1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 3 /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */ 4 /* Copyright (c) 2008-2019, IBM Corporation */ 5 6 #include <linux/errno.h> 7 #include <linux/types.h> 8 #include <linux/uaccess.h> 9 #include <linux/vmalloc.h> 10 #include <linux/xarray.h> 11 12 #include <rdma/iw_cm.h> 13 #include <rdma/ib_verbs.h> 14 #include <rdma/ib_user_verbs.h> 15 #include <rdma/uverbs_ioctl.h> 16 17 #include "siw.h" 18 #include "siw_verbs.h" 19 #include "siw_mem.h" 20 21 static int ib_qp_state_to_siw_qp_state[IB_QPS_ERR + 1] = { 22 [IB_QPS_RESET] = SIW_QP_STATE_IDLE, 23 [IB_QPS_INIT] = SIW_QP_STATE_IDLE, 24 [IB_QPS_RTR] = SIW_QP_STATE_RTR, 25 [IB_QPS_RTS] = SIW_QP_STATE_RTS, 26 [IB_QPS_SQD] = SIW_QP_STATE_CLOSING, 27 [IB_QPS_SQE] = SIW_QP_STATE_TERMINATE, 28 [IB_QPS_ERR] = SIW_QP_STATE_ERROR 29 }; 30 31 static char ib_qp_state_to_string[IB_QPS_ERR + 1][sizeof("RESET")] = { 32 [IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR", 33 [IB_QPS_RTS] = "RTS", [IB_QPS_SQD] = "SQD", [IB_QPS_SQE] = "SQE", 34 [IB_QPS_ERR] = "ERR" 35 }; 36 37 void siw_mmap_free(struct rdma_user_mmap_entry *rdma_entry) 38 { 39 struct siw_user_mmap_entry *entry = to_siw_mmap_entry(rdma_entry); 40 41 kfree(entry); 42 } 43 44 int siw_mmap(struct ib_ucontext *ctx, struct vm_area_struct *vma) 45 { 46 struct siw_ucontext *uctx = to_siw_ctx(ctx); 47 size_t size = vma->vm_end - vma->vm_start; 48 struct rdma_user_mmap_entry *rdma_entry; 49 struct siw_user_mmap_entry *entry; 50 int rv = -EINVAL; 51 52 /* 53 * Must be page aligned 54 */ 55 if (vma->vm_start & (PAGE_SIZE - 1)) { 56 pr_warn("siw: mmap not page aligned\n"); 57 return -EINVAL; 58 } 59 rdma_entry = rdma_user_mmap_entry_get(&uctx->base_ucontext, vma); 60 if (!rdma_entry) { 61 siw_dbg(&uctx->sdev->base_dev, "mmap lookup failed: %lu, %#zx\n", 62 vma->vm_pgoff, size); 63 return -EINVAL; 64 } 65 entry = to_siw_mmap_entry(rdma_entry); 66 67 rv = remap_vmalloc_range(vma, entry->address, 0); 68 if (rv) { 69 pr_warn("remap_vmalloc_range failed: %lu, %zu\n", vma->vm_pgoff, 70 size); 71 goto out; 72 } 73 out: 74 rdma_user_mmap_entry_put(rdma_entry); 75 76 return rv; 77 } 78 79 int siw_alloc_ucontext(struct ib_ucontext *base_ctx, struct ib_udata *udata) 80 { 81 struct siw_device *sdev = to_siw_dev(base_ctx->device); 82 struct siw_ucontext *ctx = to_siw_ctx(base_ctx); 83 struct siw_uresp_alloc_ctx uresp = {}; 84 int rv; 85 86 if (atomic_inc_return(&sdev->num_ctx) > SIW_MAX_CONTEXT) { 87 rv = -ENOMEM; 88 goto err_out; 89 } 90 ctx->sdev = sdev; 91 92 uresp.dev_id = sdev->vendor_part_id; 93 94 if (udata->outlen < sizeof(uresp)) { 95 rv = -EINVAL; 96 goto err_out; 97 } 98 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp)); 99 if (rv) 100 goto err_out; 101 102 siw_dbg(base_ctx->device, "success. now %d context(s)\n", 103 atomic_read(&sdev->num_ctx)); 104 105 return 0; 106 107 err_out: 108 atomic_dec(&sdev->num_ctx); 109 siw_dbg(base_ctx->device, "failure %d. now %d context(s)\n", rv, 110 atomic_read(&sdev->num_ctx)); 111 112 return rv; 113 } 114 115 void siw_dealloc_ucontext(struct ib_ucontext *base_ctx) 116 { 117 struct siw_ucontext *uctx = to_siw_ctx(base_ctx); 118 119 atomic_dec(&uctx->sdev->num_ctx); 120 } 121 122 int siw_query_device(struct ib_device *base_dev, struct ib_device_attr *attr, 123 struct ib_udata *udata) 124 { 125 struct siw_device *sdev = to_siw_dev(base_dev); 126 127 if (udata->inlen || udata->outlen) 128 return -EINVAL; 129 130 memset(attr, 0, sizeof(*attr)); 131 132 /* Revisit atomic caps if RFC 7306 gets supported */ 133 attr->atomic_cap = 0; 134 attr->device_cap_flags = 135 IB_DEVICE_MEM_MGT_EXTENSIONS | IB_DEVICE_ALLOW_USER_UNREG; 136 attr->max_cq = sdev->attrs.max_cq; 137 attr->max_cqe = sdev->attrs.max_cqe; 138 attr->max_fast_reg_page_list_len = SIW_MAX_SGE_PBL; 139 attr->max_mr = sdev->attrs.max_mr; 140 attr->max_mw = sdev->attrs.max_mw; 141 attr->max_mr_size = ~0ull; 142 attr->max_pd = sdev->attrs.max_pd; 143 attr->max_qp = sdev->attrs.max_qp; 144 attr->max_qp_init_rd_atom = sdev->attrs.max_ird; 145 attr->max_qp_rd_atom = sdev->attrs.max_ord; 146 attr->max_qp_wr = sdev->attrs.max_qp_wr; 147 attr->max_recv_sge = sdev->attrs.max_sge; 148 attr->max_res_rd_atom = sdev->attrs.max_qp * sdev->attrs.max_ird; 149 attr->max_send_sge = sdev->attrs.max_sge; 150 attr->max_sge_rd = sdev->attrs.max_sge_rd; 151 attr->max_srq = sdev->attrs.max_srq; 152 attr->max_srq_sge = sdev->attrs.max_srq_sge; 153 attr->max_srq_wr = sdev->attrs.max_srq_wr; 154 attr->page_size_cap = PAGE_SIZE; 155 attr->vendor_id = SIW_VENDOR_ID; 156 attr->vendor_part_id = sdev->vendor_part_id; 157 158 memcpy(&attr->sys_image_guid, sdev->netdev->dev_addr, 6); 159 160 return 0; 161 } 162 163 int siw_query_port(struct ib_device *base_dev, u8 port, 164 struct ib_port_attr *attr) 165 { 166 struct siw_device *sdev = to_siw_dev(base_dev); 167 int rv; 168 169 memset(attr, 0, sizeof(*attr)); 170 171 rv = ib_get_eth_speed(base_dev, port, &attr->active_speed, 172 &attr->active_width); 173 attr->gid_tbl_len = 1; 174 attr->max_msg_sz = -1; 175 attr->max_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu); 176 attr->active_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu); 177 attr->phys_state = sdev->state == IB_PORT_ACTIVE ? 