1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 3 /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */ 4 /* Copyright (c) 2008-2019, IBM Corporation */ 5 6 #include <linux/errno.h> 7 #include <linux/types.h> 8 #include <linux/net.h> 9 #include <linux/scatterlist.h> 10 #include <linux/highmem.h> 11 #include <net/tcp.h> 12 13 #include <rdma/iw_cm.h> 14 #include <rdma/ib_verbs.h> 15 #include <rdma/ib_user_verbs.h> 16 17 #include "siw.h" 18 #include "siw_verbs.h" 19 #include "siw_mem.h" 20 21 #define MAX_HDR_INLINE \ 22 (((uint32_t)(sizeof(struct siw_rreq_pkt) - \ 23 sizeof(struct iwarp_send))) & 0xF8) 24 25 static struct page *siw_get_pblpage(struct siw_mem *mem, u64 addr, int *idx) 26 { 27 struct siw_pbl *pbl = mem->pbl; 28 u64 offset = addr - mem->va; 29 dma_addr_t paddr = siw_pbl_get_buffer(pbl, offset, NULL, idx); 30 31 if (paddr) 32 return ib_virt_dma_to_page(paddr); 33 34 return NULL; 35 } 36 37 /* 38 * Copy short payload at provided destination payload address 39 */ 40 static int siw_try_1seg(struct siw_iwarp_tx *c_tx, void *paddr) 41 { 42 struct siw_wqe *wqe = &c_tx->wqe_active; 43 struct siw_sge *sge = &wqe->sqe.sge[0]; 44 u32 bytes = sge->length; 45 46 if (bytes > MAX_HDR_INLINE || wqe->sqe.num_sge != 1) 47 return MAX_HDR_INLINE + 1; 48 49 if (!bytes) 50 return 0; 51 52 if (tx_flags(wqe) & SIW_WQE_INLINE) { 53 memcpy(paddr, &wqe->sqe.sge[1], bytes); 54 } else { 55 struct siw_mem *mem = wqe->mem[0]; 56 57 if (!mem->mem_obj) { 58 /* Kernel client using kva */ 59 memcpy(paddr, ib_virt_dma_to_ptr(sge->laddr), bytes); 60 } else if (c_tx->in_syscall) { 61 if (copy_from_user(paddr, u64_to_user_ptr(sge->laddr), 62 bytes)) 63 return -EFAULT; 64 } else { 65 unsigned int off = sge->laddr & ~PAGE_MASK; 66 struct page *p; 67 char *buffer; 68 int pbl_idx = 0; 69 70 if (!mem->is_pbl) 71 p = siw_get_upage(mem->umem, sge->laddr); 72 else 73 p = siw_get_pblpage(mem, sge->laddr, &pbl_idx); 74 75 if (unlikely(!p)) 76 return -EFAULT; 77 78 buffer = kmap_local_page(p); 79 80 if (likely(PAGE_SIZE - off >= bytes)) { 81 memcpy(paddr, buffer + off, bytes); 82 } else { 83 unsigned long part = bytes - (PAGE_SIZE - off); 84 85 memcpy(paddr, buffer + off, part); 86 kunmap_local(buffer); 87 88 if (!mem->is_pbl) 89 p = siw_get_upage(mem->umem, 90 sge->laddr + part); 91 else 92 p = siw_get_pblpage(mem, 93 sge->laddr + part, 94 &pbl_idx); 95 if (unlikely(!p)) 96 return -EFAULT; 97 98 buffer = kmap_local_page(p); 99 memcpy(paddr + part, buffer, bytes - part); 100 } 101 kunmap_local(buffer); 102 } 103 } 104 return (int)bytes; 105 } 106 107 #define PKT_FRAGMENTED 1 108 #define PKT_COMPLETE 0 109 110 /* 111 * siw_qp_prepare_tx() 112 * 113 * Prepare tx state for sending out one fpdu. Builds complete pkt 114 * if no user data or only immediate data are present. 115 * 116 * returns PKT_COMPLETE if complete pkt built, PKT_FRAGMENTED otherwise. 117 */ 118 static int siw_qp_prepare_tx(struct siw_iwarp_tx *c_tx) 119 { 120 struct siw_wqe *wqe = &c_tx->wqe_active; 121 char *crc = NULL; 122 int data = 0; 123 124 switch (tx_type(wqe)) { 125 case SIW_OP_READ: 126 case SIW_OP_READ_LOCAL_INV: 127 memcpy(&c_tx->pkt.ctrl, 128 &iwarp_pktinfo[RDMAP_RDMA_READ_REQ].ctrl, 129 sizeof(struct iwarp_ctrl)); 130 131 c_tx->pkt.rreq.rsvd = 0; 132 c_tx->pkt.rreq.ddp_qn = htonl(RDMAP_UNTAGGED_QN_RDMA_READ); 133 c_tx->pkt.rreq.ddp_msn = 134 htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_RDMA_READ]); 135 c_tx->pkt.rreq.ddp_mo = 0; 136 c_tx->pkt.rreq.sink_stag = htonl(wqe->sqe.sge[0].lkey); 137 c_tx->pkt.rreq.sink_to = 138 cpu_to_be64(wqe->sqe.sge[0].laddr); 139 c_tx->pkt.rreq.source_stag = htonl(wqe->sqe.rkey); 140 c_tx->pkt.rreq.source_to = cpu_to_be64(wqe->sqe.raddr); 141 c_tx->pkt.rreq.read_size = htonl(wqe->sqe.sge[0].length); 142 143 c_tx->ctrl_len = sizeof(struct iwarp_rdma_rreq); 144 crc = (char *)&c_tx->pkt.rreq_pkt.crc; 145 break; 146 147 case SIW_OP_SEND: 148 if (tx_flags(wqe) & SIW_WQE_SOLICITED) 149 memcpy(&c_tx->pkt.ctrl, 150 &iwarp_pktinfo[RDMAP_SEND_SE].ctrl, 151 sizeof(struct iwarp_ctrl)); 152 else 153 memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_SEND].ctrl, 154 sizeof(struct iwarp_ctrl)); 155 156 c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND; 157 c_tx->pkt.send.ddp_msn = 158 htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]); 159 c_tx->pkt.send.ddp_mo = 0; 160 161 c_tx->pkt.send_inv.inval_stag = 0; 162 