xref: /openbmc/linux/drivers/infiniband/sw/rxe/rxe_resp.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
4  * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
5  */
6 
7 #include <linux/skbuff.h>
8 
9 #include "rxe.h"
10 #include "rxe_loc.h"
11 #include "rxe_queue.h"
12 
13 enum resp_states {
14 	RESPST_NONE,
15 	RESPST_GET_REQ,
16 	RESPST_CHK_PSN,
17 	RESPST_CHK_OP_SEQ,
18 	RESPST_CHK_OP_VALID,
19 	RESPST_CHK_RESOURCE,
20 	RESPST_CHK_LENGTH,
21 	RESPST_CHK_RKEY,
22 	RESPST_EXECUTE,
23 	RESPST_READ_REPLY,
24 	RESPST_ATOMIC_REPLY,
25 	RESPST_ATOMIC_WRITE_REPLY,
26 	RESPST_PROCESS_FLUSH,
27 	RESPST_COMPLETE,
28 	RESPST_ACKNOWLEDGE,
29 	RESPST_CLEANUP,
30 	RESPST_DUPLICATE_REQUEST,
31 	RESPST_ERR_MALFORMED_WQE,
32 	RESPST_ERR_UNSUPPORTED_OPCODE,
33 	RESPST_ERR_MISALIGNED_ATOMIC,
34 	RESPST_ERR_PSN_OUT_OF_SEQ,
35 	RESPST_ERR_MISSING_OPCODE_FIRST,
36 	RESPST_ERR_MISSING_OPCODE_LAST_C,
37 	RESPST_ERR_MISSING_OPCODE_LAST_D1E,
38 	RESPST_ERR_TOO_MANY_RDMA_ATM_REQ,
39 	RESPST_ERR_RNR,
40 	RESPST_ERR_RKEY_VIOLATION,
41 	RESPST_ERR_INVALIDATE_RKEY,
42 	RESPST_ERR_LENGTH,
43 	RESPST_ERR_CQ_OVERFLOW,
44 	RESPST_ERROR,
45 	RESPST_RESET,
46 	RESPST_DONE,
47 	RESPST_EXIT,
48 };
49 
50 static char *resp_state_name[] = {
51 	[RESPST_NONE]				= "NONE",
52 	[RESPST_GET_REQ]			= "GET_REQ",
53 	[RESPST_CHK_PSN]			= "CHK_PSN",
54 	[RESPST_CHK_OP_SEQ]			= "CHK_OP_SEQ",
55 	[RESPST_CHK_OP_VALID]			= "CHK_OP_VALID",
56 	[RESPST_CHK_RESOURCE]			= "CHK_RESOURCE",
57 	[RESPST_CHK_LENGTH]			= "CHK_LENGTH",
58 	[RESPST_CHK_RKEY]			= "CHK_RKEY",
59 	[RESPST_EXECUTE]			= "EXECUTE",
60 	[RESPST_READ_REPLY]			= "READ_REPLY",
61 	[RESPST_ATOMIC_REPLY]			= "ATOMIC_REPLY",
62 	[RESPST_ATOMIC_WRITE_REPLY]		= "ATOMIC_WRITE_REPLY",
63 	[RESPST_PROCESS_FLUSH]			= "PROCESS_FLUSH",
64 	[RESPST_COMPLETE]			= "COMPLETE",
65 	[RESPST_ACKNOWLEDGE]			= "ACKNOWLEDGE",
66 	[RESPST_CLEANUP]			= "CLEANUP",
67 	[RESPST_DUPLICATE_REQUEST]		= "DUPLICATE_REQUEST",
68 	[RESPST_ERR_MALFORMED_WQE]		= "ERR_MALFORMED_WQE",
69 	[RESPST_ERR_UNSUPPORTED_OPCODE]		= "ERR_UNSUPPORTED_OPCODE",
70 	[RESPST_ERR_MISALIGNED_ATOMIC]		= "ERR_MISALIGNED_ATOMIC",
71 	[RESPST_ERR_PSN_OUT_OF_SEQ]		= "ERR_PSN_OUT_OF_SEQ",
72 	[RESPST_ERR_MISSING_OPCODE_FIRST]	= "ERR_MISSING_OPCODE_FIRST",
73 	[RESPST_ERR_MISSING_OPCODE_LAST_C]	= "ERR_MISSING_OPCODE_LAST_C",
74 	[RESPST_ERR_MISSING_OPCODE_LAST_D1E]	= "ERR_MISSING_OPCODE_LAST_D1E",
75 	[RESPST_ERR_TOO_MANY_RDMA_ATM_REQ]	= "ERR_TOO_MANY_RDMA_ATM_REQ",
76 	[RESPST_ERR_RNR]			= "ERR_RNR",
77 	[RESPST_ERR_RKEY_VIOLATION]		= "ERR_RKEY_VIOLATION",
78 	[RESPST_ERR_INVALIDATE_RKEY]		= "ERR_INVALIDATE_RKEY_VIOLATION",
79 	[RESPST_ERR_LENGTH]			= "ERR_LENGTH",
80 	[RESPST_ERR_CQ_OVERFLOW]		= "ERR_CQ_OVERFLOW",
81 	[RESPST_ERROR]				= "ERROR",
82 	[RESPST_RESET]				= "RESET",
83 	[RESPST_DONE]				= "DONE",
84 	[RESPST_EXIT]				= "EXIT",
85 };
86 
87 /* rxe_recv calls here to add a request packet to the input queue */
88 void rxe_resp_queue_pkt(struct rxe_qp *qp, struct sk_buff *skb)
89 {
90 	int must_sched;
91 	struct rxe_pkt_info *pkt = SKB_TO_PKT(skb);
92 
93 	skb_queue_tail(&qp->req_pkts, skb);
94 
95 	must_sched = (pkt->opcode == IB_OPCODE_RC_RDMA_READ_REQUEST) ||
96 			(skb_queue_len(&qp->req_pkts) > 1);
97 
98 	if (must_sched)
99 		rxe_sched_task(&qp->resp.task);
100 	else
101 		rxe_run_task(&qp->resp.task);
102 }
103 
104 static inline enum resp_states get_req(struct rxe_qp *qp,
105 				       struct rxe_pkt_info **pkt_p)
106 {
107 	struct sk_buff *skb;
108 
109 	if (qp->resp.state == QP_STATE_ERROR) {
110 		while ((skb = skb_dequeue(&qp->req_pkts))) {
111 			rxe_put(qp);
112 			kfree_skb(skb);
113 			ib_device_put(qp->ibqp.device);
114 		}
115 
116 		/* go drain recv wr queue */
117 		return RESPST_CHK_RESOURCE;
118 	}
119 
120 	skb = skb_peek(&qp->req_pkts);
121 	if (!skb)
122 		return RESPST_EXIT;
123 
124 	*pkt_p = SKB_TO_PKT(skb);
125 
126 	return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN;
127 }
128 
129 static enum resp_states check_psn(struct rxe_qp *qp,
130 				  struct rxe_pkt_info *pkt)
131 {
132 	int diff = psn_compare(pkt->psn, qp->resp.psn);
133 	struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
134 
135 	switch (qp_type(qp)) {
136 	case IB_QPT_RC:
137 		if (diff > 0) {
138 			if (qp->resp.sent_psn_nak)
139 				return RESPST_CLEANUP;
140 
141 			qp->resp.sent_psn_nak = 1;
142 			rxe_counter_inc(rxe, RXE_CNT_OUT_OF_SEQ_REQ);
143 			return RESPST_ERR_PSN_OUT_OF_SEQ;
144 
145 		} else if (diff < 0) {
146 			rxe_counter_inc(rxe, RXE_CNT_DUP_REQ);
147 			return RESPST_DUPLICATE_REQUEST;
148 		}
149 
150 		if (qp->resp.sent_psn_nak)
151 			qp->resp.sent_psn_nak = 0;
152 
153 		break;
154 
155 	case IB_QPT_UC:
156 		if (qp->resp.drop_msg || diff != 0) {
157 			if (pkt->mask & RXE_START_MASK) {
158 				qp->resp.drop_msg = 0;
159 				return RESPST_CHK_OP_SEQ;
160 			}
161 
162 			qp->resp.drop_msg = 1;
163 			return RESPST_CLEANUP;
164 		}
165 		break;
166 	default:
167 		break;
168 	}
169 
170 	return RESPST_CHK_OP_SEQ;
171 }
172 
173 static enum resp_states check_op_seq(struct rxe_qp *qp,
174 				     struct rxe_pkt_info *pkt)
175 {
176 	switch (qp_type(qp)) {
177 	case IB_QPT_RC:
178 		switch (qp->resp.opcode) {
179 		case IB_OPCODE_RC_SEND_FIRST:
180 		case IB_OPCODE_RC_SEND_MIDDLE:
181 			switch (pkt->opcode) {
182 			case IB_OPCODE_RC_SEND_MIDDLE:
183 			case IB_OPCODE_RC_SEND_LAST:
184 			case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
185 			case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
186 				return RESPST_CHK_OP_VALID;
187 			default:
188 				return RESPST_ERR_MISSING_OPCODE_LAST_C;
189 			}
190 
191 		case IB_OPCODE_RC_RDMA_WRITE_FIRST:
192 		case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
193 			switch (pkt->opcode) {
194 			case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
195 			case IB_OPCODE_RC_RDMA_WRITE_LAST:
196 			case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
197 				return RESPST_CHK_OP_VALID;
198 			default:
199 				return RESPST_ERR_MISSING_OPCODE_LAST_C;
200 			}
201 
202 		default:
203 			switch (pkt->opcode) {
204 			case IB_OPCODE_RC_SEND_MIDDLE:
205 			case IB_OPCODE_RC_SEND_LAST:
206 			case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
207 			case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
208 			case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
209 			case IB_OPCODE_RC_RDMA_WRITE_LAST:
210 			case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
211 				return RESPST_ERR_MISSING_OPCODE_FIRST;
212 			default:
213 				return RESPST_CHK_OP_VALID;
214 			}
215 		}
216 		break;
217 
218 	case IB_QPT_UC:
219 		switch (qp->resp.opcode) {
220 		case IB_OPCODE_UC_SEND_FIRST:
221 		case IB_OPCODE_UC_SEND_MIDDLE:
222 			switch (pkt->opcode) {
223 			case IB_OPCODE_UC_SEND_MIDDLE:
224 			case IB_OPCODE_UC_SEND_LAST:
225 			case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
226 				return RESPST_CHK_OP_VALID;
227 			default:
228 				return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
229 			}
230 
231 		case IB_OPCODE_UC_RDMA_WRITE_FIRST:
232 		case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
233 			switch (pkt->opcode) {
234 			case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
235 			case IB_OPCODE_UC_RDMA_WRITE_LAST:
236 			case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
237 				return RESPST_CHK_OP_VALID;
238 			default:
239 				return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
240 			}
241 
242 		default:
243 			switch (pkt->opcode) {
244 			case IB_OPCODE_UC_SEND_MIDDLE:
245 			case IB_OPCODE_UC_SEND_LAST:
246 			case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
247 			case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
248 			case IB_OPCODE_UC_RDMA_WRITE_LAST:
249 			case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
250 				qp->resp.drop_msg = 1;
251 				return RESPST_CLEANUP;
252 			default:
253 				return RESPST_CHK_OP_VALID;
254 			}
255 		}
256 		break;
257 
258 	default:
259 		return RESPST_CHK_OP_VALID;
260 	}
261 }
262 
263 static bool check_qp_attr_access(struct rxe_qp *qp,
264 				 struct rxe_pkt_info *pkt)
265 {
266 	if (((pkt->mask & RXE_READ_MASK) &&
267 	     !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) ||
268 	    ((pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) &&
269 	     !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) ||
270 	    ((pkt->mask & RXE_ATOMIC_MASK) &&
271 	     !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
272 		return false;
273 
274 	if (pkt->mask & RXE_FLUSH_MASK) {
275 		u32 flush_type = feth_plt(pkt);
276 
277 		if ((flush_type & IB_FLUSH_GLOBAL &&
278 		     !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_GLOBAL)) ||
279 		    (flush_type & IB_FLUSH_PERSISTENT &&
280 		     !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_PERSISTENT)))
281 			return false;
282 	}
283 
284 	return true;
285 }
286 
287 static enum resp_states check_op_valid(struct rxe_qp *qp,
288 				       struct rxe_pkt_info *pkt)
289 {
290 	switch (qp_type(qp)) {
291 	case IB_QPT_RC:
292 		if (!check_qp_attr_access(qp, pkt))
293 			return RESPST_ERR_UNSUPPORTED_OPCODE;
294 
295 		break;
296 
297 	case IB_QPT_UC:
298 		if ((pkt->mask & RXE_WRITE_MASK) &&
299 		    !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) {
300 			qp->resp.drop_msg = 1;
301 			return RESPST_CLEANUP;
302 		}
303 
304 		break;
305 
306 	case IB_QPT_UD:
307 	case IB_QPT_GSI:
308 		break;
309 
310 	default:
311 		WARN_ON_ONCE(1);
312 		break;
313 	}
314 
315 	return RESPST_CHK_RESOURCE;
316 }
317 
318 static enum resp_states get_srq_wqe(struct rxe_qp *qp)
319 {
320 	struct rxe_srq *srq = qp->srq;
321 	struct rxe_queue *q = srq->rq.queue;
322 	struct rxe_recv_wqe *wqe;
323 	struct ib_event ev;
324 	unsigned int count;
325 	size_t size;
326 	unsigned long flags;
327 
328 	if (srq->error)
329 		return RESPST_ERR_RNR;
330 
331 	spin_lock_irqsave(&srq->rq.consumer_lock, flags);
332 
333 	wqe = queue_head(q, QUEUE_TYPE_FROM_CLIENT);
334 	if (!wqe) {
335 		spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
336 		return RESPST_ERR_RNR;
337 	}
338 
339 	/* don't trust user space data */
340 	if (unlikely(wqe->dma.num_sge > srq->rq.max_sge)) {
341 		spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
342 		rxe_dbg_qp(qp, "invalid num_sge in SRQ entry\n");
343 		return RESPST_ERR_MALFORMED_WQE;
344 	}
345 	size = sizeof(*wqe) + wqe->dma.num_sge*sizeof(struct rxe_sge);
346 	memcpy(&qp->resp.srq_wqe, wqe, size);
347 
348 	qp->resp.wqe = &qp->resp.srq_wqe.wqe;
349 	queue_advance_consumer(q, QUEUE_TYPE_FROM_CLIENT);
350 	count = queue_count(q, QUEUE_TYPE_FROM_CLIENT);
351 
352 	if (srq->limit && srq->ibsrq.event_handler && (count < srq->limit)) {
353 		srq->limit = 0;
354 		goto event;
355 	}
356 
357 	spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
358 	return RESPST_CHK_LENGTH;
359 
360 event:
361 	spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
362 	ev.device = qp->ibqp.device;
363 	ev.element.srq = qp->ibqp.srq;
364 	ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
365 	srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context);
366 	return RESPST_CHK_LENGTH;
367 }
368 
369 static enum resp_states check_resource(struct rxe_qp *qp,
370 				       struct rxe_pkt_info *pkt)
371 {
372 	struct rxe_srq *srq = qp->srq;
373 
374 	if (qp->resp.state == QP_STATE_ERROR) {
375 		if (qp->resp.wqe) {
376 			qp->resp.status = IB_WC_WR_FLUSH_ERR;
377 			return RESPST_COMPLETE;
378 		} else if (!srq) {
379 			qp->resp.wqe = queue_head(qp->rq.queue,
380 					QUEUE_TYPE_FROM_CLIENT);
381 			if (qp->resp.wqe) {
382 				qp->resp.status = IB_WC_WR_FLUSH_ERR;
383 				return RESPST_COMPLETE;
384 			} else {
385 				return RESPST_EXIT;
386 			}
387 		} else {
388 			return RESPST_EXIT;
389 		}
390 	}
391 
392 	if (pkt->mask & (RXE_READ_OR_ATOMIC_MASK | RXE_ATOMIC_WRITE_MASK)) {
393 		/* it is the requesters job to not send
394 		 * too many read/atomic ops, we just
395 		 * recycle the responder resource queue
396 		 */
397 		if (likely(qp->attr.max_dest_rd_atomic > 0))
398 			return RESPST_CHK_LENGTH;
399 		else
400 			return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ;
401 	}
402 
403 	if (pkt->mask & RXE_RWR_MASK) {
404 		if (srq)
405 			return get_srq_wqe(qp);
406 
407 		qp->resp.wqe = queue_head(qp->rq.queue,
408 				QUEUE_TYPE_FROM_CLIENT);
409 		return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR;
410 	}
411 
412 	return RESPST_CHK_LENGTH;
413 }
414 
415 static enum resp_states rxe_resp_check_length(struct rxe_qp *qp,
416 					      struct rxe_pkt_info *pkt)
417 {
418 	/*
419 	 * See IBA C9-92
420 	 * For UD QPs we only check if the packet will fit in the
421 	 * receive buffer later. For rmda operations additional
422 	 * length checks are performed in check_rkey.