178 IB_PORT_PHYS_STATE_LINK_UP : IB_PORT_PHYS_STATE_DISABLED; 179 attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_DEVICE_MGMT_SUP; 180 attr->state = sdev->state; 181 /* 182 * All zero 183 * 184 * attr->lid = 0; 185 * attr->bad_pkey_cntr = 0; 186 * attr->qkey_viol_cntr = 0; 187 * attr->sm_lid = 0; 188 * attr->lmc = 0; 189 * attr->max_vl_num = 0; 190 * attr->sm_sl = 0; 191 * attr->subnet_timeout = 0; 192 * attr->init_type_repy = 0; 193 */ 194 return rv; 195 } 196 197 int siw_get_port_immutable(struct ib_device *base_dev, u8 port, 198 struct ib_port_immutable *port_immutable) 199 { 200 struct ib_port_attr attr; 201 int rv = siw_query_port(base_dev, port, &attr); 202 203 if (rv) 204 return rv; 205 206 port_immutable->gid_tbl_len = attr.gid_tbl_len; 207 port_immutable->core_cap_flags = RDMA_CORE_PORT_IWARP; 208 209 return 0; 210 } 211 212 int siw_query_gid(struct ib_device *base_dev, u8 port, int idx, 213 union ib_gid *gid) 214 { 215 struct siw_device *sdev = to_siw_dev(base_dev); 216 217 /* subnet_prefix == interface_id == 0; */ 218 memset(gid, 0, sizeof(*gid)); 219 memcpy(&gid->raw[0], sdev->netdev->dev_addr, 6); 220 221 return 0; 222 } 223 224 int siw_alloc_pd(struct ib_pd *pd, struct ib_udata *udata) 225 { 226 struct siw_device *sdev = to_siw_dev(pd->device); 227 228 if (atomic_inc_return(&sdev->num_pd) > SIW_MAX_PD) { 229 atomic_dec(&sdev->num_pd); 230 return -ENOMEM; 231 } 232 siw_dbg_pd(pd, "now %d PD's(s)\n", atomic_read(&sdev->num_pd)); 233 234 return 0; 235 } 236 237 int siw_dealloc_pd(struct ib_pd *pd, struct ib_udata *udata) 238 { 239 struct siw_device *sdev = to_siw_dev(pd->device); 240 241 siw_dbg_pd(pd, "free PD\n"); 242 atomic_dec(&sdev->num_pd); 243 return 0; 244 } 245 246 void siw_qp_get_ref(struct ib_qp *base_qp) 247 { 248 siw_qp_get(to_siw_qp(base_qp)); 249 } 250 251 void siw_qp_put_ref(struct ib_qp *base_qp) 252 { 253 siw_qp_put(to_siw_qp(base_qp)); 254 } 255 256 static struct rdma_user_mmap_entry * 257 siw_mmap_entry_insert(struct siw_ucontext *uctx, 258 void *address, size_t length, 259 u64 *offset) 260 { 261 struct siw_user_mmap_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL); 262 int rv; 263 264 *offset = SIW_INVAL_UOBJ_KEY; 265 if (!entry) 266 return NULL; 267 268 entry->address = address; 269 270 rv = rdma_user_mmap_entry_insert(&uctx->base_ucontext, 271 &entry->rdma_entry, 272 length); 273 if (rv) { 274 kfree(entry); 275 return NULL; 276 } 277 278 *offset = rdma_user_mmap_get_offset(&entry->rdma_entry); 279 280 return &entry->rdma_entry; 281 } 282 283 /* 284 * siw_create_qp() 285 * 286 * Create QP of requested size on given device. 287 * 288 * @pd: Protection Domain 289 * @attrs: Initial QP attributes. 290 * @udata: used to provide QP ID, SQ and RQ size back to user. 291 */ 292 293 struct ib_qp *siw_create_qp(struct ib_pd *pd, 294 struct ib_qp_init_attr *attrs, 295 struct ib_udata *udata) 296 { 297 struct siw_qp *qp = NULL; 298 struct ib_device *base_dev = pd->device; 299 struct siw_device *sdev = to_siw_dev(base_dev); 300 struct siw_ucontext *uctx = 301 rdma_udata_to_drv_context(udata, struct siw_ucontext, 302 base_ucontext); 303 struct siw_cq *scq = NULL, *rcq = NULL; 304 unsigned long flags; 305 int num_sqe, num_rqe, rv = 0; 306 size_t length; 307 308 siw_dbg(base_dev, "create new QP\n"); 309 310 if (attrs->create_flags) 311 return ERR_PTR(-EOPNOTSUPP); 312 313 if (atomic_inc_return(&sdev->num_qp) > SIW_MAX_QP) { 314 siw_dbg(base_dev, "too many QP's\n"); 315 rv = -ENOMEM; 316 goto err_out; 317 } 318 if (attrs->qp_type != IB_QPT_RC) { 319 siw_dbg(base_dev, "only RC QP's supported\n"); 320 rv = -EOPNOTSUPP; 321 goto err_out; 322 } 323 if ((attrs->cap.max_send_wr > SIW_MAX_QP_WR) || 324 (attrs->cap.max_recv_wr > SIW_MAX_QP_WR) || 325 (attrs->cap.max_send_sge > SIW_MAX_SGE) || 326 (attrs->cap.max_recv_sge > SIW_MAX_SGE)) { 327 siw_dbg(base_dev, "QP size error\n"); 328 rv = -EINVAL; 329 goto err_out; 330 } 331 if (attrs->cap.max_inline_data > SIW_MAX_INLINE) { 332 siw_dbg(base_dev, "max inline send: %d > %d\n", 333 attrs->cap.max_inline_data, (int)SIW_MAX_INLINE); 334 rv = -EINVAL; 335 goto err_out; 336 } 337 /* 338 * NOTE: we allow for zero element SQ and RQ WQE's SGL's 339 * but not for a QP unable to hold any WQE (SQ + RQ) 340 */ 341 if (attrs->cap.max_send_wr + attrs->cap.max_recv_wr == 0) { 342 siw_dbg(base_dev, "QP must have send or receive queue\n"); 343 rv = -EINVAL; 344 goto err_out; 345 } 346 scq = to_siw_cq(attrs->send_cq); 347 rcq = to_siw_cq(attrs->recv_cq); 348 349 if (!scq || (!rcq && !attrs->srq)) { 350 siw_dbg(base_dev, "send CQ or receive CQ invalid\n"); 351 rv = -EINVAL; 352 goto err_out; 353 } 354 qp = kzalloc(sizeof(*qp), GFP_KERNEL); 355 if (!qp) { 356 rv = -ENOMEM; 357 goto err_out; 358 } 359 init_rwsem(&qp->state_lock); 360 spin_lock_init(&qp->sq_lock); 361 spin_lock_init(&qp->rq_lock); 362 spin_lock_init(&qp->orq_lock); 363 364 rv = siw_qp_add(sdev, qp); 365 if (rv) 366 goto err_out; 367 368 /* All queue indices are derived from modulo operations 369 * on a free running 'get' (consumer) and 'put' (producer) 370 * unsigned counter. Having queue sizes at power of two 371 * avoids handling counter wrap around. 372 */ 373 num_sqe = roundup_pow_of_two(attrs->cap.max_send_wr); 374 num_rqe = roundup_pow_of_two(attrs->cap.max_recv_wr); 375 376 if (udata) 377 qp->sendq = vmalloc_user(num_sqe * sizeof(struct siw_sqe)); 378 else 379 qp->sendq = vzalloc(num_sqe * sizeof(struct siw_sqe)); 380 381 if (qp->sendq == NULL) { 382 siw_dbg(base_dev, "SQ size %d alloc failed\n", num_sqe); 383 rv = -ENOMEM; 384 goto err_out_xa; 385 } 386 if (attrs->sq_sig_type != IB_SIGNAL_REQ_WR) { 387 if (attrs->sq_sig_type == IB_SIGNAL_ALL_WR) 388 qp->attrs.flags |= SIW_SIGNAL_ALL_WR; 389 else { 390 rv = -EINVAL; 391 goto err_out_xa; 392 } 393 } 394 qp->pd = pd; 395 qp->scq = scq; 396 qp->rcq = rcq; 397 398 if (attrs->srq) { 399 /* 400 * SRQ support. 401 * Verbs 6.3.7: ignore RQ size, if SRQ present 402 * Verbs 6.3.5: do not check PD of SRQ against PD of QP 403 */ 404 qp->srq = to_siw_srq(attrs->srq); 405 qp->attrs.rq_size = 0; 406 siw_dbg(base_dev, "QP [%u]: SRQ attached\n", 407 qp->base_qp.qp_num); 408 } else if (num_rqe) { 409 if (udata) 410 qp->recvq = 411 vmalloc_user(num_rqe * sizeof(struct siw_rqe)); 412 else 413 qp->recvq = vzalloc(num_rqe * sizeof(struct siw_rqe)); 414 415 if (qp->recvq == NULL) { 416 siw_dbg(base_dev, "RQ size %d alloc failed\n", num_rqe); 417 rv = -ENOMEM; 418 goto err_out_xa; 419 } 420 qp->attrs.rq_size = num_rqe; 421 } 422 qp->attrs.sq_size = num_sqe; 423 qp->attrs.sq_max_sges = attrs->cap.max_send_sge; 424 qp->attrs.rq_max_sges = attrs->cap.max_recv_sge; 425 426 /* Make those two tunables fixed for now. */ 427 qp->tx_ctx.gso_seg_limit = 1; 428 qp->tx_ctx.zcopy_tx = zcopy_tx; 429 430 qp->attrs.state = SIW_QP_STATE_IDLE; 431 432 if (udata) { 433 struct siw_uresp_create_qp uresp = {}; 434 435 uresp.num_sqe = num_sqe; 436 uresp.num_rqe = num_rqe; 437 uresp.qp_id = qp_id(qp); 438 439 if (qp->sendq) { 440 length = num_sqe * sizeof(struct siw_sqe); 441 qp->sq_entry = 442 