163 c_tx->ctrl_len = sizeof(struct iwarp_send); 164 165 crc = (char *)&c_tx->pkt.send_pkt.crc; 166 data = siw_try_1seg(c_tx, crc); 167 break; 168 169 case SIW_OP_SEND_REMOTE_INV: 170 if (tx_flags(wqe) & SIW_WQE_SOLICITED) 171 memcpy(&c_tx->pkt.ctrl, 172 &iwarp_pktinfo[RDMAP_SEND_SE_INVAL].ctrl, 173 sizeof(struct iwarp_ctrl)); 174 else 175 memcpy(&c_tx->pkt.ctrl, 176 &iwarp_pktinfo[RDMAP_SEND_INVAL].ctrl, 177 sizeof(struct iwarp_ctrl)); 178 179 c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND; 180 c_tx->pkt.send.ddp_msn = 181 htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]); 182 c_tx->pkt.send.ddp_mo = 0; 183 184 c_tx->pkt.send_inv.inval_stag = cpu_to_be32(wqe->sqe.rkey); 185 186 c_tx->ctrl_len = sizeof(struct iwarp_send_inv); 187 188 crc = (char *)&c_tx->pkt.send_pkt.crc; 189 data = siw_try_1seg(c_tx, crc); 190 break; 191 192 case SIW_OP_WRITE: 193 memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_RDMA_WRITE].ctrl, 194 sizeof(struct iwarp_ctrl)); 195 196 c_tx->pkt.rwrite.sink_stag = htonl(wqe->sqe.rkey); 197 c_tx->pkt.rwrite.sink_to = cpu_to_be64(wqe->sqe.raddr); 198 c_tx->ctrl_len = sizeof(struct iwarp_rdma_write); 199 200 crc = (char *)&c_tx->pkt.write_pkt.crc; 201 data = siw_try_1seg(c_tx, crc); 202 break; 203 204 case SIW_OP_READ_RESPONSE: 205 memcpy(&c_tx->pkt.ctrl, 206 &iwarp_pktinfo[RDMAP_RDMA_READ_RESP].ctrl, 207 sizeof(struct iwarp_ctrl)); 208 209 /* NBO */ 210 c_tx->pkt.rresp.sink_stag = cpu_to_be32(wqe->sqe.rkey); 211 c_tx->pkt.rresp.sink_to = cpu_to_be64(wqe->sqe.raddr); 212 213 c_tx->ctrl_len = sizeof(struct iwarp_rdma_rresp); 214 215 crc = (char *)&c_tx->pkt.write_pkt.crc; 216 data = siw_try_1seg(c_tx, crc); 217 break; 218 219 default: 220 siw_dbg_qp(tx_qp(c_tx), "stale wqe type %d\n", tx_type(wqe)); 221 return -EOPNOTSUPP; 222 } 223 if (unlikely(data < 0)) 224 return data; 225 226 c_tx->ctrl_sent = 0; 227 228 if (data <= MAX_HDR_INLINE) { 229 if (data) { 230 wqe->processed = data; 231 232 c_tx->pkt.ctrl.mpa_len = 233 htons(c_tx->ctrl_len + data - MPA_HDR_SIZE); 234 235 /* Add pad, if needed */ 236 data += -(int)data & 0x3; 237 /* advance CRC location after payload */ 238 crc += data; 239 c_tx->ctrl_len += data; 240 241 if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED)) 242 c_tx->pkt.c_untagged.ddp_mo = 0; 243 else 244 c_tx->pkt.c_tagged.ddp_to = 245 cpu_to_be64(wqe->sqe.raddr); 246 } 247 248 *(u32 *)crc = 0; 249 /* 250 * Do complete CRC if enabled and short packet 251 */ 252 if (c_tx->mpa_crc_hd) { 253 crypto_shash_init(c_tx->mpa_crc_hd); 254 if (crypto_shash_update(c_tx->mpa_crc_hd, 255 (u8 *)&c_tx->pkt, 256 c_tx->ctrl_len)) 257 return -EINVAL; 258 crypto_shash_final(c_tx->mpa_crc_hd, (u8 *)crc); 259 } 260 c_tx->ctrl_len += MPA_CRC_SIZE; 261 262 return PKT_COMPLETE; 263 } 264 c_tx->ctrl_len += MPA_CRC_SIZE; 265 c_tx->sge_idx = 0; 266 c_tx->sge_off = 0; 267 c_tx->pbl_idx = 0; 268 269 /* 270 * Allow direct sending out of user buffer if WR is non signalled 271 * and payload is over threshold. 272 * Per RDMA verbs, the application should not change the send buffer 273 * until the work completed. In iWarp, work completion is only 274 * local delivery to TCP. TCP may reuse the buffer for 275 * retransmission. Changing unsent data also breaks the CRC, 276 * if applied. 277 */ 278 if (c_tx->zcopy_tx && wqe->bytes >= SENDPAGE_THRESH && 279 !(tx_flags(wqe) & SIW_WQE_SIGNALLED)) 280 c_tx->use_sendpage = 1; 281 else 282 c_tx->use_sendpage = 0; 283 284 return PKT_FRAGMENTED; 285 } 286 287 /* 288 * Send out one complete control type FPDU, or header of FPDU carrying 289 * data. Used for fixed sized packets like Read.Requests or zero length 290 * SENDs, WRITEs, READ.Responses, or header only. 291 */ 292 static int siw_tx_ctrl(struct siw_iwarp_tx *c_tx, struct socket *s, 293 int flags) 294 { 295 struct msghdr msg = { .msg_flags = flags }; 296 struct kvec iov = { .iov_base = 297 (char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent, 298 .iov_len = c_tx->ctrl_len - c_tx->ctrl_sent }; 299 300 int rv = kernel_sendmsg(s, &msg, &iov, 1, 301 c_tx->ctrl_len - c_tx->ctrl_sent); 302 303 if (rv >= 0) { 304 c_tx->ctrl_sent += rv; 305 306 if (c_tx->ctrl_sent == c_tx->ctrl_len) 307 rv = 0; 308 else 309 rv = -EAGAIN; 310 } 311 return rv; 312 } 313 314 /* 315 * 0copy TCP transmit interface: Use MSG_SPLICE_PAGES. 316 * 317 * Using sendpage to push page by page appears to be less efficient 318 * than using sendmsg, even if data are copied. 