1 /* 2 * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. 3 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 4 * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/slab.h> 37 #include <linux/delay.h> 38 39 #include "iscsi_iser.h" 40 41 #define ISCSI_ISER_MAX_CONN 8 42 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN) 43 #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN) 44 #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \ 45 ISCSI_ISER_MAX_CONN) 46 47 static int iser_cq_poll_limit = 512; 48 49 static void iser_cq_tasklet_fn(unsigned long data); 50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context); 51 52 static void iser_cq_event_callback(struct ib_event *cause, void *context) 53 { 54 iser_err("got cq event %d \n", cause->event); 55 } 56 57 static void iser_qp_event_callback(struct ib_event *cause, void *context) 58 { 59 iser_err("got qp event %d\n",cause->event); 60 } 61 62 static void iser_event_handler(struct ib_event_handler *handler, 63 struct ib_event *event) 64 { 65 iser_err("async event %d on device %s port %d\n", event->event, 66 event->device->name, event->element.port_num); 67 } 68 69 /** 70 * iser_create_device_ib_res - creates Protection Domain (PD), Completion 71 * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with 72 * the adapator. 73 * 74 * returns 0 on success, -1 on failure 75 */ 76 static int iser_create_device_ib_res(struct iser_device *device) 77 { 78 struct ib_device_attr *dev_attr = &device->dev_attr; 79 int ret, i, max_cqe; 80 81 ret = ib_query_device(device->ib_device, dev_attr); 82 if (ret) { 83 pr_warn("Query device failed for %s\n", device->ib_device->name); 84 return ret; 85 } 86 87 /* Assign function handles - based on FMR support */ 88 if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr && 89 device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) { 90 iser_info("FMR supported, using FMR for registration\n"); 91 device->iser_alloc_rdma_reg_res = iser_create_fmr_pool; 92 device->iser_free_rdma_reg_res = iser_free_fmr_pool; 93 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr; 94 device->iser_unreg_rdma_mem = iser_unreg_mem_fmr; 95 } else 96 if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) { 97 iser_info("FastReg supported, using FastReg for registration\n"); 98 device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool; 99 device->iser_free_rdma_reg_res = iser_free_fastreg_pool; 100 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg; 101 device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg; 102 } else { 103 iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n"); 104 return -1; 105 } 106 107 device->comps_used = min_t(int, num_online_cpus(), 108 device->ib_device->num_comp_vectors); 109 110 device->comps = kcalloc(device->comps_used, sizeof(*device->comps), 111 GFP_KERNEL); 112 if (!device->comps) 113 goto comps_err; 114 115 max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe); 116 117 iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n", 118 device->comps_used, device->ib_device->name, 119 device->ib_device->num_comp_vectors, max_cqe); 120 121 device->pd = ib_alloc_pd(device->ib_device); 122 if (IS_ERR(device->pd)) 123 goto pd_err; 124 125 for (i = 0; i < device->comps_used; i++) { 126 struct iser_comp *comp = &device->comps[i]; 127 128 comp->device = device; 129 comp->cq = ib_create_cq(device->ib_device, 130 iser_cq_callback, 131 iser_cq_event_callback, 132 (void *)comp, 133 max_cqe, i); 134 if (IS_ERR(comp->cq)) { 135 comp->cq = NULL; 136 goto cq_err; 137 } 138 139 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP)) 140 goto cq_err; 141 142 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn, 143 (unsigned long)comp); 144 } 145 146 device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE | 147 IB_ACCESS_REMOTE_WRITE | 148 IB_ACCESS_REMOTE_READ); 149 if (IS_ERR(device->mr)) 150 goto dma_mr_err; 151 152 INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device, 153 iser_event_handler); 154 if (ib_register_event_handler(&device->event_handler)) 155 goto handler_err; 156 157 return 0; 158 159 handler_err: 160 ib_dereg_mr(device->mr); 161 dma_mr_err: 162 for (i = 0; i < device->comps_used; i++) 163 tasklet_kill(&device->comps[i].tasklet); 164 cq_err: 165 for (i = 0; i < device->comps_used; i++) { 166 struct iser_comp *comp = &device->comps[i]; 167 168 if (comp->cq) 169 ib_destroy_cq(comp->cq); 170 } 171 ib_dealloc_pd(device->pd); 172 pd_err: 173 kfree(device->comps); 174 comps_err: 175 iser_err("failed to allocate an IB resource\n"); 176 return -1; 177 } 178 179 /** 180 * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR, 181 * CQ and PD created with the device associated with the adapator. 