siw_mmap_entry_insert(uctx, qp->sendq, 443 length, &uresp.sq_key); 444 if (!qp->sq_entry) { 445 rv = -ENOMEM; 446 goto err_out_xa; 447 } 448 } 449 450 if (qp->recvq) { 451 length = num_rqe * sizeof(struct siw_rqe); 452 qp->rq_entry = 453 siw_mmap_entry_insert(uctx, qp->recvq, 454 length, &uresp.rq_key); 455 if (!qp->rq_entry) { 456 uresp.sq_key = SIW_INVAL_UOBJ_KEY; 457 rv = -ENOMEM; 458 goto err_out_xa; 459 } 460 } 461 462 if (udata->outlen < sizeof(uresp)) { 463 rv = -EINVAL; 464 goto err_out_xa; 465 } 466 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp)); 467 if (rv) 468 goto err_out_xa; 469 } 470 qp->tx_cpu = siw_get_tx_cpu(sdev); 471 if (qp->tx_cpu < 0) { 472 rv = -EINVAL; 473 goto err_out_xa; 474 } 475 INIT_LIST_HEAD(&qp->devq); 476 spin_lock_irqsave(&sdev->lock, flags); 477 list_add_tail(&qp->devq, &sdev->qp_list); 478 spin_unlock_irqrestore(&sdev->lock, flags); 479 480 return &qp->base_qp; 481 482 err_out_xa: 483 xa_erase(&sdev->qp_xa, qp_id(qp)); 484 err_out: 485 if (qp) { 486 if (uctx) { 487 rdma_user_mmap_entry_remove(qp->sq_entry); 488 rdma_user_mmap_entry_remove(qp->rq_entry); 489 } 490 vfree(qp->sendq); 491 vfree(qp->recvq); 492 kfree(qp); 493 } 494 atomic_dec(&sdev->num_qp); 495 496 return ERR_PTR(rv); 497 } 498 499 /* 500 * Minimum siw_query_qp() verb interface. 501 * 502 * @qp_attr_mask is not used but all available information is provided 503 */ 504 int siw_query_qp(struct ib_qp *base_qp, struct ib_qp_attr *qp_attr, 505 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr) 506 { 507 struct siw_qp *qp; 508 struct siw_device *sdev; 509 510 if (base_qp && qp_attr && qp_init_attr) { 511 qp = to_siw_qp(base_qp); 512 sdev = to_siw_dev(base_qp->device); 513 } else { 514 return -EINVAL; 515 } 516 qp_attr->cap.max_inline_data = SIW_MAX_INLINE; 517 qp_attr->cap.max_send_wr = qp->attrs.sq_size; 518 qp_attr->cap.max_send_sge = qp->attrs.sq_max_sges; 519 qp_attr->cap.max_recv_wr = qp->attrs.rq_size; 520 qp_attr->cap.max_recv_sge = qp->attrs.rq_max_sges; 521 qp_attr->path_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu); 522 qp_attr->max_rd_atomic = qp->attrs.irq_size; 523 qp_attr->max_dest_rd_atomic = qp->attrs.orq_size; 524 525 qp_attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | 526 IB_ACCESS_REMOTE_WRITE | 527 IB_ACCESS_REMOTE_READ; 528 529 qp_init_attr->qp_type = base_qp->qp_type; 530 qp_init_attr->send_cq = base_qp->send_cq; 531 qp_init_attr->recv_cq = base_qp->recv_cq; 532 qp_init_attr->srq = base_qp->srq; 533 534 qp_init_attr->cap = qp_attr->cap; 535 536 return 0; 537 } 538 539 int siw_verbs_modify_qp(struct ib_qp *base_qp, struct ib_qp_attr *attr, 540 int attr_mask, struct ib_udata *udata) 541 { 542 struct siw_qp_attrs new_attrs; 543 enum siw_qp_attr_mask siw_attr_mask = 0; 544 struct siw_qp *qp = to_siw_qp(base_qp); 545 int rv = 0; 546 547 if (!attr_mask) 548 return 0; 549 550 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS) 551 return -EOPNOTSUPP; 552 553 memset(&new_attrs, 0, sizeof(new_attrs)); 554 555 if (attr_mask & IB_QP_ACCESS_FLAGS) { 556 siw_attr_mask = SIW_QP_ATTR_ACCESS_FLAGS; 557 558 if (attr->qp_access_flags & IB_ACCESS_REMOTE_READ) 559 new_attrs.flags |= SIW_RDMA_READ_ENABLED; 560 if (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE) 561 new_attrs.flags |= SIW_RDMA_WRITE_ENABLED; 562 if (attr->qp_access_flags & IB_ACCESS_MW_BIND) 563 new_attrs.flags |= SIW_RDMA_BIND_ENABLED; 564 } 565 if (attr_mask & IB_QP_STATE) { 566 siw_dbg_qp(qp, "desired IB QP state: %s\n", 567 ib_qp_state_to_string[attr->qp_state]); 568 569 new_attrs.state = ib_qp_state_to_siw_qp_state[attr->qp_state]; 570 571 if (new_attrs.state > SIW_QP_STATE_RTS) 572 qp->tx_ctx.tx_suspend = 1; 573 574 siw_attr_mask |= SIW_QP_ATTR_STATE; 575 } 576 if (!siw_attr_mask) 577 goto out; 578 579 down_write(&qp->state_lock); 580 581 rv = siw_qp_modify(qp, &new_attrs, siw_attr_mask); 582 583 up_write(&qp->state_lock); 584 out: 585 return rv; 586 } 587 588 int siw_destroy_qp(struct ib_qp *base_qp, struct ib_udata *udata) 589 { 590 struct siw_qp *qp = to_siw_qp(base_qp); 591 struct siw_ucontext *uctx = 592 rdma_udata_to_drv_context(udata, struct siw_ucontext, 593 base_ucontext); 594 struct siw_qp_attrs qp_attrs; 595 596 siw_dbg_qp(qp, "state %d\n", qp->attrs.state); 597 598 /* 599 * Mark QP as in process of destruction to prevent from 600 * any async callbacks to RDMA core 601 */ 602 qp->attrs.flags |= SIW_QP_IN_DESTROY; 603 qp->rx_stream.rx_suspend = 1; 604 605 if (uctx) { 606 rdma_user_mmap_entry_remove(qp->sq_entry); 607 rdma_user_mmap_entry_remove(qp->rq_entry); 608 } 609 610 down_write(&qp->state_lock); 611 612 qp_attrs.state = SIW_QP_STATE_ERROR; 613 siw_qp_modify(qp, &qp_attrs, SIW_QP_ATTR_STATE); 614 615 if (qp->cep) { 616 siw_cep_put(qp->cep); 617 qp->cep = NULL; 618 } 619 up_write(&qp->state_lock); 620 621 kfree(qp->tx_ctx.mpa_crc_hd); 622 kfree(qp->rx_stream.mpa_crc_hd); 623 624 qp->scq = qp->rcq = NULL; 625 626 siw_qp_put(qp); 627 628 return 0; 629 } 630 631 /* 632 * siw_copy_inline_sgl() 633 * 634 * Prepare sgl of inlined data for sending. For userland callers 635 * function checks if given buffer addresses and len's are within 636 * process context bounds. 637 * Data from all provided sge's are copied together into the wqe, 638 * referenced by a single sge. 639 */ 640 static int siw_copy_inline_sgl(const struct ib_send_wr *core_wr, 641 struct siw_sqe *sqe) 642 { 643 struct ib_sge *core_sge = core_wr->sg_list; 644 void *kbuf = &sqe->sge[1]; 645 int num_sge = core_wr->num_sge, bytes = 0; 646 647 sqe->sge[0].laddr = (uintptr_t)kbuf; 648 sqe->sge[0].lkey = 0; 649 650 while (num_sge--) { 651 if (!core_sge->length) { 652 core_sge++; 653 continue; 654 } 655 bytes += core_sge->length; 656 if (bytes > SIW_MAX_INLINE) { 657 bytes = -EINVAL; 658 break; 659 } 660 memcpy(kbuf, (void *)(uintptr_t)core_sge->addr, 661 core_sge->length); 662 663 kbuf += core_sge->length; 664 core_sge++; 665 } 666 sqe->sge[0].length = bytes > 0 ? bytes : 0; 667 sqe->num_sge = bytes > 0 ? 