010 	iser_conn->state = ISER_CONN_PENDING;
1011 
1012 	ib_conn->beacon.wr_id = ISER_BEACON_WRID;
1013 	ib_conn->beacon.opcode = IB_WR_SEND;
1014 
1015 	ib_conn->cma_id = rdma_create_id(iser_cma_handler,
1016 					 (void *)iser_conn,
1017 					 RDMA_PS_TCP, IB_QPT_RC);
1018 	if (IS_ERR(ib_conn->cma_id)) {
1019 		err = PTR_ERR(ib_conn->cma_id);
1020 		iser_err("rdma_create_id failed: %d\n", err);
1021 		goto id_failure;
1022 	}
1023 
1024 	err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
1025 	if (err) {
1026 		iser_err("rdma_resolve_addr failed: %d\n", err);
1027 		goto addr_failure;
1028 	}
1029 
1030 	if (!non_blocking) {
1031 		wait_for_completion_interruptible(&iser_conn->up_completion);
1032 
1033 		if (iser_conn->state != ISER_CONN_UP) {
1034 			err =  -EIO;
1035 			goto connect_failure;
1036 		}
1037 	}
1038 	mutex_unlock(&iser_conn->state_mutex);
1039 
1040 	mutex_lock(&ig.connlist_mutex);
1041 	list_add(&iser_conn->conn_list, &ig.connlist);
1042 	mutex_unlock(&ig.connlist_mutex);
1043 	return 0;
1044 
1045 id_failure:
1046 	ib_conn->cma_id = NULL;
1047 addr_failure:
1048 	iser_conn->state = ISER_CONN_DOWN;
1049 connect_failure:
1050 	mutex_unlock(&iser_conn->state_mutex);
1051 	iser_conn_release(iser_conn);
1052 	return err;
1053 }
1054 
1055 int iser_post_recvl(struct iser_conn *iser_conn)
1056 {
1057 	struct ib_recv_wr rx_wr, *rx_wr_failed;
1058 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
1059 	struct ib_sge	  sge;
1060 	int ib_ret;
1061 
1062 	sge.addr   = iser_conn->login_resp_dma;
1063 	sge.length = ISER_RX_LOGIN_SIZE;
1064 	sge.lkey   = ib_conn->device->pd->local_dma_lkey;
1065 
1066 	rx_wr.wr_id   = (uintptr_t)iser_conn->login_resp_buf;
1067 	rx_wr.sg_list = &sge;
1068 	rx_wr.num_sge = 1;
1069 	rx_wr.next    = NULL;
1070 
1071 	ib_conn->post_recv_buf_count++;
1072 	ib_ret	= ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
1073 	if (ib_ret) {
1074 		iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1075 		ib_conn->post_recv_buf_count--;
1076 	}
1077 	return ib_ret;
1078 }
1079 
1080 int iser_post_recvm(struct iser_conn *iser_conn, int count)
1081 {
1082 	struct ib_recv_wr *rx_wr, *rx_wr_failed;
1083 	int i, ib_ret;
1084 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
1085 	unsigned int my_rx_head = iser_conn->rx_desc_head;
1086 	struct iser_rx_desc *rx_desc;
1087 
1088 	for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
1089 		rx_desc		= &iser_conn->rx_descs[my_rx_head];
1090 		rx_wr->wr_id	= (uintptr_t)rx_desc;
1091 		rx_wr->sg_list	= &rx_desc->rx_sg;
1092 		rx_wr->num_sge	= 1;
1093 		rx_wr->next	= rx_wr + 1;
1094 		my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
1095 	}
1096 
1097 	rx_wr--;
1098 	rx_wr->next = NULL; /* mark end of work requests list */
1099 
1100 	ib_conn->post_recv_buf_count += count;
1101 	ib_ret	= ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
1102 	if (ib_ret) {
1103 		iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1104 		ib_conn->post_recv_buf_count -= count;
1105 	} else
1106 		iser_conn->rx_desc_head = my_rx_head;
1107 	return ib_ret;
1108 }
1109 
