1 /* 2 * Copyright(c) 2016 - 2020 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include <rdma/opa_addr.h> 56 #include <rdma/uverbs_ioctl.h> 57 #include "qp.h" 58 #include "vt.h" 59 #include "trace.h" 60 61 #define RVT_RWQ_COUNT_THRESHOLD 16 62 63 static void rvt_rc_timeout(struct timer_list *t); 64 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 65 enum ib_qp_type type); 66 67 /* 68 * Convert the AETH RNR timeout code into the number of microseconds. 69 */ 70 static const u32 ib_rvt_rnr_table[32] = { 71 655360, /* 00: 655.36 */ 72 10, /* 01: .01 */ 73 20, /* 02 .02 */ 74 30, /* 03: .03 */ 75 40, /* 04: .04 */ 76 60, /* 05: .06 */ 77 80, /* 06: .08 */ 78 120, /* 07: .12 */ 79 160, /* 08: .16 */ 80 240, /* 09: .24 */ 81 320, /* 0A: .32 */ 82 480, /* 0B: .48 */ 83 640, /* 0C: .64 */ 84 960, /* 0D: .96 */ 85 1280, /* 0E: 1.28 */ 86 1920, /* 0F: 1.92 */ 87 2560, /* 10: 2.56 */ 88 3840, /* 11: 3.84 */ 89 5120, /* 12: 5.12 */ 90 7680, /* 13: 7.68 */ 91 10240, /* 14: 10.24 */ 92 15360, /* 15: 15.36 */ 93 20480, /* 16: 20.48 */ 94 30720, /* 17: 30.72 */ 95 40960, /* 18: 40.96 */ 96 61440, /* 19: 61.44 */ 97 81920, /* 1A: 81.92 */ 98 122880, /* 1B: 122.88 */ 99 163840, /* 1C: 163.84 */ 100 245760, /* 1D: 245.76 */ 101 327680, /* 1E: 327.68 */ 102 491520 /* 1F: 491.52 */ 103 }; 104 105 /* 106 * Note that it is OK to post send work requests in the SQE and ERR 107 * states; rvt_do_send() will process them and generate error 108 * completions as per IB 1.2 C10-96. 109 */ 110 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 111 [IB_QPS_RESET] = 0, 112 [IB_QPS_INIT] = RVT_POST_RECV_OK, 113 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 114 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 115 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 116 RVT_PROCESS_NEXT_SEND_OK, 117 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 118 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 119 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 120 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 121 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 122 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 123 }; 124 EXPORT_SYMBOL(ib_rvt_state_ops); 125 126 /* platform specific: return the last level cache (llc) size, in KiB */ 127 static int rvt_wss_llc_size(void) 128 { 129 /* assume that the boot CPU value is universal for all CPUs */ 130 return boot_cpu_data.x86_cache_size; 131 } 132 133 /* platform specific: cacheless copy */ 134 static void cacheless_memcpy(void *dst, void *src, size_t n) 135 { 136 /* 137 * Use the only available X64 cacheless copy. Add a __user cast 138 * to quiet sparse. The src agument is already in the kernel so 139 * there are no security issues. The extra fault recovery machinery 140 * is not invoked. 141 */ 142 __copy_user_nocache(dst, (void __user *)src, n, 0); 143 } 144 145 void rvt_wss_exit(struct rvt_dev_info *rdi) 146 { 147 struct rvt_wss *wss = rdi->wss; 148 149 if (!wss) 150 return; 151 152 /* coded to handle partially initialized and repeat callers */ 153 kfree(wss->entries); 154 wss->entries = NULL; 155 kfree(rdi->wss); 156 rdi->wss = NULL; 157 } 158 159 /* 160 * rvt_wss_init - Init wss data structures 161 * 162 * Return: 0 on success 163 */ 164 int rvt_wss_init(struct rvt_dev_info *rdi) 165 { 166 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 167 unsigned int wss_threshold = rdi->dparms.wss_threshold; 168 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 169 long llc_size; 170 long llc_bits; 171 long table_size; 172 long table_bits; 173 struct rvt_wss *wss; 174 int node = rdi->dparms.node; 175 176 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 177 rdi->wss = NULL; 178 return 0; 179 } 180 181 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 182 if (!rdi->wss) 183 return -ENOMEM; 184 wss = rdi->wss; 185 186 /* check for a valid percent range - default to 80 if none or invalid */ 187 if (wss_threshold < 1 || wss_threshold > 100) 188 wss_threshold = 80; 189 190 /* reject a wildly large period */ 191 if (wss_clean_period > 1000000) 192 wss_clean_period = 256; 193 194 /* reject a zero period */ 195 if (wss_clean_period == 0) 196 wss_clean_period = 1; 197 198 /* 199 * Calculate the table size - the next power of 2 larger than the 200 * LLC size. LLC size is in KiB. 201 */ 202 llc_size = rvt_wss_llc_size() * 1024; 203 table_size = roundup_pow_of_two(llc_size); 204 205 /* one bit per page in rounded up table */ 206 llc_bits = llc_size / PAGE_SIZE; 207 table_bits = table_size / PAGE_SIZE; 208 wss->pages_mask = table_bits - 1; 209 wss->num_entries = table_bits / BITS_PER_LONG; 210 211 wss->threshold = (llc_bits * wss_threshold) / 100; 212 if (wss->threshold == 0) 213 wss->threshold = 1; 214 215 wss->clean_period = wss_clean_period; 216 atomic_set(&wss->clean_counter, wss_clean_period); 217 218 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 219 GFP_KERNEL, node); 220 if (!wss->entries) { 221 rvt_wss_exit(rdi); 222 return -ENOMEM; 223 } 224 225 return 0; 226 } 227 228 /* 229 * Advance the clean counter. When the clean period has expired, 230 * clean an entry. 231 * 232 * This is implemented in atomics to avoid locking. Because multiple 233 * variables are involved, it can be racy which can lead to slightly 234 * inaccurate information. Since this is only a heuristic, this is 235 * OK. Any innaccuracies will clean themselves out as the counter 236 * advances. That said, it is unlikely the entry clean operation will 237 * race - the next possible racer will not start until the next clean 238 * period. 239 * 240 * The clean counter is implemented as a decrement to zero. When zero 241 * is reached an entry is cleaned. 242 */ 243 static void wss_advance_clean_counter(struct rvt_wss *wss) 244 { 245 int entry; 246 int weight; 247 unsigned long bits; 248 249 /* become the cleaner if we decrement the counter to zero */ 250 if (atomic_dec_and_test(&wss->clean_counter)) { 251 /* 252 * Set, not add, the clean period. This avoids an issue 253 * where the counter could decrement below the clean period. 254 * Doing a set can result in lost decrements, slowing the 255 * clean advance. Since this a heuristic, this possible 256 * slowdown is OK. 257 * 258 * An alternative is to loop, advancing the counter by a 259 * clean period until the result is > 0. However, this could 260 * lead to several threads keeping another in the clean loop. 261 * This could be mitigated by limiting the number of times 262 * we stay in the loop. 263 */ 264 atomic_set(&wss->clean_counter, wss->clean_period); 265 266 /* 267 * Uniquely grab the entry to clean and move to next. 268 * The current entry is always the lower bits of 269 * wss.clean_entry. The table size, wss.num_entries, 270 * is always a power-of-2. 