1 : 0; 668 669 return bytes; 670 } 671 672 /* Complete SQ WR's without processing */ 673 static int siw_sq_flush_wr(struct siw_qp *qp, const struct ib_send_wr *wr, 674 const struct ib_send_wr **bad_wr) 675 { 676 struct siw_sqe sqe = {}; 677 int rv = 0; 678 679 while (wr) { 680 sqe.id = wr->wr_id; 681 sqe.opcode = wr->opcode; 682 rv = siw_sqe_complete(qp, &sqe, 0, SIW_WC_WR_FLUSH_ERR); 683 if (rv) { 684 if (bad_wr) 685 *bad_wr = wr; 686 break; 687 } 688 wr = wr->next; 689 } 690 return rv; 691 } 692 693 /* Complete RQ WR's without processing */ 694 static int siw_rq_flush_wr(struct siw_qp *qp, const struct ib_recv_wr *wr, 695 const struct ib_recv_wr **bad_wr) 696 { 697 struct siw_rqe rqe = {}; 698 int rv = 0; 699 700 while (wr) { 701 rqe.id = wr->wr_id; 702 rv = siw_rqe_complete(qp, &rqe, 0, 0, SIW_WC_WR_FLUSH_ERR); 703 if (rv) { 704 if (bad_wr) 705 *bad_wr = wr; 706 break; 707 } 708 wr = wr->next; 709 } 710 return rv; 711 } 712 713 /* 714 * siw_post_send() 715 * 716 * Post a list of S-WR's to a SQ. 717 * 718 * @base_qp: Base QP contained in siw QP 719 * @wr: Null terminated list of user WR's 720 * @bad_wr: Points to failing WR in case of synchronous failure. 721 */ 722 int siw_post_send(struct ib_qp *base_qp, const struct ib_send_wr *wr, 723 const struct ib_send_wr **bad_wr) 724 { 725 struct siw_qp *qp = to_siw_qp(base_qp); 726 struct siw_wqe *wqe = tx_wqe(qp); 727 728 unsigned long flags; 729 int rv = 0; 730 731 if (wr && !rdma_is_kernel_res(&qp->base_qp.res)) { 732 siw_dbg_qp(qp, "wr must be empty for user mapped sq\n"); 733 *bad_wr = wr; 734 return -EINVAL; 735 } 736 737 /* 738 * Try to acquire QP state lock. Must be non-blocking 739 * to accommodate kernel clients needs. 740 */ 741 if (!down_read_trylock(&qp->state_lock)) { 742 if (qp->attrs.state == SIW_QP_STATE_ERROR) { 743 /* 744 * ERROR state is final, so we can be sure 745 * this state will not change as long as the QP 746 * exists. 747 * 748 * This handles an ib_drain_sq() call with 749 * a concurrent request to set the QP state 750 * to ERROR. 751 */ 752 rv = siw_sq_flush_wr(qp, wr, bad_wr); 753 } else { 754 siw_dbg_qp(qp, "QP locked, state %d\n", 755 qp->attrs.state); 756 *bad_wr = wr; 757 rv = -ENOTCONN; 758 } 759 return rv; 760 } 761 if (unlikely(qp->attrs.state != SIW_QP_STATE_RTS)) { 762 if (qp->attrs.state == SIW_QP_STATE_ERROR) { 763 /* 764 * Immediately flush this WR to CQ, if QP 765 * is in ERROR state. SQ is guaranteed to 766 * be empty, so WR complets in-order. 767 * 768 * Typically triggered by ib_drain_sq(). 769 */ 770 rv = siw_sq_flush_wr(qp, wr, bad_wr); 771 } else { 772 siw_dbg_qp(qp, "QP out of state %d\n", 773 qp->attrs.state); 774 *bad_wr = wr; 775 rv = -ENOTCONN; 776 } 777 up_read(&qp->state_lock); 778 return rv; 779 } 780 spin_lock_irqsave(&qp->sq_lock, flags); 781 782 while (wr) { 783 u32 idx = qp->sq_put % qp->attrs.sq_size; 784 struct siw_sqe *sqe = &qp->sendq[idx]; 785 786 if (sqe->flags) { 787 siw_dbg_qp(qp, "sq full\n"); 788 rv = -ENOMEM; 789 break; 790 } 791 if (wr->num_sge > qp->attrs.sq_max_sges) { 792 siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge); 793 rv = -EINVAL; 794 break; 795 } 796 sqe->id = wr->wr_id; 797 798 if ((wr->send_flags & IB_SEND_SIGNALED) || 799 (qp->attrs.flags & SIW_SIGNAL_ALL_WR)) 800 sqe->flags |= SIW_WQE_SIGNALLED; 801 802 if (wr->send_flags & IB_SEND_FENCE) 803 sqe->flags |= SIW_WQE_READ_FENCE; 804 805 switch (wr->opcode) { 806 case IB_WR_SEND: 807 case IB_WR_SEND_WITH_INV: 808 if (wr->send_flags & IB_SEND_SOLICITED) 809 sqe->flags |= SIW_WQE_SOLICITED; 810 811 if (!(wr->send_flags & IB_SEND_INLINE)) { 812 siw_copy_sgl(wr->sg_list, sqe->sge, 813 wr->num_sge); 814 sqe->num_sge = wr->num_sge; 815 } else { 816 rv = siw_copy_inline_sgl(wr, sqe); 817 if (rv <= 0) { 818 rv = -EINVAL; 819 break; 820 } 821 sqe->flags |= SIW_WQE_INLINE; 822 sqe->num_sge = 1; 823 } 824 if (wr->opcode == IB_WR_SEND) 825 sqe->opcode = SIW_OP_SEND; 826 else { 827 sqe->opcode = SIW_OP_SEND_REMOTE_INV; 828 sqe->rkey = wr->ex.invalidate_rkey; 829 } 830 break; 831 832 case IB_WR_RDMA_READ_WITH_INV: 833 case IB_WR_RDMA_READ: 834 /* 835 * iWarp restricts RREAD sink to SGL containing 836 * 1 SGE only. we could relax to SGL with multiple 837 * elements referring the SAME ltag or even sending 838 * a private per-rreq tag referring to a checked 839 * local sgl with MULTIPLE ltag's. 840 */ 841 if (unlikely(wr->num_sge != 1)) { 842 rv = -EINVAL; 843 break; 844 } 845 siw_copy_sgl(wr->sg_list, &sqe->sge[0], 1); 846 /* 847 * NOTE: zero length RREAD is allowed! 848 */ 849 sqe->raddr = rdma_wr(wr)->remote_addr; 850 sqe->rkey = rdma_wr(wr)->rkey; 851 sqe->num_sge = 1; 852 853 if (wr->opcode == IB_WR_RDMA_READ) 854 sqe->opcode = SIW_OP_READ; 855 else 856 sqe->opcode = SIW_OP_READ_LOCAL_INV; 857 break; 858 859 case IB_WR_RDMA_WRITE: 860 if (!(wr->send_flags & IB_SEND_INLINE)) { 861 siw_copy_sgl(wr->sg_list, &sqe->sge[0], 862 wr->num_sge); 863 sqe->num_sge = wr->num_sge; 864 } else { 865 rv = siw_copy_inline_sgl(wr, sqe); 866 if (unlikely(rv < 0)) { 867 rv = -EINVAL; 868 break; 869 } 870 sqe->flags |= SIW_WQE_INLINE; 871 sqe->num_sge = 1; 872 } 873 sqe->raddr = rdma_wr(wr)->remote_addr; 874 sqe->rkey = rdma_wr(wr)->rkey; 875 sqe->opcode = SIW_OP_WRITE; 876 break; 877 878 case IB_WR_REG_MR: 879 sqe->base_mr = (uintptr_t)reg_wr(wr)->mr; 880 sqe->rkey = reg_wr(wr)->key; 881 sqe->access = reg_wr(wr)->access & IWARP_ACCESS_MASK; 882 sqe->opcode = SIW_OP_REG_MR; 883 break; 884 885 case IB_WR_LOCAL_INV: 886 sqe->rkey = wr->ex.invalidate_rkey; 887 sqe->opcode = SIW_OP_INVAL_STAG; 888 break; 889 890 default: 891 siw_dbg_qp(qp, "ib wr type %d unsupported\n", 892 wr->opcode); 893 rv = -EINVAL; 894 break; 895 } 896 siw_dbg_qp(qp, "opcode %d, flags 0x%x, wr_id 0x%pK\n", 897 sqe->opcode, sqe->flags, 898 (void *)(uintptr_t)sqe->id); 899 900 if (unlikely(rv < 0)) 901 break; 902 903 /* make SQE only valid after completely written */ 904 smp_wmb(); 905 sqe->flags |= SIW_WQE_VALID; 906 907 qp->sq_put++; 908 wr = wr->next; 909 } 910 911 /* 912 * Send directly if SQ processing is not in progress. 913 * Eventual immediate errors (rv < 0) do not affect the involved 914 * RI resources (Verbs, 8.3.1) and thus do not prevent from SQ 915 * processing, if new work is already pending. But rv must be passed 916 * to caller. 