182 */ 183 static void iser_free_device_ib_res(struct iser_device *device) 184 { 185 int i; 186 BUG_ON(device->mr == NULL); 187 188 for (i = 0; i < device->comps_used; i++) { 189 struct iser_comp *comp = &device->comps[i]; 190 191 tasklet_kill(&comp->tasklet); 192 ib_destroy_cq(comp->cq); 193 comp->cq = NULL; 194 } 195 196 (void)ib_unregister_event_handler(&device->event_handler); 197 (void)ib_dereg_mr(device->mr); 198 (void)ib_dealloc_pd(device->pd); 199 200 kfree(device->comps); 201 device->comps = NULL; 202 203 device->mr = NULL; 204 device->pd = NULL; 205 } 206 207 /** 208 * iser_create_fmr_pool - Creates FMR pool and page_vector 209 * 210 * returns 0 on success, or errno code on failure 211 */ 212 int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max) 213 { 214 struct iser_device *device = ib_conn->device; 215 struct ib_fmr_pool_param params; 216 int ret = -ENOMEM; 217 218 ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) + 219 (sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)), 220 GFP_KERNEL); 221 if (!ib_conn->fmr.page_vec) 222 return ret; 223 224 ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1); 225 226 params.page_shift = SHIFT_4K; 227 /* when the first/last SG element are not start/end * 228 * page aligned, the map whould be of N+1 pages */ 229 params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1; 230 /* make the pool size twice the max number of SCSI commands * 231 * the ML is expected to queue, watermark for unmap at 50% */ 232 params.pool_size = cmds_max * 2; 233 params.dirty_watermark = cmds_max; 234 params.cache = 0; 235 params.flush_function = NULL; 236 params.access = (IB_ACCESS_LOCAL_WRITE | 237 IB_ACCESS_REMOTE_WRITE | 238 IB_ACCESS_REMOTE_READ); 239 240 ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, ¶ms); 241 if (!IS_ERR(ib_conn->fmr.pool)) 242 return 0; 243 244 /* no FMR => no need for page_vec */ 245 kfree(ib_conn->fmr.page_vec); 246 ib_conn->fmr.page_vec = NULL; 247 248 ret = PTR_ERR(ib_conn->fmr.pool); 249 ib_conn->fmr.pool = NULL; 250 if (ret != -ENOSYS) { 251 iser_err("FMR allocation failed, err %d\n", ret); 252 return ret; 253 } else { 254 iser_warn("FMRs are not supported, using unaligned mode\n"); 255 return 0; 256 } 257 } 258 259 /** 260 * iser_free_fmr_pool - releases the FMR pool and page vec 261 */ 262 void iser_free_fmr_pool(struct ib_conn *ib_conn) 263 { 264 iser_info("freeing conn %p fmr pool %p\n", 265 ib_conn, ib_conn->fmr.pool); 266 267 if (ib_conn->fmr.pool != NULL) 268 ib_destroy_fmr_pool(ib_conn->fmr.pool); 269 270 ib_conn->fmr.pool = NULL; 271 272 kfree(ib_conn->fmr.page_vec); 273 ib_conn->fmr.page_vec = NULL; 274 } 275 276 static int 277 iser_alloc_pi_ctx(struct ib_device *ib_device, struct ib_pd *pd, 278 struct fast_reg_descriptor *desc) 279 { 280 struct iser_pi_context *pi_ctx = NULL; 281 struct ib_mr_init_attr mr_init_attr = {.max_reg_descriptors = 2, 282 .flags = IB_MR_SIGNATURE_EN}; 283 int ret = 0; 284 285 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL); 286 if (!desc->pi_ctx) 287 return -ENOMEM; 288 289 pi_ctx = desc->pi_ctx; 290 291 pi_ctx->prot_frpl = ib_alloc_fast_reg_page_list(ib_device, 292 ISCSI_ISER_SG_TABLESIZE); 293 if (IS_ERR(pi_ctx->prot_frpl)) { 294 ret = PTR_ERR(pi_ctx->prot_frpl); 295 goto prot_frpl_failure; 296 } 297 298 pi_ctx->prot_mr = ib_alloc_fast_reg_mr(pd, 299 ISCSI_ISER_SG_TABLESIZE + 1); 300 if (IS_ERR(pi_ctx->prot_mr)) { 301 ret = PTR_ERR(pi_ctx->prot_mr); 302 goto prot_mr_failure; 303 } 304 desc->reg_indicators |= ISER_PROT_KEY_VALID; 305 306 pi_ctx->sig_mr = ib_create_mr(pd, &mr_init_attr); 307 if (IS_ERR(pi_ctx->sig_mr)) { 308 ret = PTR_ERR(pi_ctx->sig_mr); 309 goto sig_mr_failure; 310 } 311 desc->reg_indicators |= ISER_SIG_KEY_VALID; 312 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED; 313 314 return 0; 315 316 sig_mr_failure: 317 ib_dereg_mr(desc->pi_ctx->prot_mr); 318 prot_mr_failure: 319 ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl); 320 prot_frpl_failure: 321 kfree(desc->pi_ctx); 322 323 return ret; 324 } 325 326 static void 327 iser_free_pi_ctx(struct iser_pi_context *pi_ctx) 328 { 329 ib_free_fast_reg_page_list(pi_ctx->prot_frpl); 330 ib_dereg_mr(pi_ctx->prot_mr); 331 ib_destroy_mr(pi_ctx->sig_mr); 332 kfree(pi_ctx); 333 } 334 335 static int 336 iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd, 337 