1110 
1111 /**
1112  * iser_start_send - Initiate a Send DTO operation
1113  *
1114  * returns 0 on success, -1 on failure
1115  */
1116 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
1117 		   bool signal)
1118 {
1119 	struct ib_send_wr *bad_wr, *wr = iser_tx_next_wr(tx_desc);
1120 	int ib_ret;
1121 
1122 	ib_dma_sync_single_for_device(ib_conn->device->ib_device,
1123 				      tx_desc->dma_addr, ISER_HEADERS_LEN,
1124 				      DMA_TO_DEVICE);
1125 
1126 	wr->next = NULL;
1127 	wr->wr_id = (uintptr_t)tx_desc;
1128 	wr->sg_list = tx_desc->tx_sg;
1129 	wr->num_sge = tx_desc->num_sge;
1130 	wr->opcode = IB_WR_SEND;
1131 	wr->send_flags = signal ? IB_SEND_SIGNALED : 0;
1132 
1133 	ib_ret = ib_post_send(ib_conn->qp, &tx_desc->wrs[0], &bad_wr);
1134 	if (ib_ret)
1135 		iser_err("ib_post_send failed, ret:%d opcode:%d\n",
1136 			 ib_ret, bad_wr->opcode);
1137 
1138 	return ib_ret;
1139 }
1140 
1141 /**
1142  * is_iser_tx_desc - Indicate if the completion wr_id
1143  *     is a TX descriptor or not.
1144  * @iser_conn: iser connection
1145  * @wr_id: completion WR identifier
1146  *
1147  * Since we cannot rely on wc opcode in FLUSH errors
1148  * we must work around it by checking if the wr_id address
1149  * falls in the iser connection rx_descs buffer. If so
1150  * it is an RX descriptor, otherwize it is a TX.
1151  */
1152 static inline bool
1153 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
1154 {
1155 	void *start = iser_conn->rx_descs;
1156 	int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
1157 
1158 	if (wr_id >= start && wr_id < start + len)
1159 		return false;
1160 
1161 	return true;
1162 }
1163 
1164 /**
1165  * iser_handle_comp_error() - Handle error completion
1166  * @ib_conn:   connection RDMA resources
1167  * @wc:        work completion
1168  *
1169  * Notes: We may handle a FLUSH error completion and in this case
1170  *        we only cleanup in case TX type was DATAOUT. For non-FLUSH
1171  *        error completion we should also notify iscsi layer that
1172  *        connection is failed (in case we passed bind stage).
1173  */
1174 static void
1175 iser_handle_comp_error(struct ib_conn *ib_conn,
1176 		       struct ib_wc *wc)
1177 {
1178 	void *wr_id = (void *)(uintptr_t)wc->wr_id;
1179 	struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
1180 						   ib_conn);
1181 
1182 	if (wc->status != IB_WC_WR_FLUSH_ERR)
1183 		if (iser_conn->iscsi_conn)
1184 			iscsi_conn_failure(iser_conn->iscsi_conn,
1185 					   ISCSI_ERR_CONN_FAILED);
1186 
1187 	if (wc->wr_id == ISER_FASTREG_LI_WRID)
1188 		return;
1189 
1190 	if (is_iser_tx_desc(iser_conn, wr_id)) {
1191 		struct iser_tx_desc *desc = wr_id;
1192 
1193 		if (desc->type == ISCSI_TX_DATAOUT)
1194 			kmem_cache_free(ig.desc_cache, desc);
1195 	} else {
1196 		ib_conn->post_recv_buf_count--;
1197 	}
1198 }
1199 
1200 /**
1201  * iser_handle_wc - handle a single work completion
1202  * @wc: work completion
1203  *
1204  * Soft-IRQ context, work completion can be either
1205  * SEND or RECV, and can turn out successful or
1206  * with error (or flush error).