917 */ 918 if (wqe->wr_status != SIW_WR_IDLE) { 919 spin_unlock_irqrestore(&qp->sq_lock, flags); 920 goto skip_direct_sending; 921 } 922 rv = siw_activate_tx(qp); 923 spin_unlock_irqrestore(&qp->sq_lock, flags); 924 925 if (rv <= 0) 926 goto skip_direct_sending; 927 928 if (rdma_is_kernel_res(&qp->base_qp.res)) { 929 rv = siw_sq_start(qp); 930 } else { 931 qp->tx_ctx.in_syscall = 1; 932 933 if (siw_qp_sq_process(qp) != 0 && !(qp->tx_ctx.tx_suspend)) 934 siw_qp_cm_drop(qp, 0); 935 936 qp->tx_ctx.in_syscall = 0; 937 } 938 skip_direct_sending: 939 940 up_read(&qp->state_lock); 941 942 if (rv >= 0) 943 return 0; 944 /* 945 * Immediate error 946 */ 947 siw_dbg_qp(qp, "error %d\n", rv); 948 949 *bad_wr = wr; 950 return rv; 951 } 952 953 /* 954 * siw_post_receive() 955 * 956 * Post a list of R-WR's to a RQ. 957 * 958 * @base_qp: Base QP contained in siw QP 959 * @wr: Null terminated list of user WR's 960 * @bad_wr: Points to failing WR in case of synchronous failure. 961 */ 962 int siw_post_receive(struct ib_qp *base_qp, const struct ib_recv_wr *wr, 963 const struct ib_recv_wr **bad_wr) 964 { 965 struct siw_qp *qp = to_siw_qp(base_qp); 966 unsigned long flags; 967 int rv = 0; 968 969 if (qp->srq) { 970 *bad_wr = wr; 971 return -EOPNOTSUPP; /* what else from errno.h? */ 972 } 973 if (!rdma_is_kernel_res(&qp->base_qp.res)) { 974 siw_dbg_qp(qp, "no kernel post_recv for user mapped rq\n"); 975 *bad_wr = wr; 976 return -EINVAL; 977 } 978 979 /* 980 * Try to acquire QP state lock. Must be non-blocking 981 * to accommodate kernel clients needs. 982 */ 983 if (!down_read_trylock(&qp->state_lock)) { 984 if (qp->attrs.state == SIW_QP_STATE_ERROR) { 985 /* 986 * ERROR state is final, so we can be sure 987 * this state will not change as long as the QP 988 * exists. 989 * 990 * This handles an ib_drain_rq() call with 991 * a concurrent request to set the QP state 992 * to ERROR. 993 */ 994 rv = siw_rq_flush_wr(qp, wr, bad_wr); 995 } else { 996 siw_dbg_qp(qp, "QP locked, state %d\n", 997 qp->attrs.state); 998 *bad_wr = wr; 999 rv = -ENOTCONN; 1000 } 1001 return rv; 1002 } 1003 if (qp->attrs.state > SIW_QP_STATE_RTS) { 1004 if (qp->attrs.state == SIW_QP_STATE_ERROR) { 1005 /* 1006 * Immediately flush this WR to CQ, if QP 1007 * is in ERROR state. RQ is guaranteed to 1008 * be empty, so WR complets in-order. 1009 * 1010 * Typically triggered by ib_drain_rq(). 1011 */ 1012 rv = siw_rq_flush_wr(qp, wr, bad_wr); 1013 } else { 1014 siw_dbg_qp(qp, "QP out of state %d\n", 1015 qp->attrs.state); 1016 *bad_wr = wr; 1017 rv = -ENOTCONN; 1018 } 1019 up_read(&qp->state_lock); 1020 return rv; 1021 } 1022 /* 1023 * Serialize potentially multiple producers. 1024 * Not needed for single threaded consumer side. 1025 */ 1026 spin_lock_irqsave(&qp->rq_lock, flags); 1027 1028 while (wr) { 1029 u32 idx = qp->rq_put % qp->attrs.rq_size; 1030 struct siw_rqe *rqe = &qp->recvq[idx]; 1031 1032 if (rqe->flags) { 1033 siw_dbg_qp(qp, "RQ full\n"); 1034 rv = -ENOMEM; 1035 break; 1036 } 1037 if (wr->num_sge > qp->attrs.rq_max_sges) { 1038 siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge); 1039 rv = -EINVAL; 1040 break; 1041 } 1042 rqe->id = wr->wr_id; 1043 rqe->num_sge = wr->num_sge; 1044 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge); 1045 1046 /* make sure RQE is completely written before valid */ 1047 smp_wmb(); 1048 1049 rqe->flags = SIW_WQE_VALID; 1050 1051 qp->rq_put++; 1052 wr = wr->next; 1053 } 1054 spin_unlock_irqrestore(&qp->rq_lock, flags); 1055 1056 up_read(&qp->state_lock); 1057 1058 if (rv < 0) { 1059 siw_dbg_qp(qp, "error %d\n", rv); 1060 *bad_wr = wr; 1061 } 1062 return rv > 0 ? 0 : rv; 1063 } 1064 1065 int siw_destroy_cq(struct ib_cq *base_cq, struct ib_udata *udata) 1066 { 1067 struct siw_cq *cq = to_siw_cq(base_cq); 1068 struct siw_device *sdev = to_siw_dev(base_cq->device); 1069 struct siw_ucontext *ctx = 1070 rdma_udata_to_drv_context(udata, struct siw_ucontext, 1071 base_ucontext); 1072 1073 siw_dbg_cq(cq, "free CQ resources\n"); 1074 1075 siw_cq_flush(cq); 1076 1077 if (ctx) 1078 rdma_user_mmap_entry_remove(cq->cq_entry); 1079 1080 atomic_dec(&sdev->num_cq); 1081 1082 vfree(cq->queue); 1083 return 0; 1084 } 1085 1086 /* 1087 * siw_create_cq() 1088 * 1089 * Populate CQ of requested size 1090 * 1091 * @base_cq: CQ as allocated by RDMA midlayer 1092 * @attr: Initial CQ attributes 1093 * @udata: relates to user context 1094 */ 1095 1096 int siw_create_cq(struct ib_cq *base_cq, const struct ib_cq_init_attr *attr, 1097 struct ib_udata *udata) 1098 { 1099 struct siw_device *sdev = to_siw_dev(base_cq->device); 1100 struct siw_cq *cq = to_siw_cq(base_cq); 1101 int rv, size = attr->cqe; 1102 1103 if (attr->flags) 1104 return -EOPNOTSUPP; 1105 1106 if (atomic_inc_return(&sdev->num_cq) > SIW_MAX_CQ) { 1107 siw_dbg(base_cq->device, "too many CQ's\n"); 1108 rv = -ENOMEM; 1109 goto err_out; 1110 } 1111 if (size < 1 || size > sdev->attrs.max_cqe) { 1112 siw_dbg(base_cq->device, "CQ size error: %d\n", size); 1113 rv = -EINVAL; 1114 goto err_out; 1115 } 1116 size = roundup_pow_of_two(size); 1117 cq->base_cq.cqe = size; 1118 cq->num_cqe = size; 1119 1120 if (udata) 1121 cq->queue = vmalloc_user(size * sizeof(struct siw_cqe) + 1122 sizeof(struct siw_cq_ctrl)); 1123 else 1124 cq->queue = vzalloc(size * sizeof(struct siw_cqe) + 1125 sizeof(struct siw_cq_ctrl)); 1126 1127 if (cq->queue == NULL) { 1128 rv = -ENOMEM; 1129 goto err_out; 1130 } 1131 get_random_bytes(&cq->id, 4); 1132 siw_dbg(base_cq->device, "new CQ [%u]\n", cq->id); 1133 1134 spin_lock_init(&cq->lock); 1135 1136 cq->notify = (struct siw_cq_ctrl *)&cq->queue[size]; 1137 1138 if (udata) { 1139 struct siw_uresp_create_cq uresp = {}; 1140 struct siw_ucontext *ctx = 1141 rdma_udata_to_drv_context(udata, struct siw_ucontext, 1142 base_ucontext); 1143 size_t length = size * sizeof(struct siw_cqe) + 1144 sizeof(struct siw_cq_ctrl); 1145 1146 cq->cq_entry = 1147 siw_mmap_entry_insert(ctx, cq->queue, 1148 length, &uresp.cq_key); 1149 if (!cq->cq_entry) { 1150 rv = -ENOMEM; 1151 goto err_out; 1152 } 1153 1154 uresp.cq_id = cq->id; 1155 uresp.num_cqe = size; 1156 1157 if (udata->outlen < sizeof(uresp)) { 1158 rv = -EINVAL; 1159 goto err_out; 1160 } 1161 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp)); 