bool pi_enable, struct fast_reg_descriptor *desc) 338 { 339 int ret; 340 341 desc->data_frpl = ib_alloc_fast_reg_page_list(ib_device, 342 ISCSI_ISER_SG_TABLESIZE + 1); 343 if (IS_ERR(desc->data_frpl)) { 344 ret = PTR_ERR(desc->data_frpl); 345 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n", 346 ret); 347 return PTR_ERR(desc->data_frpl); 348 } 349 350 desc->data_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1); 351 if (IS_ERR(desc->data_mr)) { 352 ret = PTR_ERR(desc->data_mr); 353 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret); 354 goto fast_reg_mr_failure; 355 } 356 desc->reg_indicators |= ISER_DATA_KEY_VALID; 357 358 if (pi_enable) { 359 ret = iser_alloc_pi_ctx(ib_device, pd, desc); 360 if (ret) 361 goto pi_ctx_alloc_failure; 362 } 363 364 return 0; 365 pi_ctx_alloc_failure: 366 ib_dereg_mr(desc->data_mr); 367 fast_reg_mr_failure: 368 ib_free_fast_reg_page_list(desc->data_frpl); 369 370 return ret; 371 } 372 373 /** 374 * iser_create_fastreg_pool - Creates pool of fast_reg descriptors 375 * for fast registration work requests. 376 * returns 0 on success, or errno code on failure 377 */ 378 int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max) 379 { 380 struct iser_device *device = ib_conn->device; 381 struct fast_reg_descriptor *desc; 382 int i, ret; 383 384 INIT_LIST_HEAD(&ib_conn->fastreg.pool); 385 ib_conn->fastreg.pool_size = 0; 386 for (i = 0; i < cmds_max; i++) { 387 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 388 if (!desc) { 389 iser_err("Failed to allocate a new fast_reg descriptor\n"); 390 ret = -ENOMEM; 391 goto err; 392 } 393 394 ret = iser_create_fastreg_desc(device->ib_device, device->pd, 395 ib_conn->pi_support, desc); 396 if (ret) { 397 iser_err("Failed to create fastreg descriptor err=%d\n", 398 ret); 399 kfree(desc); 400 goto err; 401 } 402 403 list_add_tail(&desc->list, &ib_conn->fastreg.pool); 404 ib_conn->fastreg.pool_size++; 405 } 406 407 return 0; 408 409 err: 410 iser_free_fastreg_pool(ib_conn); 411 return ret; 412 } 413 414 /** 415 * iser_free_fastreg_pool - releases the pool of fast_reg descriptors 416 */ 417 void iser_free_fastreg_pool(struct ib_conn *ib_conn) 418 { 419 struct fast_reg_descriptor *desc, *tmp; 420 int i = 0; 421 422 if (list_empty(&ib_conn->fastreg.pool)) 423 return; 424 425 iser_info("freeing conn %p fr pool\n", ib_conn); 426 427 list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) { 428 list_del(&desc->list); 429 ib_free_fast_reg_page_list(desc->data_frpl); 430 ib_dereg_mr(desc->data_mr); 431 if (desc->pi_ctx) 432 iser_free_pi_ctx(desc->pi_ctx); 433 kfree(desc); 434 ++i; 435 } 436 437 if (i < ib_conn->fastreg.pool_size) 438 iser_warn("pool still has %d regions registered\n", 439 ib_conn->fastreg.pool_size - i); 440 } 441 442 /** 443 * iser_create_ib_conn_res - Queue-Pair (QP) 444 * 445 * returns 0 on success, -1 on failure 446 */ 447 static int iser_create_ib_conn_res(struct ib_conn *ib_conn) 448 { 449 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, 450 ib_conn); 451 struct iser_device *device; 452 struct ib_device_attr *dev_attr; 453 struct ib_qp_init_attr init_attr; 454 int ret = -ENOMEM; 455 int index, min_index = 0; 456 457 BUG_ON(ib_conn->device == NULL); 458 459 device = ib_conn->device; 460 dev_attr = &device->dev_attr; 461 462 memset(&init_attr, 0, sizeof init_attr); 463 464 mutex_lock(&ig.connlist_mutex); 465 /* select the CQ with the minimal number of usages */ 466 for (index = 0; index < device->comps_used; index++) { 467 if (device->comps[index].active_qps < 468 device->comps[min_index].active_qps) 469 min_index = index; 470 } 471 ib_conn->comp = &device->comps[min_index]; 472 ib_conn->comp->active_qps++; 473 mutex_unlock(&ig.connlist_mutex); 474 iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn); 475 476 init_attr.event_handler = iser_qp_event_callback; 477 init_attr.qp_context = (void *)ib_conn; 478 init_attr.send_cq = ib_conn->comp->cq; 479 init_attr.recv_cq = ib_conn->comp->cq; 480 init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS; 481 init_attr.cap.max_send_sge = 2; 482 init_attr.cap.max_recv_sge = 1; 483 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 484 init_attr.qp_type = IB_QPT_RC; 485 if (ib_conn->pi_support) { 486 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1; 487 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN; 488 iser_conn->max_cmds = 489 ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS); 490 } else { 491 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) { 492 