319 * 320 * A general performance limitation might be the extra four bytes 321 * trailer checksum segment to be pushed after user data. 322 */ 323 static int siw_tcp_sendpages(struct socket *s, struct page **page, int offset, 324 size_t size) 325 { 326 struct bio_vec bvec; 327 struct msghdr msg = { 328 .msg_flags = (MSG_MORE | MSG_DONTWAIT | MSG_SPLICE_PAGES), 329 }; 330 struct sock *sk = s->sk; 331 int i = 0, rv = 0, sent = 0; 332 333 while (size) { 334 size_t bytes = min_t(size_t, PAGE_SIZE - offset, size); 335 336 if (size + offset <= PAGE_SIZE) 337 msg.msg_flags &= ~MSG_MORE; 338 339 tcp_rate_check_app_limited(sk); 340 if (!sendpage_ok(page[i])) 341 msg.msg_flags &= ~MSG_SPLICE_PAGES; 342 bvec_set_page(&bvec, page[i], bytes, offset); 343 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 344 345 try_page_again: 346 lock_sock(sk); 347 rv = tcp_sendmsg_locked(sk, &msg, size); 348 release_sock(sk); 349 350 if (rv > 0) { 351 size -= rv; 352 sent += rv; 353 if (rv != bytes) { 354 offset += rv; 355 bytes -= rv; 356 goto try_page_again; 357 } 358 offset = 0; 359 } else { 360 if (rv == -EAGAIN || rv == 0) 361 break; 362 return rv; 363 } 364 i++; 365 } 366 return sent; 367 } 368 369 /* 370 * siw_0copy_tx() 371 * 372 * Pushes list of pages to TCP socket. If pages from multiple 373 * SGE's, all referenced pages of each SGE are pushed in one 374 * shot. 375 */ 376 static int siw_0copy_tx(struct socket *s, struct page **page, 377 struct siw_sge *sge, unsigned int offset, 378 unsigned int size) 379 { 380 int i = 0, sent = 0, rv; 381 int sge_bytes = min(sge->length - offset, size); 382 383 offset = (sge->laddr + offset) & ~PAGE_MASK; 384 385 while (sent != size) { 386 rv = siw_tcp_sendpages(s, &page[i], offset, sge_bytes); 387 if (rv >= 0) { 388 sent += rv; 389 if (size == sent || sge_bytes > rv) 390 break; 391 392 i += PAGE_ALIGN(sge_bytes + offset) >> PAGE_SHIFT; 393 sge++; 394 sge_bytes = min(sge->length, size - sent); 395 offset = sge->laddr & ~PAGE_MASK; 396 } else { 397 sent = rv; 398 break; 399 } 400 } 401 return sent; 402 } 403 404 #define MAX_TRAILER (MPA_CRC_SIZE + 4) 405 406 static void siw_unmap_pages(struct kvec *iov, unsigned long kmap_mask, int len) 407 { 408 int i; 409 410 /* 411 * Work backwards through the array to honor the kmap_local_page() 412 * ordering requirements. 413 */ 414 for (i = (len-1); i >= 0; i--) { 415 if (kmap_mask & BIT(i)) { 416 unsigned long addr = (unsigned long)iov[i].iov_base; 417 418 kunmap_local((void *)(addr & PAGE_MASK)); 419 } 420 } 421 } 422 423 /* 424 * siw_tx_hdt() tries to push a complete packet to TCP where all 425 * packet fragments are referenced by the elements of one iovec. 426 * For the data portion, each involved page must be referenced by 427 * one extra element. All sge's data can be non-aligned to page 428 * boundaries. Two more elements are referencing iWARP header 429 * and trailer: 430 * MAX_ARRAY = 64KB/PAGE_SIZE + 1 + (2 * (SIW_MAX_SGE - 1) + HDR + TRL 431 */ 432 #define MAX_ARRAY ((0xffff / PAGE_SIZE) + 1 + (2 * (SIW_MAX_SGE - 1) + 2)) 433 434 /* 435 * Write out iov referencing hdr, data and trailer of current FPDU. 436 * Update transmit state dependent on write return status 437 */ 438 static int siw_tx_hdt(struct siw_iwarp_tx *c_tx, struct socket *s) 439 { 440 struct siw_wqe *wqe = &c_tx->wqe_active; 441 struct siw_sge *sge = &wqe->sqe.sge[c_tx->sge_idx]; 442 struct kvec iov[MAX_ARRAY]; 443 struct page *page_array[MAX_ARRAY]; 444 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 445 446 int seg = 0, do_crc = c_tx->do_crc, is_kva = 0, rv; 447 unsigned int data_len = c_tx->bytes_unsent, hdr_len = 0, trl_len = 0, 448 sge_off = c_tx->sge_off, sge_idx = c_tx->sge_idx, 449 pbl_idx = c_tx->pbl_idx; 450 unsigned long kmap_mask = 0L; 451 452 if (c_tx->state == SIW_SEND_HDR) { 453 if (c_tx->use_sendpage) { 454 rv = siw_tx_ctrl(c_tx, s, MSG_DONTWAIT | MSG_MORE); 455 if (rv) 456 goto done; 457 458 c_tx->state = SIW_SEND_DATA; 459 } else { 460 iov[0].iov_base = 461 (char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent; 462 iov[0].iov_len = hdr_len = 463 c_tx->ctrl_len - c_tx->ctrl_sent; 464 seg = 1; 465 } 466 } 467 468 wqe->processed += data_len; 469 470 while (data_len) { /* walk the list of SGE's */ 471 unsigned int sge_len = min(sge->length - sge_off, data_len); 472 unsigned int fp_off = (sge->laddr + sge_off) & ~PAGE_MASK; 473 struct siw_mem *mem; 474 475 if (!