423 	 */
424 	if (pkt->mask & RXE_PAYLOAD_MASK && ((qp_type(qp) == IB_QPT_RC) ||
425 					     (qp_type(qp) == IB_QPT_UC))) {
426 		unsigned int mtu = qp->mtu;
427 		unsigned int payload = payload_size(pkt);
428 
429 		if ((pkt->mask & RXE_START_MASK) &&
430 		    (pkt->mask & RXE_END_MASK)) {
431 			if (unlikely(payload > mtu)) {
432 				rxe_dbg_qp(qp, "only packet too long");
433 				return RESPST_ERR_LENGTH;
434 			}
435 		} else if ((pkt->mask & RXE_START_MASK) ||
436 			   (pkt->mask & RXE_MIDDLE_MASK)) {
437 			if (unlikely(payload != mtu)) {
438 				rxe_dbg_qp(qp, "first or middle packet not mtu");
439 				return RESPST_ERR_LENGTH;
440 			}
441 		} else if (pkt->mask & RXE_END_MASK) {
442 			if (unlikely((payload == 0) || (payload > mtu))) {
443 				rxe_dbg_qp(qp, "last packet zero or too long");
444 				return RESPST_ERR_LENGTH;
445 			}
446 		}
447 	}
448 
449 	/* See IBA C9-94 */
450 	if (pkt->mask & RXE_RETH_MASK) {
451 		if (reth_len(pkt) > (1U << 31)) {
452 			rxe_dbg_qp(qp, "dma length too long");
453 			return RESPST_ERR_LENGTH;
454 		}
455 	}
456 
457 	return RESPST_CHK_RKEY;
458 }
459 
460 static void qp_resp_from_reth(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
461 {
462 	qp->resp.va = reth_va(pkt);
463 	qp->resp.offset = 0;
464 	qp->resp.rkey = reth_rkey(pkt);
465 	qp->resp.resid = reth_len(pkt);
466 	qp->resp.length = reth_len(pkt);
467 }
468 
469 static void qp_resp_from_atmeth(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
470 {
471 	qp->resp.va = atmeth_va(pkt);
472 	qp->resp.offset = 0;
473 	qp->resp.rkey = atmeth_rkey(pkt);
474 	qp->resp.resid = sizeof(u64);
475 }
476 
477 static enum resp_states check_rkey(struct rxe_qp *qp,
478 				   struct rxe_pkt_info *pkt)
479 {
480 	struct rxe_mr *mr = NULL;
481 	struct rxe_mw *mw = NULL;
482 	u64 va;
483 	u32 rkey;
484 	u32 resid;
485 	u32 pktlen;
486 	int mtu = qp->mtu;
487 	enum resp_states state;
488 	int access = 0;
489 
490 	if (pkt->mask & (RXE_READ_OR_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) {
491 		if (pkt->mask & RXE_RETH_MASK)
492 			qp_resp_from_reth(qp, pkt);
493 
494 		access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ
495 						     : IB_ACCESS_REMOTE_WRITE;
496 	} else if (pkt->mask & RXE_FLUSH_MASK) {
497 		u32 flush_type = feth_plt(pkt);
498 
499 		if (pkt->mask & RXE_RETH_MASK)
500 			qp_resp_from_reth(qp, pkt);
501 
502 		if (flush_type & IB_FLUSH_GLOBAL)
503 			access |= IB_ACCESS_FLUSH_GLOBAL;
504 		if (flush_type & IB_FLUSH_PERSISTENT)
505 			access |= IB_ACCESS_FLUSH_PERSISTENT;
506 	} else if (pkt->mask & RXE_ATOMIC_MASK) {
507 		qp_resp_from_atmeth(qp, pkt);
508 		access = IB_ACCESS_REMOTE_ATOMIC;
509 	} else {
510 		return RESPST_EXECUTE;
511 	}
512 
513 	/* A zero-byte op is not required to set an addr or rkey. See C9-88 */
514 	if ((pkt->mask & RXE_READ_OR_WRITE_MASK) &&
515 	    (pkt->mask & RXE_RETH_MASK) &&
516 	    reth_len(pkt) == 0) {
517 		return RESPST_EXECUTE;
518 	}
519 
520 	va	= qp->resp.va;
521 	rkey	= qp->resp.rkey;
522 	resid	= qp->resp.resid;
523 	pktlen	= payload_size(pkt);
524 
525 	if (rkey_is_mw(rkey)) {
526 		mw = rxe_lookup_mw(qp, access, rkey);
527 		if (!mw) {
528 			rxe_dbg_qp(qp, "no MW matches rkey %#x\n", rkey);
529 			state = RESPST_ERR_RKEY_VIOLATION;
530 			goto err;
531 		}
532 
533 		mr = mw->mr;
534 		if (!mr) {
535 			rxe_dbg_qp(qp, "MW doesn't have an MR\n");
536 			state = RESPST_ERR_RKEY_VIOLATION;
537 			goto err;
538 		}
539 
540 		if (mw->access & IB_ZERO_BASED)
541 			qp->resp.offset = mw->addr;
542 
543 		rxe_put(mw);
544 		rxe_get(mr);
545 	} else {
546 		mr = lookup_mr(qp->pd, access, rkey, RXE_LOOKUP_REMOTE);
547 		if (!mr) {
548 			rxe_dbg_qp(qp, "no MR matches rkey %#x\n", rkey);
549 			state = RESPST_ERR_RKEY_VIOLATION;
550 			goto err;
551 		}
552 	}
553 
554 	if (pkt->mask & RXE_FLUSH_MASK) {
555 		/* FLUSH MR may not set va or resid
556 		 * no need to check range since we will flush whole mr
557 		 */
558 		if (feth_sel(pkt) == IB_FLUSH_MR)
559 			goto skip_check_range;
560 	}
561 
562 	if (mr_check_range(mr, va + qp->resp.offset, resid)) {
563 		state = RESPST_ERR_RKEY_VIOLATION;
564 		goto err;
565 	}
566 
567 skip_check_range:
568 	if (pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) {
569 		if (resid > mtu) {
570 			if (pktlen != mtu || bth_pad(pkt)) {
571 				state = RESPST_ERR_LENGTH;
572 				goto err;
573 			}
574 		} else {
575 			if (pktlen != resid) {
576 				state = RESPST_ERR_LENGTH;
577 				goto err;
578 			}
579 			if ((bth_pad(pkt) != (0x3 & (-resid)))) {
580 				/* This case may not be exactly that
581 				 * but nothing else fits.
