1 /* 2 * Copyright(c) 2016, 2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include <rdma/opa_addr.h> 56 #include "qp.h" 57 #include "vt.h" 58 #include "trace.h" 59 60 static void rvt_rc_timeout(struct timer_list *t); 61 62 /* 63 * Convert the AETH RNR timeout code into the number of microseconds. 64 */ 65 static const u32 ib_rvt_rnr_table[32] = { 66 655360, /* 00: 655.36 */ 67 10, /* 01: .01 */ 68 20, /* 02 .02 */ 69 30, /* 03: .03 */ 70 40, /* 04: .04 */ 71 60, /* 05: .06 */ 72 80, /* 06: .08 */ 73 120, /* 07: .12 */ 74 160, /* 08: .16 */ 75 240, /* 09: .24 */ 76 320, /* 0A: .32 */ 77 480, /* 0B: .48 */ 78 640, /* 0C: .64 */ 79 960, /* 0D: .96 */ 80 1280, /* 0E: 1.28 */ 81 1920, /* 0F: 1.92 */ 82 2560, /* 10: 2.56 */ 83 3840, /* 11: 3.84 */ 84 5120, /* 12: 5.12 */ 85 7680, /* 13: 7.68 */ 86 10240, /* 14: 10.24 */ 87 15360, /* 15: 15.36 */ 88 20480, /* 16: 20.48 */ 89 30720, /* 17: 30.72 */ 90 40960, /* 18: 40.96 */ 91 61440, /* 19: 61.44 */ 92 81920, /* 1A: 81.92 */ 93 122880, /* 1B: 122.88 */ 94 163840, /* 1C: 163.84 */ 95 245760, /* 1D: 245.76 */ 96 327680, /* 1E: 327.68 */ 97 491520 /* 1F: 491.52 */ 98 }; 99 100 /* 101 * Note that it is OK to post send work requests in the SQE and ERR 102 * states; rvt_do_send() will process them and generate error 103 * completions as per IB 1.2 C10-96. 104 */ 105 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 106 [IB_QPS_RESET] = 0, 107 [IB_QPS_INIT] = RVT_POST_RECV_OK, 108 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 109 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 110 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 111 RVT_PROCESS_NEXT_SEND_OK, 112 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 113 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 114 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 115 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 116 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 117 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 118 }; 119 EXPORT_SYMBOL(ib_rvt_state_ops); 120 121 static void get_map_page(struct rvt_qpn_table *qpt, 122 struct rvt_qpn_map *map) 123 { 124 unsigned long page = get_zeroed_page(GFP_KERNEL); 125 126 /* 127 * Free the page if someone raced with us installing it. 128 */ 129 130 spin_lock(&qpt->lock); 131 if (map->page) 132 free_page(page); 133 else 134 map->page = (void *)page; 135 spin_unlock(&qpt->lock); 136 } 137 138 /** 139 * init_qpn_table - initialize the QP number table for a device 140 * @qpt: the QPN table 141 */ 142 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 143 { 144 u32 offset, i; 145 struct rvt_qpn_map *map; 146 int ret = 0; 147 148 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 149 return -EINVAL; 150 151 spin_lock_init(&qpt->lock); 152 153 qpt->last = rdi->dparms.qpn_start; 154 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 155 156 /* 157 * Drivers may want some QPs beyond what we need for verbs let them use 158 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 159 * for those. The reserved range must be *after* the range which verbs 160 * will pick from. 161 */ 162 163 /* Figure out number of bit maps needed before reserved range */ 164 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 165 166 /* This should always be zero */ 167 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 168 169 /* Starting with the first reserved bit map */ 170 map = &qpt->map[qpt->nmaps]; 171 172 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 173 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 174 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 175 if (!map->page) { 176 get_map_page(qpt, map); 177 if (!map->page) { 178 ret = -ENOMEM; 179 break; 180 } 181 } 182 set_bit(offset, map->page); 183 offset++; 184 if (offset == RVT_BITS_PER_PAGE) { 185 /* next page */ 186 qpt->nmaps++; 187 map++; 188 offset = 0; 189 } 190 } 191 return ret; 192 } 193 194 /** 195 * free_qpn_table - free the QP number table for a device 196 * @qpt: the QPN table 197 */ 198 static void free_qpn_table(struct rvt_qpn_table *qpt) 199 { 200 int i; 201 202 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 203 free_page((unsigned long)qpt->map[i].page); 204 } 205 206 /** 207 * rvt_driver_qp_init - Init driver qp resources 208 * @rdi: rvt dev strucutre 209 * 210 * Return: 0 on success 211 */ 212 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 213 { 214 int i; 215 int ret = -ENOMEM; 216 217 if (!rdi->dparms.qp_table_size) 218 return -EINVAL; 219 220 /* 221 * If driver is not doing any QP allocation then make sure it is 222 * providing the necessary QP functions. 223 */ 224 if (!rdi->driver_f.free_all_qps || 225 !rdi->driver_f.qp_priv_alloc || 226 !rdi->driver_f.qp_priv_free || 227 !rdi->driver_f.notify_qp_reset || 228 !rdi->driver_f.notify_restart_rc) 229 return -EINVAL; 230 231 /* allocate parent object */ 232 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 233 rdi->dparms.node); 234 if (!rdi->qp_dev) 235 return -ENOMEM; 236 237 /* allocate hash table */ 238 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 239 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 240 rdi->qp_dev->qp_table = 241 kmalloc_array_node(rdi->qp_dev->qp_table_size, 242 sizeof(*rdi->qp_dev->qp_table), 243 GFP_KERNEL, rdi->dparms.node); 244 if (!rdi->qp_dev->qp_table) 245 goto no_qp_table; 246 247 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 248 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 249 250 spin_lock_init(&rdi->qp_dev->qpt_lock); 251 252 /* initialize qpn map */ 253 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 254 goto fail_table; 255 256 spin_lock_init(&rdi->n_qps_lock); 257 258 return 0; 259 260 fail_table: 261 kfree(rdi->qp_dev->qp_table); 262 free_qpn_table(&rdi->qp_dev->qpn_table); 263 264 no_qp_table: 265 kfree(rdi->qp_dev); 266 267 return ret; 268 } 269 270 /** 271 * free_all_qps - check for QPs still in use 272 * @rdi: rvt device info structure 273 * 274 * There should not be any QPs still in use. 275 * Free memory for table. 276 */ 277 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 278 { 279 unsigned long flags; 280 struct rvt_qp *qp; 281 unsigned n, qp_inuse = 0; 282 spinlock_t *ql; /* work around too long line below */ 283 284 if (rdi->driver_f.free_all_qps) 285 qp_inuse = rdi->driver_f.free_all_qps(rdi); 286 287 qp_inuse += rvt_mcast_tree_empty(rdi); 288 289 if (!rdi->qp_dev) 290 return qp_inuse; 291 292 ql = &rdi->qp_dev->qpt_lock; 293 spin_lock_irqsave(ql, flags); 294 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) { 295 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n], 296 lockdep_is_held(ql)); 297 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL); 298 299 for (; qp; qp = rcu_dereference_protected(qp->next, 300 lockdep_is_held(ql))) 301 qp_inuse++; 302 } 303 spin_unlock_irqrestore(ql, flags); 304 synchronize_rcu(); 305 return qp_inuse; 306 } 307 308 /** 309 * rvt_qp_exit - clean up qps on device exit 310 * @rdi: rvt dev structure 311 * 312 * Check for qp leaks and free resources. 313 */ 314 void rvt_qp_exit(struct rvt_dev_info *rdi) 315 { 316 u32 qps_inuse = rvt_free_all_qps(rdi); 317 318 if (qps_inuse) 319 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 320 qps_inuse); 321 if (!rdi->qp_dev) 322 return; 323 324 kfree(rdi->qp_dev->qp_table); 325 free_qpn_table(&rdi->qp_dev->qpn_table); 326 kfree(rdi->qp_dev); 327 } 328 329 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 330 struct rvt_qpn_map *map, unsigned off) 331 { 332 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 333 } 334 335 /** 336 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 337 * IB_QPT_SMI/IB_QPT_GSI 338 * @rdi: rvt device info structure 339 * @qpt: queue pair number table pointer 340 * @port_num: IB port number, 1 based, comes from core 341 * 342 * Return: The queue pair number 343 */ 344 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 345 enum ib_qp_type type, u8 port_num) 346 { 347 u32 i, offset, max_scan, qpn; 348 struct rvt_qpn_map *map; 349 u32 ret; 350 351 if (rdi->driver_f.alloc_qpn) 352 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 353 354 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 355 unsigned n; 356 357 ret = type == IB_QPT_GSI; 358 n = 1 << (ret + 2 * (port_num - 1)); 359 spin_lock(&qpt->lock); 360 if (qpt->flags & n) 361 ret = -EINVAL; 362 else 363 qpt->flags |= n; 364 spin_unlock(&qpt->lock); 365 goto bail; 366 } 367 368 qpn = qpt->last + qpt->incr; 369 if (qpn >= RVT_QPN_MAX) 370 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 371 /* offset carries bit 0 */ 372 offset = qpn & RVT_BITS_PER_PAGE_MASK; 373 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 374 max_scan = qpt->nmaps - !offset; 375 for (i = 0;;) { 376 if (unlikely(!map->page)) { 377 get_map_page(qpt, map); 378 if (unlikely(!map->page)) 379 break; 380 } 381 do { 382 if (!test_and_set_bit(offset, map->page)) { 383 qpt->last = qpn; 384 ret = qpn; 385 goto bail; 386 } 387 offset += qpt->incr; 388 /* 389 * This qpn might be bogus if offset >= BITS_PER_PAGE. 390 * That is OK. It gets re-assigned below 391 */ 392 qpn = mk_qpn(qpt, map, offset); 393 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 394 /* 395 * In order to keep the number of pages allocated to a 396 * minimum, we scan the all existing pages before increasing 397 * the size of the bitmap table. 