init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1; 493 iser_conn->max_cmds = 494 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS); 495 } else { 496 init_attr.cap.max_send_wr = dev_attr->max_qp_wr; 497 iser_conn->max_cmds = 498 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr); 499 iser_dbg("device %s supports max_send_wr %d\n", 500 device->ib_device->name, dev_attr->max_qp_wr); 501 } 502 } 503 504 ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr); 505 if (ret) 506 goto out_err; 507 508 ib_conn->qp = ib_conn->cma_id->qp; 509 iser_info("setting conn %p cma_id %p qp %p\n", 510 ib_conn, ib_conn->cma_id, 511 ib_conn->cma_id->qp); 512 return ret; 513 514 out_err: 515 mutex_lock(&ig.connlist_mutex); 516 ib_conn->comp->active_qps--; 517 mutex_unlock(&ig.connlist_mutex); 518 iser_err("unable to alloc mem or create resource, err %d\n", ret); 519 520 return ret; 521 } 522 523 /** 524 * based on the resolved device node GUID see if there already allocated 525 * device for this device. If there's no such, create one. 526 */ 527 static 528 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id) 529 { 530 struct iser_device *device; 531 532 mutex_lock(&ig.device_list_mutex); 533 534 list_for_each_entry(device, &ig.device_list, ig_list) 535 /* find if there's a match using the node GUID */ 536 if (device->ib_device->node_guid == cma_id->device->node_guid) 537 goto inc_refcnt; 538 539 device = kzalloc(sizeof *device, GFP_KERNEL); 540 if (device == NULL) 541 goto out; 542 543 /* assign this device to the device */ 544 device->ib_device = cma_id->device; 545 /* init the device and link it into ig device list */ 546 if (iser_create_device_ib_res(device)) { 547 kfree(device); 548 device = NULL; 549 goto out; 550 } 551 list_add(&device->ig_list, &ig.device_list); 552 553 inc_refcnt: 554 device->refcount++; 555 out: 556 mutex_unlock(&ig.device_list_mutex); 557 return device; 558 } 559 560 /* if there's no demand for this device, release it */ 561 static void iser_device_try_release(struct iser_device *device) 562 { 563 mutex_lock(&ig.device_list_mutex); 564 device->refcount--; 565 iser_info("device %p refcount %d\n", device, device->refcount); 566 if (!device->refcount) { 567 iser_free_device_ib_res(device); 568 list_del(&device->ig_list); 569 kfree(device); 570 } 571 mutex_unlock(&ig.device_list_mutex); 572 } 573 574 /** 575 * Called with state mutex held 576 **/ 577 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn, 578 enum iser_conn_state comp, 579 enum iser_conn_state exch) 580 { 581 int ret; 582 583 ret = (iser_conn->state == comp); 584 if (ret) 585 iser_conn->state = exch; 586 587 return ret; 588 } 589 590 void iser_release_work(struct work_struct *work) 591 { 592 struct iser_conn *iser_conn; 593 594 iser_conn = container_of(work, struct iser_conn, release_work); 595 596 /* Wait for conn_stop to complete */ 597 wait_for_completion(&iser_conn->stop_completion); 598 /* Wait for IB resouces cleanup to complete */ 599 wait_for_completion(&iser_conn->ib_completion); 600 601 mutex_lock(&iser_conn->state_mutex); 602 iser_conn->state = ISER_CONN_DOWN; 603 mutex_unlock(&iser_conn->state_mutex); 604 605 iser_conn_release(iser_conn); 606 } 607 608 /** 609 * iser_free_ib_conn_res - release IB related resources 610 * @iser_conn: iser connection struct 611 * @destroy: indicator if we need to try to release the 612 * iser device and memory regoins pool (only iscsi 613 * shutdown and DEVICE_REMOVAL will use this). 614 * 615 * This routine is called with the iser state mutex held 616 * so the cm_id removal is out of here. It is Safe to 617 * be invoked multiple times. 618 */ 619 static void iser_free_ib_conn_res(struct iser_conn *iser_conn, 620 bool destroy) 621 { 622 struct ib_conn *ib_conn = &iser_conn->ib_conn; 623 struct iser_device *device = ib_conn->device; 624 625 iser_info("freeing conn %p cma_id %p qp %p\n", 626 iser_conn, ib_conn->cma_id, ib_conn->qp); 627 628 if (ib_conn->qp != NULL) { 629 ib_conn->comp->active_qps--; 630 rdma_destroy_qp(ib_conn->cma_id); 631 ib_conn->qp = NULL; 632 } 633 634 if (destroy) { 635 if (iser_conn->rx_descs) 636 iser_free_rx_descriptors(iser_conn); 637 638 if (device != NULL) { 639 iser_device_try_release(device); 640 ib_conn->device = NULL; 641 } 642 } 643 } 644 645 /** 646 * Frees all conn objects and deallocs conn descriptor 647 */ 648 void iser_conn_release(struct iser_conn *iser_conn) 649 { 650 struct ib_conn *ib_conn = &iser_conn->ib_conn; 651 652 mutex_lock(&ig.connlist_mutex); 653 list_del(&iser_conn->conn_list); 654 mutex_unlock(&ig.connlist_mutex); 655 656 mutex_lock(&iser_conn->state_mutex); 657 /* In case we endup here without ep_disconnect being invoked. */ 658 if (iser_conn->state != ISER_CONN_DOWN) { 659 iser_warn("iser conn %p state %d, expected state down.