271 */ 272 entry = (atomic_inc_return(&wss->clean_entry) - 1) 273 & (wss->num_entries - 1); 274 275 /* clear the entry and count the bits */ 276 bits = xchg(&wss->entries[entry], 0); 277 weight = hweight64((u64)bits); 278 /* only adjust the contended total count if needed */ 279 if (weight) 280 atomic_sub(weight, &wss->total_count); 281 } 282 } 283 284 /* 285 * Insert the given address into the working set array. 286 */ 287 static void wss_insert(struct rvt_wss *wss, void *address) 288 { 289 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 290 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 291 u32 nr = page & (BITS_PER_LONG - 1); 292 293 if (!test_and_set_bit(nr, &wss->entries[entry])) 294 atomic_inc(&wss->total_count); 295 296 wss_advance_clean_counter(wss); 297 } 298 299 /* 300 * Is the working set larger than the threshold? 301 */ 302 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 303 { 304 return atomic_read(&wss->total_count) >= wss->threshold; 305 } 306 307 static void get_map_page(struct rvt_qpn_table *qpt, 308 struct rvt_qpn_map *map) 309 { 310 unsigned long page = get_zeroed_page(GFP_KERNEL); 311 312 /* 313 * Free the page if someone raced with us installing it. 314 */ 315 316 spin_lock(&qpt->lock); 317 if (map->page) 318 free_page(page); 319 else 320 map->page = (void *)page; 321 spin_unlock(&qpt->lock); 322 } 323 324 /** 325 * init_qpn_table - initialize the QP number table for a device 326 * @rdi: rvt dev struct 327 * @qpt: the QPN table 328 */ 329 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 330 { 331 u32 offset, i; 332 struct rvt_qpn_map *map; 333 int ret = 0; 334 335 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 336 return -EINVAL; 337 338 spin_lock_init(&qpt->lock); 339 340 qpt->last = rdi->dparms.qpn_start; 341 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 342 343 /* 344 * Drivers may want some QPs beyond what we need for verbs let them use 345 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 346 * for those. The reserved range must be *after* the range which verbs 347 * will pick from. 348 */ 349 350 /* Figure out number of bit maps needed before reserved range */ 351 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 352 353 /* This should always be zero */ 354 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 355 356 /* Starting with the first reserved bit map */ 357 map = &qpt->map[qpt->nmaps]; 358 359 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 360 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 361 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 362 if (!map->page) { 363 get_map_page(qpt, map); 364 if (!map->page) { 365 ret = -ENOMEM; 366 break; 367 } 368 } 369 set_bit(offset, map->page); 370 offset++; 371 if (offset == RVT_BITS_PER_PAGE) { 372 /* next page */ 373 qpt->nmaps++; 374 map++; 375 offset = 0; 376 } 377 } 378 return ret; 379 } 380 381 /** 382 * free_qpn_table - free the QP number table for a device 383 * @qpt: the QPN table 384 */ 385 static void free_qpn_table(struct rvt_qpn_table *qpt) 386 { 387 int i; 388 389 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 390 free_page((unsigned long)qpt->map[i].page); 391 } 392 393 /** 394 * rvt_driver_qp_init - Init driver qp resources 395 * @rdi: rvt dev strucutre 396 * 397 * Return: 0 on success 398 */ 399 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 400 { 401 int i; 402 int ret = -ENOMEM; 403 404 if (!rdi->dparms.qp_table_size) 405 return -EINVAL; 406 407 /* 408 * If driver is not doing any QP allocation then make sure it is 409 * providing the necessary QP functions. 410 */ 411 if (!rdi->driver_f.free_all_qps || 412 !rdi->driver_f.qp_priv_alloc || 413 !rdi->driver_f.qp_priv_free || 414 !rdi->driver_f.notify_qp_reset || 415 !rdi->driver_f.notify_restart_rc) 416 return -EINVAL; 417 418 /* allocate parent object */ 419 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 420 rdi->dparms.node); 421 if (!rdi->qp_dev) 422 return -ENOMEM; 423 424 /* allocate hash table */ 425 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 426 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 427 rdi->qp_dev->qp_table = 428 kmalloc_array_node(rdi->qp_dev->qp_table_size, 429 sizeof(*rdi->qp_dev->qp_table), 430 GFP_KERNEL, rdi->dparms.node); 431 if (!rdi->qp_dev->qp_table) 432 goto no_qp_table; 433 434 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 435 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 436 437 spin_lock_init(&rdi->qp_dev->qpt_lock); 438 439 /* initialize qpn map */ 440 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 441 goto fail_table; 442 443 spin_lock_init(&rdi->n_qps_lock); 444 445 return 0; 446 447 fail_table: 448 kfree(rdi->qp_dev->qp_table); 449 free_qpn_table(&rdi->qp_dev->qpn_table); 450 451 no_qp_table: 452 kfree(rdi->qp_dev); 453 454 return ret; 455 } 456 457 /** 458 * rvt_free_qp_cb - callback function to reset a qp 459 * @qp: the qp to reset 460 * @v: a 64-bit value 461 * 462 * This function resets the qp and removes it from the 463 * qp hash table. 464 */ 465 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v) 466 { 467 unsigned int *qp_inuse = (unsigned int *)v; 468 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 469 470 /* Reset the qp and remove it from the qp hash list */ 471 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type); 472 473 /* Increment the qp_inuse count */ 474 (*qp_inuse)++; 475 } 476 477 /** 478 * rvt_free_all_qps - check for QPs still in use 479 * @rdi: rvt device info structure 480 * 481 * There should not be any QPs still in use. 482 * Free memory for table. 483 * Return the number of QPs still in use. 484 */ 485 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 486 { 487 unsigned int qp_inuse = 0; 488 489 qp_inuse += rvt_mcast_tree_empty(rdi); 490 491 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb); 492 493 return qp_inuse; 494 } 495 496 /** 497 * rvt_qp_exit - clean up qps on device exit 498 * @rdi: rvt dev structure 499 * 500 * Check for qp leaks and free resources. 