398 */ 399 if (++i > max_scan) { 400 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 401 break; 402 map = &qpt->map[qpt->nmaps++]; 403 /* start at incr with current bit 0 */ 404 offset = qpt->incr | (offset & 1); 405 } else if (map < &qpt->map[qpt->nmaps]) { 406 ++map; 407 /* start at incr with current bit 0 */ 408 offset = qpt->incr | (offset & 1); 409 } else { 410 map = &qpt->map[0]; 411 /* wrap to first map page, invert bit 0 */ 412 offset = qpt->incr | ((offset & 1) ^ 1); 413 } 414 /* there can be no set bits in low-order QoS bits */ 415 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1)); 416 qpn = mk_qpn(qpt, map, offset); 417 } 418 419 ret = -ENOMEM; 420 421 bail: 422 return ret; 423 } 424 425 /** 426 * rvt_clear_mr_refs - Drop help mr refs 427 * @qp: rvt qp data structure 428 * @clr_sends: If shoudl clear send side or not 429 */ 430 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 431 { 432 unsigned n; 433 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 434 435 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 436 rvt_put_ss(&qp->s_rdma_read_sge); 437 438 rvt_put_ss(&qp->r_sge); 439 440 if (clr_sends) { 441 while (qp->s_last != qp->s_head) { 442 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 443 444 rvt_put_swqe(wqe); 445 446 if (qp->ibqp.qp_type == IB_QPT_UD || 447 qp->ibqp.qp_type == IB_QPT_SMI || 448 qp->ibqp.qp_type == IB_QPT_GSI) 449 atomic_dec(&ibah_to_rvtah( 450 wqe->ud_wr.ah)->refcount); 451 if (++qp->s_last >= qp->s_size) 452 qp->s_last = 0; 453 smp_wmb(); /* see qp_set_savail */ 454 } 455 if (qp->s_rdma_mr) { 456 rvt_put_mr(qp->s_rdma_mr); 457 qp->s_rdma_mr = NULL; 458 } 459 } 460 461 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 462 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 463 464 if (e->rdma_sge.mr) { 465 rvt_put_mr(e->rdma_sge.mr); 466 e->rdma_sge.mr = NULL; 467 } 468 } 469 } 470 471 /** 472 * rvt_swqe_has_lkey - return true if lkey is used by swqe 473 * @wqe - the send wqe 474 * @lkey - the lkey 475 * 476 * Test the swqe for using lkey 477 */ 478 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 479 { 480 int i; 481 482 for (i = 0; i < wqe->wr.num_sge; i++) { 483 struct rvt_sge *sge = &wqe->sg_list[i]; 484 485 if (rvt_mr_has_lkey(sge->mr, lkey)) 486 return true; 487 } 488 return false; 489 } 490 491 /** 492 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 493 * @qp - the rvt_qp 494 * @lkey - the lkey 495 */ 496 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 497 { 498 u32 s_last = qp->s_last; 499 500 while (s_last != qp->s_head) { 501 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 502 503 if (rvt_swqe_has_lkey(wqe, lkey)) 504 return true; 505 506 if (++s_last >= qp->s_size) 507 s_last = 0; 508 } 509 if (qp->s_rdma_mr) 510 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 511 return true; 512 return false; 513 } 514 515 /** 516 * rvt_qp_acks_has_lkey - return true if acks have lkey 517 * @qp - the qp 518 * @lkey - the lkey 519 */ 520 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 521 { 522 int i; 523 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 524 525 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 526 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 527 528 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 529 return true; 530 } 531 return false; 532 } 533 534 /* 535 * rvt_qp_mr_clean - clean up remote ops for lkey 536 * @qp - the qp 537 * @lkey - the lkey that is being de-registered 538 * 539 * This routine checks if the lkey is being used by 540 * the qp. 541 * 542 * If so, the qp is put into an error state to elminate 543 * any references from the qp. 544 */ 545 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 546 { 547 bool lastwqe = false; 548 549 if (qp->ibqp.qp_type == IB_QPT_SMI || 550 qp->ibqp.qp_type == IB_QPT_GSI) 551 /* avoid special QPs */ 552 return; 553 spin_lock_irq(&qp->r_lock); 554 spin_lock(&qp->s_hlock); 555 spin_lock(&qp->s_lock); 556 557 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 558 goto check_lwqe; 559 560 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 561 rvt_qp_sends_has_lkey(qp, lkey) || 562 rvt_qp_acks_has_lkey(qp, lkey)) 563 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 564 check_lwqe: 565 spin_unlock(&qp->s_lock); 566 spin_unlock(&qp->s_hlock); 567 spin_unlock_irq(&qp->r_lock); 568 if (lastwqe) { 569 struct ib_event ev; 570 571 ev.device = qp->ibqp.device; 572 ev.element.qp = &qp->ibqp; 573 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 574 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 575 } 576 } 577 578 /** 579 * rvt_remove_qp - remove qp form table 580 * @rdi: rvt dev struct 581 * @qp: qp to remove 582 * 583 * Remove the QP from the table so it can't be found asynchronously by 584 * the receive routine. 585 */ 586 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 587 { 588 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 589 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 590 unsigned long flags; 591 int removed = 1; 592 593 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 594 595 if (rcu_dereference_protected(rvp->qp[0], 596 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 597 RCU_INIT_POINTER(rvp->qp[0], NULL); 598 } else if (rcu_dereference_protected(rvp->qp[1], 599 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 600 RCU_INIT_POINTER(rvp->qp[1], NULL); 601 } else { 602 struct rvt_qp *q; 603 struct rvt_qp __rcu **qpp; 604 605 removed = 0; 606 qpp = &rdi->qp_dev->qp_table[n]; 607 for (; (q = rcu_dereference_protected(*qpp, 608 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 609 qpp = &q->next) { 610 if (q == qp) { 611 RCU_INIT_POINTER(*qpp, 612 rcu_dereference_protected(qp->next, 613 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 614 removed = 1; 615 trace_rvt_qpremove(qp, n); 616 break; 617 } 618 } 619 } 620 621 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 622 if (removed) { 623 synchronize_rcu(); 624 rvt_put_qp(qp); 625 } 626 } 627 628 /** 629 * rvt_init_qp - initialize the QP state to the reset state 630 * @qp: the QP to init or reinit 631 * @type: the QP type 632 * 633 * This function is called from both rvt_create_qp() and 634 * rvt_reset_qp(). The difference is that the reset 635 * patch the necessary locks to protect against concurent 636 * access. 637 */ 638 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 639 enum ib_qp_type type) 640 { 641 qp->remote_qpn = 0; 642 qp->qkey = 0; 643 qp->qp_access_flags = 0; 644 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 645 qp->s_hdrwords = 0; 646 qp->s_wqe = NULL; 647 qp->s_draining = 0; 648 qp->s_next_psn = 0; 649 qp->s_last_psn = 0; 650 qp->s_sending_psn = 0; 651 qp->s_sending_hpsn = 0; 652 qp->s_psn = 0; 653 qp->r_psn = 0; 654 qp->r_msn = 0; 655 if (type == IB_QPT_RC) { 656 qp->s_state = IB_OPCODE_RC_SEND_LAST; 657 qp->r_state = IB_OPCODE_RC_SEND_LAST; 658 } else { 659 qp->s_state = IB_OPCODE_UC_SEND_LAST; 660 qp->r_state = IB_OPCODE_UC_SEND_LAST; 661 } 662 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 663 qp->r_nak_state = 0; 664 qp->r_aflags = 0; 665 qp->r_flags = 0; 666 qp->s_head = 0; 667 qp->s_tail = 0; 668 qp->s_cur = 0; 669 qp->s_acked = 0; 670 qp->s_last = 0; 671 qp->s_ssn = 1; 672 qp->s_lsn = 0; 673 qp->s_mig_state = IB_MIG_MIGRATED; 674 qp->r_head_ack_queue = 0; 675 qp->s_tail_ack_queue = 0; 676 qp->s_num_rd_atomic = 0; 677 if (qp->r_rq.wq) { 678 qp->r_rq.wq->head = 0; 679 qp->r_rq.wq->tail = 0; 680 } 681 qp->r_sge.num_sge = 0; 682 atomic_set(&qp->s_reserved_used, 0); 683 } 684 685 /** 686 * rvt_reset_qp - initialize the QP state to the reset state 687 * @qp: the QP to reset 688 * @type: the QP type 689 * 690 * r_lock, s_hlock, and s_lock are required to be held by the caller 691 */ 692 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 693 enum ib_qp_type type) 694 __must_hold(&qp->s_lock) 695 __must_hold(&qp->s_hlock) 696 __must_hold(&qp->r_lock) 697 { 698 lockdep_assert_held(&qp->r_lock); 699 lockdep_assert_held(&qp->s_hlock); 700 lockdep_assert_held(&qp->s_lock); 701 if (qp->state != IB_QPS_RESET) { 702 qp->state = IB_QPS_RESET; 703 704 /* Let drivers flush their waitlist */ 705 rdi->driver_f.flush_qp_waiters(qp); 706 rvt_stop_rc_timers(qp); 707 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 708 spin_unlock(&qp->s_lock); 709 spin_unlock(&qp->s_hlock); 710 spin_unlock_irq(&qp->r_lock); 711 712 /* Stop the send queue and the retry timer */ 713 rdi->driver_f.stop_send_queue(qp); 714 rvt_del_timers_sync(qp); 715 /* Wait for things to stop */ 716 rdi->driver_f.quiesce_qp(qp); 717 718 /* take qp out the hash and wait for it to be unused */ 719 rvt_remove_qp(rdi, qp); 720 721 /* grab the lock b/c it was locked at call time */ 722 spin_lock_irq(&qp->r_lock); 723 spin_lock(&qp->s_hlock); 724 spin_lock(&qp->s_lock); 725 726 rvt_clear_mr_refs(qp, 1); 727 /* 728 * Let the driver do any tear down or re-init it needs to for 729 * a qp that has been reset 730 */ 731 rdi->driver_f.notify_qp_reset(qp); 732 } 733 rvt_init_qp(rdi, qp, type); 734 lockdep_assert_held(&qp->r_lock); 735 lockdep_assert_held(&qp->s_hlock); 736 lockdep_assert_held(&qp->s_lock); 737 } 738 739 /** rvt_free_qpn - Free a qpn from the bit map 740 * @qpt: QP table 741 * @qpn: queue pair number to free 742 */ 743 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 744 { 745 struct rvt_qpn_map *map; 746 747 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 748 if (map->page) 749 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 750 } 751 752 /** 753 * rvt_create_qp - create a queue pair for a device 754 * @ibpd: the protection domain who's device we create the queue pair for 755 * @init_attr: the attributes of the queue pair 756 * @udata: user data for libibverbs.so 757 * 758 * Queue pair creation is mostly an rvt issue. However, drivers have their own 759 * unique idea of what queue pair numbers mean. For instance there is a reserved 760 * range for PSM. 761 * 762 * Return: the queue pair on success, otherwise returns an errno. 763 * 764 * Called by the ib_create_qp() core verbs function. 765 */ 766 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 767 struct ib_qp_init_attr *init_attr, 768 struct ib_udata *udata) 769 { 770 struct rvt_qp *qp; 771 int err; 772 struct rvt_swqe *swq = NULL; 773 size_t sz; 774 size_t sg_list_sz; 775 struct ib_qp *ret = ERR_PTR(-ENOMEM); 776 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 777 void *priv = NULL; 778 size_t sqsize; 779 780 if (!rdi) 781 return ERR_PTR(-EINVAL); 782 783 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 784 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || 785 init_attr->create_flags) 786 return ERR_PTR(-EINVAL); 787 788 /* Check receive queue parameters if no SRQ is specified. */ 789 if (!init_attr->srq) { 790 if (init_attr->cap.max_recv_sge > 791 rdi->dparms.props.max_recv_sge || 792 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 793 return ERR_PTR(-EINVAL); 794 795 if (init_attr->cap.max_send_sge + 796 init_attr->cap.max_send_wr + 797 init_attr->cap.max_recv_sge + 798 init_attr->cap.max_recv_wr == 0) 799 return ERR_PTR(-EINVAL); 800 } 801 sqsize = 802 init_attr->cap.max_send_wr + 1 + 803 rdi->dparms.reserved_operations; 804 switch (init_attr->qp_type) { 805 case IB_QPT_SMI: 806 case IB_QPT_GSI: 807 if (init_attr->port_num == 0 || 808 init_attr->port_num > ibpd->device->phys_port_cnt) 809 return ERR_PTR(-EINVAL); 810 /* fall through */ 811 case IB_QPT_UC: 812 case IB_QPT_RC: 813 case IB_QPT_UD: 814 sz = sizeof(struct rvt_sge) * 815 init_attr->cap.max_send_sge + 816 sizeof(struct rvt_swqe); 817 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 818 if (!swq) 819 return ERR_PTR(-ENOMEM); 820 821 sz = sizeof(*qp); 822 sg_list_sz = 0; 823 if (init_attr->srq) { 824 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 825 826 if (srq->rq.max_sge > 1) 827 sg_list_sz = sizeof(*qp->r_sg_list) * 828 (srq->rq.max_sge - 1); 829 } else if (init_attr->cap.max_recv_sge > 1) 830 sg_list_sz = sizeof(*qp->r_sg_list) * 831 (init_attr->cap.max_recv_sge - 1); 832 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, 833 rdi->dparms.node); 834 if (!qp) 835 goto bail_swq; 836 837 RCU_INIT_POINTER(qp->next, NULL); 838 if (init_attr->qp_type == IB_QPT_RC) { 839 qp->s_ack_queue = 840 kcalloc_node(rvt_max_atomic(rdi), 841 sizeof(*qp->s_ack_queue), 842 GFP_KERNEL, 843 rdi->dparms.node); 844 if (!qp->s_ack_queue) 845 goto bail_qp; 846 } 847 /* initialize timers needed for rc qp */ 848 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 849 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 850 HRTIMER_MODE_REL); 851 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 852 853 /* 854 * Driver needs to set up it's private QP structure and do any 855 * initialization that is needed. 856 */ 857 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 858 if (IS_ERR(priv)) { 859 ret = priv; 860 goto bail_qp; 861 } 862 qp->priv = priv; 863 qp->timeout_jiffies = 864 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 865 1000UL); 866 if (init_attr->srq) { 867 sz = 0; 868 } else { 869 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 870 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 871 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 872 sizeof(struct rvt_rwqe); 873 if (udata) 874 qp->r_rq.wq = vmalloc_user( 875 sizeof(struct rvt_rwq) + 876 qp->r_rq.size * sz); 877 else 878 qp->r_rq.wq = vzalloc_node( 879 sizeof(struct rvt_rwq) + 880 qp->r_rq.size * sz, 881 rdi->dparms.node); 882 if (!qp->r_rq.wq) 883 goto bail_driver_priv; 884 } 885 886 /* 887 * ib_create_qp() will initialize qp->ibqp 888 * except for qp->ibqp.qp_num. 889 */ 890 spin_lock_init(&qp->r_lock); 891 spin_lock_init(&qp->s_hlock); 892 spin_lock_init(&qp->s_lock); 893 spin_lock_init(&qp->r_rq.lock); 894 atomic_set(&qp->refcount, 0); 895 atomic_set(&qp->local_ops_pending, 0); 896 init_waitqueue_head(&qp->wait); 897 INIT_LIST_HEAD(&qp->rspwait); 898 qp->state = IB_QPS_RESET; 899 qp->s_wq = swq; 900 qp->s_size = sqsize; 901 qp->s_avail = init_attr->cap.max_send_wr; 902 qp->s_max_sge = init_attr->cap.max_send_sge; 903 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 904 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 905 906 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 907 init_attr->qp_type, 908 init_attr->port_num); 909 if (err < 0) { 910 ret = ERR_PTR(err); 911 goto bail_rq_wq; 912 } 913 qp->ibqp.qp_num = err; 914 qp->port_num = init_attr->port_num; 915 rvt_init_qp(rdi, qp, init_attr->qp_type); 916 break; 917 918 default: 919 /* Don't support raw QPs */ 920 return ERR_PTR(-EINVAL); 921 } 922 923 init_attr->cap.max_inline_data = 0; 924 925 /* 926 * Return the address of the RWQ as the offset to mmap. 927 * See rvt_mmap() for details. 928 */ 929 if (udata && udata->outlen >= sizeof(__u64)) { 930 if (!qp->r_rq.wq) { 931 __u64 offset = 0; 932 933 err = ib_copy_to_udata(udata, &offset, 934 sizeof(offset)); 935 if (err) { 936 ret = ERR_PTR(err); 937 goto bail_qpn; 938 } 939 } else { 940 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 941 942 qp->ip = rvt_create_mmap_info(rdi, s, 943 ibpd->uobject->context, 944 qp->r_rq.wq); 945 if (!qp->ip) { 946 ret = ERR_PTR(-ENOMEM); 947 goto bail_qpn; 948 } 949 950 err = ib_copy_to_udata(udata, &qp->ip->offset, 951 sizeof(qp->ip->offset)); 952 if (err) { 953 ret = ERR_PTR(err); 954 goto bail_ip; 955 } 956 } 957 qp->pid = current->pid; 958 } 959 960 spin_lock(&rdi->n_qps_lock); 961 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 962 spin_unlock(&rdi->n_qps_lock); 963 ret = ERR_PTR(-ENOMEM); 964 goto bail_ip; 965 } 966 967 rdi->n_qps_allocated++; 968 /* 969 * Maintain a busy_jiffies variable that will be added to the timeout 970 * period in mod_retry_timer and add_retry_timer. This busy jiffies 971 * is scaled by the number of rc qps created for the device to reduce 972 * the number of timeouts occurring when there is a large number of 973 * qps. busy_jiffies is incremented every rc qp scaling interval. 974 * The scaling interval is selected based on extensive performance 975 * evaluation of targeted workloads. 