1207  */
1208 static void iser_handle_wc(struct ib_wc *wc)
1209 {
1210 	struct ib_conn *ib_conn;
1211 	struct iser_tx_desc *tx_desc;
1212 	struct iser_rx_desc *rx_desc;
1213 
1214 	ib_conn = wc->qp->qp_context;
1215 	if (likely(wc->status == IB_WC_SUCCESS)) {
1216 		if (wc->opcode == IB_WC_RECV) {
1217 			rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id;
1218 			iser_rcv_completion(rx_desc, wc->byte_len,
1219 					    ib_conn);
1220 		} else
1221 		if (wc->opcode == IB_WC_SEND) {
1222 			tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id;
1223 			iser_snd_completion(tx_desc, ib_conn);
1224 		} else {
1225 			iser_err("Unknown wc opcode %d\n", wc->opcode);
1226 		}
1227 	} else {
1228 		if (wc->status != IB_WC_WR_FLUSH_ERR)
1229 			iser_err("%s (%d): wr id %llx vend_err %x\n",
1230 				 ib_wc_status_msg(wc->status), wc->status,
1231 				 wc->wr_id, wc->vendor_err);
1232 		else
1233 			iser_dbg("%s (%d): wr id %llx\n",
1234 				 ib_wc_status_msg(wc->status), wc->status,
1235 				 wc->wr_id);
1236 
1237 		if (wc->wr_id == ISER_BEACON_WRID)
1238 			/* all flush errors were consumed */
1239 			complete(&ib_conn->flush_comp);
1240 		else
1241 			iser_handle_comp_error(ib_conn, wc);
1242 	}
1243 }
1244 
1245 /**
1246  * iser_cq_tasklet_fn - iSER completion polling loop
1247  * @data: iSER completion context
1248  *
1249  * Soft-IRQ context, polling connection CQ until
1250  * either CQ was empty or we exausted polling budget
1251  */
1252 static void iser_cq_tasklet_fn(unsigned long data)
1253 {
1254 	struct iser_comp *comp = (struct iser_comp *)data;
1255 	struct ib_cq *cq = comp->cq;
1256 	struct ib_wc *const wcs = comp->wcs;
1257 	int i, n, completed = 0;
1258 
1259 	while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
1260 		for (i = 0; i < n; i++)
1261 			iser_handle_wc(&wcs[i]);
1262 
1263 		completed += n;
1264 		if (completed >= iser_cq_poll_limit)
1265 			break;
1266 	}
1267 
1268 	/*
1269 	 * It is assumed here that arming CQ only once its empty
1270 	 * would not cause interrupts to be missed.
1271 	 */
1272 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1273 
1274 	iser_dbg("got %d completions\n", completed);
1275 }
1276 
1277 static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
1278 {
1279 	struct iser_comp *comp = cq_context;
1280 
1281 	tasklet_schedule(&comp->tasklet);
1282 }
1283 
1284 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
1285 			     enum iser_data_dir cmd_dir, sector_t *sector)
1286 {
1287 	struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
1288 	struct iser_fr_desc *desc = reg->mem_h;
1289 	unsigned long sector_size = iser_task->sc->device->sector_size;
1290 	struct ib_mr_status mr_status;
1291 	int ret;
1292 
1293 	if (desc && desc->pi_ctx->sig_protected) {
1294 		desc->pi_ctx->sig_protected = 0;
1295 		ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
1296 					 IB_MR_CHECK_SIG_STATUS, &mr_status);
1297 		if (ret) {
1298 			pr_err("ib_check_mr_status failed, ret %d\n", ret);
1299 			goto err;
1300 		}
1301 
1302 		if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
1303 			sector_t sector_off = mr_status.sig_err.sig_err_offset;
1304 
1305 			do_div(sector_off, sector_size + 8);
1306 			*sector = scsi_get_lba(iser_task->sc) + sector_off;
1307 
1308 			pr_err("PI error found type %d at sector %llx "
1309 			       "expected %x vs actual %x\n",
1310 			       mr_status.sig_err.err_type,
1311 			       (unsigned long long)*sector,
1312 			       mr_status.sig_err.expected,
1313 			       mr_status.sig_err.actual);
1314 
1315 			switch (mr_status.sig_err.err_type) {
1316 			case IB_SIG_BAD_GUARD:
1317 				return 0x1;
1318 			case IB_SIG_BAD_REFTAG:
1319 				return 0x3;
1320 			case IB_SIG_BAD_APPTAG:
1321 				return 0x2;
1322 			}
1323 		}
1324 	}
1325 
1326 	return 0;
1327 err:
1328 	/* Not alot we can do here, return ambiguous guard error */
1329 	return 0x1;
1330 }
1331