1 /* 2 * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. 3 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 4 * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/slab.h> 37 #include <linux/delay.h> 38 39 #include "iscsi_iser.h" 40 41 #define ISCSI_ISER_MAX_CONN 8 42 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN) 43 #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN) 44 #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \ 45 ISCSI_ISER_MAX_CONN) 46 47 static int iser_cq_poll_limit = 512; 48 49 static void iser_cq_tasklet_fn(unsigned long data); 50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context); 51 52 static void iser_cq_event_callback(struct ib_event *cause, void *context) 53 { 54 iser_err("cq event %s (%d)\n", 55 ib_event_msg(cause->event), cause->event); 56 } 57 58 static void iser_qp_event_callback(struct ib_event *cause, void *context) 59 { 60 iser_err("qp event %s (%d)\n", 61 ib_event_msg(cause->event), cause->event); 62 } 63 64 static void iser_event_handler(struct ib_event_handler *handler, 65 struct ib_event *event) 66 { 67 iser_err("async event %s (%d) on device %s port %d\n", 68 ib_event_msg(event->event), event->event, 69 event->device->name, event->element.port_num); 70 } 71 72 /** 73 * iser_create_device_ib_res - creates Protection Domain (PD), Completion 74 * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with 75 * the adapator. 76 * 77 * returns 0 on success, -1 on failure 78 */ 79 static int iser_create_device_ib_res(struct iser_device *device) 80 { 81 struct ib_device_attr *dev_attr = &device->dev_attr; 82 int ret, i, max_cqe; 83 84 ret = ib_query_device(device->ib_device, dev_attr); 85 if (ret) { 86 pr_warn("Query device failed for %s\n", device->ib_device->name); 87 return ret; 88 } 89 90 ret = iser_assign_reg_ops(device); 91 if (ret) 92 return ret; 93 94 device->comps_used = min_t(int, num_online_cpus(), 95 device->ib_device->num_comp_vectors); 96 97 device->comps = kcalloc(device->comps_used, sizeof(*device->comps), 98 GFP_KERNEL); 99 if (!device->comps) 100 goto comps_err; 101 102 max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe); 103 104 iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n", 105 device->comps_used, device->ib_device->name, 106 device->ib_device->num_comp_vectors, max_cqe); 107 108 device->pd = ib_alloc_pd(device->ib_device); 109 if (IS_ERR(device->pd)) 110 goto pd_err; 111 112 for (i = 0; i < device->comps_used; i++) { 113 struct ib_cq_init_attr cq_attr = {}; 114 struct iser_comp *comp = &device->comps[i]; 115 116 comp->device = device; 117 cq_attr.cqe = max_cqe; 118 cq_attr.comp_vector = i; 119 comp->cq = ib_create_cq(device->ib_device, 120 iser_cq_callback, 121 iser_cq_event_callback, 122 (void *)comp, 123 &cq_attr); 124 if (IS_ERR(comp->cq)) { 125 comp->cq = NULL; 126 goto cq_err; 127 } 128 129 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP)) 130 goto cq_err; 131 132 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn, 133 (unsigned long)comp); 134 } 135 136 device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE | 137 IB_ACCESS_REMOTE_WRITE | 138 IB_ACCESS_REMOTE_READ); 139 if (IS_ERR(device->mr)) 140 goto dma_mr_err; 141 142 INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device, 143 iser_event_handler); 144 if (ib_register_event_handler(&device->event_handler)) 145 goto handler_err; 146 147 return 0; 148 149 handler_err: 150 ib_dereg_mr(device->mr); 151 dma_mr_err: 152 for (i = 0; i < device->comps_used; i++) 153 tasklet_kill(&device->comps[i].tasklet); 154 cq_err: 155 for (i = 0; i < device->comps_used; i++) { 156 struct iser_comp *comp = &device->comps[i]; 157 158 if (comp->cq) 159 ib_destroy_cq(comp->cq); 160 } 161 ib_dealloc_pd(device->pd); 162 pd_err: 163 kfree(device->comps); 164 comps_err: 165 iser_err("failed to allocate an IB resource\n"); 166 return -1; 167 } 168 169 /** 170 * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR, 171 * CQ and PD created with the device associated with the adapator. 