1162 if (rv) 1163 goto err_out; 1164 } 1165 return 0; 1166 1167 err_out: 1168 siw_dbg(base_cq->device, "CQ creation failed: %d", rv); 1169 1170 if (cq && cq->queue) { 1171 struct siw_ucontext *ctx = 1172 rdma_udata_to_drv_context(udata, struct siw_ucontext, 1173 base_ucontext); 1174 if (ctx) 1175 rdma_user_mmap_entry_remove(cq->cq_entry); 1176 vfree(cq->queue); 1177 } 1178 atomic_dec(&sdev->num_cq); 1179 1180 return rv; 1181 } 1182 1183 /* 1184 * siw_poll_cq() 1185 * 1186 * Reap CQ entries if available and copy work completion status into 1187 * array of WC's provided by caller. Returns number of reaped CQE's. 1188 * 1189 * @base_cq: Base CQ contained in siw CQ. 1190 * @num_cqe: Maximum number of CQE's to reap. 1191 * @wc: Array of work completions to be filled by siw. 1192 */ 1193 int siw_poll_cq(struct ib_cq *base_cq, int num_cqe, struct ib_wc *wc) 1194 { 1195 struct siw_cq *cq = to_siw_cq(base_cq); 1196 int i; 1197 1198 for (i = 0; i < num_cqe; i++) { 1199 if (!siw_reap_cqe(cq, wc)) 1200 break; 1201 wc++; 1202 } 1203 return i; 1204 } 1205 1206 /* 1207 * siw_req_notify_cq() 1208 * 1209 * Request notification for new CQE's added to that CQ. 1210 * Defined flags: 1211 * o SIW_CQ_NOTIFY_SOLICITED lets siw trigger a notification 1212 * event if a WQE with notification flag set enters the CQ 1213 * o SIW_CQ_NOTIFY_NEXT_COMP lets siw trigger a notification 1214 * event if a WQE enters the CQ. 1215 * o IB_CQ_REPORT_MISSED_EVENTS: return value will provide the 1216 * number of not reaped CQE's regardless of its notification 1217 * type and current or new CQ notification settings. 1218 * 1219 * @base_cq: Base CQ contained in siw CQ. 1220 * @flags: Requested notification flags. 1221 */ 1222 int siw_req_notify_cq(struct ib_cq *base_cq, enum ib_cq_notify_flags flags) 1223 { 1224 struct siw_cq *cq = to_siw_cq(base_cq); 1225 1226 siw_dbg_cq(cq, "flags: 0x%02x\n", flags); 1227 1228 if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED) 1229 /* 1230 * Enable CQ event for next solicited completion. 1231 * and make it visible to all associated producers. 1232 */ 1233 smp_store_mb(cq->notify->flags, SIW_NOTIFY_SOLICITED); 1234 else 1235 /* 1236 * Enable CQ event for any signalled completion. 1237 * and make it visible to all associated producers. 1238 */ 1239 smp_store_mb(cq->notify->flags, SIW_NOTIFY_ALL); 1240 1241 if (flags & IB_CQ_REPORT_MISSED_EVENTS) 1242 return cq->cq_put - cq->cq_get; 1243 1244 return 0; 1245 } 1246 1247 /* 1248 * siw_dereg_mr() 1249 * 1250 * Release Memory Region. 1251 * 1252 * @base_mr: Base MR contained in siw MR. 1253 * @udata: points to user context, unused. 1254 */ 1255 int siw_dereg_mr(struct ib_mr *base_mr, struct ib_udata *udata) 1256 { 1257 struct siw_mr *mr = to_siw_mr(base_mr); 1258 struct siw_device *sdev = to_siw_dev(base_mr->device); 1259 1260 siw_dbg_mem(mr->mem, "deregister MR\n"); 1261 1262 atomic_dec(&sdev->num_mr); 1263 1264 siw_mr_drop_mem(mr); 1265 kfree_rcu(mr, rcu); 1266 1267 return 0; 1268 } 1269 1270 /* 1271 * siw_reg_user_mr() 1272 * 1273 * Register Memory Region. 1274 * 1275 * @pd: Protection Domain 1276 * @start: starting address of MR (virtual address) 1277 * @len: len of MR 1278 * @rnic_va: not used by siw 1279 * @rights: MR access rights 1280 * @udata: user buffer to communicate STag and Key. 1281 */ 1282 struct ib_mr *siw_reg_user_mr(struct ib_pd *pd, u64 start, u64 len, 1283 u64 rnic_va, int rights, struct ib_udata *udata) 1284 { 1285 struct siw_mr *mr = NULL; 1286 struct siw_umem *umem = NULL; 1287 struct siw_ureq_reg_mr ureq; 1288 struct siw_device *sdev = to_siw_dev(pd->device); 1289 1290 unsigned long mem_limit = rlimit(RLIMIT_MEMLOCK); 1291 int rv; 1292 1293 siw_dbg_pd(pd, "start: 0x%pK, va: 0x%pK, len: %llu\n", 1294 (void *)(uintptr_t)start, (void *)(uintptr_t)rnic_va, 1295 (unsigned long long)len); 1296 1297 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) { 1298 siw_dbg_pd(pd, "too many mr's\n"); 1299 rv = -ENOMEM; 1300 goto err_out; 1301 } 1302 if (!len) { 1303 rv = -EINVAL; 1304 goto err_out; 1305 } 1306 if (mem_limit != RLIM_INFINITY) { 1307 unsigned long num_pages = 1308 (PAGE_ALIGN(len + (start & ~PAGE_MASK))) >> PAGE_SHIFT; 1309 mem_limit >>= PAGE_SHIFT; 1310 1311 if (num_pages > mem_limit - current->mm->locked_vm) { 1312 siw_dbg_pd(pd, "pages req %lu, max %lu, lock %lu\n", 1313 num_pages, mem_limit, 1314 current->mm->locked_vm); 1315 rv = -ENOMEM; 1316 goto err_out; 1317 } 1318 } 1319 umem = siw_umem_get(start, len, ib_access_writable(rights)); 1320 if (IS_ERR(umem)) { 1321 rv = PTR_ERR(umem); 1322 siw_dbg_pd(pd, "getting user memory failed: %d\n", rv); 1323 umem = NULL; 1324 goto err_out; 1325 } 1326 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1327 if (!mr) { 1328 rv = -ENOMEM; 1329 goto err_out; 1330 } 1331 rv = siw_mr_add_mem(mr, pd, umem, start, len, rights); 1332 if (rv) 1333 goto err_out; 1334 1335 if (udata) { 1336 struct siw_uresp_reg_mr uresp = {}; 1337 struct siw_mem *mem = mr->mem; 1338 1339 if (udata->inlen < sizeof(ureq)) { 1340 rv = -EINVAL; 1341 goto err_out; 1342 } 1343 rv = ib_copy_from_udata(&ureq, udata, sizeof(ureq)); 1344 if (rv) 1345 goto err_out; 1346 1347 mr->base_mr.lkey |= ureq.stag_key; 1348 mr->base_mr.rkey |= ureq.stag_key; 1349 mem->stag |= ureq.stag_key; 1350 uresp.stag = mem->stag; 1351 1352 if (udata->outlen < sizeof(uresp)) { 1353 rv = -EINVAL; 1354 goto err_out; 1355 } 1356 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp)); 1357 if (rv) 1358 goto err_out; 1359 } 1360 mr->mem->stag_valid = 1; 1361 1362 return &mr->base_mr; 1363 1364 err_out: 1365 atomic_dec(&sdev->num_mr); 1366 if (mr) { 1367 if (mr->mem) 1368 siw_mr_drop_mem(mr); 1369 kfree_rcu(mr, rcu); 1370 } else { 1371 if (umem) 1372 siw_umem_release(umem, false); 1373 } 1374 return ERR_PTR(rv); 1375 } 1376 1377 struct ib_mr *siw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 1378 u32 max_sge) 1379 { 1380 struct siw_device *sdev = to_siw_dev(pd->device); 1381 struct siw_mr *mr = NULL; 1382 struct siw_pbl *pbl = NULL; 1383 int rv; 1384 1385 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) { 1386 siw_dbg_pd(pd, "too many mr's\n"); 1387 rv = -ENOMEM; 