501 */ 502 void rvt_qp_exit(struct rvt_dev_info *rdi) 503 { 504 u32 qps_inuse = rvt_free_all_qps(rdi); 505 506 if (qps_inuse) 507 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 508 qps_inuse); 509 if (!rdi->qp_dev) 510 return; 511 512 kfree(rdi->qp_dev->qp_table); 513 free_qpn_table(&rdi->qp_dev->qpn_table); 514 kfree(rdi->qp_dev); 515 } 516 517 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 518 struct rvt_qpn_map *map, unsigned off) 519 { 520 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 521 } 522 523 /** 524 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 525 * IB_QPT_SMI/IB_QPT_GSI 526 * @rdi: rvt device info structure 527 * @qpt: queue pair number table pointer 528 * @type: the QP type 529 * @port_num: IB port number, 1 based, comes from core 530 * @exclude_prefix: prefix of special queue pair number being allocated 531 * 532 * Return: The queue pair number 533 */ 534 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 535 enum ib_qp_type type, u8 port_num, u8 exclude_prefix) 536 { 537 u32 i, offset, max_scan, qpn; 538 struct rvt_qpn_map *map; 539 u32 ret; 540 u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ? 541 RVT_AIP_QPN_MAX : RVT_QPN_MAX; 542 543 if (rdi->driver_f.alloc_qpn) 544 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 545 546 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 547 unsigned n; 548 549 ret = type == IB_QPT_GSI; 550 n = 1 << (ret + 2 * (port_num - 1)); 551 spin_lock(&qpt->lock); 552 if (qpt->flags & n) 553 ret = -EINVAL; 554 else 555 qpt->flags |= n; 556 spin_unlock(&qpt->lock); 557 goto bail; 558 } 559 560 qpn = qpt->last + qpt->incr; 561 if (qpn >= max_qpn) 562 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 563 /* offset carries bit 0 */ 564 offset = qpn & RVT_BITS_PER_PAGE_MASK; 565 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 566 max_scan = qpt->nmaps - !offset; 567 for (i = 0;;) { 568 if (unlikely(!map->page)) { 569 get_map_page(qpt, map); 570 if (unlikely(!map->page)) 571 break; 572 } 573 do { 574 if (!test_and_set_bit(offset, map->page)) { 575 qpt->last = qpn; 576 ret = qpn; 577 goto bail; 578 } 579 offset += qpt->incr; 580 /* 581 * This qpn might be bogus if offset >= BITS_PER_PAGE. 582 * That is OK. It gets re-assigned below 583 */ 584 qpn = mk_qpn(qpt, map, offset); 585 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 586 /* 587 * In order to keep the number of pages allocated to a 588 * minimum, we scan the all existing pages before increasing 589 * the size of the bitmap table. 590 */ 591 if (++i > max_scan) { 592 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 593 break; 594 map = &qpt->map[qpt->nmaps++]; 595 /* start at incr with current bit 0 */ 596 offset = qpt->incr | (offset & 1); 597 } else if (map < &qpt->map[qpt->nmaps]) { 598 ++map; 599 /* start at incr with current bit 0 */ 600 offset = qpt->incr | (offset & 1); 601 } else { 602 map = &qpt->map[0]; 603 /* wrap to first map page, invert bit 0 */ 604 offset = qpt->incr | ((offset & 1) ^ 1); 605 } 606 /* there can be no set bits in low-order QoS bits */ 607 WARN_ON(rdi->dparms.qos_shift > 1 && 608 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1)); 609 qpn = mk_qpn(qpt, map, offset); 610 } 611 612 ret = -ENOMEM; 613 614 bail: 615 return ret; 616 } 617 618 /** 619 * rvt_clear_mr_refs - Drop help mr refs 620 * @qp: rvt qp data structure 621 * @clr_sends: If shoudl clear send side or not 622 */ 623 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 624 { 625 unsigned n; 626 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 627 628 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 629 rvt_put_ss(&qp->s_rdma_read_sge); 630 631 rvt_put_ss(&qp->r_sge); 632 633 if (clr_sends) { 634 while (qp->s_last != qp->s_head) { 635 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 636 637 rvt_put_qp_swqe(qp, wqe); 638 if (++qp->s_last >= qp->s_size) 639 qp->s_last = 0; 640 smp_wmb(); /* see qp_set_savail */ 641 } 642 if (qp->s_rdma_mr) { 643 rvt_put_mr(qp->s_rdma_mr); 644 qp->s_rdma_mr = NULL; 645 } 646 } 647 648 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 649 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 650 651 if (e->rdma_sge.mr) { 652 rvt_put_mr(e->rdma_sge.mr); 653 e->rdma_sge.mr = NULL; 654 } 655 } 656 } 657 658 /** 659 * rvt_swqe_has_lkey - return true if lkey is used by swqe 660 * @wqe: the send wqe 661 * @lkey: the lkey 662 * 663 * Test the swqe for using lkey 664 */ 665 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 666 { 667 int i; 668 669 for (i = 0; i < wqe->wr.num_sge; i++) { 670 struct rvt_sge *sge = &wqe->sg_list[i]; 671 672 if (rvt_mr_has_lkey(sge->mr, lkey)) 673 return true; 674 } 675 return false; 676 } 677 678 /** 679 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 680 * @qp: the rvt_qp 681 * @lkey: the lkey 682 */ 683 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 684 { 685 u32 s_last = qp->s_last; 686 687 while (s_last != qp->s_head) { 688 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 689 690 if (rvt_swqe_has_lkey(wqe, lkey)) 691 return true; 692 693 if (++s_last >= qp->s_size) 694 s_last = 0; 695 } 696 if (qp->s_rdma_mr) 697 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 698 return true; 699 return false; 700 } 701 702 /** 703 * rvt_qp_acks_has_lkey - return true if acks have lkey 704 * @qp: the qp 705 * @lkey: the lkey 706 */ 707 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 708 { 709 int i; 710 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 711 712 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 713 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 714 715 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 716 return true; 717 } 718 return false; 719 } 720 721 /** 722 * rvt_qp_mr_clean - clean up remote ops for lkey 723 * @qp: the qp 724 * @lkey: the lkey that is being de-registered 725 * 726 * This routine checks if the lkey is being used by 727 * the qp. 728 * 729 * If so, the qp is put into an error state to elminate 730 * any references from the qp. 731 */ 732 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 733 { 734 bool lastwqe = false; 735 736 if (qp->ibqp.qp_type == IB_QPT_SMI || 737 qp->ibqp.qp_type == IB_QPT_GSI) 738 /* avoid special QPs */ 739 return; 740 spin_lock_irq(&qp->r_lock); 741 spin_lock(&qp->s_hlock); 742 spin_lock(&qp->s_lock); 743 744 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 745 goto check_lwqe; 746 747 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 748 rvt_qp_sends_has_lkey(qp, lkey) || 749 rvt_qp_acks_has_lkey(qp, lkey)) 750 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 751 check_lwqe: 752 spin_unlock(&qp->s_lock); 753 spin_unlock(&qp->s_hlock); 754 spin_unlock_irq(&qp->r_lock); 755 if (lastwqe) { 756 struct ib_event ev; 757 758 ev.device = qp->ibqp.device; 759 ev.element.qp = &qp->ibqp; 760 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 761 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 762 } 763 } 764 765 /** 766 * rvt_remove_qp - remove qp form table 767 * @rdi: rvt dev struct 768 * @qp: qp to remove 769 * 770 * Remove the QP from the table so it can't be found asynchronously by 771 * the receive routine. 