172 */ 173 static void iser_free_device_ib_res(struct iser_device *device) 174 { 175 int i; 176 BUG_ON(device->mr == NULL); 177 178 for (i = 0; i < device->comps_used; i++) { 179 struct iser_comp *comp = &device->comps[i]; 180 181 tasklet_kill(&comp->tasklet); 182 ib_destroy_cq(comp->cq); 183 comp->cq = NULL; 184 } 185 186 (void)ib_unregister_event_handler(&device->event_handler); 187 (void)ib_dereg_mr(device->mr); 188 ib_dealloc_pd(device->pd); 189 190 kfree(device->comps); 191 device->comps = NULL; 192 193 device->mr = NULL; 194 device->pd = NULL; 195 } 196 197 /** 198 * iser_alloc_fmr_pool - Creates FMR pool and page_vector 199 * 200 * returns 0 on success, or errno code on failure 201 */ 202 int iser_alloc_fmr_pool(struct ib_conn *ib_conn, 203 unsigned cmds_max, 204 unsigned int size) 205 { 206 struct iser_device *device = ib_conn->device; 207 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; 208 struct iser_page_vec *page_vec; 209 struct iser_fr_desc *desc; 210 struct ib_fmr_pool *fmr_pool; 211 struct ib_fmr_pool_param params; 212 int ret; 213 214 INIT_LIST_HEAD(&fr_pool->list); 215 spin_lock_init(&fr_pool->lock); 216 217 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 218 if (!desc) 219 return -ENOMEM; 220 221 page_vec = kmalloc(sizeof(*page_vec) + (sizeof(u64) * size), 222 GFP_KERNEL); 223 if (!page_vec) { 224 ret = -ENOMEM; 225 goto err_frpl; 226 } 227 228 page_vec->pages = (u64 *)(page_vec + 1); 229 230 params.page_shift = SHIFT_4K; 231 params.max_pages_per_fmr = size; 232 /* make the pool size twice the max number of SCSI commands * 233 * the ML is expected to queue, watermark for unmap at 50% */ 234 params.pool_size = cmds_max * 2; 235 params.dirty_watermark = cmds_max; 236 params.cache = 0; 237 params.flush_function = NULL; 238 params.access = (IB_ACCESS_LOCAL_WRITE | 239 IB_ACCESS_REMOTE_WRITE | 240 IB_ACCESS_REMOTE_READ); 241 242 fmr_pool = ib_create_fmr_pool(device->pd, ¶ms); 243 if (IS_ERR(fmr_pool)) { 244 ret = PTR_ERR(fmr_pool); 245 iser_err("FMR allocation failed, err %d\n", ret); 246 goto err_fmr; 247 } 248 249 desc->rsc.page_vec = page_vec; 250 desc->rsc.fmr_pool = fmr_pool; 251 list_add(&desc->list, &fr_pool->list); 252 253 return 0; 254 255 err_fmr: 256 kfree(page_vec); 257 err_frpl: 258 kfree(desc); 259 260 return ret; 261 } 262 263 /** 264 * iser_free_fmr_pool - releases the FMR pool and page vec 265 */ 266 void iser_free_fmr_pool(struct ib_conn *ib_conn) 267 { 268 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; 269 struct iser_fr_desc *desc; 270 271 desc = list_first_entry(&fr_pool->list, 272 struct iser_fr_desc, list); 273 list_del(&desc->list); 274 275 iser_info("freeing conn %p fmr pool %p\n", 276 ib_conn, desc->rsc.fmr_pool); 277 278 ib_destroy_fmr_pool(desc->rsc.fmr_pool); 279 kfree(desc->rsc.page_vec); 280 kfree(desc); 281 } 282 283 static int 284 iser_alloc_reg_res(struct ib_device *ib_device, 285 struct ib_pd *pd, 286 struct iser_reg_resources *res, 287 unsigned int size) 288 { 289 int ret; 290 291 res->frpl = ib_alloc_fast_reg_page_list(ib_device, size); 292 if (IS_ERR(res->frpl)) { 293 ret = PTR_ERR(res->frpl); 294 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n", 295 ret); 296 return PTR_ERR(res->frpl); 297 } 298 299 res->mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, size); 300 if (IS_ERR(res->mr)) { 301 ret = PTR_ERR(res->mr); 302 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret); 303 goto fast_reg_mr_failure; 304 } 305 res->mr_valid = 1; 306 307 return 0; 308 309 fast_reg_mr_failure: 310 ib_free_fast_reg_page_list(res->frpl); 311 312 return ret; 313 } 314 315 static void 316 iser_free_reg_res(struct iser_reg_resources *rsc) 317 { 318 ib_dereg_mr(rsc->mr); 319 ib_free_fast_reg_page_list(rsc->frpl); 320 } 321 322 static int 323 iser_alloc_pi_ctx(struct ib_device *ib_device, 324 struct ib_pd *pd, 325 struct iser_fr_desc *desc, 326 unsigned int size) 327 { 328 struct iser_pi_context *pi_ctx = NULL; 329 int ret; 330 331 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL); 332 if (!desc->pi_ctx) 333 return -ENOMEM; 334 335 pi_ctx = desc->pi_ctx; 336 337 ret = iser_alloc_reg_res(ib_device, pd, &pi_ctx->rsc, size); 338 if (ret) { 339 iser_err("failed to allocate reg_resources\n"); 340 goto alloc_reg_res_err; 341 } 342 343 pi_ctx->sig_mr = ib_alloc_mr(pd, IB_MR_TYPE_SIGNATURE, 2); 344 if (IS_ERR(pi_ctx->sig_mr)) { 345 ret = PTR_ERR(pi_ctx->sig_mr); 346 goto sig_mr_failure; 347 } 348 pi_ctx->sig_mr_valid = 1; 349 desc->pi_ctx->sig_protected = 0; 350 351 return 0; 352 353 sig_mr_failure: 354 iser_free_reg_res(&pi_ctx->rsc); 355 alloc_reg_res_err: 356 kfree(desc->pi_ctx); 357 358 return ret; 359 } 360 361 static void 362 iser_free_pi_ctx(struct iser_pi_context *pi_ctx) 363 { 364 iser_free_reg_res(&pi_ctx->rsc); 365 ib_dereg_mr(pi_ctx->sig_mr); 366 kfree(pi_ctx); 367 } 368 369 static struct iser_fr_desc * 370 iser_create_fastreg_desc(struct ib_device *ib_device, 371 struct ib_pd *pd, 372 bool pi_enable, 373 unsigned int size) 374 { 375 struct iser_fr_desc *desc; 376 int ret; 377 378 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 379 if (!desc) 380 return ERR_PTR(-ENOMEM); 381 382 ret = iser_alloc_reg_res(ib_device, pd, &desc->rsc, size); 383 if (ret) 384 goto reg_res_alloc_failure; 385 386 if (pi_enable) { 387 ret = iser_alloc_pi_ctx(ib_device, pd, desc, size); 388 if (ret) 389 goto pi_ctx_alloc_failure; 390 } 391 392 return desc; 393 394 pi_ctx_alloc_failure: 395 iser_free_reg_res(&desc->rsc); 396 reg_res_alloc_failure: 397 kfree(desc); 398 399 return ERR_PTR(ret); 400 } 401 402 /** 403 * iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors 404 * for fast registration work requests. 