976 */ 977 if (init_attr->qp_type == IB_QPT_RC) { 978 rdi->n_rc_qps++; 979 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 980 } 981 spin_unlock(&rdi->n_qps_lock); 982 983 if (qp->ip) { 984 spin_lock_irq(&rdi->pending_lock); 985 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 986 spin_unlock_irq(&rdi->pending_lock); 987 } 988 989 ret = &qp->ibqp; 990 991 /* 992 * We have our QP and its good, now keep track of what types of opcodes 993 * can be processed on this QP. We do this by keeping track of what the 994 * 3 high order bits of the opcode are. 995 */ 996 switch (init_attr->qp_type) { 997 case IB_QPT_SMI: 998 case IB_QPT_GSI: 999 case IB_QPT_UD: 1000 qp->allowed_ops = IB_OPCODE_UD; 1001 break; 1002 case IB_QPT_RC: 1003 qp->allowed_ops = IB_OPCODE_RC; 1004 break; 1005 case IB_QPT_UC: 1006 qp->allowed_ops = IB_OPCODE_UC; 1007 break; 1008 default: 1009 ret = ERR_PTR(-EINVAL); 1010 goto bail_ip; 1011 } 1012 1013 return ret; 1014 1015 bail_ip: 1016 if (qp->ip) 1017 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1018 1019 bail_qpn: 1020 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1021 1022 bail_rq_wq: 1023 if (!qp->ip) 1024 vfree(qp->r_rq.wq); 1025 1026 bail_driver_priv: 1027 rdi->driver_f.qp_priv_free(rdi, qp); 1028 1029 bail_qp: 1030 kfree(qp->s_ack_queue); 1031 kfree(qp); 1032 1033 bail_swq: 1034 vfree(swq); 1035 1036 return ret; 1037 } 1038 1039 /** 1040 * rvt_error_qp - put a QP into the error state 1041 * @qp: the QP to put into the error state 1042 * @err: the receive completion error to signal if a RWQE is active 1043 * 1044 * Flushes both send and receive work queues. 1045 * 1046 * Return: true if last WQE event should be generated. 1047 * The QP r_lock and s_lock should be held and interrupts disabled. 1048 * If we are already in error state, just return. 1049 */ 1050 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1051 { 1052 struct ib_wc wc; 1053 int ret = 0; 1054 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1055 1056 lockdep_assert_held(&qp->r_lock); 1057 lockdep_assert_held(&qp->s_lock); 1058 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1059 goto bail; 1060 1061 qp->state = IB_QPS_ERR; 1062 1063 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1064 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1065 del_timer(&qp->s_timer); 1066 } 1067 1068 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1069 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1070 1071 rdi->driver_f.notify_error_qp(qp); 1072 1073 /* Schedule the sending tasklet to drain the send work queue. */ 1074 if (READ_ONCE(qp->s_last) != qp->s_head) 1075 rdi->driver_f.schedule_send(qp); 1076 1077 rvt_clear_mr_refs(qp, 0); 1078 1079 memset(&wc, 0, sizeof(wc)); 1080 wc.qp = &qp->ibqp; 1081 wc.opcode = IB_WC_RECV; 1082 1083 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1084 wc.wr_id = qp->r_wr_id; 1085 wc.status = err; 1086 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1087 } 1088 wc.status = IB_WC_WR_FLUSH_ERR; 1089 1090 if (qp->r_rq.wq) { 1091 struct rvt_rwq *wq; 1092 u32 head; 1093 u32 tail; 1094 1095 spin_lock(&qp->r_rq.lock); 1096 1097 /* sanity check pointers before trusting them */ 1098 wq = qp->r_rq.wq; 1099 head = wq->head; 1100 if (head >= qp->r_rq.size) 1101 head = 0; 1102 tail = wq->tail; 1103 if (tail >= qp->r_rq.size) 1104 tail = 0; 1105 while (tail != head) { 1106 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1107 if (++tail >= qp->r_rq.size) 1108 tail = 0; 1109 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1110 } 1111 wq->tail = tail; 1112 1113 spin_unlock(&qp->r_rq.lock); 1114 } else if (qp->ibqp.event_handler) { 1115 ret = 1; 1116 } 1117 1118 bail: 1119 return ret; 1120 } 1121 EXPORT_SYMBOL(rvt_error_qp); 1122 1123 /* 1124 * Put the QP into the hash table. 1125 * The hash table holds a reference to the QP. 1126 */ 1127 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1128 { 1129 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1130 unsigned long flags; 1131 1132 rvt_get_qp(qp); 1133 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1134 1135 if (qp->ibqp.qp_num <= 1) { 1136 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1137 } else { 1138 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1139 1140 qp->next = rdi->qp_dev->qp_table[n]; 1141 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1142 trace_rvt_qpinsert(qp, n); 1143 } 1144 1145 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1146 } 1147 1148 /** 1149 * rvt_modify_qp - modify the attributes of a queue pair 1150 * @ibqp: the queue pair who's attributes we're modifying 1151 * @attr: the new attributes 1152 * @attr_mask: the mask of attributes to modify 1153 * @udata: user data for libibverbs.so 1154 * 1155 * Return: 0 on success, otherwise returns an errno. 1156 */ 1157 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1158 int attr_mask, struct ib_udata *udata) 1159 { 1160 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1161 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1162 enum ib_qp_state cur_state, new_state; 1163 struct ib_event ev; 1164 int lastwqe = 0; 1165 int mig = 0; 1166 int pmtu = 0; /* for gcc warning only */ 1167 enum rdma_link_layer link; 1168 int opa_ah; 1169 1170 link = rdma_port_get_link_layer(ibqp->device, qp->port_num); 1171 1172 spin_lock_irq(&qp->r_lock); 1173 spin_lock(&qp->s_hlock); 1174 spin_lock(&qp->s_lock); 1175 1176 cur_state = attr_mask & IB_QP_CUR_STATE ? 1177 attr->cur_qp_state : qp->state; 1178 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1179 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1180 1181 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1182 attr_mask, link)) 1183 goto inval; 1184 1185 if (rdi->driver_f.check_modify_qp && 1186 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1187 goto inval; 1188 1189 if (attr_mask & IB_QP_AV) { 1190 if (opa_ah) { 1191 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1192 opa_get_mcast_base(OPA_MCAST_NR)) 1193 goto inval; 1194 } else { 1195 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1196 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1197 goto inval; 1198 } 1199 1200 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1201 goto inval; 1202 } 1203 1204 if (attr_mask & IB_QP_ALT_PATH) { 1205 if (opa_ah) { 1206 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1207 opa_get_mcast_base(OPA_MCAST_NR)) 1208 goto inval; 1209 } else { 1210 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1211 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1212 goto inval; 1213 } 1214 1215 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1216 goto inval; 1217 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1218 goto inval; 1219 } 1220 1221 if (attr_mask & IB_QP_PKEY_INDEX) 1222 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1223 goto inval; 1224 1225 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1226 if (attr->min_rnr_timer > 31) 1227 goto inval; 1228 1229 if (attr_mask & IB_QP_PORT) 1230 if (qp->ibqp.qp_type == IB_QPT_SMI || 1231 qp->ibqp.qp_type == IB_QPT_GSI || 1232 attr->port_num == 0 || 1233 attr->port_num > ibqp->device->phys_port_cnt) 1234 goto inval; 1235 1236 if (attr_mask & IB_QP_DEST_QPN) 1237 if (attr->dest_qp_num > RVT_QPN_MASK) 1238 goto inval; 1239 1240 if (attr_mask & IB_QP_RETRY_CNT) 1241 if (attr->retry_cnt > 7) 1242 goto inval; 1243 1244 if (attr_mask & IB_QP_RNR_RETRY) 1245 if (attr->rnr_retry > 7) 1246 goto inval; 1247 1248 /* 1249 * Don't allow invalid path_mtu values. OK to set greater 1250 * than the active mtu (or even the max_cap, if we have tuned 1251 * that to a small mtu. We'll set qp->path_mtu 1252 * to the lesser of requested attribute mtu and active, 1253 * for packetizing messages. 