\n", 660 iser_conn, iser_conn->state); 661 iscsi_destroy_endpoint(iser_conn->ep); 662 iser_conn->state = ISER_CONN_DOWN; 663 } 664 /* 665 * In case we never got to bind stage, we still need to 666 * release IB resources (which is safe to call more than once). 667 */ 668 iser_free_ib_conn_res(iser_conn, true); 669 mutex_unlock(&iser_conn->state_mutex); 670 671 if (ib_conn->cma_id != NULL) { 672 rdma_destroy_id(ib_conn->cma_id); 673 ib_conn->cma_id = NULL; 674 } 675 676 kfree(iser_conn); 677 } 678 679 /** 680 * triggers start of the disconnect procedures and wait for them to be done 681 * Called with state mutex held 682 */ 683 int iser_conn_terminate(struct iser_conn *iser_conn) 684 { 685 struct ib_conn *ib_conn = &iser_conn->ib_conn; 686 struct ib_send_wr *bad_wr; 687 int err = 0; 688 689 /* terminate the iser conn only if the conn state is UP */ 690 if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP, 691 ISER_CONN_TERMINATING)) 692 return 0; 693 694 iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state); 695 696 /* suspend queuing of new iscsi commands */ 697 if (iser_conn->iscsi_conn) 698 iscsi_suspend_queue(iser_conn->iscsi_conn); 699 700 /* 701 * In case we didn't already clean up the cma_id (peer initiated 702 * a disconnection), we need to Cause the CMA to change the QP 703 * state to ERROR. 704 */ 705 if (ib_conn->cma_id) { 706 err = rdma_disconnect(ib_conn->cma_id); 707 if (err) 708 iser_err("Failed to disconnect, conn: 0x%p err %d\n", 709 iser_conn, err); 710 711 /* post an indication that all flush errors were consumed */ 712 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr); 713 if (err) { 714 iser_err("conn %p failed to post beacon", ib_conn); 715 return 1; 716 } 717 718 wait_for_completion(&ib_conn->flush_comp); 719 } 720 721 return 1; 722 } 723 724 /** 725 * Called with state mutex held 726 **/ 727 static void iser_connect_error(struct rdma_cm_id *cma_id) 728 { 729 struct iser_conn *iser_conn; 730 731 iser_conn = (struct iser_conn *)cma_id->context; 732 iser_conn->state = ISER_CONN_TERMINATING; 733 } 734 735 /** 736 * Called with state mutex held 737 **/ 738 static void iser_addr_handler(struct rdma_cm_id *cma_id) 739 { 740 struct iser_device *device; 741 struct iser_conn *iser_conn; 742 struct ib_conn *ib_conn; 743 int ret; 744 745 iser_conn = (struct iser_conn *)cma_id->context; 746 if (iser_conn->state != ISER_CONN_PENDING) 747 /* bailout */ 748 return; 749 750 ib_conn = &iser_conn->ib_conn; 751 device = iser_device_find_by_ib_device(cma_id); 752 if (!device) { 753 iser_err("device lookup/creation failed\n"); 754 iser_connect_error(cma_id); 755 return; 756 } 757 758 ib_conn->device = device; 759 760 /* connection T10-PI support */ 761 if (iser_pi_enable) { 762 if (!(device->dev_attr.device_cap_flags & 763 IB_DEVICE_SIGNATURE_HANDOVER)) { 764 iser_warn("T10-PI requested but not supported on %s, " 765 "continue without T10-PI\n", 766 ib_conn->device->ib_device->name); 767 ib_conn->pi_support = false; 768 } else { 769 ib_conn->pi_support = true; 770 } 771 } 772 773 ret = rdma_resolve_route(cma_id, 1000); 774 if (ret) { 775 iser_err("resolve route failed: %d\n", ret); 776 iser_connect_error(cma_id); 777 return; 778 } 779 } 780 781 /** 782 * Called with state mutex held 783 **/ 784 static void iser_route_handler(struct rdma_cm_id *cma_id) 785 { 786 struct rdma_conn_param conn_param; 787 int ret; 788 struct iser_cm_hdr req_hdr; 789 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 790 struct ib_conn *ib_conn = &iser_conn->ib_conn; 791 struct iser_device *device = ib_conn->device; 792 793 if (iser_conn->state != ISER_CONN_PENDING) 794 /* bailout */ 795 return; 796 797 ret = iser_create_ib_conn_res(ib_conn); 798 if (ret) 799 goto failure; 800 801 memset(&conn_param, 0, sizeof conn_param); 802 conn_param.responder_resources = device->dev_attr.max_qp_rd_atom; 803 conn_param.initiator_depth = 1; 804 conn_param.retry_count = 7; 805 conn_param.rnr_retry_count = 6; 806 807 memset(&req_hdr, 0, sizeof(req_hdr)); 808 req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED | 809 ISER_SEND_W_INV_NOT_SUPPORTED); 810 conn_param.private_data = (void *)&req_hdr; 811 conn_param.private_data_len = sizeof(struct iser_cm_hdr); 812 813 ret = rdma_connect(cma_id, &conn_param); 814 