(tx_flags(wqe) & SIW_WQE_INLINE)) { 476 mem = wqe->mem[sge_idx]; 477 is_kva = mem->mem_obj == NULL ? 1 : 0; 478 } else { 479 is_kva = 1; 480 } 481 if (is_kva && !c_tx->use_sendpage) { 482 /* 483 * tx from kernel virtual address: either inline data 484 * or memory region with assigned kernel buffer 485 */ 486 iov[seg].iov_base = 487 ib_virt_dma_to_ptr(sge->laddr + sge_off); 488 iov[seg].iov_len = sge_len; 489 490 if (do_crc) 491 crypto_shash_update(c_tx->mpa_crc_hd, 492 iov[seg].iov_base, 493 sge_len); 494 sge_off += sge_len; 495 data_len -= sge_len; 496 seg++; 497 goto sge_done; 498 } 499 500 while (sge_len) { 501 size_t plen = min((int)PAGE_SIZE - fp_off, sge_len); 502 void *kaddr; 503 504 if (!is_kva) { 505 struct page *p; 506 507 if (mem->is_pbl) 508 p = siw_get_pblpage( 509 mem, sge->laddr + sge_off, 510 &pbl_idx); 511 else 512 p = siw_get_upage(mem->umem, 513 sge->laddr + sge_off); 514 if (unlikely(!p)) { 515 siw_unmap_pages(iov, kmap_mask, seg); 516 wqe->processed -= c_tx->bytes_unsent; 517 rv = -EFAULT; 518 goto done_crc; 519 } 520 page_array[seg] = p; 521 522 if (!c_tx->use_sendpage) { 523 void *kaddr = kmap_local_page(p); 524 525 /* Remember for later kunmap() */ 526 kmap_mask |= BIT(seg); 527 iov[seg].iov_base = kaddr + fp_off; 528 iov[seg].iov_len = plen; 529 530 if (do_crc) 531 crypto_shash_update( 532 c_tx->mpa_crc_hd, 533 iov[seg].iov_base, 534 plen); 535 } else if (do_crc) { 536 kaddr = kmap_local_page(p); 537 crypto_shash_update(c_tx->mpa_crc_hd, 538 kaddr + fp_off, 539 plen); 540 kunmap_local(kaddr); 541 } 542 } else { 543 /* 544 * Cast to an uintptr_t to preserve all 64 bits 545 * in sge->laddr. 546 */ 547 u64 va = sge->laddr + sge_off; 548 549 page_array[seg] = ib_virt_dma_to_page(va); 550 if (do_crc) 551 crypto_shash_update( 552 c_tx->mpa_crc_hd, 553 ib_virt_dma_to_ptr(va), 554 plen); 555 } 556 557 sge_len -= plen; 558 sge_off += plen; 559 data_len -= plen; 560 fp_off = 0; 561 562 if (++seg >= (int)MAX_ARRAY) { 563 siw_dbg_qp(tx_qp(c_tx), "to many fragments\n"); 564 siw_unmap_pages(iov, kmap_mask, seg-1); 565 wqe->processed -= c_tx->bytes_unsent; 566 rv = -EMSGSIZE; 567 goto done_crc; 568 } 569 } 570 sge_done: 571 /* Update SGE variables at end of SGE */ 572 if (sge_off == sge->length && 573 (data_len != 0 || wqe->processed < wqe->bytes)) { 574 sge_idx++; 575 sge++; 576 sge_off = 0; 577 } 578 } 579 /* trailer */ 580 if (likely(c_tx->state != SIW_SEND_TRAILER)) { 581 iov[seg].iov_base = &c_tx->trailer.pad[4 - c_tx->pad]; 582 iov[seg].iov_len = trl_len = MAX_TRAILER - (4 - c_tx->pad); 583 } else { 584 iov[seg].iov_base = &c_tx->trailer.pad[c_tx->ctrl_sent]; 585 iov[seg].iov_len = trl_len = MAX_TRAILER - c_tx->ctrl_sent; 586 } 587 588 if (c_tx->pad) { 589 *(u32 *)c_tx->trailer.pad = 0; 590 if (do_crc) 591 crypto_shash_update(c_tx->mpa_crc_hd, 592 (u8 *)&c_tx->trailer.crc - c_tx->pad, 593 c_tx->pad); 594 } 595 if (!c_tx->mpa_crc_hd) 596 c_tx->trailer.crc = 0; 597 else if (do_crc) 598 crypto_shash_final(c_tx->mpa_crc_hd, (u8 *)&c_tx->trailer.crc); 599 600 data_len = c_tx->bytes_unsent; 601 602 if (c_tx->use_sendpage) { 603 rv = siw_0copy_tx(s, page_array, &wqe->sqe.sge[c_tx->sge_idx], 604 c_tx->sge_off, data_len); 605 if (rv == data_len) { 606 rv = kernel_sendmsg(s, &msg, &iov[seg], 1, trl_len); 607 if (rv > 0) 608 rv += data_len; 609 else 610 rv = data_len; 611 } 612 } else { 613 rv = kernel_sendmsg(s, &msg, iov, seg + 1, 614 hdr_len + data_len + trl_len); 615 siw_unmap_pages(iov, kmap_mask, seg); 616 } 617 if (rv < (int)hdr_len) { 618 /* Not even complete hdr pushed or negative rv */ 619 wqe->processed -= data_len; 620 if (rv >= 0) { 621 c_tx->ctrl_sent += rv; 622 rv = -EAGAIN; 623 } 624 goto done_crc; 625 } 626 rv -= hdr_len; 627 628 if (rv >= (int)data_len) { 629 /* all user data pushed to TCP or no data to push */ 630 if (data_len > 0 && wqe->processed < wqe->bytes) { 631 /* Save the current state for next tx */ 632 c_tx->sge_idx = sge_idx; 633 c_tx->sge_off = sge_off; 634 c_tx->pbl_idx = pbl_idx; 635 } 636 rv -= data_len; 637 638 if (rv == trl_len) /* all pushed */ 639 rv = 0; 640 else { 641 c_tx->state = SIW_SEND_TRAILER; 642 c_tx->ctrl_len = MAX_TRAILER; 643 c_tx->ctrl_sent = rv + 4 - c_tx->pad; 644 c_tx->bytes_unsent = 0; 645 rv = -EAGAIN; 646 } 647 648 } else if (data_len > 0) { 649 /* Maybe some user