405 * returns 0 on success, or errno code on failure 406 */ 407 int iser_alloc_fastreg_pool(struct ib_conn *ib_conn, 408 unsigned cmds_max, 409 unsigned int size) 410 { 411 struct iser_device *device = ib_conn->device; 412 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; 413 struct iser_fr_desc *desc; 414 int i, ret; 415 416 INIT_LIST_HEAD(&fr_pool->list); 417 spin_lock_init(&fr_pool->lock); 418 fr_pool->size = 0; 419 for (i = 0; i < cmds_max; i++) { 420 desc = iser_create_fastreg_desc(device->ib_device, device->pd, 421 ib_conn->pi_support, size); 422 if (IS_ERR(desc)) { 423 ret = PTR_ERR(desc); 424 goto err; 425 } 426 427 list_add_tail(&desc->list, &fr_pool->list); 428 fr_pool->size++; 429 } 430 431 return 0; 432 433 err: 434 iser_free_fastreg_pool(ib_conn); 435 return ret; 436 } 437 438 /** 439 * iser_free_fastreg_pool - releases the pool of fast_reg descriptors 440 */ 441 void iser_free_fastreg_pool(struct ib_conn *ib_conn) 442 { 443 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; 444 struct iser_fr_desc *desc, *tmp; 445 int i = 0; 446 447 if (list_empty(&fr_pool->list)) 448 return; 449 450 iser_info("freeing conn %p fr pool\n", ib_conn); 451 452 list_for_each_entry_safe(desc, tmp, &fr_pool->list, list) { 453 list_del(&desc->list); 454 iser_free_reg_res(&desc->rsc); 455 if (desc->pi_ctx) 456 iser_free_pi_ctx(desc->pi_ctx); 457 kfree(desc); 458 ++i; 459 } 460 461 if (i < fr_pool->size) 462 iser_warn("pool still has %d regions registered\n", 463 fr_pool->size - i); 464 } 465 466 /** 467 * iser_create_ib_conn_res - Queue-Pair (QP) 468 * 469 * returns 0 on success, -1 on failure 470 */ 471 static int iser_create_ib_conn_res(struct ib_conn *ib_conn) 472 { 473 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, 474 ib_conn); 475 struct iser_device *device; 476 struct ib_device_attr *dev_attr; 477 struct ib_qp_init_attr init_attr; 478 int ret = -ENOMEM; 479 int index, min_index = 0; 480 481 BUG_ON(ib_conn->device == NULL); 482 483 device = ib_conn->device; 484 dev_attr = &device->dev_attr; 485 486 memset(&init_attr, 0, sizeof init_attr); 487 488 mutex_lock(&ig.connlist_mutex); 489 /* select the CQ with the minimal number of usages */ 490 for (index = 0; index < device->comps_used; index++) { 491 if (device->comps[index].active_qps < 492 device->comps[min_index].active_qps) 493 min_index = index; 494 } 495 ib_conn->comp = &device->comps[min_index]; 496 ib_conn->comp->active_qps++; 497 mutex_unlock(&ig.connlist_mutex); 498 iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn); 499 500 init_attr.event_handler = iser_qp_event_callback; 501 init_attr.qp_context = (void *)ib_conn; 502 init_attr.send_cq = ib_conn->comp->cq; 503 init_attr.recv_cq = ib_conn->comp->cq; 504 init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS; 505 init_attr.cap.max_send_sge = 2; 506 init_attr.cap.max_recv_sge = 1; 507 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 508 init_attr.qp_type = IB_QPT_RC; 509 if (ib_conn->pi_support) { 510 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1; 511 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN; 512 iser_conn->max_cmds = 513 ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS); 514 } else { 515 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) { 516 init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1; 517 iser_conn->max_cmds = 518 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS); 519 } else { 520 init_attr.cap.max_send_wr = dev_attr->max_qp_wr; 521 iser_conn->max_cmds = 522 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr); 523 iser_dbg("device %s supports max_send_wr %d\n", 524 device->ib_device->name, dev_attr->max_qp_wr); 525 } 526 } 527 528 ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr); 529 if (ret) 530 goto out_err; 531 532 ib_conn->qp = ib_conn->cma_id->qp; 533 iser_info("setting conn %p cma_id %p qp %p\n", 534 ib_conn, ib_conn->cma_id, 535 ib_conn->cma_id->qp); 536 return ret; 537 538 out_err: 539 mutex_lock(&ig.connlist_mutex); 540 ib_conn->comp->active_qps--; 541 mutex_unlock(&ig.connlist_mutex); 