if (ret) { 815 iser_err("failure connecting: %d\n", ret); 816 goto failure; 817 } 818 819 return; 820 failure: 821 iser_connect_error(cma_id); 822 } 823 824 static void iser_connected_handler(struct rdma_cm_id *cma_id) 825 { 826 struct iser_conn *iser_conn; 827 struct ib_qp_attr attr; 828 struct ib_qp_init_attr init_attr; 829 830 iser_conn = (struct iser_conn *)cma_id->context; 831 if (iser_conn->state != ISER_CONN_PENDING) 832 /* bailout */ 833 return; 834 835 (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr); 836 iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num); 837 838 iser_conn->state = ISER_CONN_UP; 839 complete(&iser_conn->up_completion); 840 } 841 842 static void iser_disconnected_handler(struct rdma_cm_id *cma_id) 843 { 844 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 845 846 if (iser_conn_terminate(iser_conn)) { 847 if (iser_conn->iscsi_conn) 848 iscsi_conn_failure(iser_conn->iscsi_conn, 849 ISCSI_ERR_CONN_FAILED); 850 else 851 iser_err("iscsi_iser connection isn't bound\n"); 852 } 853 } 854 855 static void iser_cleanup_handler(struct rdma_cm_id *cma_id, 856 bool destroy) 857 { 858 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 859 860 /* 861 * We are not guaranteed that we visited disconnected_handler 862 * by now, call it here to be safe that we handle CM drep 863 * and flush errors. 864 */ 865 iser_disconnected_handler(cma_id); 866 iser_free_ib_conn_res(iser_conn, destroy); 867 complete(&iser_conn->ib_completion); 868 }; 869 870 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) 871 { 872 struct iser_conn *iser_conn; 873 int ret = 0; 874 875 iser_conn = (struct iser_conn *)cma_id->context; 876 iser_info("event %d status %d conn %p id %p\n", 877 event->event, event->status, cma_id->context, cma_id); 878 879 mutex_lock(&iser_conn->state_mutex); 880 switch (event->event) { 881 case RDMA_CM_EVENT_ADDR_RESOLVED: 882 iser_addr_handler(cma_id); 883 break; 884 case RDMA_CM_EVENT_ROUTE_RESOLVED: 885 iser_route_handler(cma_id); 886 break; 887 case RDMA_CM_EVENT_ESTABLISHED: 888 iser_connected_handler(cma_id); 889 break; 890 case RDMA_CM_EVENT_ADDR_ERROR: 891 case RDMA_CM_EVENT_ROUTE_ERROR: 892 case RDMA_CM_EVENT_CONNECT_ERROR: 893 case RDMA_CM_EVENT_UNREACHABLE: 894 case RDMA_CM_EVENT_REJECTED: 895 iser_connect_error(cma_id); 896 break; 897 case RDMA_CM_EVENT_DISCONNECTED: 898 case RDMA_CM_EVENT_ADDR_CHANGE: 899 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 900 iser_cleanup_handler(cma_id, false); 901 break; 902 case RDMA_CM_EVENT_DEVICE_REMOVAL: 903 /* 904 * we *must* destroy the device as we cannot rely 905 * on iscsid to be around to initiate error handling. 906 * also if we are not in state DOWN implicitly destroy 907 * the cma_id. 908 */ 909 iser_cleanup_handler(cma_id, true); 910 if (iser_conn->state != ISER_CONN_DOWN) { 911 iser_conn->ib_conn.cma_id = NULL; 912 ret = 1; 913 } 914 break; 915 default: 916 iser_err("Unexpected RDMA CM event (%d)\n", event->event); 917 break; 918 } 919 mutex_unlock(&iser_conn->state_mutex); 920 921 return ret; 922 } 923 924 void iser_conn_init(struct iser_conn *iser_conn) 925 { 926 iser_conn->state = ISER_CONN_INIT; 927 iser_conn->ib_conn.post_recv_buf_count = 0; 928 init_completion(&iser_conn->ib_conn.flush_comp); 929 init_completion(&iser_conn->stop_completion); 930 init_completion(&iser_conn->ib_completion); 931 init_completion(&iser_conn->up_completion); 932 INIT_LIST_HEAD(&iser_conn->conn_list); 933 spin_lock_init(&iser_conn->ib_conn.lock); 934 mutex_init(&iser_conn->state_mutex); 935 } 936 937 /** 938 * starts the process of connecting to the target 939 * sleeps until the connection is established or rejected 940 */ 941 int iser_connect(struct iser_conn *iser_conn, 942 struct sockaddr *src_addr, 943 struct sockaddr *dst_addr, 944 int non_blocking) 945 { 946 struct ib_conn *ib_conn = &iser_conn->ib_conn; 947 int err = 0; 948 949 mutex_lock(&iser_conn->state_mutex); 950 951 sprintf(iser_conn->name, "%pISp", dst_addr); 952 953 iser_info("connecting to: %s\n", iser_conn->name); 954 955 /* the device is known only --after-- address resolution */ 956 ib_conn->device = NULL; 957 958 iser_conn->state = ISER_CONN_PENDING; 959 960 ib_conn->beacon.wr_id = ISER_BEACON_WRID; 961 ib_conn->beacon.opcode = IB_WR_SEND; 962 963 ib_conn->cma_id = rdma_create_id(iser_cma_handler, 964 (void *)iser_conn, 965 RDMA_PS_TCP, IB_QPT_RC); 966 if (IS_ERR(ib_conn->cma_id)) { 967 err = PTR_ERR(ib_conn->cma_id); 968 iser_err("rdma_create_id failed: %d\n", err); 969 goto id_failure; 970 } 