data pushed to TCP */ 650 c_tx->state = SIW_SEND_DATA; 651 wqe->processed -= data_len - rv; 652 653 if (rv) { 654 /* 655 * Some bytes out. Recompute tx state based 656 * on old state and bytes pushed 657 */ 658 unsigned int sge_unsent; 659 660 c_tx->bytes_unsent -= rv; 661 sge = &wqe->sqe.sge[c_tx->sge_idx]; 662 sge_unsent = sge->length - c_tx->sge_off; 663 664 while (sge_unsent <= rv) { 665 rv -= sge_unsent; 666 c_tx->sge_idx++; 667 c_tx->sge_off = 0; 668 sge++; 669 sge_unsent = sge->length; 670 } 671 c_tx->sge_off += rv; 672 } 673 rv = -EAGAIN; 674 } 675 done_crc: 676 c_tx->do_crc = 0; 677 done: 678 return rv; 679 } 680 681 static void siw_update_tcpseg(struct siw_iwarp_tx *c_tx, 682 struct socket *s) 683 { 684 struct tcp_sock *tp = tcp_sk(s->sk); 685 686 if (tp->gso_segs) { 687 if (c_tx->gso_seg_limit == 0) 688 c_tx->tcp_seglen = tp->mss_cache * tp->gso_segs; 689 else 690 c_tx->tcp_seglen = 691 tp->mss_cache * 692 min_t(u16, c_tx->gso_seg_limit, tp->gso_segs); 693 } else { 694 c_tx->tcp_seglen = tp->mss_cache; 695 } 696 /* Loopback may give odd numbers */ 697 c_tx->tcp_seglen &= 0xfffffff8; 698 } 699 700 /* 701 * siw_prepare_fpdu() 702 * 703 * Prepares transmit context to send out one FPDU if FPDU will contain 704 * user data and user data are not immediate data. 705 * Computes maximum FPDU length to fill up TCP MSS if possible. 706 * 707 * @qp: QP from which to transmit 708 * @wqe: Current WQE causing transmission 709 * 710 * TODO: Take into account real available sendspace on socket 711 * to avoid header misalignment due to send pausing within 712 * fpdu transmission 713 */ 714 static void siw_prepare_fpdu(struct siw_qp *qp, struct siw_wqe *wqe) 715 { 716 struct siw_iwarp_tx *c_tx = &qp->tx_ctx; 717 int data_len; 718 719 c_tx->ctrl_len = 720 iwarp_pktinfo[__rdmap_get_opcode(&c_tx->pkt.ctrl)].hdr_len; 721 c_tx->ctrl_sent = 0; 722 723 /* 724 * Update target buffer offset if any 725 */ 726 if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED)) 727 /* Untagged message */ 728 c_tx->pkt.c_untagged.ddp_mo = cpu_to_be32(wqe->processed); 729 else /* Tagged message */ 730 c_tx->pkt.c_tagged.ddp_to = 731 cpu_to_be64(wqe->sqe.raddr + wqe->processed); 732 733 data_len = wqe->bytes - wqe->processed; 734 if (data_len + c_tx->ctrl_len + MPA_CRC_SIZE > c_tx->tcp_seglen) { 735 /* Trim DDP payload to fit into current TCP segment */ 736 data_len = c_tx->tcp_seglen - (c_tx->ctrl_len + MPA_CRC_SIZE); 737 c_tx->pkt.ctrl.ddp_rdmap_ctrl &= ~DDP_FLAG_LAST; 738 c_tx->pad = 0; 739 } else { 740 c_tx->pkt.ctrl.ddp_rdmap_ctrl |= DDP_FLAG_LAST; 741 c_tx->pad = -data_len & 0x3; 742 } 743 c_tx->bytes_unsent = data_len; 744 745 c_tx->pkt.ctrl.mpa_len = 746 htons(c_tx->ctrl_len + data_len - MPA_HDR_SIZE); 747 748 /* 749 * Init MPA CRC computation 750 */ 751 if (c_tx->mpa_crc_hd) { 752 crypto_shash_init(c_tx->mpa_crc_hd); 753 crypto_shash_update(c_tx->mpa_crc_hd, (u8 *)&c_tx->pkt, 754 c_tx->ctrl_len); 755 c_tx->do_crc = 1; 756 } 757 } 758 759 /* 760 * siw_check_sgl_tx() 761 * 762 * Check permissions for a list of SGE's (SGL). 763 * A successful check will have all memory referenced 764 * for transmission resolved and assigned to the WQE. 765 * 766 * @pd: Protection Domain SGL should belong to 767 * @wqe: WQE to be checked 768 * @perms: requested access permissions 769 * 770 */ 771 772 static int siw_check_sgl_tx(struct ib_pd *pd, struct siw_wqe *wqe, 773 enum ib_access_flags perms) 774 { 775 struct siw_sge *sge = &wqe->sqe.sge[0]; 776 int i, len, num_sge = wqe->sqe.num_sge; 777 778 if (unlikely(num_sge > SIW_MAX_SGE)) 779 return -EINVAL; 780 781 for (i = 0, len = 0; num_sge; num_sge--, i++, sge++) { 782 /* 783 * rdma verbs: do not check stag for a zero length sge 784 */ 785 if (sge->length) { 786 int rv = siw_check_sge(pd, sge, &wqe->mem[i], perms, 0, 787 sge->length); 788 789 if (unlikely(rv != E_ACCESS_OK)) 790 return rv; 791 } 792 len += sge->length; 793 } 794 return len; 795 } 796 797 /* 798 * siw_qp_sq_proc_tx() 799 * 800 * Process one WQE which needs transmission on the wire. 801 */ 802 static int siw_qp_sq_proc_tx(struct siw_qp *qp, struct siw_wqe *wqe) 803 { 804 struct siw_iwarp_tx *c_tx = &qp->tx_ctx; 805 struct socket *s = qp->attrs.sk; 806 int rv = 0, burst_len = qp->tx_ctx.burst; 807 enum rdmap_ecode ecode = RDMAP_ECODE_CATASTROPHIC_STREAM; 808 809 if (unlikely(wqe->wr_status == SIW_WR_IDLE)) 810 return 0; 811 812 if (!burst_len) 813 burst_len = SQ_USER_MAXBURST; 814 815 if (wqe->wr_status == SIW_WR_QUEUED) { 816 if (!