542 iser_err("unable to alloc mem or create resource, err %d\n", ret); 543 544 return ret; 545 } 546 547 /** 548 * based on the resolved device node GUID see if there already allocated 549 * device for this device. If there's no such, create one. 550 */ 551 static 552 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id) 553 { 554 struct iser_device *device; 555 556 mutex_lock(&ig.device_list_mutex); 557 558 list_for_each_entry(device, &ig.device_list, ig_list) 559 /* find if there's a match using the node GUID */ 560 if (device->ib_device->node_guid == cma_id->device->node_guid) 561 goto inc_refcnt; 562 563 device = kzalloc(sizeof *device, GFP_KERNEL); 564 if (device == NULL) 565 goto out; 566 567 /* assign this device to the device */ 568 device->ib_device = cma_id->device; 569 /* init the device and link it into ig device list */ 570 if (iser_create_device_ib_res(device)) { 571 kfree(device); 572 device = NULL; 573 goto out; 574 } 575 list_add(&device->ig_list, &ig.device_list); 576 577 inc_refcnt: 578 device->refcount++; 579 out: 580 mutex_unlock(&ig.device_list_mutex); 581 return device; 582 } 583 584 /* if there's no demand for this device, release it */ 585 static void iser_device_try_release(struct iser_device *device) 586 { 587 mutex_lock(&ig.device_list_mutex); 588 device->refcount--; 589 iser_info("device %p refcount %d\n", device, device->refcount); 590 if (!device->refcount) { 591 iser_free_device_ib_res(device); 592 list_del(&device->ig_list); 593 kfree(device); 594 } 595 mutex_unlock(&ig.device_list_mutex); 596 } 597 598 /** 599 * Called with state mutex held 600 **/ 601 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn, 602 enum iser_conn_state comp, 603 enum iser_conn_state exch) 604 { 605 int ret; 606 607 ret = (iser_conn->state == comp); 608 if (ret) 609 iser_conn->state = exch; 610 611 return ret; 612 } 613 614 void iser_release_work(struct work_struct *work) 615 { 616 struct iser_conn *iser_conn; 617 618 iser_conn = container_of(work, struct iser_conn, release_work); 619 620 /* Wait for conn_stop to complete */ 621 wait_for_completion(&iser_conn->stop_completion); 622 /* Wait for IB resouces cleanup to complete */ 623 wait_for_completion(&iser_conn->ib_completion); 624 625 mutex_lock(&iser_conn->state_mutex); 626 iser_conn->state = ISER_CONN_DOWN; 627 mutex_unlock(&iser_conn->state_mutex); 628 629 iser_conn_release(iser_conn); 630 } 631 632 /** 633 * iser_free_ib_conn_res - release IB related resources 634 * @iser_conn: iser connection struct 635 * @destroy: indicator if we need to try to release the 636 * iser device and memory regoins pool (only iscsi 637 * shutdown and DEVICE_REMOVAL will use this). 638 * 639 * This routine is called with the iser state mutex held 640 * so the cm_id removal is out of here. It is Safe to 641 * be invoked multiple times. 642 */ 643 static void iser_free_ib_conn_res(struct iser_conn *iser_conn, 644 bool destroy) 645 { 646 struct ib_conn *ib_conn = &iser_conn->ib_conn; 647 struct iser_device *device = ib_conn->device; 648 649 iser_info("freeing conn %p cma_id %p qp %p\n", 650 iser_conn, ib_conn->cma_id, ib_conn->qp); 651 652 if (ib_conn->qp != NULL) { 653 ib_conn->comp->active_qps--; 654 rdma_destroy_qp(ib_conn->cma_id); 655 ib_conn->qp = NULL; 656 } 657 658 if (destroy) { 659 if (iser_conn->rx_descs) 660 iser_free_rx_descriptors(iser_conn); 661 662 if (device != NULL) { 663 iser_device_try_release(device); 664 ib_conn->device = NULL; 665 } 666 } 667 } 668 669 /** 670 * Frees all conn objects and deallocs conn descriptor 671 */ 672 void iser_conn_release(struct iser_conn *iser_conn) 673 { 674 struct ib_conn *ib_conn = &iser_conn->ib_conn; 675 676 mutex_lock(&ig.connlist_mutex); 677 list_del(&iser_conn->conn_list); 678 mutex_unlock(&ig.connlist_mutex); 679 680 mutex_lock(&iser_conn->state_mutex); 681 /* In case we endup here without ep_disconnect being invoked. */ 682 if (iser_conn->state != ISER_CONN_DOWN) { 683 iser_warn("iser conn %p state %d, expected state down.\n", 684 iser_conn, iser_conn->state); 685 iscsi_destroy_endpoint(iser_conn->ep); 686 iser_conn->state = ISER_CONN_DOWN; 687 } 688 /* 689 * In case we never got to bind stage, we still need to 690 * release IB resources (which is safe to call more than once). 