582 				 */
583 				state = RESPST_ERR_LENGTH;
584 				goto err;
585 			}
586 		}
587 	}
588 
589 	WARN_ON_ONCE(qp->resp.mr);
590 
591 	qp->resp.mr = mr;
592 	return RESPST_EXECUTE;
593 
594 err:
595 	if (mr)
596 		rxe_put(mr);
597 	if (mw)
598 		rxe_put(mw);
599 
600 	return state;
601 }
602 
603 static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr,
604 				     int data_len)
605 {
606 	int err;
607 
608 	err = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma,
609 			data_addr, data_len, RXE_TO_MR_OBJ);
610 	if (unlikely(err))
611 		return (err == -ENOSPC) ? RESPST_ERR_LENGTH
612 					: RESPST_ERR_MALFORMED_WQE;
613 
614 	return RESPST_NONE;
615 }
616 
617 static enum resp_states write_data_in(struct rxe_qp *qp,
618 				      struct rxe_pkt_info *pkt)
619 {
620 	enum resp_states rc = RESPST_NONE;
621 	int	err;
622 	int data_len = payload_size(pkt);
623 
624 	err = rxe_mr_copy(qp->resp.mr, qp->resp.va + qp->resp.offset,
625 			  payload_addr(pkt), data_len, RXE_TO_MR_OBJ);
626 	if (err) {
627 		rc = RESPST_ERR_RKEY_VIOLATION;
628 		goto out;
629 	}
630 
631 	qp->resp.va += data_len;
632 	qp->resp.resid -= data_len;
633 
634 out:
635 	return rc;
636 }
637 
638 static struct resp_res *rxe_prepare_res(struct rxe_qp *qp,
639 					struct rxe_pkt_info *pkt,
640 					int type)
641 {
642 	struct resp_res *res;
643 	u32 pkts;
644 
645 	res = &qp->resp.resources[qp->resp.res_head];
646 	rxe_advance_resp_resource(qp);
647 	free_rd_atomic_resource(res);
648 
649 	res->type = type;
650 	res->replay = 0;
651 
652 	switch (type) {
653 	case RXE_READ_MASK:
654 		res->read.va = qp->resp.va + qp->resp.offset;
655 		res->read.va_org = qp->resp.va + qp->resp.offset;
656 		res->read.resid = qp->resp.resid;
657 		res->read.length = qp->resp.resid;
658 		res->read.rkey = qp->resp.rkey;
659 
660 		pkts = max_t(u32, (reth_len(pkt) + qp->mtu - 1)/qp->mtu, 1);
661 		res->first_psn = pkt->psn;
662 		res->cur_psn = pkt->psn;
663 		res->last_psn = (pkt->psn + pkts - 1) & BTH_PSN_MASK;
664 
665 		res->state = rdatm_res_state_new;
666 		break;
667 	case RXE_ATOMIC_MASK:
668 	case RXE_ATOMIC_WRITE_MASK:
669 		res->first_psn = pkt->psn;
670 		res->last_psn = pkt->psn;
671 		res->cur_psn = pkt->psn;
672 		break;
673 	case RXE_FLUSH_MASK:
674 		res->flush.va = qp->resp.va + qp->resp.offset;
675 		res->flush.length = qp->resp.length;
676 		res->flush.type = feth_plt(pkt);
677 		res->flush.level = feth_sel(pkt);
678 	}
679 
680 	return res;
681 }
682 
683 static enum resp_states process_flush(struct rxe_qp *qp,
684 				       struct rxe_pkt_info *pkt)
685 {
686 	u64 length, start;
687 	struct rxe_mr *mr = qp->resp.mr;
688 	struct resp_res *res = qp->resp.res;
689 
690 	/* oA19-14, oA19-15 */
691 	if (res && res->replay)
692 		return RESPST_ACKNOWLEDGE;
693 	else if (!res) {
694 		res = rxe_prepare_res(qp, pkt, RXE_FLUSH_MASK);
695 		qp->resp.res = res;
696 	}
697 
698 	if (res->flush.level == IB_FLUSH_RANGE) {
699 		start = res->flush.va;
700 		length = res->flush.length;
701 	} else { /* level == IB_FLUSH_MR */
702 		start = mr->ibmr.iova;
703 		length = mr->ibmr.length;
704 	}
705 
706 	if (res->flush.type & IB_FLUSH_PERSISTENT) {
707 		if (rxe_flush_pmem_iova(mr, start, length))
708 			return RESPST_ERR_RKEY_VIOLATION;
709 		/* Make data persistent. */
710 		wmb();
711 	} else if (res->flush.type & IB_FLUSH_GLOBAL) {
712 		/* Make data global visibility. */
713 		wmb();
714 	}
715 
716 	qp->resp.msn++;
717 
718 	/* next expected psn, read handles this separately */
719 	qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
720 	qp->resp.ack_psn = qp->resp.psn;
721 
722 	qp->resp.opcode = pkt->opcode;
723 	qp->resp.status = IB_WC_SUCCESS;
724 
725 	return RESPST_ACKNOWLEDGE;
726 }
727 
728 /* Guarantee atomicity of atomic operations at the machine level. */
729 static DEFINE_SPINLOCK(atomic_ops_lock);
730 
731 static enum resp_states atomic_reply(struct rxe_qp *qp,
732 					 struct rxe_pkt_info *pkt)
733 {
734 	u64 *vaddr;
735 	enum resp_states ret;
736 	struct rxe_mr *mr = qp->resp.mr;
737 	struct resp_res *res = qp->resp.res;
738 	u64 value;
739 
740 	if (!res) {
741 		res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_MASK);
742 		qp->resp.res = res;
743 	}
744 
745 	if (!res->replay) {
746 		if (mr->state != RXE_MR_STATE_VALID) {
747 			ret = RESPST_ERR_RKEY_VIOLATION;
748 			goto out;
749 		}
750 
751 		vaddr = iova_to_vaddr(mr, qp->resp.va + qp->resp.offset,
752 					sizeof(u64));
753 
754 		/* check vaddr is 8 bytes aligned. */
755 		if (!vaddr || (uintptr_t)vaddr & 7) {
756 			ret = RESPST_ERR_MISALIGNED_ATOMIC;
757 			goto out;
758 		}
759 
760 		spin_lock_bh(&atomic_ops_lock);
761 		res->atomic.orig_val = value = *vaddr;
762 
763 		if (pkt->opcode == IB_OPCODE_RC_COMPARE_SWAP) {
764 			if (value == atmeth_comp(pkt))
765 				value = atmeth_swap_add(pkt);
766 		} else {
767 			value += atmeth_swap_add(pkt);
768 		}
769 
770 		*vaddr = value;
771 		spin_unlock_bh(&atomic_ops_lock);
772 
773 		qp->resp.msn++;
774 
775 		/* next expected psn, read handles this separately */
776 		qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
777 		qp->resp.ack_psn = qp->resp.psn;
778 
779 		qp->resp.opcode = pkt->opcode;
780 		qp->resp.status = IB_WC_SUCCESS;
781 	}
782 
783 	ret = RESPST_ACKNOWLEDGE;
784 out:
785 	return ret;
786 }
787 
788 #ifdef CONFIG_64BIT
789 static enum resp_states do_atomic_write(struct rxe_qp *qp,
790 					struct rxe_pkt_info *pkt)
791 {
792 	struct rxe_mr *mr = qp->resp.mr;
793 	int payload = payload_size(pkt);
794 	u64 src, *dst;
795 
796 	if (mr->state != RXE_MR_STATE_VALID)
797 		return RESPST_ERR_RKEY_VIOLATION;
798 
799 	memcpy(&src, payload_addr(pkt), payload);
800 
801 	dst = iova_to_vaddr(mr, qp->resp.va + qp->resp.offset, payload);
802 	/* check vaddr is 8 bytes aligned. */
803 	if (!dst || (uintptr_t)dst & 7)
804 		return RESPST_ERR_MISALIGNED_ATOMIC;
805 
806 	/* Do atomic write after all prior operations have completed */
807 	smp_store_release(dst, src);
808 
809 	/* decrease resp.resid to zero */
810 	qp->resp.resid -= sizeof(payload);
811 
812 	qp->resp.msn++;
813 
814 	/* next expected psn, read handles this separately */
815 	qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
816 	qp->resp.ack_psn = qp->resp.psn;
817 
818 	qp->resp.opcode = pkt->opcode;
819 	qp->resp.status = IB_WC_SUCCESS;
820 	return RESPST_ACKNOWLEDGE;
821 }
822 #else
823 static enum resp_states do_atomic_write(struct rxe_qp *qp,
824 					struct rxe_pkt_info *pkt)
825 {
826 	return RESPST_ERR_UNSUPPORTED_OPCODE;
827 }
828 #endif /* CONFIG_64BIT */
829 
830 static enum resp_states atomic_write_reply(struct rxe_qp *qp,
831 					   struct rxe_pkt_info *pkt)
832 {
833 	struct resp_res *res = qp->resp.res;
834 
835 	if (!res) {
836 		res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_WRITE_MASK);
837 		qp->resp.res = res;
838 	}
839 
840 	if (res->replay)
841 		return RESPST_ACKNOWLEDGE;
842 	return do_atomic_write(qp, pkt);
843 }
844 
845 static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp,
846 					  struct rxe_pkt_info *ack,
847 					  int opcode,
848 					  int payload,
849 					  u32 psn,
850 					  u8 syndrome)
851 {
852 	struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
853 	struct sk_buff *skb;
854 	int paylen;
855 	int pad;
856 	int err;
857 
858 	/*
859 	 * allocate packet
860 	 */
861 	pad = (-payload) & 0x3;
862 	paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE;
863 
864 	skb = rxe_init_packet(rxe, &qp->pri_av, paylen, ack);
865 	if (!skb)
866 		return NULL;
867 
868 	ack->qp = qp;
869 	ack->opcode = opcode;
870 	ack->mask = rxe_opcode[opcode].mask;
871 	ack->paylen = paylen;
872 	ack->psn = psn;
873 
874 	bth_init(ack, opcode, 0, 0, pad, IB_DEFAULT_PKEY_FULL,
875 		 qp->attr.dest_qp_num, 0, psn);
876 
877 	if (ack->mask & RXE_AETH_MASK) {
878 		aeth_set_syn(ack, syndrome);
879 		aeth_set_msn(ack, qp->resp.msn);
880 	}
881 
882 	if (ack->mask & RXE_ATMACK_MASK)
883 		atmack_set_orig(ack, qp->resp.res->atomic.orig_val);
884 
885 	err = rxe_prepare(&qp->pri_av, ack, skb);
886 	if (err) {
887 		kfree_skb(skb);
888 		return NULL;
889 	}
890 
891 	return skb;
892 }
893 
894 /**
895  * rxe_recheck_mr - revalidate MR from rkey and get a reference
896  * @qp: the qp
897  * @rkey: the rkey
898  *
899  * This code allows the MR to be invalidated or deregistered or
900  * the MW if one was used to be invalidated or deallocated.