(wqe->sqe.flags & SIW_WQE_INLINE)) { 817 if (tx_type(wqe) == SIW_OP_READ_RESPONSE) 818 wqe->sqe.num_sge = 1; 819 820 if (tx_type(wqe) != SIW_OP_READ && 821 tx_type(wqe) != SIW_OP_READ_LOCAL_INV) { 822 /* 823 * Reference memory to be tx'd w/o checking 824 * access for LOCAL_READ permission, since 825 * not defined in RDMA core. 826 */ 827 rv = siw_check_sgl_tx(qp->pd, wqe, 0); 828 if (rv < 0) { 829 if (tx_type(wqe) == 830 SIW_OP_READ_RESPONSE) 831 ecode = siw_rdmap_error(-rv); 832 rv = -EINVAL; 833 goto tx_error; 834 } 835 wqe->bytes = rv; 836 } else { 837 wqe->bytes = 0; 838 } 839 } else { 840 wqe->bytes = wqe->sqe.sge[0].length; 841 if (!rdma_is_kernel_res(&qp->base_qp.res)) { 842 if (wqe->bytes > SIW_MAX_INLINE) { 843 rv = -EINVAL; 844 goto tx_error; 845 } 846 wqe->sqe.sge[0].laddr = 847 (u64)(uintptr_t)&wqe->sqe.sge[1]; 848 } 849 } 850 wqe->wr_status = SIW_WR_INPROGRESS; 851 wqe->processed = 0; 852 853 siw_update_tcpseg(c_tx, s); 854 855 rv = siw_qp_prepare_tx(c_tx); 856 if (rv == PKT_FRAGMENTED) { 857 c_tx->state = SIW_SEND_HDR; 858 siw_prepare_fpdu(qp, wqe); 859 } else if (rv == PKT_COMPLETE) { 860 c_tx->state = SIW_SEND_SHORT_FPDU; 861 } else { 862 goto tx_error; 863 } 864 } 865 866 next_segment: 867 siw_dbg_qp(qp, "wr type %d, state %d, data %u, sent %u, id %llx\n", 868 tx_type(wqe), wqe->wr_status, wqe->bytes, wqe->processed, 869 wqe->sqe.id); 870 871 if (--burst_len == 0) { 872 rv = -EINPROGRESS; 873 goto tx_done; 874 } 875 if (c_tx->state == SIW_SEND_SHORT_FPDU) { 876 enum siw_opcode tx_type = tx_type(wqe); 877 unsigned int msg_flags; 878 879 if (siw_sq_empty(qp) || !siw_tcp_nagle || burst_len == 1) 880 /* 881 * End current TCP segment, if SQ runs empty, 882 * or siw_tcp_nagle is not set, or we bail out 883 * soon due to no burst credit left. 884 */ 885 msg_flags = MSG_DONTWAIT; 886 else 887 msg_flags = MSG_DONTWAIT | MSG_MORE; 888 889 rv = siw_tx_ctrl(c_tx, s, msg_flags); 890 891 if (!rv && tx_type != SIW_OP_READ && 892 tx_type != SIW_OP_READ_LOCAL_INV) 893 wqe->processed = wqe->bytes; 894 895 goto tx_done; 896 897 } else { 898 rv = siw_tx_hdt(c_tx, s); 899 } 900 if (!rv) { 901 /* 902 * One segment sent. Processing completed if last 903 * segment, Do next segment otherwise. 904 */ 905 if (unlikely(c_tx->tx_suspend)) { 906 /* 907 * Verbs, 6.4.: Try stopping sending after a full 908 * DDP segment if the connection goes down 909 * (== peer halfclose) 910 */ 911 rv = -ECONNABORTED; 912 goto tx_done; 913 } 914 if (c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_LAST) { 915 siw_dbg_qp(qp, "WQE completed\n"); 916 goto tx_done; 917 } 918 c_tx->state = SIW_SEND_HDR; 919 920 siw_update_tcpseg(c_tx, s); 921 922 siw_prepare_fpdu(qp, wqe); 923 goto next_segment; 924 } 925 tx_done: 926 qp->tx_ctx.burst = burst_len; 927 return rv; 928 929 tx_error: 930 if (ecode != RDMAP_ECODE_CATASTROPHIC_STREAM) 931 siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP, 932 RDMAP_ETYPE_REMOTE_PROTECTION, ecode, 1); 933 else 934 siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP, 935 RDMAP_ETYPE_CATASTROPHIC, 936 RDMAP_ECODE_UNSPECIFIED, 1); 937 return rv; 938 } 939 940 static int siw_fastreg_mr(struct ib_pd *pd, struct siw_sqe *sqe) 941 { 942 struct ib_mr *base_mr = (struct ib_mr *)(uintptr_t)sqe->base_mr; 943 struct siw_device *sdev = to_siw_dev(pd->device); 944 struct siw_mem *mem; 945 int rv = 0; 946 947 siw_dbg_pd(pd, "STag 0x%08x\n", sqe->rkey); 948 949 if (unlikely(!base_mr)) { 950 pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey); 951 return -EINVAL; 952 } 953 954 if (unlikely(base_mr->rkey >> 8 != sqe->rkey >> 8)) { 955 pr_warn("siw: fastreg: STag 0x%08x: bad MR\n", sqe->rkey); 956 return -EINVAL; 957 } 958 959 mem = siw_mem_id2obj(sdev, sqe->rkey >> 8); 960 if (unlikely(!mem)) { 961 pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey); 962 return -EINVAL; 963 } 964 965 if (unlikely(mem->pd != pd)) { 966 pr_warn("siw: fastreg: PD mismatch\n"); 967 rv = -EINVAL; 968 goto out; 969 } 970 if (unlikely(mem->stag_valid)) { 971 pr_warn("siw: fastreg: STag 0x%08x already valid\n", sqe->rkey); 972 rv = -EINVAL; 973 goto out; 974 } 975 /* Refresh STag since user may have changed key part */ 976 mem->stag = sqe->rkey; 977 mem->perms = sqe->access; 978 979 siw_dbg_mem(mem, "STag 0x%08x now valid\n", sqe->rkey); 980 mem->va = base_mr->iova; 981 mem->stag_valid = 1; 982 out: 983 siw_mem_put(mem); 984 return rv; 985 } 986 987 static int siw_qp_sq_proc_local(struct siw_qp *qp, struct siw_wqe *wqe) 988 { 989 int rv; 990 991 switch (tx_type(wqe)) { 992 case SIW_OP_REG_MR: 993 rv = siw_fastreg_mr(qp->pd, &wqe->sqe); 994 break; 995 996 case SIW_OP_INVAL_STAG: 997 rv = siw_invalidate_stag(qp->pd, wqe->sqe.rkey); 998 break; 999 1000 default: 1001 rv = -EINVAL; 1002 } 1003 return rv; 1004 } 1005 1006 /* 1007 * siw_qp_sq_process() 1008 * 1009 * Core TX path routine for RDMAP/DDP/MPA using a TCP kernel socket. 