1388 goto err_out; 1389 } 1390 if (mr_type != IB_MR_TYPE_MEM_REG) { 1391 siw_dbg_pd(pd, "mr type %d unsupported\n", mr_type); 1392 rv = -EOPNOTSUPP; 1393 goto err_out; 1394 } 1395 if (max_sge > SIW_MAX_SGE_PBL) { 1396 siw_dbg_pd(pd, "too many sge's: %d\n", max_sge); 1397 rv = -ENOMEM; 1398 goto err_out; 1399 } 1400 pbl = siw_pbl_alloc(max_sge); 1401 if (IS_ERR(pbl)) { 1402 rv = PTR_ERR(pbl); 1403 siw_dbg_pd(pd, "pbl allocation failed: %d\n", rv); 1404 pbl = NULL; 1405 goto err_out; 1406 } 1407 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1408 if (!mr) { 1409 rv = -ENOMEM; 1410 goto err_out; 1411 } 1412 rv = siw_mr_add_mem(mr, pd, pbl, 0, max_sge * PAGE_SIZE, 0); 1413 if (rv) 1414 goto err_out; 1415 1416 mr->mem->is_pbl = 1; 1417 1418 siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag); 1419 1420 return &mr->base_mr; 1421 1422 err_out: 1423 atomic_dec(&sdev->num_mr); 1424 1425 if (!mr) { 1426 kfree(pbl); 1427 } else { 1428 if (mr->mem) 1429 siw_mr_drop_mem(mr); 1430 kfree_rcu(mr, rcu); 1431 } 1432 siw_dbg_pd(pd, "failed: %d\n", rv); 1433 1434 return ERR_PTR(rv); 1435 } 1436 1437 /* Just used to count number of pages being mapped */ 1438 static int siw_set_pbl_page(struct ib_mr *base_mr, u64 buf_addr) 1439 { 1440 return 0; 1441 } 1442 1443 int siw_map_mr_sg(struct ib_mr *base_mr, struct scatterlist *sl, int num_sle, 1444 unsigned int *sg_off) 1445 { 1446 struct scatterlist *slp; 1447 struct siw_mr *mr = to_siw_mr(base_mr); 1448 struct siw_mem *mem = mr->mem; 1449 struct siw_pbl *pbl = mem->pbl; 1450 struct siw_pble *pble; 1451 unsigned long pbl_size; 1452 int i, rv; 1453 1454 if (!pbl) { 1455 siw_dbg_mem(mem, "no PBL allocated\n"); 1456 return -EINVAL; 1457 } 1458 pble = pbl->pbe; 1459 1460 if (pbl->max_buf < num_sle) { 1461 siw_dbg_mem(mem, "too many SGE's: %d > %d\n", 1462 mem->pbl->max_buf, num_sle); 1463 return -ENOMEM; 1464 } 1465 for_each_sg(sl, slp, num_sle, i) { 1466 if (sg_dma_len(slp) == 0) { 1467 siw_dbg_mem(mem, "empty SGE\n"); 1468 return -EINVAL; 1469 } 1470 if (i == 0) { 1471 pble->addr = sg_dma_address(slp); 1472 pble->size = sg_dma_len(slp); 1473 pble->pbl_off = 0; 1474 pbl_size = pble->size; 1475 pbl->num_buf = 1; 1476 } else { 1477 /* Merge PBL entries if adjacent */ 1478 if (pble->addr + pble->size == sg_dma_address(slp)) { 1479 pble->size += sg_dma_len(slp); 1480 } else { 1481 pble++; 1482 pbl->num_buf++; 1483 pble->addr = sg_dma_address(slp); 1484 pble->size = sg_dma_len(slp); 1485 pble->pbl_off = pbl_size; 1486 } 1487 pbl_size += sg_dma_len(slp); 1488 } 1489 siw_dbg_mem(mem, 1490 "sge[%d], size %u, addr 0x%p, total %lu\n", 1491 i, pble->size, (void *)(uintptr_t)pble->addr, 1492 pbl_size); 1493 } 1494 rv = ib_sg_to_pages(base_mr, sl, num_sle, sg_off, siw_set_pbl_page); 1495 if (rv > 0) { 1496 mem->len = base_mr->length; 1497 mem->va = base_mr->iova; 1498 siw_dbg_mem(mem, 1499 "%llu bytes, start 0x%pK, %u SLE to %u entries\n", 1500 mem->len, (void *)(uintptr_t)mem->va, num_sle, 1501 pbl->num_buf); 1502 } 1503 return rv; 1504 } 1505 1506 /* 1507 * siw_get_dma_mr() 1508 * 1509 * Create a (empty) DMA memory region, where no umem is attached. 1510 */ 1511 struct ib_mr *siw_get_dma_mr(struct ib_pd *pd, int rights) 1512 { 1513 struct siw_device *sdev = to_siw_dev(pd->device); 1514 struct siw_mr *mr = NULL; 1515 int rv; 1516 1517 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) { 1518 siw_dbg_pd(pd, "too many mr's\n"); 1519 rv = -ENOMEM; 1520 goto err_out; 1521 } 1522 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1523 if (!mr) { 1524 rv = -ENOMEM; 1525 goto err_out; 1526 } 1527 rv = siw_mr_add_mem(mr, pd, NULL, 0, ULONG_MAX, rights); 1528 if (rv) 1529 goto err_out; 1530 1531 mr->mem->stag_valid = 1; 1532 1533 siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag); 1534 1535 return &mr->base_mr; 1536 1537 err_out: 1538 if (rv) 1539 kfree(mr); 1540 1541 atomic_dec(&sdev->num_mr); 1542 1543 return ERR_PTR(rv); 1544 } 1545 1546 /* 1547 * siw_create_srq() 1548 * 1549 * Create Shared Receive Queue of attributes @init_attrs 1550 * within protection domain given by @pd. 1551 * 1552 * @base_srq: Base SRQ contained in siw SRQ. 1553 * @init_attrs: SRQ init attributes. 1554 * @udata: points to user context 1555 */ 1556 int siw_create_srq(struct ib_srq *base_srq, 1557 struct ib_srq_init_attr *init_attrs, struct ib_udata *udata) 1558 { 1559 struct siw_srq *srq = to_siw_srq(base_srq); 1560 struct ib_srq_attr *attrs = &init_attrs->attr; 1561 struct siw_device *sdev = to_siw_dev(base_srq->device); 1562 struct siw_ucontext *ctx = 1563 rdma_udata_to_drv_context(udata, struct siw_ucontext, 1564 base_ucontext); 1565 int rv; 1566 1567 if (init_attrs->srq_type != IB_SRQT_BASIC) 1568 return -EOPNOTSUPP; 1569 1570 if (atomic_inc_return(&sdev->num_srq) > SIW_MAX_SRQ) { 1571 siw_dbg_pd(base_srq->pd, "too many SRQ's\n"); 1572 rv = -ENOMEM; 1573 goto err_out; 1574 } 1575 if (attrs->max_wr == 0 || attrs->max_wr > SIW_MAX_SRQ_WR || 1576 attrs->max_sge > SIW_MAX_SGE || attrs->srq_limit > attrs->max_wr) { 1577 rv = -EINVAL; 1578 goto err_out; 1579 } 1580 srq->max_sge = attrs->max_sge; 1581 srq->num_rqe = roundup_pow_of_two(attrs->max_wr); 1582 srq->limit = attrs->srq_limit; 1583 if (srq->limit) 1584 srq->armed = true; 1585 1586 srq->is_kernel_res = !udata; 1587 1588 if (udata) 1589 srq->recvq = 1590 vmalloc_user(srq->num_rqe * sizeof(struct siw_rqe)); 1591 else 1592 srq->recvq = vzalloc(srq->num_rqe * sizeof(struct siw_rqe)); 1593 1594 if (srq->recvq == NULL) { 1595 rv = -ENOMEM; 1596 goto err_out; 1597 } 1598 if (udata) { 1599 struct siw_uresp_create_srq uresp = {}; 1600 size_t length = srq->num_rqe * sizeof(struct siw_rqe); 1601 1602 srq->srq_entry = 1603 siw_mmap_entry_insert(ctx, srq->recvq, 1604 length, &uresp.srq_key); 1605 if (!srq->srq_entry) { 1606 rv = -ENOMEM; 1607 goto err_out; 1608 } 1609 1610 uresp.num_rqe = srq->num_rqe; 1611 1612 if (udata->outlen < sizeof(uresp)) { 1613 rv = -EINVAL; 1614 goto err_out; 1615 } 1616 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp)); 1617 if (rv) 1618 goto err_out; 1619 } 1620 spin_lock_init(&srq->lock); 1621 1622 siw_dbg_pd(base_srq->pd, "[SRQ]: success\n"); 1623 1624 return 0; 1625 1626 err_out: 1627 if (srq->recvq) { 1628 if (ctx) 1629 rdma_user_mmap_entry_remove(srq->srq_entry); 1630 vfree(srq->recvq); 1631 } 1632 atomic_dec(&sdev->num_srq); 1633 1634 return rv; 1635 } 1636 1637 /* 1638 * siw_modify_srq() 1639 * 1640 * Modify SRQ. The caller may resize SRQ and/or set/reset notification 1641 * limit and (re)arm IB_EVENT_SRQ_LIMIT_REACHED notification. 