901  * It is assumed that the access permissions if originally good
902  * are OK and the mappings to be unchanged.
903  *
904  * TODO: If someone reregisters an MR to change its size or
905  * access permissions during the processing of an RDMA read
906  * we should kill the responder resource and complete the
907  * operation with an error.
908  *
909  * Return: mr on success else NULL
910  */
911 static struct rxe_mr *rxe_recheck_mr(struct rxe_qp *qp, u32 rkey)
912 {
913 	struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
914 	struct rxe_mr *mr;
915 	struct rxe_mw *mw;
916 
917 	if (rkey_is_mw(rkey)) {
918 		mw = rxe_pool_get_index(&rxe->mw_pool, rkey >> 8);
919 		if (!mw)
920 			return NULL;
921 
922 		mr = mw->mr;
923 		if (mw->rkey != rkey || mw->state != RXE_MW_STATE_VALID ||
924 		    !mr || mr->state != RXE_MR_STATE_VALID) {
925 			rxe_put(mw);
926 			return NULL;
927 		}
928 
929 		rxe_get(mr);
930 		rxe_put(mw);
931 
932 		return mr;
933 	}
934 
935 	mr = rxe_pool_get_index(&rxe->mr_pool, rkey >> 8);
936 	if (!mr)
937 		return NULL;
938 
939 	if (mr->rkey != rkey || mr->state != RXE_MR_STATE_VALID) {
940 		rxe_put(mr);
941 		return NULL;
942 	}
943 
944 	return mr;
945 }
946 
947 /* RDMA read response. If res is not NULL, then we have a current RDMA request
948  * being processed or replayed.
949  */
950 static enum resp_states read_reply(struct rxe_qp *qp,
951 				   struct rxe_pkt_info *req_pkt)
952 {
953 	struct rxe_pkt_info ack_pkt;
954 	struct sk_buff *skb;
955 	int mtu = qp->mtu;
956 	enum resp_states state;
957 	int payload;
958 	int opcode;
959 	int err;
960 	struct resp_res *res = qp->resp.res;
961 	struct rxe_mr *mr;
962 
963 	if (!res) {
964 		res = rxe_prepare_res(qp, req_pkt, RXE_READ_MASK);
965 		qp->resp.res = res;
966 	}
967 
968 	if (res->state == rdatm_res_state_new) {
969 		if (!res->replay) {
970 			mr = qp->resp.mr;
971 			qp->resp.mr = NULL;
972 		} else {
973 			mr = rxe_recheck_mr(qp, res->read.rkey);
974 			if (!mr)
975 				return RESPST_ERR_RKEY_VIOLATION;
976 		}
977 
978 		if (res->read.resid <= mtu)
979 			opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY;
980 		else
981 			opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST;
982 	} else {
983 		mr = rxe_recheck_mr(qp, res->read.rkey);
984 		if (!mr)
985 			return RESPST_ERR_RKEY_VIOLATION;
986 
987 		if (res->read.resid > mtu)
988 			opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE;
989 		else
990 			opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST;
991 	}
992 
993 	res->state = rdatm_res_state_next;
994 
995 	payload = min_t(int, res->read.resid, mtu);
996 
997 	skb = prepare_ack_packet(qp, &ack_pkt, opcode, payload,
998 				 res->cur_psn, AETH_ACK_UNLIMITED);
999 	if (!skb) {
1000 		if (mr)
1001 			rxe_put(mr);
1002 		return RESPST_ERR_RNR;
1003 	}
1004 
1005 	err = rxe_mr_copy(mr, res->read.va, payload_addr(&ack_pkt),
1006 			  payload, RXE_FROM_MR_OBJ);
1007 	if (mr)
1008 		rxe_put(mr);
1009 	if (err) {
1010 		kfree_skb(skb);
1011 		return RESPST_ERR_RKEY_VIOLATION;
1012 	}
1013 
1014 	if (bth_pad(&ack_pkt)) {
1015 		u8 *pad = payload_addr(&ack_pkt) + payload;
1016 
1017 		memset(pad, 0, bth_pad(&ack_pkt));
1018 	}
1019 
1020 	err = rxe_xmit_packet(qp, &ack_pkt, skb);
1021 	if (err)
1022 		return RESPST_ERR_RNR;
1023 
1024 	res->read.va += payload;
1025 	res->read.resid -= payload;
1026 	res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK;
1027 
1028 	if (res->read.resid > 0) {
1029 		state = RESPST_DONE;
1030 	} else {
1031 		qp->resp.res = NULL;
1032 		if (!res->replay)
1033 			qp->resp.opcode = -1;
1034 		if (psn_compare(res->cur_psn, qp->resp.psn) >= 0)
1035 			qp->resp.psn = res->cur_psn;
1036 		state = RESPST_CLEANUP;
1037 	}
1038 
1039 	return state;
1040 }
1041 
1042 static int invalidate_rkey(struct rxe_qp *qp, u32 rkey)
1043 {
1044 	if (rkey_is_mw(rkey))
1045 		return rxe_invalidate_mw(qp, rkey);
1046 	else
1047 		return rxe_invalidate_mr(qp, rkey);
1048 }
1049 
1050 /* Executes a new request. A retried request never reach that function (send
1051  * and writes are discarded, and reads and atomics are retried elsewhere.