691 */ 692 iser_free_ib_conn_res(iser_conn, true); 693 mutex_unlock(&iser_conn->state_mutex); 694 695 if (ib_conn->cma_id != NULL) { 696 rdma_destroy_id(ib_conn->cma_id); 697 ib_conn->cma_id = NULL; 698 } 699 700 kfree(iser_conn); 701 } 702 703 /** 704 * triggers start of the disconnect procedures and wait for them to be done 705 * Called with state mutex held 706 */ 707 int iser_conn_terminate(struct iser_conn *iser_conn) 708 { 709 struct ib_conn *ib_conn = &iser_conn->ib_conn; 710 struct ib_send_wr *bad_wr; 711 int err = 0; 712 713 /* terminate the iser conn only if the conn state is UP */ 714 if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP, 715 ISER_CONN_TERMINATING)) 716 return 0; 717 718 iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state); 719 720 /* suspend queuing of new iscsi commands */ 721 if (iser_conn->iscsi_conn) 722 iscsi_suspend_queue(iser_conn->iscsi_conn); 723 724 /* 725 * In case we didn't already clean up the cma_id (peer initiated 726 * a disconnection), we need to Cause the CMA to change the QP 727 * state to ERROR. 728 */ 729 if (ib_conn->cma_id) { 730 err = rdma_disconnect(ib_conn->cma_id); 731 if (err) 732 iser_err("Failed to disconnect, conn: 0x%p err %d\n", 733 iser_conn, err); 734 735 /* post an indication that all flush errors were consumed */ 736 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr); 737 if (err) { 738 iser_err("conn %p failed to post beacon", ib_conn); 739 return 1; 740 } 741 742 wait_for_completion(&ib_conn->flush_comp); 743 } 744 745 return 1; 746 } 747 748 /** 749 * Called with state mutex held 750 **/ 751 static void iser_connect_error(struct rdma_cm_id *cma_id) 752 { 753 struct iser_conn *iser_conn; 754 755 iser_conn = (struct iser_conn *)cma_id->context; 756 iser_conn->state = ISER_CONN_TERMINATING; 757 } 758 759 static void 760 iser_calc_scsi_params(struct iser_conn *iser_conn, 761 unsigned int max_sectors) 762 { 763 struct iser_device *device = iser_conn->ib_conn.device; 764 unsigned short sg_tablesize, sup_sg_tablesize; 765 766 sg_tablesize = DIV_ROUND_UP(max_sectors * 512, SIZE_4K); 767 sup_sg_tablesize = min_t(unsigned, ISCSI_ISER_MAX_SG_TABLESIZE, 768 device->dev_attr.max_fast_reg_page_list_len); 769 770 if (sg_tablesize > sup_sg_tablesize) { 771 sg_tablesize = sup_sg_tablesize; 772 iser_conn->scsi_max_sectors = sg_tablesize * SIZE_4K / 512; 773 } else { 774 iser_conn->scsi_max_sectors = max_sectors; 775 } 776 777 iser_conn->scsi_sg_tablesize = sg_tablesize; 778 779 iser_dbg("iser_conn %p, sg_tablesize %u, max_sectors %u\n", 780 iser_conn, iser_conn->scsi_sg_tablesize, 781 iser_conn->scsi_max_sectors); 782 } 783 784 /** 785 * Called with state mutex held 786 **/ 787 static void iser_addr_handler(struct rdma_cm_id *cma_id) 788 { 789 struct iser_device *device; 790 struct iser_conn *iser_conn; 791 struct ib_conn *ib_conn; 792 int ret; 793 794 iser_conn = (struct iser_conn *)cma_id->context; 795 if (iser_conn->state != ISER_CONN_PENDING) 796 /* bailout */ 797 return; 798 799 ib_conn = &iser_conn->ib_conn; 800 device = iser_device_find_by_ib_device(cma_id); 801 if (!device) { 802 iser_err("device lookup/creation failed\n"); 803 iser_connect_error(cma_id); 804 return; 805 } 806 807 ib_conn->device = device; 808 809 /* connection T10-PI support */ 810 if (iser_pi_enable) { 811 if (!(device->dev_attr.device_cap_flags & 812 IB_DEVICE_SIGNATURE_HANDOVER)) { 813 iser_warn("T10-PI requested but not supported on %s, " 814 "continue without T10-PI\n", 815 ib_conn->device->ib_device->name); 816 ib_conn->pi_support = false; 817 } else { 818 ib_conn->pi_support = true; 819 } 820 } 821 822 iser_calc_scsi_params(iser_conn, iser_max_sectors); 823 824 ret = rdma_resolve_route(cma_id, 1000); 825 if (ret) { 826 iser_err("resolve route failed: %d\n", ret); 827 iser_connect_error(cma_id); 828 return; 829 } 830 } 831 832 /** 833 * Called with state mutex held 834 **/ 835 static void iser_route_handler(struct rdma_cm_id *cma_id) 836 { 837 struct rdma_conn_param conn_param; 838 int ret; 839 struct iser_cm_hdr req_hdr; 840 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 841 struct ib_conn *ib_conn = &iser_conn->ib_conn; 842 struct iser_device *device = ib_conn->device; 843 844 if (iser_conn->state != ISER_CONN_PENDING) 845 /* bailout */ 846 return; 847 848 ret = iser_create_ib_conn_res(ib_conn); 849 if (ret) 850 goto failure; 851 852 memset(&conn_param, 0, sizeof conn_param); 853 conn_param.responder_resources = device->dev_attr.max_qp_rd_atom; 854 conn_param.initiator_depth = 1; 855 conn_param.retry_count = 7; 856 conn_param.rnr_retry_count = 6; 857 858 memset(&req_hdr, 0, sizeof(req_hdr)); 859 req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED | 860 ISER_SEND_W_INV_NOT_SUPPORTED); 861 conn_param.private_data = (void *)&req_hdr; 862 conn_param.private_data_len = sizeof(struct iser_cm_hdr); 863 864 ret = rdma_connect(cma_id, &conn_param); 