1254 * Note that the QP port has to be set in INIT and MTU in RTR. 1255 */ 1256 if (attr_mask & IB_QP_PATH_MTU) { 1257 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1258 if (pmtu < 0) 1259 goto inval; 1260 } 1261 1262 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1263 if (attr->path_mig_state == IB_MIG_REARM) { 1264 if (qp->s_mig_state == IB_MIG_ARMED) 1265 goto inval; 1266 if (new_state != IB_QPS_RTS) 1267 goto inval; 1268 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1269 if (qp->s_mig_state == IB_MIG_REARM) 1270 goto inval; 1271 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1272 goto inval; 1273 if (qp->s_mig_state == IB_MIG_ARMED) 1274 mig = 1; 1275 } else { 1276 goto inval; 1277 } 1278 } 1279 1280 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1281 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1282 goto inval; 1283 1284 switch (new_state) { 1285 case IB_QPS_RESET: 1286 if (qp->state != IB_QPS_RESET) 1287 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1288 break; 1289 1290 case IB_QPS_RTR: 1291 /* Allow event to re-trigger if QP set to RTR more than once */ 1292 qp->r_flags &= ~RVT_R_COMM_EST; 1293 qp->state = new_state; 1294 break; 1295 1296 case IB_QPS_SQD: 1297 qp->s_draining = qp->s_last != qp->s_cur; 1298 qp->state = new_state; 1299 break; 1300 1301 case IB_QPS_SQE: 1302 if (qp->ibqp.qp_type == IB_QPT_RC) 1303 goto inval; 1304 qp->state = new_state; 1305 break; 1306 1307 case IB_QPS_ERR: 1308 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1309 break; 1310 1311 default: 1312 qp->state = new_state; 1313 break; 1314 } 1315 1316 if (attr_mask & IB_QP_PKEY_INDEX) 1317 qp->s_pkey_index = attr->pkey_index; 1318 1319 if (attr_mask & IB_QP_PORT) 1320 qp->port_num = attr->port_num; 1321 1322 if (attr_mask & IB_QP_DEST_QPN) 1323 qp->remote_qpn = attr->dest_qp_num; 1324 1325 if (attr_mask & IB_QP_SQ_PSN) { 1326 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1327 qp->s_psn = qp->s_next_psn; 1328 qp->s_sending_psn = qp->s_next_psn; 1329 qp->s_last_psn = qp->s_next_psn - 1; 1330 qp->s_sending_hpsn = qp->s_last_psn; 1331 } 1332 1333 if (attr_mask & IB_QP_RQ_PSN) 1334 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1335 1336 if (attr_mask & IB_QP_ACCESS_FLAGS) 1337 qp->qp_access_flags = attr->qp_access_flags; 1338 1339 if (attr_mask & IB_QP_AV) { 1340 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1341 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1342 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1343 } 1344 1345 if (attr_mask & IB_QP_ALT_PATH) { 1346 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1347 qp->s_alt_pkey_index = attr->alt_pkey_index; 1348 } 1349 1350 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1351 qp->s_mig_state = attr->path_mig_state; 1352 if (mig) { 1353 qp->remote_ah_attr = qp->alt_ah_attr; 1354 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1355 qp->s_pkey_index = qp->s_alt_pkey_index; 1356 } 1357 } 1358 1359 if (attr_mask & IB_QP_PATH_MTU) { 1360 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1361 qp->log_pmtu = ilog2(qp->pmtu); 1362 } 1363 1364 if (attr_mask & IB_QP_RETRY_CNT) { 1365 qp->s_retry_cnt = attr->retry_cnt; 1366 qp->s_retry = attr->retry_cnt; 1367 } 1368 1369 if (attr_mask & IB_QP_RNR_RETRY) { 1370 qp->s_rnr_retry_cnt = attr->rnr_retry; 1371 qp->s_rnr_retry = attr->rnr_retry; 1372 } 1373 1374 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1375 qp->r_min_rnr_timer = attr->min_rnr_timer; 1376 1377 if (attr_mask & IB_QP_TIMEOUT) { 1378 qp->timeout = attr->timeout; 1379 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1380 } 1381 1382 if (attr_mask & IB_QP_QKEY) 1383 qp->qkey = attr->qkey; 1384 1385 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1386 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1387 1388 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1389 qp->s_max_rd_atomic = attr->max_rd_atomic; 1390 1391 if (rdi->driver_f.modify_qp) 1392 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1393 1394 spin_unlock(&qp->s_lock); 1395 spin_unlock(&qp->s_hlock); 1396 spin_unlock_irq(&qp->r_lock); 1397 1398 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1399 rvt_insert_qp(rdi, qp); 1400 1401 if (lastwqe) { 1402 ev.device = qp->ibqp.device; 1403 ev.element.qp = &qp->ibqp; 1404 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1405 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1406 } 1407 if (mig) { 1408 ev.device = qp->ibqp.device; 1409 ev.element.qp = &qp->ibqp; 1410 ev.event = IB_EVENT_PATH_MIG; 1411 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1412 } 1413 return 0; 1414 1415 inval: 1416 spin_unlock(&qp->s_lock); 1417 spin_unlock(&qp->s_hlock); 1418 spin_unlock_irq(&qp->r_lock); 1419 return -EINVAL; 1420 } 1421 1422 /** 1423 * rvt_destroy_qp - destroy a queue pair 1424 * @ibqp: the queue pair to destroy 1425 * 1426 * Note that this can be called while the QP is actively sending or 1427 * receiving! 1428 * 1429 * Return: 0 on success. 1430 */ 1431 int rvt_destroy_qp(struct ib_qp *ibqp) 1432 { 1433 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1434 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1435 1436 spin_lock_irq(&qp->r_lock); 1437 spin_lock(&qp->s_hlock); 1438 spin_lock(&qp->s_lock); 1439 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1440 spin_unlock(&qp->s_lock); 1441 spin_unlock(&qp->s_hlock); 1442 spin_unlock_irq(&qp->r_lock); 1443 1444 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1445 /* qpn is now available for use again */ 1446 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1447 1448 spin_lock(&rdi->n_qps_lock); 1449 rdi->n_qps_allocated--; 1450 if (qp->ibqp.qp_type == IB_QPT_RC) { 1451 rdi->n_rc_qps--; 1452 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1453 } 1454 spin_unlock(&rdi->n_qps_lock); 1455 1456 if (qp->ip) 1457 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1458 else 1459 vfree(qp->r_rq.wq); 1460 vfree(qp->s_wq); 1461 rdi->driver_f.qp_priv_free(rdi, qp); 1462 kfree(qp->s_ack_queue); 1463 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1464 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1465 kfree(qp); 1466 return 0; 1467 } 1468 1469 /** 1470 * rvt_query_qp - query an ipbq 1471 * @ibqp: IB qp to query 1472 * @attr: attr struct to fill in 1473 * @attr_mask: attr mask ignored 1474 * @init_attr: struct to fill in 1475 * 1476 * Return: always 0 1477 */ 1478 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1479 int attr_mask, struct ib_qp_init_attr *init_attr) 1480 { 1481 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1482 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1483 1484 attr->qp_state = qp->state; 1485 attr->cur_qp_state = attr->qp_state; 1486 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1487 attr->path_mig_state = qp->s_mig_state; 1488 attr->qkey = qp->qkey; 1489 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1490 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1491 attr->dest_qp_num = qp->remote_qpn; 1492 attr->qp_access_flags = qp->qp_access_flags; 1493 attr->cap.max_send_wr = qp->s_size - 1 - 1494 rdi->dparms.reserved_operations; 1495 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1496 attr->cap.max_send_sge = qp->s_max_sge; 1497 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1498 attr->cap.max_inline_data = 0; 1499 attr->ah_attr = qp->remote_ah_attr; 1500 attr->alt_ah_attr = qp->alt_ah_attr; 1501 attr->pkey_index = qp->s_pkey_index; 1502 attr->alt_pkey_index = qp->s_alt_pkey_index; 1503 attr->en_sqd_async_notify = 0; 1504 attr->sq_draining = qp->s_draining; 1505 attr->max_rd_atomic = qp->s_max_rd_atomic; 1506 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1507 attr->min_rnr_timer = qp->r_min_rnr_timer; 1508 attr->port_num = qp->port_num; 1509 attr->timeout = qp->timeout; 1510 attr->retry_cnt = qp->s_retry_cnt; 1511 attr->rnr_retry = qp->s_rnr_retry_cnt; 1512 attr->alt_port_num = 1513 rdma_ah_get_port_num(&qp->alt_ah_attr); 1514 attr->alt_timeout = qp->alt_timeout; 1515 1516 init_attr->event_handler = qp->ibqp.event_handler; 1517 init_attr->qp_context = qp->ibqp.qp_context; 1518 init_attr->send_cq = qp->ibqp.send_cq; 1519 init_attr->recv_cq = qp->ibqp.recv_cq; 1520 init_attr->srq = qp->ibqp.srq; 1521 init_attr->cap = attr->cap; 1522 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1523 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1524 else 1525 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1526 init_attr->qp_type = qp->ibqp.qp_type; 1527 init_attr->port_num = qp->port_num; 1528 return 0; 1529 } 1530 1531 /** 1532 * rvt_post_receive - post a receive on a QP 1533 * @ibqp: the QP to post the receive on 1534 * @wr: the WR to post 1535 * @bad_wr: the first bad WR is put here 1536 * 1537 * This may be called from interrupt context. 