1010 * Sends RDMAP payload for the current SQ WR @wqe of @qp in one or more 1011 * MPA FPDUs, each containing a DDP segment. 1012 * 1013 * SQ processing may occur in user context as a result of posting 1014 * new WQE's or from siw_sq_work_handler() context. Processing in 1015 * user context is limited to non-kernel verbs users. 1016 * 1017 * SQ processing may get paused anytime, possibly in the middle of a WR 1018 * or FPDU, if insufficient send space is available. SQ processing 1019 * gets resumed from siw_sq_work_handler(), if send space becomes 1020 * available again. 1021 * 1022 * Must be called with the QP state read-locked. 1023 * 1024 * Note: 1025 * An outbound RREQ can be satisfied by the corresponding RRESP 1026 * _before_ it gets assigned to the ORQ. This happens regularly 1027 * in RDMA READ via loopback case. Since both outbound RREQ and 1028 * inbound RRESP can be handled by the same CPU, locking the ORQ 1029 * is dead-lock prone and thus not an option. With that, the 1030 * RREQ gets assigned to the ORQ _before_ being sent - see 1031 * siw_activate_tx() - and pulled back in case of send failure. 1032 */ 1033 int siw_qp_sq_process(struct siw_qp *qp) 1034 { 1035 struct siw_wqe *wqe = tx_wqe(qp); 1036 enum siw_opcode tx_type; 1037 unsigned long flags; 1038 int rv = 0; 1039 1040 siw_dbg_qp(qp, "enter for type %d\n", tx_type(wqe)); 1041 1042 next_wqe: 1043 /* 1044 * Stop QP processing if SQ state changed 1045 */ 1046 if (unlikely(qp->tx_ctx.tx_suspend)) { 1047 siw_dbg_qp(qp, "tx suspended\n"); 1048 goto done; 1049 } 1050 tx_type = tx_type(wqe); 1051 1052 if (tx_type <= SIW_OP_READ_RESPONSE) 1053 rv = siw_qp_sq_proc_tx(qp, wqe); 1054 else 1055 rv = siw_qp_sq_proc_local(qp, wqe); 1056 1057 if (!rv) { 1058 /* 1059 * WQE processing done 1060 */ 1061 switch (tx_type) { 1062 case SIW_OP_SEND: 1063 case SIW_OP_SEND_REMOTE_INV: 1064 case SIW_OP_WRITE: 1065 siw_wqe_put_mem(wqe, tx_type); 1066 fallthrough; 1067 1068 case SIW_OP_INVAL_STAG: 1069 case SIW_OP_REG_MR: 1070 if (tx_flags(wqe) & SIW_WQE_SIGNALLED) 1071 siw_sqe_complete(qp, &wqe->sqe, wqe->bytes, 1072 SIW_WC_SUCCESS); 1073 break; 1074 1075 case SIW_OP_READ: 1076 case SIW_OP_READ_LOCAL_INV: 1077 /* 1078 * already enqueued to ORQ queue 1079 */ 1080 break; 1081 1082 case SIW_OP_READ_RESPONSE: 1083 siw_wqe_put_mem(wqe, tx_type); 1084 break; 1085 1086 default: 1087 WARN(1, "undefined WQE type %d\n", tx_type); 1088 rv = -EINVAL; 1089 goto done; 1090 } 1091 1092 spin_lock_irqsave(&qp->sq_lock, flags); 1093 wqe->wr_status = SIW_WR_IDLE; 1094 rv = siw_activate_tx(qp); 1095 spin_unlock_irqrestore(&qp->sq_lock, flags); 1096 1097 if (rv <= 0) 1098 goto done; 1099 1100 goto next_wqe; 1101 1102 } else if (rv == -EAGAIN) { 1103 siw_dbg_qp(qp, "sq paused: hd/tr %d of %d, data %d\n", 1104 qp->tx_ctx.ctrl_sent, qp->tx_ctx.ctrl_len, 1105 qp->tx_ctx.bytes_unsent); 1106 rv = 0; 1107 goto done; 1108 } else if (rv == -EINPROGRESS) { 1109 rv = siw_sq_start(qp); 1110 goto done; 1111 } else { 1112 /* 1113 * WQE processing failed. 1114 * Verbs 8.3.2: 1115 * o It turns any WQE into a signalled WQE. 1116 * o Local catastrophic error must be surfaced 1117 * o QP must be moved into Terminate state: done by code 1118 * doing socket state change processing 1119 * 1120 * o TODO: Termination message must be sent. 1121 * o TODO: Implement more precise work completion errors, 1122 * see enum ib_wc_status in ib_verbs.h 1123 */ 1124 siw_dbg_qp(qp, "wqe type %d processing failed: %d\n", 1125 tx_type(wqe), rv); 1126 1127 spin_lock_irqsave(&qp->sq_lock, flags); 1128 /* 1129 * RREQ may have already been completed by inbound RRESP! 