865 if (ret) { 866 iser_err("failure connecting: %d\n", ret); 867 goto failure; 868 } 869 870 return; 871 failure: 872 iser_connect_error(cma_id); 873 } 874 875 static void iser_connected_handler(struct rdma_cm_id *cma_id) 876 { 877 struct iser_conn *iser_conn; 878 struct ib_qp_attr attr; 879 struct ib_qp_init_attr init_attr; 880 881 iser_conn = (struct iser_conn *)cma_id->context; 882 if (iser_conn->state != ISER_CONN_PENDING) 883 /* bailout */ 884 return; 885 886 (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr); 887 iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num); 888 889 iser_conn->state = ISER_CONN_UP; 890 complete(&iser_conn->up_completion); 891 } 892 893 static void iser_disconnected_handler(struct rdma_cm_id *cma_id) 894 { 895 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 896 897 if (iser_conn_terminate(iser_conn)) { 898 if (iser_conn->iscsi_conn) 899 iscsi_conn_failure(iser_conn->iscsi_conn, 900 ISCSI_ERR_CONN_FAILED); 901 else 902 iser_err("iscsi_iser connection isn't bound\n"); 903 } 904 } 905 906 static void iser_cleanup_handler(struct rdma_cm_id *cma_id, 907 bool destroy) 908 { 909 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 910 911 /* 912 * We are not guaranteed that we visited disconnected_handler 913 * by now, call it here to be safe that we handle CM drep 914 * and flush errors. 915 */ 916 iser_disconnected_handler(cma_id); 917 iser_free_ib_conn_res(iser_conn, destroy); 918 complete(&iser_conn->ib_completion); 919 }; 920 921 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) 922 { 923 struct iser_conn *iser_conn; 924 int ret = 0; 925 926 iser_conn = (struct iser_conn *)cma_id->context; 927 iser_info("%s (%d): status %d conn %p id %p\n", 928 rdma_event_msg(event->event), event->event, 929 event->status, cma_id->context, cma_id); 930 931 mutex_lock(&iser_conn->state_mutex); 932 switch (event->event) { 933 case RDMA_CM_EVENT_ADDR_RESOLVED: 934 iser_addr_handler(cma_id); 935 break; 936 case RDMA_CM_EVENT_ROUTE_RESOLVED: 937 iser_route_handler(cma_id); 938 break; 939 case RDMA_CM_EVENT_ESTABLISHED: 940 iser_connected_handler(cma_id); 941 break; 942 case RDMA_CM_EVENT_ADDR_ERROR: 943 case RDMA_CM_EVENT_ROUTE_ERROR: 944 case RDMA_CM_EVENT_CONNECT_ERROR: 945 case RDMA_CM_EVENT_UNREACHABLE: 946 case RDMA_CM_EVENT_REJECTED: 947 iser_connect_error(cma_id); 948 break; 949 case RDMA_CM_EVENT_DISCONNECTED: 950 case RDMA_CM_EVENT_ADDR_CHANGE: 951 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 952 iser_cleanup_handler(cma_id, false); 953 break; 954 case RDMA_CM_EVENT_DEVICE_REMOVAL: 955 /* 956 * we *must* destroy the device as we cannot rely 957 * on iscsid to be around to initiate error handling. 958 * also if we are not in state DOWN implicitly destroy 959 * the cma_id. 960 */ 961 iser_cleanup_handler(cma_id, true); 962 if (iser_conn->state != ISER_CONN_DOWN) { 963 iser_conn->ib_conn.cma_id = NULL; 964 ret = 1; 965 } 966 break; 967 default: 968 iser_err("Unexpected RDMA CM event: %s (%d)\n", 969 rdma_event_msg(event->event), event->event); 970 break; 971 } 972 mutex_unlock(&iser_conn->state_mutex); 973 974 return ret; 975 } 976 977 void iser_conn_init(struct iser_conn *iser_conn) 978 { 979 iser_conn->state = ISER_CONN_INIT; 980 iser_conn->ib_conn.post_recv_buf_count = 0; 981 init_completion(&iser_conn->ib_conn.flush_comp); 982 init_completion(&iser_conn->stop_completion); 983 init_completion(&iser_conn->ib_completion); 984 init_completion(&iser_conn->up_completion); 985 INIT_LIST_HEAD(&iser_conn->conn_list); 986 mutex_init(&iser_conn->state_mutex); 987 } 988 989 /** 990 * starts the process of connecting to the target 991 * sleeps until the connection is established or rejected 992 */ 993 int iser_connect(struct iser_conn *iser_conn, 994 struct sockaddr *src_addr, 995 struct sockaddr *dst_addr, 996 int non_blocking) 997 { 998 struct ib_conn *ib_conn = &iser_conn->ib_conn; 999 int err = 0; 1000 1001 mutex_lock(&iser_conn->state_mutex); 1002 1003 sprintf(iser_conn->name, "%pISp", dst_addr); 1004 1005 iser_info("connecting to: %s\n", iser_conn->name); 1006 1007 /* the device is known only --after-- address resolution */ 1008 ib_conn->device = NULL; 1009 1010 iser_conn->state = ISER_CONN_PENDING; 1011 1012 ib_conn->beacon.wr_id = ISER_BEACON_WRID; 1013 ib_conn->beacon.opcode = IB_WR_SEND; 1014 1015 ib_conn->cma_id = rdma_create_id(iser_cma_handler, 1016 (void *)iser_conn, 1017 RDMA_PS_TCP, IB_QPT_RC); 1018 if (IS_ERR(ib_conn->cma_id)) { 1019 err = PTR_ERR(ib_conn->cma_id); 1020 iser_err("rdma_create_id failed: %d\n", err); 1021 goto id_failure; 