1052  */
1053 static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
1054 {
1055 	enum resp_states err;
1056 	struct sk_buff *skb = PKT_TO_SKB(pkt);
1057 	union rdma_network_hdr hdr;
1058 
1059 	if (pkt->mask & RXE_SEND_MASK) {
1060 		if (qp_type(qp) == IB_QPT_UD ||
1061 		    qp_type(qp) == IB_QPT_GSI) {
1062 			if (skb->protocol == htons(ETH_P_IP)) {
1063 				memset(&hdr.reserved, 0,
1064 						sizeof(hdr.reserved));
1065 				memcpy(&hdr.roce4grh, ip_hdr(skb),
1066 						sizeof(hdr.roce4grh));
1067 				err = send_data_in(qp, &hdr, sizeof(hdr));
1068 			} else {
1069 				err = send_data_in(qp, ipv6_hdr(skb),
1070 						sizeof(hdr));
1071 			}
1072 			if (err)
1073 				return err;
1074 		}
1075 		err = send_data_in(qp, payload_addr(pkt), payload_size(pkt));
1076 		if (err)
1077 			return err;
1078 	} else if (pkt->mask & RXE_WRITE_MASK) {
1079 		err = write_data_in(qp, pkt);
1080 		if (err)
1081 			return err;
1082 	} else if (pkt->mask & RXE_READ_MASK) {
1083 		/* For RDMA Read we can increment the msn now. See C9-148. */
1084 		qp->resp.msn++;
1085 		return RESPST_READ_REPLY;
1086 	} else if (pkt->mask & RXE_ATOMIC_MASK) {
1087 		return RESPST_ATOMIC_REPLY;
1088 	} else if (pkt->mask & RXE_ATOMIC_WRITE_MASK) {
1089 		return RESPST_ATOMIC_WRITE_REPLY;
1090 	} else if (pkt->mask & RXE_FLUSH_MASK) {
1091 		return RESPST_PROCESS_FLUSH;
1092 	} else {
1093 		/* Unreachable */
1094 		WARN_ON_ONCE(1);
1095 	}
1096 
1097 	if (pkt->mask & RXE_IETH_MASK) {
1098 		u32 rkey = ieth_rkey(pkt);
1099 
1100 		err = invalidate_rkey(qp, rkey);
1101 		if (err)
1102 			return RESPST_ERR_INVALIDATE_RKEY;
1103 	}
1104 
1105 	if (pkt->mask & RXE_END_MASK)
1106 		/* We successfully processed this new request. */
1107 		qp->resp.msn++;
1108 
1109 	/* next expected psn, read handles this separately */
1110 	qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
1111 	qp->resp.ack_psn = qp->resp.psn;
1112 
1113 	qp->resp.opcode = pkt->opcode;
1114 	qp->resp.status = IB_WC_SUCCESS;
1115 
1116 	if (pkt->mask & RXE_COMP_MASK)
1117 		return RESPST_COMPLETE;
1118 	else if (qp_type(qp) == IB_QPT_RC)
1119 		return RESPST_ACKNOWLEDGE;
1120 	else
1121 		return RESPST_CLEANUP;
1122 }
1123 
1124 static enum resp_states do_complete(struct rxe_qp *qp,
1125 				    struct rxe_pkt_info *pkt)
1126 {
1127 	struct rxe_cqe cqe;
1128 	struct ib_wc *wc = &cqe.ibwc;
1129 	struct ib_uverbs_wc *uwc = &cqe.uibwc;
1130 	struct rxe_recv_wqe *wqe = qp->resp.wqe;
1131 	struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
1132 
1133 	if (!wqe)
1134 		goto finish;
1135 
1136 	memset(&cqe, 0, sizeof(cqe));
1137 
1138 	if (qp->rcq->is_user) {
1139 		uwc->status		= qp->resp.status;
1140 		uwc->qp_num		= qp->ibqp.qp_num;
1141 		uwc->wr_id		= wqe->wr_id;
1142 	} else {
1143 		wc->status		= qp->resp.status;
1144 		wc->qp			= &qp->ibqp;
1145 		wc->wr_id		= wqe->wr_id;
1146 	}
1147 
1148 	if (wc->status == IB_WC_SUCCESS) {
1149 		rxe_counter_inc(rxe, RXE_CNT_RDMA_RECV);
1150 		wc->opcode = (pkt->mask & RXE_IMMDT_MASK &&
1151 				pkt->mask & RXE_WRITE_MASK) ?
1152 					IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV;
1153 		wc->byte_len = (pkt->mask & RXE_IMMDT_MASK &&
1154 				pkt->mask & RXE_WRITE_MASK) ?
1155 					qp->resp.length : wqe->dma.length - wqe->dma.resid;
1156 
1157 		/* fields after byte_len are different between kernel and user
1158 		 * space
1159 		 */
1160 		if (qp->rcq->is_user) {
1161 			uwc->wc_flags = IB_WC_GRH;
1162 
1163 			if (pkt->mask & RXE_IMMDT_MASK) {
1164 				uwc->wc_flags |= IB_WC_WITH_IMM;
1165 				uwc->ex.imm_data = immdt_imm(pkt);
1166 			}
1167 
1168 			if (pkt->mask & RXE_IETH_MASK) {
1169 				uwc->wc_flags |= IB_WC_WITH_INVALIDATE;
1170 				uwc->ex.invalidate_rkey = ieth_rkey(pkt);
1171 			}
1172 
1173 			if (pkt->mask & RXE_DETH_MASK)
1174 				uwc->src_qp = deth_sqp(pkt);
1175 
1176 			uwc->port_num		= qp->attr.port_num;
1177 		} else {
1178 			struct sk_buff *skb = PKT_TO_SKB(pkt);
1179 
1180 			wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE;
1181 			if (skb->protocol == htons(ETH_P_IP))
1182 				wc->network_hdr_type = RDMA_NETWORK_IPV4;
1183 			else
1184 				wc->network_hdr_type = RDMA_NETWORK_IPV6;
1185 
1186 			if (is_vlan_dev(skb->dev)) {
1187 				wc->wc_flags |= IB_WC_WITH_VLAN;
1188 				wc->vlan_id = vlan_dev_vlan_id(skb->dev);
1189 			}
1190 
1191 			if (pkt->mask & RXE_IMMDT_MASK) {
1192 				wc->wc_flags |= IB_WC_WITH_IMM;
1193 				wc->ex.imm_data = immdt_imm(pkt);
1194 			}
1195 
1196 			if (pkt->mask & RXE_IETH_MASK) {
1197 				wc->wc_flags |= IB_WC_WITH_INVALIDATE;
1198 				wc->ex.invalidate_rkey = ieth_rkey(pkt);
1199 			}
1200 
1201 			if (pkt->mask & RXE_DETH_MASK)
1202 				wc->src_qp = deth_sqp(pkt);
1203 
1204 			wc->port_num		= qp->attr.port_num;
1205 		}
1206 	}
1207 
1208 	/* have copy for srq and reference for !srq */
1209 	if (!qp->srq)
1210 		queue_advance_consumer(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT);
1211 
1212 	qp->resp.wqe = NULL;
1213 
1214 	if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1))
1215 		return RESPST_ERR_CQ_OVERFLOW;
1216 
1217 finish:
1218 	if (unlikely(qp->resp.state == QP_STATE_ERROR))
1219 		return RESPST_CHK_RESOURCE;
1220 	if (unlikely(!pkt))
1221 		return RESPST_DONE;
1222 	if (qp_type(qp) == IB_QPT_RC)
1223 		return RESPST_ACKNOWLEDGE;
1224 	else
1225 		return RESPST_CLEANUP;
1226 }
1227 
1228 
1229 static int send_common_ack(struct rxe_qp *qp, u8 syndrome, u32 psn,