1538 * 1539 * Return: 0 on success otherwise errno 1540 */ 1541 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1542 const struct ib_recv_wr **bad_wr) 1543 { 1544 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1545 struct rvt_rwq *wq = qp->r_rq.wq; 1546 unsigned long flags; 1547 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1548 !qp->ibqp.srq; 1549 1550 /* Check that state is OK to post receive. */ 1551 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1552 *bad_wr = wr; 1553 return -EINVAL; 1554 } 1555 1556 for (; wr; wr = wr->next) { 1557 struct rvt_rwqe *wqe; 1558 u32 next; 1559 int i; 1560 1561 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1562 *bad_wr = wr; 1563 return -EINVAL; 1564 } 1565 1566 spin_lock_irqsave(&qp->r_rq.lock, flags); 1567 next = wq->head + 1; 1568 if (next >= qp->r_rq.size) 1569 next = 0; 1570 if (next == wq->tail) { 1571 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1572 *bad_wr = wr; 1573 return -ENOMEM; 1574 } 1575 if (unlikely(qp_err_flush)) { 1576 struct ib_wc wc; 1577 1578 memset(&wc, 0, sizeof(wc)); 1579 wc.qp = &qp->ibqp; 1580 wc.opcode = IB_WC_RECV; 1581 wc.wr_id = wr->wr_id; 1582 wc.status = IB_WC_WR_FLUSH_ERR; 1583 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1584 } else { 1585 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1586 wqe->wr_id = wr->wr_id; 1587 wqe->num_sge = wr->num_sge; 1588 for (i = 0; i < wr->num_sge; i++) 1589 wqe->sg_list[i] = wr->sg_list[i]; 1590 /* 1591 * Make sure queue entry is written 1592 * before the head index. 1593 */ 1594 smp_wmb(); 1595 wq->head = next; 1596 } 1597 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1598 } 1599 return 0; 1600 } 1601 1602 /** 1603 * rvt_qp_valid_operation - validate post send wr request 1604 * @qp - the qp 1605 * @post-parms - the post send table for the driver 1606 * @wr - the work request 1607 * 1608 * The routine validates the operation based on the 1609 * validation table an returns the length of the operation 1610 * which can extend beyond the ib_send_bw. Operation 1611 * dependent flags key atomic operation validation. 1612 * 1613 * There is an exception for UD qps that validates the pd and 1614 * overrides the length to include the additional UD specific 1615 * length. 1616 * 1617 * Returns a negative error or the length of the work request 1618 * for building the swqe. 1619 */ 1620 static inline int rvt_qp_valid_operation( 1621 struct rvt_qp *qp, 1622 const struct rvt_operation_params *post_parms, 1623 const struct ib_send_wr *wr) 1624 { 1625 int len; 1626 1627 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1628 return -EINVAL; 1629 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1630 return -EINVAL; 1631 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1632 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1633 return -EINVAL; 1634 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1635 (wr->num_sge == 0 || 1636 wr->sg_list[0].length < sizeof(u64) || 1637 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1638 return -EINVAL; 1639 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1640 !qp->s_max_rd_atomic) 1641 return -EINVAL; 1642 len = post_parms[wr->opcode].length; 1643 /* UD specific */ 1644 if (qp->ibqp.qp_type != IB_QPT_UC && 1645 qp->ibqp.qp_type != IB_QPT_RC) { 1646 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1647 return -EINVAL; 1648 len = sizeof(struct ib_ud_wr); 1649 } 1650 return len; 1651 } 1652 1653 /** 1654 * rvt_qp_is_avail - determine queue capacity 1655 * @qp: the qp 1656 * @rdi: the rdmavt device 1657 * @reserved_op: is reserved operation 1658 * 1659 * This assumes the s_hlock is held but the s_last 1660 * qp variable is uncontrolled. 1661 * 1662 * For non reserved operations, the qp->s_avail 1663 * may be changed. 1664 * 1665 * The return value is zero or a -ENOMEM. 1666 */ 1667 static inline int rvt_qp_is_avail( 1668 struct rvt_qp *qp, 1669 struct rvt_dev_info *rdi, 1670 bool reserved_op) 1671 { 1672 u32 slast; 1673 u32 avail; 1674 u32 reserved_used; 1675 1676 /* see rvt_qp_wqe_unreserve() */ 1677 smp_mb__before_atomic(); 1678 reserved_used = atomic_read(&qp->s_reserved_used); 1679 if (unlikely(reserved_op)) { 1680 /* see rvt_qp_wqe_unreserve() */ 1681 smp_mb__before_atomic(); 1682 if (reserved_used >= rdi->dparms.reserved_operations) 1683 return -ENOMEM; 1684 return 0; 1685 } 1686 /* non-reserved operations */ 1687 if (likely(qp->s_avail)) 1688 return 0; 1689 slast = READ_ONCE(qp->s_last); 1690 if (qp->s_head >= slast) 1691 avail = qp->s_size - (qp->s_head - slast); 1692 else 1693 avail = slast - qp->s_head; 1694 1695 /* see rvt_qp_wqe_unreserve() */ 1696 smp_mb__before_atomic(); 1697 reserved_used = atomic_read(&qp->s_reserved_used); 1698 avail = avail - 1 - 1699 (rdi->dparms.reserved_operations - reserved_used); 1700 /* insure we don't assign a negative s_avail */ 1701 if ((s32)avail <= 0) 1702 return -ENOMEM; 1703 qp->s_avail = avail; 1704 if (WARN_ON(qp->s_avail > 1705 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1706 rvt_pr_err(rdi, 1707 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1708 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1709 qp->s_head, qp->s_tail, qp->s_cur, 1710 qp->s_acked, qp->s_last); 1711 return 0; 1712 } 1713 1714 /** 1715 * rvt_post_one_wr - post one RC, UC, or UD send work request 1716 * @qp: the QP to post on 1717 * @wr: the work request to send 1718 */ 1719 static int rvt_post_one_wr(struct rvt_qp *qp, 1720 const struct ib_send_wr *wr, 1721 int *call_send) 1722 { 1723 struct rvt_swqe *wqe; 1724 u32 next; 1725 int i; 1726 int j; 1727 int acc; 1728 struct rvt_lkey_table *rkt; 1729 struct rvt_pd *pd; 1730 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1731 u8 log_pmtu; 1732 int ret; 1733 size_t cplen; 1734 bool reserved_op; 1735 int local_ops_delayed = 0; 1736 1737 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1738 1739 /* IB spec says that num_sge == 0 is OK. */ 1740 if (unlikely(wr->num_sge > qp->s_max_sge)) 1741 return -EINVAL; 1742 1743 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1744 if (ret < 0) 1745 return ret; 1746 cplen = ret; 1747 1748 /* 1749 * Local operations include fast register and local invalidate. 1750 * Fast register needs to be processed immediately because the 1751 * registered lkey may be used by following work requests and the 1752 * lkey needs to be valid at the time those requests are posted. 1753 * Local invalidate can be processed immediately if fencing is 1754 * not required and no previous local invalidate ops are pending. 1755 * Signaled local operations that have been processed immediately 1756 * need to have requests with "completion only" flags set posted 1757 * to the send queue in order to generate completions. 1758 */ 1759 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 1760 switch (wr->opcode) { 1761 case IB_WR_REG_MR: 1762 ret = rvt_fast_reg_mr(qp, 1763 reg_wr(wr)->mr, 1764 reg_wr(wr)->key, 1765 reg_wr(wr)->access); 1766 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1767 return ret; 1768 break; 1769 case IB_WR_LOCAL_INV: 1770 if ((wr->send_flags & IB_SEND_FENCE) || 1771 atomic_read(&qp->local_ops_pending)) { 1772 local_ops_delayed = 1; 1773 } else { 1774 ret = rvt_invalidate_rkey( 1775 qp, wr->ex.invalidate_rkey); 1776 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1777 return ret; 1778 } 1779 break; 1780 default: 1781 return -EINVAL; 1782 } 1783 } 1784 1785 reserved_op = rdi->post_parms[wr->opcode].flags & 1786 RVT_OPERATION_USE_RESERVE; 1787 /* check for avail */ 1788 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 1789 if (ret) 1790 return ret; 1791 next = qp->s_head + 1; 1792 if (next >= qp->s_size) 1793 next = 0; 1794 1795 rkt = &rdi->lkey_table; 1796 pd = ibpd_to_rvtpd(qp->ibqp.pd); 1797 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 1798 1799 /* cplen has length from above */ 1800 memcpy(&wqe->wr, wr, cplen); 1801 1802 wqe->length = 0; 1803 j = 0; 1804 if (wr->num_sge) { 1805 struct rvt_sge *last_sge = NULL; 1806 1807 acc = wr->opcode >= IB_WR_RDMA_READ ? 1808 IB_ACCESS_LOCAL_WRITE : 0; 1809 for (i = 0; i < wr->num_sge; i++) { 1810 u32 length = wr->sg_list[i].length; 1811 1812 if (length == 0) 1813 continue; 1814 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 1815 &wr->sg_list[i], acc); 1816 if (unlikely(ret < 0)) 1817 goto bail_inval_free; 1818 wqe->length += length; 1819 if (ret) 1820 last_sge = &wqe->sg_list[j]; 1821 j += ret; 1822 } 1823 wqe->wr.num_sge = j; 1824 } 1825 1826 /* general part of wqe valid - allow for driver checks */ 1827 if (rdi->driver_f.check_send_wqe) { 1828 ret = rdi->driver_f.check_send_wqe(qp, wqe); 1829 if (ret < 0) 1830 goto bail_inval_free; 1831 if (ret) 1832 *call_send = ret; 1833 } 1834 1835 log_pmtu = qp->log_pmtu; 1836 if (qp->ibqp.qp_type != IB_QPT_UC && 1837 qp->ibqp.qp_type != IB_QPT_RC) { 1838 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah); 1839 1840 log_pmtu = ah->log_pmtu; 1841 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 1842 } 1843 1844 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 1845 if (local_ops_delayed) 1846 atomic_inc(&qp->local_ops_pending); 1847 else 1848 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 1849 wqe->ssn = 0; 1850 wqe->psn = 0; 1851 wqe->lpsn = 0; 1852 } else { 1853 wqe->ssn = qp->s_ssn++; 1854 wqe->psn = qp->s_next_psn; 1855 wqe->lpsn = wqe->psn + 1856 (wqe->length ? 