1022 } 1023 1024 err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000); 1025 if (err) { 1026 iser_err("rdma_resolve_addr failed: %d\n", err); 1027 goto addr_failure; 1028 } 1029 1030 if (!non_blocking) { 1031 wait_for_completion_interruptible(&iser_conn->up_completion); 1032 1033 if (iser_conn->state != ISER_CONN_UP) { 1034 err = -EIO; 1035 goto connect_failure; 1036 } 1037 } 1038 mutex_unlock(&iser_conn->state_mutex); 1039 1040 mutex_lock(&ig.connlist_mutex); 1041 list_add(&iser_conn->conn_list, &ig.connlist); 1042 mutex_unlock(&ig.connlist_mutex); 1043 return 0; 1044 1045 id_failure: 1046 ib_conn->cma_id = NULL; 1047 addr_failure: 1048 iser_conn->state = ISER_CONN_DOWN; 1049 connect_failure: 1050 mutex_unlock(&iser_conn->state_mutex); 1051 iser_conn_release(iser_conn); 1052 return err; 1053 } 1054 1055 int iser_post_recvl(struct iser_conn *iser_conn) 1056 { 1057 struct ib_recv_wr rx_wr, *rx_wr_failed; 1058 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1059 struct ib_sge sge; 1060 int ib_ret; 1061 1062 sge.addr = iser_conn->login_resp_dma; 1063 sge.length = ISER_RX_LOGIN_SIZE; 1064 sge.lkey = ib_conn->device->pd->local_dma_lkey; 1065 1066 rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf; 1067 rx_wr.sg_list = &sge; 1068 rx_wr.num_sge = 1; 1069 rx_wr.next = NULL; 1070 1071 ib_conn->post_recv_buf_count++; 1072 ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed); 1073 if (ib_ret) { 1074 iser_err("ib_post_recv failed ret=%d\n", ib_ret); 1075 ib_conn->post_recv_buf_count--; 1076 } 1077 return ib_ret; 1078 } 1079 1080 int iser_post_recvm(struct iser_conn *iser_conn, int count) 1081 { 1082 struct ib_recv_wr *rx_wr, *rx_wr_failed; 1083 int i, ib_ret; 1084 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1085 unsigned int my_rx_head = iser_conn->rx_desc_head; 1086 struct iser_rx_desc *rx_desc; 1087 1088 for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) { 1089 rx_desc = &iser_conn->rx_descs[my_rx_head]; 1090 rx_wr->wr_id = (uintptr_t)rx_desc; 1091 rx_wr->sg_list = &rx_desc->rx_sg; 1092 rx_wr->num_sge = 1; 1093 rx_wr->next = rx_wr + 1; 1094 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask; 1095 } 1096 1097 rx_wr--; 1098 rx_wr->next = NULL; /* mark end of work requests list */ 1099 1100 ib_conn->post_recv_buf_count += count; 1101 ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed); 1102 if (ib_ret) { 1103 iser_err("ib_post_recv failed ret=%d\n", ib_ret); 1104 ib_conn->post_recv_buf_count -= count; 1105 } else 1106 iser_conn->rx_desc_head = my_rx_head; 1107 return ib_ret; 1108 } 1109 1110 1111 /** 1112 * iser_start_send - Initiate a Send DTO operation 1113 * 1114 * returns 0 on success, -1 on failure 1115 */ 1116 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc, 1117 bool signal) 1118 { 1119 struct ib_send_wr *bad_wr, *wr = iser_tx_next_wr(tx_desc); 1120 int ib_ret; 1121 1122 ib_dma_sync_single_for_device(ib_conn->device->ib_device, 1123 tx_desc->dma_addr, ISER_HEADERS_LEN, 1124 DMA_TO_DEVICE); 1125 1126 wr->next = NULL; 1127 wr->wr_id = (uintptr_t)tx_desc; 1128 wr->sg_list = tx_desc->tx_sg; 1129 wr->num_sge = tx_desc->num_sge; 1130 wr->opcode = IB_WR_SEND; 1131 wr->send_flags = signal ? IB_SEND_SIGNALED : 0; 1132 1133 ib_ret = ib_post_send(ib_conn->qp, &tx_desc->wrs[0], &bad_wr); 1134 if (ib_ret) 1135 iser_err("ib_post_send failed, ret:%d opcode:%d\n", 1136 ib_ret, bad_wr->opcode); 1137 1138 return ib_ret; 1139 } 1140 1141 /** 1142 * is_iser_tx_desc - Indicate if the completion wr_id 1143 * is a TX descriptor or not. 1144 * @iser_conn: iser connection 1145 * @wr_id: completion WR identifier 1146 * 1147 * Since we cannot rely on wc opcode in FLUSH errors 1148 * we must work around it by checking if the wr_id address 1149 * falls in the iser connection rx_descs buffer. If so 1150 * it is an RX descriptor, otherwize it is a TX. 1151 */ 1152 static inline bool 1153 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id) 1154 { 1155 void *start = iser_conn->rx_descs; 1156 int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs); 1157 1158 if (wr_id >= start && wr_id < start + len) 1159 return false; 1160 1161 return true; 1162 } 1163 1164 /** 1165 * iser_handle_comp_error() - Handle error completion 1166 * @ib_conn: connection RDMA resources 1167 * @wc: work completion 1168 * 1169 * Notes: We may handle a FLUSH error completion and in this case 1170 * we only cleanup in case TX type was DATAOUT. For non-FLUSH 1171 * error completion we should also notify iscsi layer that 1172 * connection is failed (in case we passed bind stage). 