971 972 err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000); 973 if (err) { 974 iser_err("rdma_resolve_addr failed: %d\n", err); 975 goto addr_failure; 976 } 977 978 if (!non_blocking) { 979 wait_for_completion_interruptible(&iser_conn->up_completion); 980 981 if (iser_conn->state != ISER_CONN_UP) { 982 err = -EIO; 983 goto connect_failure; 984 } 985 } 986 mutex_unlock(&iser_conn->state_mutex); 987 988 mutex_lock(&ig.connlist_mutex); 989 list_add(&iser_conn->conn_list, &ig.connlist); 990 mutex_unlock(&ig.connlist_mutex); 991 return 0; 992 993 id_failure: 994 ib_conn->cma_id = NULL; 995 addr_failure: 996 iser_conn->state = ISER_CONN_DOWN; 997 connect_failure: 998 mutex_unlock(&iser_conn->state_mutex); 999 iser_conn_release(iser_conn); 1000 return err; 1001 } 1002 1003 int iser_post_recvl(struct iser_conn *iser_conn) 1004 { 1005 struct ib_recv_wr rx_wr, *rx_wr_failed; 1006 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1007 struct ib_sge sge; 1008 int ib_ret; 1009 1010 sge.addr = iser_conn->login_resp_dma; 1011 sge.length = ISER_RX_LOGIN_SIZE; 1012 sge.lkey = ib_conn->device->mr->lkey; 1013 1014 rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf; 1015 rx_wr.sg_list = &sge; 1016 rx_wr.num_sge = 1; 1017 rx_wr.next = NULL; 1018 1019 ib_conn->post_recv_buf_count++; 1020 ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed); 1021 if (ib_ret) { 1022 iser_err("ib_post_recv failed ret=%d\n", ib_ret); 1023 ib_conn->post_recv_buf_count--; 1024 } 1025 return ib_ret; 1026 } 1027 1028 int iser_post_recvm(struct iser_conn *iser_conn, int count) 1029 { 1030 struct ib_recv_wr *rx_wr, *rx_wr_failed; 1031 int i, ib_ret; 1032 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1033 unsigned int my_rx_head = iser_conn->rx_desc_head; 1034 struct iser_rx_desc *rx_desc; 1035 1036 for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) { 1037 rx_desc = &iser_conn->rx_descs[my_rx_head]; 1038 rx_wr->wr_id = (uintptr_t)rx_desc; 1039 rx_wr->sg_list = &rx_desc->rx_sg; 1040 rx_wr->num_sge = 1; 1041 rx_wr->next = rx_wr + 1; 1042 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask; 1043 } 1044 1045 rx_wr--; 1046 rx_wr->next = NULL; /* mark end of work requests list */ 1047 1048 ib_conn->post_recv_buf_count += count; 1049 ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed); 1050 if (ib_ret) { 1051 iser_err("ib_post_recv failed ret=%d\n", ib_ret); 1052 ib_conn->post_recv_buf_count -= count; 1053 } else 1054 iser_conn->rx_desc_head = my_rx_head; 1055 return ib_ret; 1056 } 1057 1058 1059 /** 1060 * iser_start_send - Initiate a Send DTO operation 1061 * 1062 * returns 0 on success, -1 on failure 1063 */ 1064 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc, 1065 bool signal) 1066 { 1067 int ib_ret; 1068 struct ib_send_wr send_wr, *send_wr_failed; 1069 1070 ib_dma_sync_single_for_device(ib_conn->device->ib_device, 1071 tx_desc->dma_addr, ISER_HEADERS_LEN, 1072 DMA_TO_DEVICE); 1073 1074 send_wr.next = NULL; 1075 send_wr.wr_id = (uintptr_t)tx_desc; 1076 send_wr.sg_list = tx_desc->tx_sg; 1077 send_wr.num_sge = tx_desc->num_sge; 1078 send_wr.opcode = IB_WR_SEND; 1079 send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0; 1080 1081 ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed); 1082 if (ib_ret) 1083 iser_err("ib_post_send failed, ret:%d\n", ib_ret); 1084 1085 return ib_ret; 1086 } 1087 1088 /** 1089 * is_iser_tx_desc - Indicate if the completion wr_id 1090 * is a TX descriptor or not. 1091 * @iser_conn: iser connection 1092 * @wr_id: completion WR identifier 1093 * 1094 * Since we cannot rely on wc opcode in FLUSH errors 1095 * we must work around it by checking if the wr_id address 1096 * falls in the iser connection rx_descs buffer. If so 1097 * it is an RX descriptor, otherwize it is a TX. 1098 */ 1099 static inline bool 1100 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id) 1101 { 1102 void *start = iser_conn->rx_descs; 1103 int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs); 1104 1105 if (wr_id >= start && wr_id < start + len) 1106 return false; 1107 1108 return true; 1109 } 1110 1111 /** 1112 * iser_handle_comp_error() - Handle error completion 1113 * @ib_conn: connection RDMA resources 1114 * @wc: work completion 1115 * 1116 * Notes: We may handle a FLUSH error completion and in this case 1117 * we only cleanup in case TX type was DATAOUT. For non-FLUSH 1118 * error completion we should also notify iscsi layer that 1119 * connection is failed (in case we passed bind stage). 