772 */ 773 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 774 { 775 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 776 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 777 unsigned long flags; 778 int removed = 1; 779 780 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 781 782 if (rcu_dereference_protected(rvp->qp[0], 783 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 784 RCU_INIT_POINTER(rvp->qp[0], NULL); 785 } else if (rcu_dereference_protected(rvp->qp[1], 786 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 787 RCU_INIT_POINTER(rvp->qp[1], NULL); 788 } else { 789 struct rvt_qp *q; 790 struct rvt_qp __rcu **qpp; 791 792 removed = 0; 793 qpp = &rdi->qp_dev->qp_table[n]; 794 for (; (q = rcu_dereference_protected(*qpp, 795 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 796 qpp = &q->next) { 797 if (q == qp) { 798 RCU_INIT_POINTER(*qpp, 799 rcu_dereference_protected(qp->next, 800 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 801 removed = 1; 802 trace_rvt_qpremove(qp, n); 803 break; 804 } 805 } 806 } 807 808 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 809 if (removed) { 810 synchronize_rcu(); 811 rvt_put_qp(qp); 812 } 813 } 814 815 /** 816 * rvt_alloc_rq - allocate memory for user or kernel buffer 817 * @rq: receive queue data structure 818 * @size: number of request queue entries 819 * @node: The NUMA node 820 * @udata: True if user data is available or not false 821 * 822 * Return: If memory allocation failed, return -ENONEM 823 * This function is used by both shared receive 824 * queues and non-shared receive queues to allocate 825 * memory. 826 */ 827 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node, 828 struct ib_udata *udata) 829 { 830 if (udata) { 831 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size); 832 if (!rq->wq) 833 goto bail; 834 /* need kwq with no buffers */ 835 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node); 836 if (!rq->kwq) 837 goto bail; 838 rq->kwq->curr_wq = rq->wq->wq; 839 } else { 840 /* need kwq with buffers */ 841 rq->kwq = 842 vzalloc_node(sizeof(struct rvt_krwq) + size, node); 843 if (!rq->kwq) 844 goto bail; 845 rq->kwq->curr_wq = rq->kwq->wq; 846 } 847 848 spin_lock_init(&rq->kwq->p_lock); 849 spin_lock_init(&rq->kwq->c_lock); 850 return 0; 851 bail: 852 rvt_free_rq(rq); 853 return -ENOMEM; 854 } 855 856 /** 857 * rvt_init_qp - initialize the QP state to the reset state 858 * @rdi: rvt dev struct 859 * @qp: the QP to init or reinit 860 * @type: the QP type 861 * 862 * This function is called from both rvt_create_qp() and 863 * rvt_reset_qp(). The difference is that the reset 864 * patch the necessary locks to protect against concurent 865 * access. 866 */ 867 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 868 enum ib_qp_type type) 869 { 870 qp->remote_qpn = 0; 871 qp->qkey = 0; 872 qp->qp_access_flags = 0; 873 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 874 qp->s_hdrwords = 0; 875 qp->s_wqe = NULL; 876 qp->s_draining = 0; 877 qp->s_next_psn = 0; 878 qp->s_last_psn = 0; 879 qp->s_sending_psn = 0; 880 qp->s_sending_hpsn = 0; 881 qp->s_psn = 0; 882 qp->r_psn = 0; 883 qp->r_msn = 0; 884 if (type == IB_QPT_RC) { 885 qp->s_state = IB_OPCODE_RC_SEND_LAST; 886 qp->r_state = IB_OPCODE_RC_SEND_LAST; 887 } else { 888 qp->s_state = IB_OPCODE_UC_SEND_LAST; 889 qp->r_state = IB_OPCODE_UC_SEND_LAST; 890 } 891 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 892 qp->r_nak_state = 0; 893 qp->r_aflags = 0; 894 qp->r_flags = 0; 895 qp->s_head = 0; 896 qp->s_tail = 0; 897 qp->s_cur = 0; 898 qp->s_acked = 0; 899 qp->s_last = 0; 900 qp->s_ssn = 1; 901 qp->s_lsn = 0; 902 qp->s_mig_state = IB_MIG_MIGRATED; 903 qp->r_head_ack_queue = 0; 904 qp->s_tail_ack_queue = 0; 905 qp->s_acked_ack_queue = 0; 906 qp->s_num_rd_atomic = 0; 907 qp->r_sge.num_sge = 0; 908 atomic_set(&qp->s_reserved_used, 0); 909 } 910 911 /** 912 * _rvt_reset_qp - initialize the QP state to the reset state 913 * @rdi: rvt dev struct 914 * @qp: the QP to reset 915 * @type: the QP type 916 * 917 * r_lock, s_hlock, and s_lock are required to be held by the caller 918 */ 919 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 920 enum ib_qp_type type) 921 __must_hold(&qp->s_lock) 922 __must_hold(&qp->s_hlock) 923 __must_hold(&qp->r_lock) 924 { 925 lockdep_assert_held(&qp->r_lock); 926 lockdep_assert_held(&qp->s_hlock); 927 lockdep_assert_held(&qp->s_lock); 928 if (qp->state != IB_QPS_RESET) { 929 qp->state = IB_QPS_RESET; 930 931 /* Let drivers flush their waitlist */ 932 rdi->driver_f.flush_qp_waiters(qp); 933 rvt_stop_rc_timers(qp); 934 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 935 spin_unlock(&qp->s_lock); 936 spin_unlock(&qp->s_hlock); 937 spin_unlock_irq(&qp->r_lock); 938 939 /* Stop the send queue and the retry timer */ 940 rdi->driver_f.stop_send_queue(qp); 941 rvt_del_timers_sync(qp); 942 /* Wait for things to stop */ 943 rdi->driver_f.quiesce_qp(qp); 944 945 /* take qp out the hash and wait for it to be unused */ 946 rvt_remove_qp(rdi, qp); 947 948 /* grab the lock b/c it was locked at call time */ 949 spin_lock_irq(&qp->r_lock); 950 spin_lock(&qp->s_hlock); 951 spin_lock(&qp->s_lock); 952 953 rvt_clear_mr_refs(qp, 1); 954 /* 955 * Let the driver do any tear down or re-init it needs to for 956 * a qp that has been reset 957 */ 958 rdi->driver_f.notify_qp_reset(qp); 959 } 960 rvt_init_qp(rdi, qp, type); 961 lockdep_assert_held(&qp->r_lock); 962 lockdep_assert_held(&qp->s_hlock); 963 lockdep_assert_held(&qp->s_lock); 964 } 965 966 /** 967 * rvt_reset_qp - initialize the QP state to the reset state 968 * @rdi: the device info 969 * @qp: the QP to reset 970 * @type: the QP type 971 * 972 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock 973 * before calling _rvt_reset_qp(). 