1857 ((wqe->length - 1) >> log_pmtu) : 1858 0); 1859 qp->s_next_psn = wqe->lpsn + 1; 1860 } 1861 if (unlikely(reserved_op)) { 1862 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 1863 rvt_qp_wqe_reserve(qp, wqe); 1864 } else { 1865 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 1866 qp->s_avail--; 1867 } 1868 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 1869 smp_wmb(); /* see request builders */ 1870 qp->s_head = next; 1871 1872 return 0; 1873 1874 bail_inval_free: 1875 /* release mr holds */ 1876 while (j) { 1877 struct rvt_sge *sge = &wqe->sg_list[--j]; 1878 1879 rvt_put_mr(sge->mr); 1880 } 1881 return ret; 1882 } 1883 1884 /** 1885 * rvt_post_send - post a send on a QP 1886 * @ibqp: the QP to post the send on 1887 * @wr: the list of work requests to post 1888 * @bad_wr: the first bad WR is put here 1889 * 1890 * This may be called from interrupt context. 1891 * 1892 * Return: 0 on success else errno 1893 */ 1894 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 1895 const struct ib_send_wr **bad_wr) 1896 { 1897 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1898 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1899 unsigned long flags = 0; 1900 int call_send; 1901 unsigned nreq = 0; 1902 int err = 0; 1903 1904 spin_lock_irqsave(&qp->s_hlock, flags); 1905 1906 /* 1907 * Ensure QP state is such that we can send. If not bail out early, 1908 * there is no need to do this every time we post a send. 1909 */ 1910 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 1911 spin_unlock_irqrestore(&qp->s_hlock, flags); 1912 return -EINVAL; 1913 } 1914 1915 /* 1916 * If the send queue is empty, and we only have a single WR then just go 1917 * ahead and kick the send engine into gear. Otherwise we will always 1918 * just schedule the send to happen later. 1919 */ 1920 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 1921 1922 for (; wr; wr = wr->next) { 1923 err = rvt_post_one_wr(qp, wr, &call_send); 1924 if (unlikely(err)) { 1925 *bad_wr = wr; 1926 goto bail; 1927 } 1928 nreq++; 1929 } 1930 bail: 1931 spin_unlock_irqrestore(&qp->s_hlock, flags); 1932 if (nreq) { 1933 if (call_send) 1934 rdi->driver_f.do_send(qp); 1935 else 1936 rdi->driver_f.schedule_send_no_lock(qp); 1937 } 1938 return err; 1939 } 1940 1941 /** 1942 * rvt_post_srq_receive - post a receive on a shared receive queue 1943 * @ibsrq: the SRQ to post the receive on 1944 * @wr: the list of work requests to post 1945 * @bad_wr: A pointer to the first WR to cause a problem is put here 1946 * 1947 * This may be called from interrupt context. 1948 * 1949 * Return: 0 on success else errno 1950 */ 1951 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 1952 const struct ib_recv_wr **bad_wr) 1953 { 1954 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 1955 struct rvt_rwq *wq; 1956 unsigned long flags; 1957 1958 for (; wr; wr = wr->next) { 1959 struct rvt_rwqe *wqe; 1960 u32 next; 1961 int i; 1962 1963 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 1964 *bad_wr = wr; 1965 return -EINVAL; 1966 } 1967 1968 spin_lock_irqsave(&srq->rq.lock, flags); 1969 wq = srq->rq.wq; 1970 next = wq->head + 1; 1971 if (next >= srq->rq.size) 1972 next = 0; 1973 if (next == wq->tail) { 1974 spin_unlock_irqrestore(&srq->rq.lock, flags); 1975 *bad_wr = wr; 1976 return -ENOMEM; 1977 } 1978 1979 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 1980 wqe->wr_id = wr->wr_id; 1981 wqe->num_sge = wr->num_sge; 1982 for (i = 0; i < wr->num_sge; i++) 1983 wqe->sg_list[i] = wr->sg_list[i]; 1984 /* Make sure queue entry is written before the head index. */ 1985 smp_wmb(); 1986 wq->head = next; 1987 spin_unlock_irqrestore(&srq->rq.lock, flags); 1988 } 1989 return 0; 1990 } 1991 1992 /* 1993 * Validate a RWQE and fill in the SGE state. 1994 * Return 1 if OK. 1995 */ 1996 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 1997 { 1998 int i, j, ret; 1999 struct ib_wc wc; 2000 struct rvt_lkey_table *rkt; 2001 struct rvt_pd *pd; 2002 struct rvt_sge_state *ss; 2003 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2004 2005 rkt = &rdi->lkey_table; 2006 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2007 ss = &qp->r_sge; 2008 ss->sg_list = qp->r_sg_list; 2009 qp->r_len = 0; 2010 for (i = j = 0; i < wqe->num_sge; i++) { 2011 if (wqe->sg_list[i].length == 0) 2012 continue; 2013 /* Check LKEY */ 2014 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2015 NULL, &wqe->sg_list[i], 2016 IB_ACCESS_LOCAL_WRITE); 2017 if (unlikely(ret <= 0)) 2018 goto bad_lkey; 2019 qp->r_len += wqe->sg_list[i].length; 2020 j++; 2021 } 2022 ss->num_sge = j; 2023 ss->total_len = qp->r_len; 2024 return 1; 2025 2026 bad_lkey: 2027 while (j) { 2028 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2029 2030 rvt_put_mr(sge->mr); 2031 } 2032 ss->num_sge = 0; 2033 memset(&wc, 0, sizeof(wc)); 2034 wc.wr_id = wqe->wr_id; 2035 wc.status = IB_WC_LOC_PROT_ERR; 2036 wc.opcode = IB_WC_RECV; 2037 wc.qp = &qp->ibqp; 2038 /* Signal solicited completion event. */ 2039 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2040 return 0; 2041 } 2042 2043 /** 2044 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2045 * @qp: the QP 2046 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2047 * 2048 * Return -1 if there is a local error, 0 if no RWQE is available, 2049 * otherwise return 1. 2050 * 2051 * Can be called from interrupt level. 2052 */ 2053 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2054 { 2055 unsigned long flags; 2056 struct rvt_rq *rq; 2057 struct rvt_rwq *wq; 2058 struct rvt_srq *srq; 2059 struct rvt_rwqe *wqe; 2060 void (*handler)(struct ib_event *, void *); 2061 u32 tail; 2062 int ret; 2063 2064 if (qp->ibqp.srq) { 2065 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2066 handler = srq->ibsrq.event_handler; 2067 rq = &srq->rq; 2068 } else { 2069 srq = NULL; 2070 handler = NULL; 2071 rq = &qp->r_rq; 2072 } 2073 2074 spin_lock_irqsave(&rq->lock, flags); 2075 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2076 ret = 0; 2077 goto unlock; 2078 } 2079 2080 wq = rq->wq; 2081 tail = wq->tail; 2082 /* Validate tail before using it since it is user writable. */ 2083 if (tail >= rq->size) 2084 tail = 0; 2085 if (unlikely(tail == wq->head)) { 2086 ret = 0; 2087 goto unlock; 2088 } 2089 /* Make sure entry is read after head index is read. */ 2090 smp_rmb(); 2091 wqe = rvt_get_rwqe_ptr(rq, tail); 2092 /* 2093 * Even though we update the tail index in memory, the verbs 2094 * consumer is not supposed to post more entries until a 2095 * completion is generated. 2096 */ 2097 if (++tail >= rq->size) 2098 tail = 0; 2099 wq->tail = tail; 2100 if (!wr_id_only && !init_sge(qp, wqe)) { 2101 ret = -1; 2102 goto unlock; 2103 } 2104 qp->r_wr_id = wqe->wr_id; 2105 2106 ret = 1; 2107 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2108 if (handler) { 2109 u32 n; 2110 2111 /* 2112 * Validate head pointer value and compute 2113 * the number of remaining WQEs. 2114 */ 2115 n = wq->head; 2116 if (n >= rq->size) 2117 n = 0; 2118 if (n < tail) 2119 n += rq->size - tail; 2120 else 2121 n -= tail; 2122 if (n < srq->limit) { 2123 struct ib_event ev; 2124 2125 srq->limit = 0; 2126 spin_unlock_irqrestore(&rq->lock, flags); 2127 ev.device = qp->ibqp.device; 2128 ev.element.srq = qp->ibqp.srq; 2129 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2130 handler(&ev, srq->ibsrq.srq_context); 2131 goto bail; 2132 } 2133 } 2134 unlock: 2135 spin_unlock_irqrestore(&rq->lock, flags); 2136 bail: 2137 return ret; 2138 } 2139 EXPORT_SYMBOL(rvt_get_rwqe); 2140 2141 /** 2142 * qp_comm_est - handle trap with QP established 2143 * @qp: the QP 2144 */ 2145 void rvt_comm_est(struct rvt_qp *qp) 2146 { 2147 qp->r_flags |= RVT_R_COMM_EST; 2148 if (qp->ibqp.event_handler) { 2149 struct ib_event ev; 2150 2151 ev.device = qp->ibqp.device; 2152 ev.element.qp = &qp->ibqp; 2153 ev.event = IB_EVENT_COMM_EST; 2154 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2155 } 2156 } 2157 EXPORT_SYMBOL(rvt_comm_est); 2158 2159 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2160 { 