1230 				  int opcode, const char *msg)
1231 {
1232 	int err;
1233 	struct rxe_pkt_info ack_pkt;
1234 	struct sk_buff *skb;
1235 
1236 	skb = prepare_ack_packet(qp, &ack_pkt, opcode, 0, psn, syndrome);
1237 	if (!skb)
1238 		return -ENOMEM;
1239 
1240 	err = rxe_xmit_packet(qp, &ack_pkt, skb);
1241 	if (err)
1242 		rxe_dbg_qp(qp, "Failed sending %s\n", msg);
1243 
1244 	return err;
1245 }
1246 
1247 static int send_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
1248 {
1249 	return send_common_ack(qp, syndrome, psn,
1250 			IB_OPCODE_RC_ACKNOWLEDGE, "ACK");
1251 }
1252 
1253 static int send_atomic_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
1254 {
1255 	int ret = send_common_ack(qp, syndrome, psn,
1256 			IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, "ATOMIC ACK");
1257 
1258 	/* have to clear this since it is used to trigger
1259 	 * long read replies
1260 	 */
1261 	qp->resp.res = NULL;
1262 	return ret;
1263 }
1264 
1265 static int send_read_response_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
1266 {
1267 	int ret = send_common_ack(qp, syndrome, psn,
1268 			IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY,
1269 			"RDMA READ response of length zero ACK");
1270 
1271 	/* have to clear this since it is used to trigger
1272 	 * long read replies
1273 	 */
1274 	qp->resp.res = NULL;
1275 	return ret;
1276 }
1277 
1278 static enum resp_states acknowledge(struct rxe_qp *qp,
1279 				    struct rxe_pkt_info *pkt)
1280 {
1281 	if (qp_type(qp) != IB_QPT_RC)
1282 		return RESPST_CLEANUP;
1283 
1284 	if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED)
1285 		send_ack(qp, qp->resp.aeth_syndrome, pkt->psn);
1286 	else if (pkt->mask & RXE_ATOMIC_MASK)
1287 		send_atomic_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
1288 	else if (pkt->mask & (RXE_FLUSH_MASK | RXE_ATOMIC_WRITE_MASK))
1289 		send_read_response_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
1290 	else if (bth_ack(pkt))
1291 		send_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
1292 
1293 	return RESPST_CLEANUP;
1294 }
1295 
1296 static enum resp_states cleanup(struct rxe_qp *qp,
1297 				struct rxe_pkt_info *pkt)
1298 {
1299 	struct sk_buff *skb;
1300 
1301 	if (pkt) {
1302 		skb = skb_dequeue(&qp->req_pkts);
1303 		rxe_put(qp);
1304 		kfree_skb(skb);
1305 		ib_device_put(qp->ibqp.device);
1306 	}
1307 
1308 	if (qp->resp.mr) {
1309 		rxe_put(qp->resp.mr);
1310 		qp->resp.mr = NULL;
1311 	}
1312 
1313 	return RESPST_DONE;
1314 }
1315 
1316 static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn)
1317 {
1318 	int i;
1319 
1320 	for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) {
1321 		struct resp_res *res = &qp->resp.resources[i];
1322 
1323 		if (res->type == 0)
1324 			continue;
1325 
1326 		if (psn_compare(psn, res->first_psn) >= 0 &&
1327 		    psn_compare(psn, res->last_psn) <= 0) {
1328 			return res;
1329 		}
1330 	}
1331 
1332 	return NULL;
1333 }
1334 
1335 static enum resp_states duplicate_request(struct rxe_qp *qp,
1336 					  struct rxe_pkt_info *pkt)
1337 {
1338 	enum resp_states rc;
1339 	u32 prev_psn = (qp->resp.ack_psn - 1) & BTH_PSN_MASK;
1340 
1341 	if (pkt->mask & RXE_SEND_MASK ||
1342 	    pkt->mask & RXE_WRITE_MASK) {
1343 		/* SEND. Ack again and cleanup. C9-105. */
1344 		send_ack(qp, AETH_ACK_UNLIMITED, prev_psn);
1345 		return RESPST_CLEANUP;
1346 	} else if (pkt->mask & RXE_FLUSH_MASK) {
1347 		struct resp_res *res;
1348 
1349 		/* Find the operation in our list of responder resources. */
1350 		res = find_resource(qp, pkt->psn);
1351 		if (res) {
1352 			res->replay = 1;
1353 			res->cur_psn = pkt->psn;
1354 			qp->resp.res = res;
1355 			rc = RESPST_PROCESS_FLUSH;
1356 			goto out;
1357 		}
1358 
1359 		/* Resource not found. Class D error. Drop the request. */
1360 		rc = RESPST_CLEANUP;
1361 		goto out;
1362 	} else if (pkt->mask & RXE_READ_MASK) {
1363 		struct resp_res *res;
1364 
1365 		res = find_resource(qp, pkt->psn);
1366 		if (!res) {
1367 			/* Resource not found. Class D error.  Drop the
1368 			 * request.
1369 			 */
1370 			rc = RESPST_CLEANUP;
1371 			goto out;
1372 		} else {
1373 			/* Ensure this new request is the same as the previous
1374 			 * one or a subset of it.
1375 			 */
1376 			u64 iova = reth_va(pkt);
1377 			u32 resid = reth_len(pkt);
1378 
1379 			if (iova < res->read.va_org ||
1380 			    resid > res->read.length ||
1381 			    (iova + resid) > (res->read.va_org +
1382 					      res->read.length)) {
1383 				rc = RESPST_CLEANUP;
1384 				goto out;
1385 			}
1386 
1387 			if (reth_rkey(pkt) != res->read.rkey) {
1388 				rc = RESPST_CLEANUP;
1389 				goto out;
1390 			}
1391 
1392 			res->cur_psn = pkt->psn;
1393 			res->state = (pkt->psn == res->first_psn) ?
1394 					rdatm_res_state_new :
1395 					rdatm_res_state_replay;
1396 			res->replay = 1;
1397 
1398 			/* Reset the resource, except length. */
1399 			res->read.va_org = iova;
1400 			res->read.va = iova;
1401 			res->read.resid = resid;
1402 
1403 			/* Replay the RDMA read reply. */
1404 			qp->resp.res = res;
1405 			rc = RESPST_READ_REPLY;
1406 			goto out;
1407 		}
1408 	} else {
1409 		struct resp_res *res;
1410 
1411 		/* Find the operation in our list of responder resources. */
1412 		res = find_resource(qp, pkt->psn);
1413 		if (res) {
1414 			res->replay = 1;
1415 			res->cur_psn = pkt->psn;
1416 			qp->resp.res = res;
1417 			rc = pkt->mask & RXE_ATOMIC_MASK ?