1642 * 1643 * NOTE: it is unclear if RDMA core allows for changing the MAX_SGE 1644 * parameter. siw_modify_srq() does not check the attrs->max_sge param. 1645 */ 1646 int siw_modify_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs, 1647 enum ib_srq_attr_mask attr_mask, struct ib_udata *udata) 1648 { 1649 struct siw_srq *srq = to_siw_srq(base_srq); 1650 unsigned long flags; 1651 int rv = 0; 1652 1653 spin_lock_irqsave(&srq->lock, flags); 1654 1655 if (attr_mask & IB_SRQ_MAX_WR) { 1656 /* resize request not yet supported */ 1657 rv = -EOPNOTSUPP; 1658 goto out; 1659 } 1660 if (attr_mask & IB_SRQ_LIMIT) { 1661 if (attrs->srq_limit) { 1662 if (unlikely(attrs->srq_limit > srq->num_rqe)) { 1663 rv = -EINVAL; 1664 goto out; 1665 } 1666 srq->armed = true; 1667 } else { 1668 srq->armed = false; 1669 } 1670 srq->limit = attrs->srq_limit; 1671 } 1672 out: 1673 spin_unlock_irqrestore(&srq->lock, flags); 1674 1675 return rv; 1676 } 1677 1678 /* 1679 * siw_query_srq() 1680 * 1681 * Query SRQ attributes. 1682 */ 1683 int siw_query_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs) 1684 { 1685 struct siw_srq *srq = to_siw_srq(base_srq); 1686 unsigned long flags; 1687 1688 spin_lock_irqsave(&srq->lock, flags); 1689 1690 attrs->max_wr = srq->num_rqe; 1691 attrs->max_sge = srq->max_sge; 1692 attrs->srq_limit = srq->limit; 1693 1694 spin_unlock_irqrestore(&srq->lock, flags); 1695 1696 return 0; 1697 } 1698 1699 /* 1700 * siw_destroy_srq() 1701 * 1702 * Destroy SRQ. 1703 * It is assumed that the SRQ is not referenced by any 1704 * QP anymore - the code trusts the RDMA core environment to keep track 1705 * of QP references. 1706 */ 1707 int siw_destroy_srq(struct ib_srq *base_srq, struct ib_udata *udata) 1708 { 1709 struct siw_srq *srq = to_siw_srq(base_srq); 1710 struct siw_device *sdev = to_siw_dev(base_srq->device); 1711 struct siw_ucontext *ctx = 1712 rdma_udata_to_drv_context(udata, struct siw_ucontext, 1713 base_ucontext); 1714 1715 if (ctx) 1716 rdma_user_mmap_entry_remove(srq->srq_entry); 1717 vfree(srq->recvq); 1718 atomic_dec(&sdev->num_srq); 1719 return 0; 1720 } 1721 1722 /* 1723 * siw_post_srq_recv() 1724 * 1725 * Post a list of receive queue elements to SRQ. 1726 * NOTE: The function does not check or lock a certain SRQ state 1727 * during the post operation. The code simply trusts the 1728 * RDMA core environment. 1729 * 1730 * @base_srq: Base SRQ contained in siw SRQ 1731 * @wr: List of R-WR's 1732 * @bad_wr: Updated to failing WR if posting fails. 1733 */ 1734 int siw_post_srq_recv(struct ib_srq *base_srq, const struct ib_recv_wr *wr, 1735 const struct ib_recv_wr **bad_wr) 1736 { 1737 struct siw_srq *srq = to_siw_srq(base_srq); 1738 unsigned long flags; 1739 int rv = 0; 1740 1741 if (unlikely(!srq->is_kernel_res)) { 1742 siw_dbg_pd(base_srq->pd, 1743 "[SRQ]: no kernel post_recv for mapped srq\n"); 1744 rv = -EINVAL; 1745 goto out; 1746 } 1747 /* 1748 * Serialize potentially multiple producers. 1749 * Also needed to serialize potentially multiple 1750 * consumers. 1751 */ 1752 spin_lock_irqsave(&srq->lock, flags); 1753 1754 while (wr) { 1755 u32 idx = srq->rq_put % srq->num_rqe; 1756 struct siw_rqe *rqe = &srq->recvq[idx]; 1757 1758 if (rqe->flags) { 1759 siw_dbg_pd(base_srq->pd, "SRQ full\n"); 1760 rv = -ENOMEM; 1761 break; 1762 } 1763 if (unlikely(wr->num_sge > srq->max_sge)) { 1764 siw_dbg_pd(base_srq->pd, 1765 "[SRQ]: too many sge's: %d\n", wr->num_sge); 1766 rv = -EINVAL; 1767 break; 1768 } 1769 rqe->id = wr->wr_id; 1770 rqe->num_sge = wr->num_sge; 1771 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge); 1772 1773 /* Make sure S-RQE is completely written before valid */ 1774 smp_wmb(); 1775 1776 rqe->flags = SIW_WQE_VALID; 1777 1778 srq->rq_put++; 1779 wr = wr->next; 1780 } 1781 spin_unlock_irqrestore(&srq->lock, flags); 1782 out: 1783 if (unlikely(rv < 0)) { 1784 siw_dbg_pd(base_srq->pd, "[SRQ]: error %d\n", rv); 1785 *bad_wr = wr; 1786 } 1787 return rv; 1788 } 1789 1790 void siw_qp_event(struct siw_qp *qp, enum ib_event_type etype) 1791 { 1792 struct ib_event event; 1793 struct ib_qp *base_qp = &qp->base_qp; 1794 1795 /* 1796 * Do not report asynchronous errors on QP which gets 1797 * destroyed via verbs interface (siw_destroy_qp()) 1798 */ 1799 if (qp->attrs.flags & SIW_QP_IN_DESTROY) 1800 return; 1801 1802 event.event = etype; 1803 event.device = base_qp->device; 1804 event.element.qp = base_qp; 1805 1806 if (base_qp->event_handler) { 1807 siw_dbg_qp(qp, "reporting event %d\n", etype); 1808 base_qp->event_handler(&event, base_qp->qp_context); 1809 } 1810 } 1811 1812 void siw_cq_event(struct siw_cq *cq, enum ib_event_type etype) 1813 { 1814 struct ib_event event; 1815 struct ib_cq *base_cq = &cq->base_cq; 1816 1817 event.event = etype; 1818 event.device = base_cq->device; 1819 event.element.cq = base_cq; 1820 1821 if (base_cq->event_handler) { 1822 siw_dbg_cq(cq, "reporting CQ event %d\n", etype); 1823 base_cq->event_handler(&event, base_cq->cq_context); 1824 } 1825 } 1826 1827 void siw_srq_event(struct siw_srq *srq, enum ib_event_type etype) 1828 { 1829 struct ib_event event; 1830 struct ib_srq *base_srq = &srq->base_srq; 1831 1832 event.event = etype; 1833 event.device = base_srq->device; 1834 event.element.srq = base_srq; 1835 1836 if (base_srq->event_handler) { 1837 siw_dbg_pd(srq->base_srq.pd, 1838 "reporting SRQ event %d\n", etype); 1839 base_srq->event_handler(&event, base_srq->srq_context); 1840 } 1841 } 1842 1843 void siw_port_event(struct siw_device *sdev, u8 port, enum ib_event_type etype) 1844 { 1845 struct ib_event event; 1846 1847 event.event = etype; 1848 event.device = &sdev->base_dev; 1849 event.element.port_num = port; 1850 1851 siw_dbg(&sdev->base_dev, "reporting port event %d\n", etype); 1852 1853 ib_dispatch_event(&event); 1854 } 1855