2161 unsigned long flags; 2162 int lastwqe; 2163 2164 spin_lock_irqsave(&qp->s_lock, flags); 2165 lastwqe = rvt_error_qp(qp, err); 2166 spin_unlock_irqrestore(&qp->s_lock, flags); 2167 2168 if (lastwqe) { 2169 struct ib_event ev; 2170 2171 ev.device = qp->ibqp.device; 2172 ev.element.qp = &qp->ibqp; 2173 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2174 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2175 } 2176 } 2177 EXPORT_SYMBOL(rvt_rc_error); 2178 2179 /* 2180 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2181 * @index - the index 2182 * return usec from an index into ib_rvt_rnr_table 2183 */ 2184 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2185 { 2186 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2187 } 2188 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2189 2190 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2191 { 2192 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2193 IB_AETH_CREDIT_MASK]; 2194 } 2195 2196 /* 2197 * rvt_add_retry_timer - add/start a retry timer 2198 * @qp - the QP 2199 * add a retry timer on the QP 2200 */ 2201 void rvt_add_retry_timer(struct rvt_qp *qp) 2202 { 2203 struct ib_qp *ibqp = &qp->ibqp; 2204 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2205 2206 lockdep_assert_held(&qp->s_lock); 2207 qp->s_flags |= RVT_S_TIMER; 2208 /* 4.096 usec. * (1 << qp->timeout) */ 2209 qp->s_timer.expires = jiffies + qp->timeout_jiffies + 2210 rdi->busy_jiffies; 2211 add_timer(&qp->s_timer); 2212 } 2213 EXPORT_SYMBOL(rvt_add_retry_timer); 2214 2215 /** 2216 * rvt_add_rnr_timer - add/start an rnr timer 2217 * @qp - the QP 2218 * @aeth - aeth of RNR timeout, simulated aeth for loopback 2219 * add an rnr timer on the QP 2220 */ 2221 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2222 { 2223 u32 to; 2224 2225 lockdep_assert_held(&qp->s_lock); 2226 qp->s_flags |= RVT_S_WAIT_RNR; 2227 to = rvt_aeth_to_usec(aeth); 2228 trace_rvt_rnrnak_add(qp, to); 2229 hrtimer_start(&qp->s_rnr_timer, 2230 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2231 } 2232 EXPORT_SYMBOL(rvt_add_rnr_timer); 2233 2234 /** 2235 * rvt_stop_rc_timers - stop all timers 2236 * @qp - the QP 2237 * stop any pending timers 2238 */ 2239 void rvt_stop_rc_timers(struct rvt_qp *qp) 2240 { 2241 lockdep_assert_held(&qp->s_lock); 2242 /* Remove QP from all timers */ 2243 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2244 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2245 del_timer(&qp->s_timer); 2246 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2247 } 2248 } 2249 EXPORT_SYMBOL(rvt_stop_rc_timers); 2250 2251 /** 2252 * rvt_stop_rnr_timer - stop an rnr timer 2253 * @qp - the QP 2254 * 2255 * stop an rnr timer and return if the timer 2256 * had been pending. 2257 */ 2258 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2259 { 2260 lockdep_assert_held(&qp->s_lock); 2261 /* Remove QP from rnr timer */ 2262 if (qp->s_flags & RVT_S_WAIT_RNR) { 2263 qp->s_flags &= ~RVT_S_WAIT_RNR; 2264 trace_rvt_rnrnak_stop(qp, 0); 2265 } 2266 } 2267 2268 /** 2269 * rvt_del_timers_sync - wait for any timeout routines to exit 2270 * @qp - the QP 2271 */ 2272 void rvt_del_timers_sync(struct rvt_qp *qp) 2273 { 2274 del_timer_sync(&qp->s_timer); 2275 hrtimer_cancel(&qp->s_rnr_timer); 2276 } 2277 EXPORT_SYMBOL(rvt_del_timers_sync); 2278 2279 /** 2280 * This is called from s_timer for missing responses. 2281 */ 2282 static void rvt_rc_timeout(struct timer_list *t) 2283 { 2284 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2285 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2286 unsigned long flags; 2287 2288 spin_lock_irqsave(&qp->r_lock, flags); 2289 spin_lock(&qp->s_lock); 2290 if (qp->s_flags & RVT_S_TIMER) { 2291 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2292 2293 qp->s_flags &= ~RVT_S_TIMER; 2294 rvp->n_rc_timeouts++; 2295 del_timer(&qp->s_timer); 2296 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2297 if (rdi->driver_f.notify_restart_rc) 2298 rdi->driver_f.notify_restart_rc(qp, 2299 qp->s_last_psn + 1, 2300 1); 2301 rdi->driver_f.schedule_send(qp); 2302 } 2303 spin_unlock(&qp->s_lock); 2304 spin_unlock_irqrestore(&qp->r_lock, flags); 2305 } 2306 2307 /* 2308 * This is called from s_timer for RNR timeouts. 2309 */ 2310 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2311 { 2312 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2313 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2314 unsigned long flags; 2315 2316 spin_lock_irqsave(&qp->s_lock, flags); 2317 rvt_stop_rnr_timer(qp); 2318 trace_rvt_rnrnak_timeout(qp, 0); 2319 rdi->driver_f.schedule_send(qp); 2320 spin_unlock_irqrestore(&qp->s_lock, flags); 2321 return HRTIMER_NORESTART; 2322 } 2323 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2324 2325 /** 2326 * rvt_qp_iter_init - initial for QP iteration 2327 * @rdi: rvt devinfo 2328 * @v: u64 value 2329 * 2330 * This returns an iterator suitable for iterating QPs 2331 * in the system. 2332 * 2333 * The @cb is a user defined callback and @v is a 64 2334 * bit value passed to and relevant for processing in the 2335 * @cb. An example use case would be to alter QP processing 2336 * based on criteria not part of the rvt_qp. 2337 * 2338 * Use cases that require memory allocation to succeed 2339 * must preallocate appropriately. 2340 * 2341 * Return: a pointer to an rvt_qp_iter or NULL 2342 */ 2343 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2344 u64 v, 2345 void (*cb)(struct rvt_qp *qp, u64 v)) 2346 { 2347 struct rvt_qp_iter *i; 2348 2349 i = kzalloc(sizeof(*i), GFP_KERNEL); 2350 if (!i) 2351 return NULL; 2352 2353 i->rdi = rdi; 2354 /* number of special QPs (SMI/GSI) for device */ 2355 i->specials = rdi->ibdev.phys_port_cnt * 2; 2356 i->v = v; 2357 i->cb = cb; 2358 2359 return i; 2360 } 2361 EXPORT_SYMBOL(rvt_qp_iter_init); 2362 2363 /** 2364 * rvt_qp_iter_next - return the next QP in iter 2365 * @iter - the iterator 2366 * 2367 * Fine grained QP iterator suitable for use 2368 * with debugfs seq_file mechanisms. 2369 * 2370 * Updates iter->qp with the current QP when the return 2371 * value is 0. 2372 * 2373 * Return: 0 - iter->qp is valid 1 - no more QPs 2374 */ 2375 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2376 __must_hold(RCU) 2377 { 2378 int n = iter->n; 2379 int ret = 1; 2380 struct rvt_qp *pqp = iter->qp; 2381 struct rvt_qp *qp; 2382 struct rvt_dev_info *rdi = iter->rdi; 2383 2384 /* 2385 * The approach is to consider the special qps 2386 * as additional table entries before the 2387 * real hash table. Since the qp code sets 2388 * the qp->next hash link to NULL, this works just fine. 2389 * 2390 * iter->specials is 2 * # ports 2391 * 2392 * n = 0..iter->specials is the special qp indices 2393 * 2394 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2395 * the potential hash bucket entries 2396 * 2397 */ 2398 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2399 if (pqp) { 2400 qp = rcu_dereference(pqp->next); 2401 } else { 2402 if (n < iter->specials) { 2403 struct rvt_ibport *rvp; 2404 int pidx; 2405 2406 pidx = n % rdi->ibdev.phys_port_cnt; 2407 rvp = rdi->ports[pidx]; 2408 qp = rcu_dereference(rvp->qp[n & 1]); 2409 } else { 2410 qp = rcu_dereference( 2411 rdi->qp_dev->qp_table[ 2412 (n - iter->specials)]); 2413 } 2414 } 2415 pqp = qp; 2416 if (qp) { 2417 iter->qp = qp; 2418 iter->n = n; 2419 return 0; 2420 } 2421 } 2422 return ret; 2423 } 2424 EXPORT_SYMBOL(rvt_qp_iter_next); 2425 2426 /** 2427 * rvt_qp_iter - iterate all QPs 2428 * @rdi - rvt devinfo 2429 * @v - a 64 bit value 2430 * @cb - a callback 2431 * 2432 * This provides a way for iterating all QPs. 2433 * 2434 * The @cb is a user defined callback and @v is a 64 2435 * bit value passed to and relevant for processing in the 2436 * cb. An example use case would be to alter QP processing 2437 * based on criteria not part of the rvt_qp. 2438 * 2439 * The code has an internal iterator to simplify 2440 * non seq_file use cases. 2441 */ 2442 void rvt_qp_iter(struct rvt_dev_info *rdi, 2443 u64 v, 2444 void (*cb)(struct rvt_qp *qp, u64 v)) 2445 { 2446 int ret; 2447 struct rvt_qp_iter i = { 2448 .rdi = rdi, 2449 .specials = rdi->ibdev.phys_port_cnt * 2, 2450 .v = v, 2451 .cb = cb 2452 }; 2453 2454 rcu_read_lock(); 2455 do { 2456 ret = rvt_qp_iter_next(&i); 2457 if (!ret) { 2458 rvt_get_qp(i.qp); 2459 rcu_read_unlock(); 2460 i.cb(i.qp, i.v); 2461 rcu_read_lock(); 2462 rvt_put_qp(i.qp); 2463 } 2464 } while (!ret); 2465 rcu_read_unlock(); 2466 } 2467 EXPORT_SYMBOL(rvt_qp_iter); 2468