1418 					RESPST_ATOMIC_REPLY :
1419 					RESPST_ATOMIC_WRITE_REPLY;
1420 			goto out;
1421 		}
1422 
1423 		/* Resource not found. Class D error. Drop the request. */
1424 		rc = RESPST_CLEANUP;
1425 		goto out;
1426 	}
1427 out:
1428 	return rc;
1429 }
1430 
1431 /* Process a class A or C. Both are treated the same in this implementation. */
1432 static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome,
1433 			      enum ib_wc_status status)
1434 {
1435 	qp->resp.aeth_syndrome	= syndrome;
1436 	qp->resp.status		= status;
1437 
1438 	/* indicate that we should go through the ERROR state */
1439 	qp->resp.goto_error	= 1;
1440 }
1441 
1442 static enum resp_states do_class_d1e_error(struct rxe_qp *qp)
1443 {
1444 	/* UC */
1445 	if (qp->srq) {
1446 		/* Class E */
1447 		qp->resp.drop_msg = 1;
1448 		if (qp->resp.wqe) {
1449 			qp->resp.status = IB_WC_REM_INV_REQ_ERR;
1450 			return RESPST_COMPLETE;
1451 		} else {
1452 			return RESPST_CLEANUP;
1453 		}
1454 	} else {
1455 		/* Class D1. This packet may be the start of a
1456 		 * new message and could be valid. The previous
1457 		 * message is invalid and ignored. reset the
1458 		 * recv wr to its original state
1459 		 */
1460 		if (qp->resp.wqe) {
1461 			qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length;
1462 			qp->resp.wqe->dma.cur_sge = 0;
1463 			qp->resp.wqe->dma.sge_offset = 0;
1464 			qp->resp.opcode = -1;
1465 		}
1466 
1467 		if (qp->resp.mr) {
1468 			rxe_put(qp->resp.mr);
1469 			qp->resp.mr = NULL;
1470 		}
1471 
1472 		return RESPST_CLEANUP;
1473 	}
1474 }
1475 
1476 static void rxe_drain_req_pkts(struct rxe_qp *qp, bool notify)
1477 {
1478 	struct sk_buff *skb;
1479 	struct rxe_queue *q = qp->rq.queue;
1480 
1481 	while ((skb = skb_dequeue(&qp->req_pkts))) {
1482 		rxe_put(qp);
1483 		kfree_skb(skb);
1484 		ib_device_put(qp->ibqp.device);
1485 	}
1486 
1487 	if (notify)
1488 		return;
1489 
1490 	while (!qp->srq && q && queue_head(q, q->type))
1491 		queue_advance_consumer(q, q->type);
1492 }
1493 
1494 int rxe_responder(void *arg)
1495 {
1496 	struct rxe_qp *qp = (struct rxe_qp *)arg;
1497 	struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
1498 	enum resp_states state;
1499 	struct rxe_pkt_info *pkt = NULL;
1500 	int ret;
1501 
1502 	if (!rxe_get(qp))
1503 		return -EAGAIN;
1504 
1505 	qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED;
1506 
1507 	if (!qp->valid)
1508 		goto exit;
1509 
1510 	switch (qp->resp.state) {
1511 	case QP_STATE_RESET:
1512 		state = RESPST_RESET;
1513 		break;
1514 
1515 	default:
1516 		state = RESPST_GET_REQ;
1517 		break;
1518 	}
1519 
1520 	while (1) {
1521 		rxe_dbg_qp(qp, "state = %s\n", resp_state_name[state]);
1522 		switch (state) {
1523 		case RESPST_GET_REQ:
1524 			state = get_req(qp, &pkt);
1525 			break;
1526 		case RESPST_CHK_PSN:
1527 			state = check_psn(qp, pkt);
1528 			break;
1529 		case RESPST_CHK_OP_SEQ:
1530 			state = check_op_seq(qp, pkt);
1531 			break;
1532 		case RESPST_CHK_OP_VALID:
1533 			state = check_op_valid(qp, pkt);
1534 			break;
1535 		case RESPST_CHK_RESOURCE:
1536 			state = check_resource(qp, pkt);
1537 			break;
1538 		case RESPST_CHK_LENGTH:
1539 			state = rxe_resp_check_length(qp, pkt);
1540 			break;
1541 		case RESPST_CHK_RKEY:
1542 			state = check_rkey(qp, pkt);
1543 			break;
1544 		case RESPST_EXECUTE:
1545 			state = execute(qp, pkt);
1546 			break;
1547 		case RESPST_COMPLETE:
1548 			state = do_complete(qp, pkt);
1549 			break;
1550 		case RESPST_READ_REPLY:
1551 			state = read_reply(qp, pkt);
1552 			break;
1553 		case RESPST_ATOMIC_REPLY:
1554 			state = atomic_reply(qp, pkt);
1555 			break;
1556 		case RESPST_ATOMIC_WRITE_REPLY:
1557 			state = atomic_write_reply(qp, pkt);
1558 			break;
1559 		case RESPST_PROCESS_FLUSH:
1560 			state = process_flush(qp, pkt);
1561 			break;
1562 		case RESPST_ACKNOWLEDGE:
1563 			state = acknowledge(qp, pkt);
1564 			break;
1565 		case RESPST_CLEANUP:
1566 			state = cleanup(qp, pkt);
1567 			break;
1568 		case RESPST_DUPLICATE_REQUEST:
1569 			state = duplicate_request(qp, pkt);
1570 			break;
1571 		case RESPST_ERR_PSN_OUT_OF_SEQ:
1572 			/* RC only - Class B. Drop packet. */
1573 			send_ack(qp, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn);
1574 			state = RESPST_CLEANUP;
1575 			break;
1576 
1577 		case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ:
1578 		case RESPST_ERR_MISSING_OPCODE_FIRST:
1579 		case RESPST_ERR_MISSING_OPCODE_LAST_C:
1580 		case RESPST_ERR_UNSUPPORTED_OPCODE:
1581 		case RESPST_ERR_MISALIGNED_ATOMIC:
1582 			/* RC Only - Class C. */
1583 			do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
1584 					  IB_WC_REM_INV_REQ_ERR);
1585 			state = RESPST_COMPLETE;
1586 			break;
1587 
1588 		case RESPST_ERR_MISSING_OPCODE_LAST_D1E:
1589 			state = do_class_d1e_error(qp);
1590 			break;
1591 		case RESPST_ERR_RNR:
1592 			if (qp_type(qp) == IB_QPT_RC) {
1593 				rxe_counter_inc(rxe, RXE_CNT_SND_RNR);
1594 				/* RC - class B */
1595 				send_ack(qp, AETH_RNR_NAK |
1596 					 (~AETH_TYPE_MASK &
1597 					 qp->attr.min_rnr_timer),
1598 					 pkt->psn);
1599 			} else {
1600 				/* UD/UC - class D */
1601 				qp->resp.drop_msg = 1;
1602 			}
1603 			state = RESPST_CLEANUP;
1604 			break;
1605 
1606 		case RESPST_ERR_RKEY_VIOLATION:
1607 			if (qp_type(qp) == IB_QPT_RC) {
1608 				/* Class C */
1609 				do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR,
1610 						  IB_WC_REM_ACCESS_ERR);
1611 				state = RESPST_COMPLETE;
1612 			} else {
1613 				qp->resp.drop_msg = 1;
1614 				if (qp->srq) {
1615 					/* UC/SRQ Class D */
1616 					qp->resp.status = IB_WC_REM_ACCESS_ERR;
1617 					state = RESPST_COMPLETE;
1618 				} else {
1619 					/* UC/non-SRQ Class E. */
1620 					state = RESPST_CLEANUP;
1621 				}
1622 			}
1623 			break;
1624 
1625 		case RESPST_ERR_INVALIDATE_RKEY:
1626 			/* RC - Class J. */
1627 			qp->resp.goto_error = 1;
1628 			qp->resp.status = IB_WC_REM_INV_REQ_ERR;
1629 			state = RESPST_COMPLETE;
1630 			break;
1631 
1632 		case RESPST_ERR_LENGTH:
1633 			if (qp_type(qp) == IB_QPT_RC) {
1634 				/* Class C */
1635 				do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
1636 						  IB_WC_REM_INV_REQ_ERR);
1637 				state = RESPST_COMPLETE;
1638 			} else if (qp->srq) {
1639 				/* UC/UD - class E */
1640 				qp->resp.status = IB_WC_REM_INV_REQ_ERR;
1641 				state = RESPST_COMPLETE;
1642 			} else {
1643 				/* UC/UD - class D */
1644 				qp->resp.drop_msg = 1;
1645 				state = RESPST_CLEANUP;
1646 			}
1647 			break;
1648 
1649 		case RESPST_ERR_MALFORMED_WQE:
1650 			/* All, Class A. */
1651 			do_class_ac_error(qp, AETH_NAK_REM_OP_ERR,
1652 					  IB_WC_LOC_QP_OP_ERR);
1653 			state = RESPST_COMPLETE;
1654 			break;
1655 
1656 		case RESPST_ERR_CQ_OVERFLOW:
1657 			/* All - Class G */
1658 			state = RESPST_ERROR;
1659 			break;
1660 
1661 		case RESPST_DONE:
1662 			if (qp->resp.goto_error) {
1663 				state = RESPST_ERROR;
1664 				break;
1665 			}
1666 
1667 			goto done;
1668 
1669 		case RESPST_EXIT:
1670 			if (qp->resp.goto_error) {
1671 				state = RESPST_ERROR;
1672 				break;
1673 			}
1674 
1675 			goto exit;
1676 
1677 		case RESPST_RESET:
1678 			rxe_drain_req_pkts(qp, false);
1679 			qp->resp.wqe = NULL;
1680 			goto exit;
1681 
1682 		case RESPST_ERROR:
1683 			qp->resp.goto_error = 0;
1684 			rxe_dbg_qp(qp, "moved to error state\n");
1685 			rxe_qp_error(qp);
1686 			goto exit;
1687 
1688 		default:
1689 			WARN_ON_ONCE(1);
1690 		}
1691 	}
1692 
1693 	/* A non-zero return value will cause rxe_do_task to
1694 	 * exit its loop and end the tasklet. A zero return
1695 	 * will continue looping and return to rxe_responder
1696 	 */
1697 done:
1698 	ret = 0;
1699 	goto out;
1700 exit:
1701 	ret = -EAGAIN;
1702 out:
1703 	rxe_put(qp);
1704 	return ret;
1705 }
1706