974 */ 975 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 976 enum ib_qp_type type) 977 { 978 spin_lock_irq(&qp->r_lock); 979 spin_lock(&qp->s_hlock); 980 spin_lock(&qp->s_lock); 981 _rvt_reset_qp(rdi, qp, type); 982 spin_unlock(&qp->s_lock); 983 spin_unlock(&qp->s_hlock); 984 spin_unlock_irq(&qp->r_lock); 985 } 986 987 /** rvt_free_qpn - Free a qpn from the bit map 988 * @qpt: QP table 989 * @qpn: queue pair number to free 990 */ 991 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 992 { 993 struct rvt_qpn_map *map; 994 995 if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE) 996 qpn &= RVT_AIP_QP_SUFFIX; 997 998 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 999 if (map->page) 1000 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 1001 } 1002 1003 /** 1004 * get_allowed_ops - Given a QP type return the appropriate allowed OP 1005 * @type: valid, supported, QP type 1006 */ 1007 static u8 get_allowed_ops(enum ib_qp_type type) 1008 { 1009 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ? 1010 IB_OPCODE_UC : IB_OPCODE_UD; 1011 } 1012 1013 /** 1014 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs 1015 * @qp: Valid QP with allowed_ops set 1016 * 1017 * The rvt_swqe data structure being used is a union, so this is 1018 * only valid for UD QPs. 1019 */ 1020 static void free_ud_wq_attr(struct rvt_qp *qp) 1021 { 1022 struct rvt_swqe *wqe; 1023 int i; 1024 1025 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1026 wqe = rvt_get_swqe_ptr(qp, i); 1027 kfree(wqe->ud_wr.attr); 1028 wqe->ud_wr.attr = NULL; 1029 } 1030 } 1031 1032 /** 1033 * alloc_ud_wq_attr - AH attribute cache for UD QPs 1034 * @qp: Valid QP with allowed_ops set 1035 * @node: Numa node for allocation 1036 * 1037 * The rvt_swqe data structure being used is a union, so this is 1038 * only valid for UD QPs. 1039 */ 1040 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node) 1041 { 1042 struct rvt_swqe *wqe; 1043 int i; 1044 1045 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1046 wqe = rvt_get_swqe_ptr(qp, i); 1047 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr), 1048 GFP_KERNEL, node); 1049 if (!wqe->ud_wr.attr) { 1050 free_ud_wq_attr(qp); 1051 return -ENOMEM; 1052 } 1053 } 1054 1055 return 0; 1056 } 1057 1058 /** 1059 * rvt_create_qp - create a queue pair for a device 1060 * @ibpd: the protection domain who's device we create the queue pair for 1061 * @init_attr: the attributes of the queue pair 1062 * @udata: user data for libibverbs.so 1063 * 1064 * Queue pair creation is mostly an rvt issue. However, drivers have their own 1065 * unique idea of what queue pair numbers mean. For instance there is a reserved 1066 * range for PSM. 1067 * 1068 * Return: the queue pair on success, otherwise returns an errno. 1069 * 1070 * Called by the ib_create_qp() core verbs function. 1071 */ 1072 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 1073 struct ib_qp_init_attr *init_attr, 1074 struct ib_udata *udata) 1075 { 1076 struct rvt_qp *qp; 1077 int err; 1078 struct rvt_swqe *swq = NULL; 1079 size_t sz; 1080 size_t sg_list_sz; 1081 struct ib_qp *ret = ERR_PTR(-ENOMEM); 1082 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 1083 void *priv = NULL; 1084 size_t sqsize; 1085 u8 exclude_prefix = 0; 1086 1087 if (!rdi) 1088 return ERR_PTR(-EINVAL); 1089 1090 if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE) 1091 return ERR_PTR(-EOPNOTSUPP); 1092 1093 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 1094 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr) 1095 return ERR_PTR(-EINVAL); 1096 1097 /* Check receive queue parameters if no SRQ is specified. */ 1098 if (!init_attr->srq) { 1099 if (init_attr->cap.max_recv_sge > 1100 rdi->dparms.props.max_recv_sge || 1101 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 1102 return ERR_PTR(-EINVAL); 1103 1104 if (init_attr->cap.max_send_sge + 1105 init_attr->cap.max_send_wr + 1106 init_attr->cap.max_recv_sge + 1107 init_attr->cap.max_recv_wr == 0) 1108 return ERR_PTR(-EINVAL); 1109 } 1110 sqsize = 1111 init_attr->cap.max_send_wr + 1 + 1112 rdi->dparms.reserved_operations; 1113 switch (init_attr->qp_type) { 1114 case IB_QPT_SMI: 1115 case IB_QPT_GSI: 1116 if (init_attr->port_num == 0 || 1117 init_attr->port_num > ibpd->device->phys_port_cnt) 1118 return ERR_PTR(-EINVAL); 1119 fallthrough; 1120 case IB_QPT_UC: 1121 case IB_QPT_RC: 1122 case IB_QPT_UD: 1123 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge); 1124 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 1125 if (!swq) 1126 return ERR_PTR(-ENOMEM); 1127 1128 sz = sizeof(*qp); 1129 sg_list_sz = 0; 1130 if (init_attr->srq) { 1131 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1132 1133 if (srq->rq.max_sge > 1) 1134 sg_list_sz = sizeof(*qp->r_sg_list) * 1135 (srq->rq.max_sge - 1); 1136 } else if (init_attr->cap.max_recv_sge > 1) 1137 sg_list_sz = sizeof(*qp->r_sg_list) * 1138 (init_attr->cap.max_recv_sge - 1); 1139 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, 1140 rdi->dparms.node); 1141 if (!qp) 1142 goto bail_swq; 1143 qp->allowed_ops = get_allowed_ops(init_attr->qp_type); 1144 1145 RCU_INIT_POINTER(qp->next, NULL); 1146 if (init_attr->qp_type == IB_QPT_RC) { 1147 qp->s_ack_queue = 1148 kcalloc_node(rvt_max_atomic(rdi), 1149 sizeof(*qp->s_ack_queue), 1150 GFP_KERNEL, 1151 rdi->dparms.node); 1152 if (!qp->s_ack_queue) 1153 goto bail_qp; 1154 } 1155 /* initialize timers needed for rc qp */ 1156 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1157 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 1158 HRTIMER_MODE_REL); 1159 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 1160 1161 /* 1162 * Driver needs to set up it's private QP structure and do any 1163 * initialization that is needed. 1164 */ 1165 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1166 if (IS_ERR(priv)) { 1167 ret = priv; 1168 goto bail_qp; 1169 } 1170 qp->priv = priv; 1171 qp->timeout_jiffies = 1172 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1173 1000UL); 1174 if (init_attr->srq) { 1175 sz = 0; 1176 } else { 1177 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1178 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1179 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1180 sizeof(struct rvt_rwqe); 1181 err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz, 1182 rdi->dparms.node, udata); 1183 if (err) { 1184 ret = ERR_PTR(err); 1185 goto bail_driver_priv; 1186 } 1187 } 1188 1189 /* 1190 * ib_create_qp() will initialize qp->ibqp 1191 * except for qp->ibqp.qp_num. 1192 */ 1193 spin_lock_init(&qp->r_lock); 1194 spin_lock_init(&qp->s_hlock); 1195 spin_lock_init(&qp->s_lock); 1196 atomic_set(&qp->refcount, 0); 1197 atomic_set(&qp->local_ops_pending, 0); 1198 init_waitqueue_head(&qp->wait); 1199 INIT_LIST_HEAD(&qp->rspwait); 1200 qp->state = IB_QPS_RESET; 1201 qp->s_wq = swq; 1202 qp->s_size = sqsize; 1203 qp->s_avail = init_attr->cap.max_send_wr; 1204 qp->s_max_sge = init_attr->cap.max_send_sge; 1205 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1206 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1207 err = alloc_ud_wq_attr(qp, rdi->dparms.node); 1208 if (err) { 1209 ret = (ERR_PTR(err)); 1210 goto bail_rq_rvt; 1211 } 1212 1213 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1214 exclude_prefix = RVT_AIP_QP_PREFIX; 1215 1216 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1217 init_attr->qp_type, 1218 init_attr->port_num, 1219 exclude_prefix); 1220 if (err < 0) { 1221 ret = ERR_PTR(err); 1222 goto bail_rq_wq; 1223 } 1224 qp->ibqp.qp_num = err; 1225 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1226 qp->ibqp.qp_num |= RVT_AIP_QP_BASE; 1227 qp->port_num = init_attr->port_num; 1228 rvt_init_qp(rdi, qp, init_attr->qp_type); 1229 if (rdi->driver_f.qp_priv_init) { 1230 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); 1231 if (err) { 1232 ret = ERR_PTR(err); 1233 goto bail_rq_wq; 1234 } 1235 } 1236 break; 1237 1238 default: 1239 /* Don't support raw QPs */ 1240 return ERR_PTR(-EOPNOTSUPP); 1241 } 1242 1243 init_attr->cap.max_inline_data = 0; 1244 1245 /* 1246 * Return the address of the RWQ as the offset to mmap. 1247 * See rvt_mmap() for details. 1248 */ 1249 if (udata && udata->outlen >= sizeof(__u64)) { 1250 if (!qp->r_rq.wq) { 1251 __u64 offset = 0; 1252 1253 err = ib_copy_to_udata(udata, &offset, 1254 sizeof(offset)); 1255 if (err) { 1256 ret = ERR_PTR(err); 1257 goto bail_qpn; 1258 } 1259 } else { 1260 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1261 1262 qp->ip = rvt_create_mmap_info(rdi, s, udata, 1263 qp->r_rq.wq); 1264 if (IS_ERR(qp->ip)) { 1265 ret = ERR_CAST(qp->ip); 1266 goto bail_qpn; 1267 } 1268 1269 err = ib_copy_to_udata(udata, &qp->ip->offset, 1270 sizeof(qp->ip->offset)); 1271 if (err) { 1272 ret = ERR_PTR(err); 1273 goto bail_ip; 1274 } 1275 } 1276 qp->pid = current->pid; 1277 } 1278 1279 spin_lock(&rdi->n_qps_lock); 1280 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1281 spin_unlock(&rdi->n_qps_lock); 1282 ret = ERR_PTR(-ENOMEM); 1283 goto bail_ip; 1284 } 1285 1286 rdi->n_qps_allocated++; 1287 /* 1288 * Maintain a busy_jiffies variable that will be added to the timeout 1289 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1290 * is scaled by the number of rc qps created for the device to reduce 1291 * the number of timeouts occurring when there is a large number of 1292 * qps. busy_jiffies is incremented every rc qp scaling interval. 1293 * The scaling interval is selected based on extensive performance 1294 * evaluation of targeted workloads. 1295 */ 1296 if (init_attr->qp_type == IB_QPT_RC) { 1297 rdi->n_rc_qps++; 1298 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1299 } 1300 spin_unlock(&rdi->n_qps_lock); 1301 1302 if (qp->ip) { 1303 spin_lock_irq(&rdi->pending_lock); 1304 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1305 spin_unlock_irq(&rdi->pending_lock); 1306 } 1307 1308 ret = &qp->ibqp; 1309 1310 return ret; 1311 1312 bail_ip: 1313 if (qp->ip) 1314 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1315 1316 bail_qpn: 1317 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1318 1319 bail_rq_wq: 1320 free_ud_wq_attr(qp); 1321 1322 bail_rq_rvt: 1323 rvt_free_rq(&qp->r_rq); 1324 1325 bail_driver_priv: 1326 rdi->driver_f.qp_priv_free(rdi, qp); 1327 1328 bail_qp: 1329 kfree(qp->s_ack_queue); 1330 kfree(qp); 1331 1332 bail_swq: 1333 vfree(swq); 1334 1335 return ret; 1336 } 1337 1338 /** 1339 * rvt_error_qp - put a QP into the error state 1340 * @qp: the QP to put into the error state 1341 * @err: the receive completion error to signal if a RWQE is active 1342 * 1343 * Flushes both send and receive work queues. 1344 * 1345 * Return: true if last WQE event should be generated. 1346 * The QP r_lock and s_lock should be held and interrupts disabled. 1347 * If we are already in error state, just return. 1348 */ 1349 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1350 { 1351 struct ib_wc wc; 1352 int ret = 0; 1353 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1354 1355 lockdep_assert_held(&qp->r_lock); 1356 lockdep_assert_held(&qp->s_lock); 1357 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1358 goto bail; 1359 1360 qp->state = IB_QPS_ERR; 1361 1362 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1363 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1364 del_timer(&qp->s_timer); 1365 } 1366 1367 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1368 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1369 1370 rdi->driver_f.notify_error_qp(qp); 1371 1372 /* Schedule the sending tasklet to drain the send work queue. */ 1373 if (READ_ONCE(qp->s_last) != qp->s_head) 1374 rdi->driver_f.schedule_send(qp); 1375 1376 rvt_clear_mr_refs(qp, 0); 1377 1378 memset(&wc, 0, sizeof(wc)); 1379 wc.qp = &qp->ibqp; 1380 wc.opcode = IB_WC_RECV; 1381 1382 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1383 wc.wr_id = qp->r_wr_id; 1384 wc.status = err; 1385 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1386 } 1387 wc.status = IB_WC_WR_FLUSH_ERR; 1388 1389 if (qp->r_rq.kwq) { 1390 u32 head; 1391 u32 tail; 1392 struct rvt_rwq *wq = NULL; 1393 struct rvt_krwq *kwq = NULL; 1394 1395 spin_lock(&qp->r_rq.kwq->c_lock); 1396 /* qp->ip used to validate if there is a user buffer mmaped */ 1397 if (qp->ip) { 1398 wq = qp->r_rq.wq; 1399 head = RDMA_READ_UAPI_ATOMIC(wq->head); 1400 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 1401 } else { 1402 kwq = qp->r_rq.kwq; 1403 head = kwq->head; 1404 tail = kwq->tail; 1405 } 1406 /* sanity check pointers before trusting them */ 1407 if (head >= qp->r_rq.size) 1408 head = 0; 1409 if (tail >= qp->r_rq.size) 1410 tail = 0; 1411 while (tail != head) { 1412 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1413 if (++tail >= qp->r_rq.size) 1414 tail = 0; 1415 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1416 } 1417 if (qp->ip) 1418 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 1419 else 1420 kwq->tail = tail; 1421 spin_unlock(&qp->r_rq.kwq->c_lock); 1422 } else if (qp->ibqp.event_handler) { 1423 ret = 1; 1424 } 1425 1426 bail: 1427 return ret; 1428 } 1429 EXPORT_SYMBOL(rvt_error_qp); 1430 1431 /* 1432 * Put the QP into the hash table. 