1173 */ 1174 static void 1175 iser_handle_comp_error(struct ib_conn *ib_conn, 1176 struct ib_wc *wc) 1177 { 1178 void *wr_id = (void *)(uintptr_t)wc->wr_id; 1179 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, 1180 ib_conn); 1181 1182 if (wc->status != IB_WC_WR_FLUSH_ERR) 1183 if (iser_conn->iscsi_conn) 1184 iscsi_conn_failure(iser_conn->iscsi_conn, 1185 ISCSI_ERR_CONN_FAILED); 1186 1187 if (wc->wr_id == ISER_FASTREG_LI_WRID) 1188 return; 1189 1190 if (is_iser_tx_desc(iser_conn, wr_id)) { 1191 struct iser_tx_desc *desc = wr_id; 1192 1193 if (desc->type == ISCSI_TX_DATAOUT) 1194 kmem_cache_free(ig.desc_cache, desc); 1195 } else { 1196 ib_conn->post_recv_buf_count--; 1197 } 1198 } 1199 1200 /** 1201 * iser_handle_wc - handle a single work completion 1202 * @wc: work completion 1203 * 1204 * Soft-IRQ context, work completion can be either 1205 * SEND or RECV, and can turn out successful or 1206 * with error (or flush error). 1207 */ 1208 static void iser_handle_wc(struct ib_wc *wc) 1209 { 1210 struct ib_conn *ib_conn; 1211 struct iser_tx_desc *tx_desc; 1212 struct iser_rx_desc *rx_desc; 1213 1214 ib_conn = wc->qp->qp_context; 1215 if (likely(wc->status == IB_WC_SUCCESS)) { 1216 if (wc->opcode == IB_WC_RECV) { 1217 rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id; 1218 iser_rcv_completion(rx_desc, wc->byte_len, 1219 ib_conn); 1220 } else 1221 if (wc->opcode == IB_WC_SEND) { 1222 tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id; 1223 iser_snd_completion(tx_desc, ib_conn); 1224 } else { 1225 iser_err("Unknown wc opcode %d\n", wc->opcode); 1226 } 1227 } else { 1228 if (wc->status != IB_WC_WR_FLUSH_ERR) 1229 iser_err("%s (%d): wr id %llx vend_err %x\n", 1230 ib_wc_status_msg(wc->status), wc->status, 1231 wc->wr_id, wc->vendor_err); 1232 else 1233 iser_dbg("%s (%d): wr id %llx\n", 1234 ib_wc_status_msg(wc->status), wc->status, 1235 wc->wr_id); 1236 1237 if (wc->wr_id == ISER_BEACON_WRID) 1238 /* all flush errors were consumed */ 1239 complete(&ib_conn->flush_comp); 1240 else 1241 iser_handle_comp_error(ib_conn, wc); 1242 } 1243 } 1244 1245 /** 1246 * iser_cq_tasklet_fn - iSER completion polling loop 1247 * @data: iSER completion context 1248 * 1249 * Soft-IRQ context, polling connection CQ until 1250 * either CQ was empty or we exausted polling budget 1251 */ 1252 static void iser_cq_tasklet_fn(unsigned long data) 1253 { 1254 struct iser_comp *comp = (struct iser_comp *)data; 1255 struct ib_cq *cq = comp->cq; 1256 struct ib_wc *const wcs = comp->wcs; 1257 int i, n, completed = 0; 1258 1259 while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) { 1260 for (i = 0; i < n; i++) 1261 iser_handle_wc(&wcs[i]); 1262 1263 completed += n; 1264 if (completed >= iser_cq_poll_limit) 1265 break; 1266 } 1267 1268 /* 1269 * It is assumed here that arming CQ only once its empty 1270 * would not cause interrupts to be missed. 1271 */ 1272 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1273 1274 iser_dbg("got %d completions\n", completed); 1275 } 1276 1277 static void iser_cq_callback(struct ib_cq *cq, void *cq_context) 1278 { 1279 struct iser_comp *comp = cq_context; 1280 1281 tasklet_schedule(&comp->tasklet); 1282 } 1283 1284 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task, 1285 enum iser_data_dir cmd_dir, sector_t *sector) 1286 { 1287 struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir]; 1288 struct iser_fr_desc *desc = reg->mem_h; 1289 unsigned long sector_size = iser_task->sc->device->sector_size; 1290 struct ib_mr_status mr_status; 1291 int ret; 1292 1293 if (desc && desc->pi_ctx->sig_protected) { 1294 desc->pi_ctx->sig_protected = 0; 1295 ret = ib_check_mr_status(desc->pi_ctx->sig_mr, 1296 IB_MR_CHECK_SIG_STATUS, &mr_status); 1297 if (ret) { 1298 pr_err("ib_check_mr_status failed, ret %d\n", ret); 1299 goto err; 1300 } 1301 1302 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 1303 sector_t sector_off = mr_status.sig_err.sig_err_offset; 1304 1305 do_div(sector_off, sector_size + 8); 1306 *sector = scsi_get_lba(iser_task->sc) + sector_off; 1307 1308 pr_err("PI error found type %d at sector %llx " 1309 "expected %x vs actual %x\n", 1310 mr_status.sig_err.err_type, 1311 (unsigned long long)*sector, 1312 mr_status.sig_err.expected, 1313 mr_status.sig_err.actual); 1314 1315 switch (mr_status.sig_err.err_type) { 1316 case IB_SIG_BAD_GUARD: 1317 return 0x1; 1318 case IB_SIG_BAD_REFTAG: 1319 return 0x3; 1320 case IB_SIG_BAD_APPTAG: 1321 return 0x2; 1322 } 1323 } 1324 } 1325 1326 return 0; 1327 err: 1328 /* Not alot we can do here, return ambiguous guard error */ 1329 return 0x1; 1330 } 1331