1130 */ 1131 if ((tx_type == SIW_OP_READ || 1132 tx_type == SIW_OP_READ_LOCAL_INV) && qp->attrs.orq_size) { 1133 /* Cleanup pending entry in ORQ */ 1134 qp->orq_put--; 1135 qp->orq[qp->orq_put % qp->attrs.orq_size].flags = 0; 1136 } 1137 spin_unlock_irqrestore(&qp->sq_lock, flags); 1138 /* 1139 * immediately suspends further TX processing 1140 */ 1141 if (!qp->tx_ctx.tx_suspend) 1142 siw_qp_cm_drop(qp, 0); 1143 1144 switch (tx_type) { 1145 case SIW_OP_SEND: 1146 case SIW_OP_SEND_REMOTE_INV: 1147 case SIW_OP_SEND_WITH_IMM: 1148 case SIW_OP_WRITE: 1149 case SIW_OP_READ: 1150 case SIW_OP_READ_LOCAL_INV: 1151 siw_wqe_put_mem(wqe, tx_type); 1152 fallthrough; 1153 1154 case SIW_OP_INVAL_STAG: 1155 case SIW_OP_REG_MR: 1156 siw_sqe_complete(qp, &wqe->sqe, wqe->bytes, 1157 SIW_WC_LOC_QP_OP_ERR); 1158 1159 siw_qp_event(qp, IB_EVENT_QP_FATAL); 1160 1161 break; 1162 1163 case SIW_OP_READ_RESPONSE: 1164 siw_dbg_qp(qp, "proc. read.response failed: %d\n", rv); 1165 1166 siw_qp_event(qp, IB_EVENT_QP_REQ_ERR); 1167 1168 siw_wqe_put_mem(wqe, SIW_OP_READ_RESPONSE); 1169 1170 break; 1171 1172 default: 1173 WARN(1, "undefined WQE type %d\n", tx_type); 1174 rv = -EINVAL; 1175 } 1176 wqe->wr_status = SIW_WR_IDLE; 1177 } 1178 done: 1179 return rv; 1180 } 1181 1182 static void siw_sq_resume(struct siw_qp *qp) 1183 { 1184 if (down_read_trylock(&qp->state_lock)) { 1185 if (likely(qp->attrs.state == SIW_QP_STATE_RTS && 1186 !qp->tx_ctx.tx_suspend)) { 1187 int rv = siw_qp_sq_process(qp); 1188 1189 up_read(&qp->state_lock); 1190 1191 if (unlikely(rv < 0)) { 1192 siw_dbg_qp(qp, "SQ task failed: err %d\n", rv); 1193 1194 if (!qp->tx_ctx.tx_suspend) 1195 siw_qp_cm_drop(qp, 0); 1196 } 1197 } else { 1198 up_read(&qp->state_lock); 1199 } 1200 } else { 1201 siw_dbg_qp(qp, "Resume SQ while QP locked\n"); 1202 } 1203 siw_qp_put(qp); 1204 } 1205 1206 struct tx_task_t { 1207 struct llist_head active; 1208 wait_queue_head_t waiting; 1209 }; 1210 1211 static DEFINE_PER_CPU(struct tx_task_t, siw_tx_task_g); 1212 1213 int siw_create_tx_threads(void) 1214 { 1215 int cpu, assigned = 0; 1216 1217 for_each_online_cpu(cpu) { 1218 struct tx_task_t *tx_task; 1219 1220 /* Skip HT cores */ 1221 if (cpu % cpumask_weight(topology_sibling_cpumask(cpu))) 1222 continue; 1223 1224 tx_task = &per_cpu(siw_tx_task_g, cpu); 1225 init_llist_head(&tx_task->active); 1226 init_waitqueue_head(&tx_task->waiting); 1227 1228 siw_tx_thread[cpu] = 1229 kthread_run_on_cpu(siw_run_sq, 1230 (unsigned long *)(long)cpu, 1231 cpu, "siw_tx/%u"); 1232 if (IS_ERR(siw_tx_thread[cpu])) { 1233 siw_tx_thread[cpu] = NULL; 1234 continue; 1235 } 1236 assigned++; 1237 } 1238 return assigned; 1239 } 1240 1241 void siw_stop_tx_threads(void) 1242 { 1243 int cpu; 1244 1245 for_each_possible_cpu(cpu) { 1246 if (siw_tx_thread[cpu]) { 1247 kthread_stop(siw_tx_thread[cpu]); 1248 wake_up(&per_cpu(siw_tx_task_g, cpu).waiting); 1249 siw_tx_thread[cpu] = NULL; 1250 } 1251 } 1252 } 1253 1254 int siw_run_sq(void *data) 1255 { 1256 const int nr_cpu = (unsigned int)(long)data; 1257 struct llist_node *active; 1258 struct siw_qp *qp; 1259 struct tx_task_t *tx_task = &per_cpu(siw_tx_task_g, nr_cpu); 1260 1261 while (1) { 1262 struct llist_node *fifo_list = NULL; 1263 1264 wait_event_interruptible(tx_task->waiting, 1265 !llist_empty(&tx_task->active) || 1266 kthread_should_stop()); 1267 1268 if (kthread_should_stop()) 1269 break; 1270 1271 active = llist_del_all(&tx_task->active); 1272 /* 1273 * llist_del_all returns a list with newest entry first. 1274 * Re-order list for fairness among QP's. 1275 */ 1276 fifo_list = llist_reverse_order(active); 1277 while (fifo_list) { 1278 qp = container_of(fifo_list, struct siw_qp, tx_list); 1279 fifo_list = llist_next(fifo_list); 1280 qp->tx_list.next = NULL; 1281 1282 siw_sq_resume(qp); 1283 } 1284 } 1285 active = llist_del_all(&tx_task->active); 1286 if (active) { 1287 llist_for_each_entry(qp, active, tx_list) { 1288 qp->tx_list.next = NULL; 1289 siw_sq_resume(qp); 1290 } 1291 } 1292 return 0; 1293 } 1294 1295 int siw_sq_start(struct siw_qp *qp) 1296 { 1297 if (tx_wqe(qp)->wr_status == SIW_WR_IDLE) 1298 return 0; 1299 1300 if (unlikely(!cpu_online(qp->tx_cpu))) { 1301 siw_put_tx_cpu(qp->tx_cpu); 1302 qp->tx_cpu = siw_get_tx_cpu(qp->sdev); 1303 if (qp->tx_cpu < 0) { 1304 pr_warn("siw: no tx cpu available\n"); 1305 1306 return -EIO; 1307 } 1308 } 1309 siw_qp_get(qp); 1310 1311 llist_add(&qp->tx_list, &per_cpu(siw_tx_task_g, qp->tx_cpu).active); 1312 1313 wake_up(&per_cpu(siw_tx_task_g, qp->tx_cpu).waiting); 1314 1315 return 0; 1316 } 1317