1120 */ 1121 static void 1122 iser_handle_comp_error(struct ib_conn *ib_conn, 1123 struct ib_wc *wc) 1124 { 1125 void *wr_id = (void *)(uintptr_t)wc->wr_id; 1126 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, 1127 ib_conn); 1128 1129 if (wc->status != IB_WC_WR_FLUSH_ERR) 1130 if (iser_conn->iscsi_conn) 1131 iscsi_conn_failure(iser_conn->iscsi_conn, 1132 ISCSI_ERR_CONN_FAILED); 1133 1134 if (wc->wr_id == ISER_FASTREG_LI_WRID) 1135 return; 1136 1137 if (is_iser_tx_desc(iser_conn, wr_id)) { 1138 struct iser_tx_desc *desc = wr_id; 1139 1140 if (desc->type == ISCSI_TX_DATAOUT) 1141 kmem_cache_free(ig.desc_cache, desc); 1142 } else { 1143 ib_conn->post_recv_buf_count--; 1144 } 1145 } 1146 1147 /** 1148 * iser_handle_wc - handle a single work completion 1149 * @wc: work completion 1150 * 1151 * Soft-IRQ context, work completion can be either 1152 * SEND or RECV, and can turn out successful or 1153 * with error (or flush error). 1154 */ 1155 static void iser_handle_wc(struct ib_wc *wc) 1156 { 1157 struct ib_conn *ib_conn; 1158 struct iser_tx_desc *tx_desc; 1159 struct iser_rx_desc *rx_desc; 1160 1161 ib_conn = wc->qp->qp_context; 1162 if (likely(wc->status == IB_WC_SUCCESS)) { 1163 if (wc->opcode == IB_WC_RECV) { 1164 rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id; 1165 iser_rcv_completion(rx_desc, wc->byte_len, 1166 ib_conn); 1167 } else 1168 if (wc->opcode == IB_WC_SEND) { 1169 tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id; 1170 iser_snd_completion(tx_desc, ib_conn); 1171 } else { 1172 iser_err("Unknown wc opcode %d\n", wc->opcode); 1173 } 1174 } else { 1175 if (wc->status != IB_WC_WR_FLUSH_ERR) 1176 iser_err("wr id %llx status %d vend_err %x\n", 1177 wc->wr_id, wc->status, wc->vendor_err); 1178 else 1179 iser_dbg("flush error: wr id %llx\n", wc->wr_id); 1180 1181 if (wc->wr_id == ISER_BEACON_WRID) 1182 /* all flush errors were consumed */ 1183 complete(&ib_conn->flush_comp); 1184 else 1185 iser_handle_comp_error(ib_conn, wc); 1186 } 1187 } 1188 1189 /** 1190 * iser_cq_tasklet_fn - iSER completion polling loop 1191 * @data: iSER completion context 1192 * 1193 * Soft-IRQ context, polling connection CQ until 1194 * either CQ was empty or we exausted polling budget 1195 */ 1196 static void iser_cq_tasklet_fn(unsigned long data) 1197 { 1198 struct iser_comp *comp = (struct iser_comp *)data; 1199 struct ib_cq *cq = comp->cq; 1200 struct ib_wc *const wcs = comp->wcs; 1201 int i, n, completed = 0; 1202 1203 while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) { 1204 for (i = 0; i < n; i++) 1205 iser_handle_wc(&wcs[i]); 1206 1207 completed += n; 1208 if (completed >= iser_cq_poll_limit) 1209 break; 1210 } 1211 1212 /* 1213 * It is assumed here that arming CQ only once its empty 1214 * would not cause interrupts to be missed. 1215 */ 1216 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1217 1218 iser_dbg("got %d completions\n", completed); 1219 } 1220 1221 static void iser_cq_callback(struct ib_cq *cq, void *cq_context) 1222 { 1223 struct iser_comp *comp = cq_context; 1224 1225 tasklet_schedule(&comp->tasklet); 1226 } 1227 1228 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task, 1229 enum iser_data_dir cmd_dir, sector_t *sector) 1230 { 1231 struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir]; 1232 struct fast_reg_descriptor *desc = reg->mem_h; 1233 unsigned long sector_size = iser_task->sc->device->sector_size; 1234 struct ib_mr_status mr_status; 1235 int ret; 1236 1237 if (desc && desc->reg_indicators & ISER_FASTREG_PROTECTED) { 1238 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED; 1239 ret = ib_check_mr_status(desc->pi_ctx->sig_mr, 1240 IB_MR_CHECK_SIG_STATUS, &mr_status); 1241 if (ret) { 1242 pr_err("ib_check_mr_status failed, ret %d\n", ret); 1243 goto err; 1244 } 1245 1246 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 1247 sector_t sector_off = mr_status.sig_err.sig_err_offset; 1248 1249 do_div(sector_off, sector_size + 8); 1250 *sector = scsi_get_lba(iser_task->sc) + sector_off; 1251 1252 pr_err("PI error found type %d at sector %llx " 1253 "expected %x vs actual %x\n", 1254 mr_status.sig_err.err_type, 1255 (unsigned long long)*sector, 1256 mr_status.sig_err.expected, 1257 mr_status.sig_err.actual); 1258 1259 switch (mr_status.sig_err.err_type) { 1260 case IB_SIG_BAD_GUARD: 1261 return 0x1; 1262 case IB_SIG_BAD_REFTAG: 1263 return 0x3; 1264 case IB_SIG_BAD_APPTAG: 1265 return 0x2; 1266 } 1267 } 1268 } 1269 1270 return 0; 1271 err: 1272 /* Not alot we can do here, return ambiguous guard error */ 1273 return 0x1; 1274 } 1275