1433 * The hash table holds a reference to the QP. 1434 */ 1435 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1436 { 1437 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1438 unsigned long flags; 1439 1440 rvt_get_qp(qp); 1441 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1442 1443 if (qp->ibqp.qp_num <= 1) { 1444 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1445 } else { 1446 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1447 1448 qp->next = rdi->qp_dev->qp_table[n]; 1449 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1450 trace_rvt_qpinsert(qp, n); 1451 } 1452 1453 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1454 } 1455 1456 /** 1457 * rvt_modify_qp - modify the attributes of a queue pair 1458 * @ibqp: the queue pair who's attributes we're modifying 1459 * @attr: the new attributes 1460 * @attr_mask: the mask of attributes to modify 1461 * @udata: user data for libibverbs.so 1462 * 1463 * Return: 0 on success, otherwise returns an errno. 1464 */ 1465 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1466 int attr_mask, struct ib_udata *udata) 1467 { 1468 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1469 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1470 enum ib_qp_state cur_state, new_state; 1471 struct ib_event ev; 1472 int lastwqe = 0; 1473 int mig = 0; 1474 int pmtu = 0; /* for gcc warning only */ 1475 int opa_ah; 1476 1477 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS) 1478 return -EOPNOTSUPP; 1479 1480 spin_lock_irq(&qp->r_lock); 1481 spin_lock(&qp->s_hlock); 1482 spin_lock(&qp->s_lock); 1483 1484 cur_state = attr_mask & IB_QP_CUR_STATE ? 1485 attr->cur_qp_state : qp->state; 1486 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1487 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1488 1489 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1490 attr_mask)) 1491 goto inval; 1492 1493 if (rdi->driver_f.check_modify_qp && 1494 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1495 goto inval; 1496 1497 if (attr_mask & IB_QP_AV) { 1498 if (opa_ah) { 1499 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1500 opa_get_mcast_base(OPA_MCAST_NR)) 1501 goto inval; 1502 } else { 1503 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1504 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1505 goto inval; 1506 } 1507 1508 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1509 goto inval; 1510 } 1511 1512 if (attr_mask & IB_QP_ALT_PATH) { 1513 if (opa_ah) { 1514 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1515 opa_get_mcast_base(OPA_MCAST_NR)) 1516 goto inval; 1517 } else { 1518 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1519 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1520 goto inval; 1521 } 1522 1523 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1524 goto inval; 1525 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1526 goto inval; 1527 } 1528 1529 if (attr_mask & IB_QP_PKEY_INDEX) 1530 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1531 goto inval; 1532 1533 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1534 if (attr->min_rnr_timer > 31) 1535 goto inval; 1536 1537 if (attr_mask & IB_QP_PORT) 1538 if (qp->ibqp.qp_type == IB_QPT_SMI || 1539 qp->ibqp.qp_type == IB_QPT_GSI || 1540 attr->port_num == 0 || 1541 attr->port_num > ibqp->device->phys_port_cnt) 1542 goto inval; 1543 1544 if (attr_mask & IB_QP_DEST_QPN) 1545 if (attr->dest_qp_num > RVT_QPN_MASK) 1546 goto inval; 1547 1548 if (attr_mask & IB_QP_RETRY_CNT) 1549 if (attr->retry_cnt > 7) 1550 goto inval; 1551 1552 if (attr_mask & IB_QP_RNR_RETRY) 1553 if (attr->rnr_retry > 7) 1554 goto inval; 1555 1556 /* 1557 * Don't allow invalid path_mtu values. OK to set greater 1558 * than the active mtu (or even the max_cap, if we have tuned 1559 * that to a small mtu. We'll set qp->path_mtu 1560 * to the lesser of requested attribute mtu and active, 1561 * for packetizing messages. 1562 * Note that the QP port has to be set in INIT and MTU in RTR. 1563 */ 1564 if (attr_mask & IB_QP_PATH_MTU) { 1565 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1566 if (pmtu < 0) 1567 goto inval; 1568 } 1569 1570 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1571 if (attr->path_mig_state == IB_MIG_REARM) { 1572 if (qp->s_mig_state == IB_MIG_ARMED) 1573 goto inval; 1574 if (new_state != IB_QPS_RTS) 1575 goto inval; 1576 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1577 if (qp->s_mig_state == IB_MIG_REARM) 1578 goto inval; 1579 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1580 goto inval; 1581 if (qp->s_mig_state == IB_MIG_ARMED) 1582 mig = 1; 1583 } else { 1584 goto inval; 1585 } 1586 } 1587 1588 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1589 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1590 goto inval; 1591 1592 switch (new_state) { 1593 case IB_QPS_RESET: 1594 if (qp->state != IB_QPS_RESET) 1595 _rvt_reset_qp(rdi, qp, ibqp->qp_type); 1596 break; 1597 1598 case IB_QPS_RTR: 1599 /* Allow event to re-trigger if QP set to RTR more than once */ 1600 qp->r_flags &= ~RVT_R_COMM_EST; 1601 qp->state = new_state; 1602 break; 1603 1604 case IB_QPS_SQD: 1605 qp->s_draining = qp->s_last != qp->s_cur; 1606 qp->state = new_state; 1607 break; 1608 1609 case IB_QPS_SQE: 1610 if (qp->ibqp.qp_type == IB_QPT_RC) 1611 goto inval; 1612 qp->state = new_state; 1613 break; 1614 1615 case IB_QPS_ERR: 1616 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1617 break; 1618 1619 default: 1620 qp->state = new_state; 1621 break; 1622 } 1623 1624 if (attr_mask & IB_QP_PKEY_INDEX) 1625 qp->s_pkey_index = attr->pkey_index; 1626 1627 if (attr_mask & IB_QP_PORT) 1628 qp->port_num = attr->port_num; 1629 1630 if (attr_mask & IB_QP_DEST_QPN) 1631 qp->remote_qpn = attr->dest_qp_num; 1632 1633 if (attr_mask & IB_QP_SQ_PSN) { 1634 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1635 qp->s_psn = qp->s_next_psn; 1636 qp->s_sending_psn = qp->s_next_psn; 1637 qp->s_last_psn = qp->s_next_psn - 1; 1638 qp->s_sending_hpsn = qp->s_last_psn; 1639 } 1640 1641 if (attr_mask & IB_QP_RQ_PSN) 1642 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1643 1644 if (attr_mask & IB_QP_ACCESS_FLAGS) 1645 qp->qp_access_flags = attr->qp_access_flags; 1646 1647 if (attr_mask & IB_QP_AV) { 1648 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1649 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1650 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1651 } 1652 1653 if (attr_mask & IB_QP_ALT_PATH) { 1654 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1655 qp->s_alt_pkey_index = attr->alt_pkey_index; 1656 } 1657 1658 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1659 qp->s_mig_state = attr->path_mig_state; 1660 if (mig) { 1661 qp->remote_ah_attr = qp->alt_ah_attr; 1662 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1663 qp->s_pkey_index = qp->s_alt_pkey_index; 1664 } 1665 } 1666 1667 if (attr_mask & IB_QP_PATH_MTU) { 1668 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1669 qp->log_pmtu = ilog2(qp->pmtu); 1670 } 1671 1672 if (attr_mask & IB_QP_RETRY_CNT) { 1673 qp->s_retry_cnt = attr->retry_cnt; 1674 qp->s_retry = attr->retry_cnt; 1675 } 1676 1677 if (attr_mask & IB_QP_RNR_RETRY) { 1678 qp->s_rnr_retry_cnt = attr->rnr_retry; 1679 qp->s_rnr_retry = attr->rnr_retry; 1680 } 1681 1682 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1683 qp->r_min_rnr_timer = attr->min_rnr_timer; 1684 1685 if (attr_mask & IB_QP_TIMEOUT) { 1686 qp->timeout = attr->timeout; 1687 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1688 } 1689 1690 if (attr_mask & IB_QP_QKEY) 1691 qp->qkey = attr->qkey; 1692 1693 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1694 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1695 1696 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1697 qp->s_max_rd_atomic = attr->max_rd_atomic; 1698 1699 if (rdi->driver_f.modify_qp) 1700 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1701 1702 spin_unlock(&qp->s_lock); 1703 spin_unlock(&qp->s_hlock); 1704 spin_unlock_irq(&qp->r_lock); 1705 1706 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1707 rvt_insert_qp(rdi, qp); 1708 1709 if (lastwqe) { 1710 ev.device = qp->ibqp.device; 1711 ev.element.qp = &qp->ibqp; 1712 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1713 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1714 } 1715 if (mig) { 1716 ev.device = qp->ibqp.device; 1717 ev.element.qp = &qp->ibqp; 1718 ev.event = IB_EVENT_PATH_MIG; 1719 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1720 } 1721 return 0; 1722 1723 inval: 1724 spin_unlock(&qp->s_lock); 1725 spin_unlock(&qp->s_hlock); 1726 spin_unlock_irq(&qp->r_lock); 1727 return -EINVAL; 1728 } 1729 1730 /** 1731 * rvt_destroy_qp - destroy a queue pair 1732 * @ibqp: the queue pair to destroy 1733 * @udata: unused by the driver 1734 * 1735 * Note that this can be called while the QP is actively sending or 1736 * receiving! 1737 * 1738 * Return: 0 on success. 1739 */ 1740 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) 1741 { 1742 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1743 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1744 1745 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1746 1747 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1748 /* qpn is now available for use again */ 1749 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1750 1751 spin_lock(&rdi->n_qps_lock); 1752 rdi->n_qps_allocated--; 1753 if (qp->ibqp.qp_type == IB_QPT_RC) { 1754 rdi->n_rc_qps--; 1755 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1756 } 1757 spin_unlock(&rdi->n_qps_lock); 1758 1759 if (qp->ip) 1760 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1761 kvfree(qp->r_rq.kwq); 1762 rdi->driver_f.qp_priv_free(rdi, qp); 1763 kfree(qp->s_ack_queue); 1764 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1765 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1766 free_ud_wq_attr(qp); 1767 vfree(qp->s_wq); 1768 kfree(qp); 1769 return 0; 1770 } 1771 1772 /** 1773 * rvt_query_qp - query an ipbq 1774 * @ibqp: IB qp to query 1775 * @attr: attr struct to fill in 1776 * @attr_mask: attr mask ignored 1777 * @init_attr: struct to fill in 1778 * 1779 * Return: always 0 1780 */ 1781 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1782 int attr_mask, struct ib_qp_init_attr *init_attr) 1783 { 1784 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1785 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1786 1787 attr->qp_state = qp->state; 1788 attr->cur_qp_state = attr->qp_state; 1789 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1790 attr->path_mig_state = qp->s_mig_state; 1791 attr->qkey = qp->qkey; 1792 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1793 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1794 attr->dest_qp_num = qp->remote_qpn; 1795 attr->qp_access_flags = qp->qp_access_flags; 1796 attr->cap.max_send_wr = qp->s_size - 1 - 1797 rdi->dparms.reserved_operations; 1798 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1799 attr->cap.max_send_sge = qp->s_max_sge; 1800 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1801 attr->cap.max_inline_data = 0; 1802 attr->ah_attr = qp->remote_ah_attr; 1803 attr->alt_ah_attr = qp->alt_ah_attr; 1804 attr->pkey_index = qp->s_pkey_index; 1805 attr->alt_pkey_index = qp->s_alt_pkey_index; 1806 attr->en_sqd_async_notify = 0; 1807 attr->sq_draining = qp->s_draining; 1808 attr->max_rd_atomic = qp->s_max_rd_atomic; 1809 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1810 attr->min_rnr_timer = qp->r_min_rnr_timer; 1811 attr->port_num = qp->port_num; 1812 attr->timeout = qp->timeout; 1813 attr->retry_cnt = qp->s_retry_cnt; 1814 attr->rnr_retry = qp->s_rnr_retry_cnt; 1815 attr->alt_port_num = 1816 rdma_ah_get_port_num(&qp->alt_ah_attr); 1817 attr->alt_timeout = qp->alt_timeout; 1818 1819 init_attr->event_handler = qp->ibqp.event_handler; 1820 init_attr->qp_context = qp->ibqp.qp_context; 1821 init_attr->send_cq = qp->ibqp.send_cq; 1822 init_attr->recv_cq = qp->ibqp.recv_cq; 1823 init_attr->srq = qp->ibqp.srq; 1824 init_attr->cap = attr->cap; 1825 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1826 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1827 else 1828 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1829 init_attr->qp_type = qp->ibqp.qp_type; 1830 init_attr->port_num = qp->port_num; 1831 return 0; 1832 } 1833 1834 /** 1835 * rvt_post_recv - post a receive on a QP 1836 * @ibqp: the QP to post the receive on 1837 * @wr: the WR to post 1838 * @bad_wr: the first bad WR is put here 1839 * 1840 * This may be called from interrupt context. 1841 * 1842 * Return: 0 on success otherwise errno 1843 */ 1844 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1845 const struct ib_recv_wr **bad_wr) 1846 { 1847 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1848 struct rvt_krwq *wq = qp->r_rq.kwq; 1849 unsigned long flags; 1850 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1851 !qp->ibqp.srq; 1852 1853 /* Check that state is OK to post receive. */ 1854 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1855 *bad_wr = wr; 1856 return -EINVAL; 1857 } 1858 1859 for (; wr; wr = wr->next) { 1860 struct rvt_rwqe *wqe; 1861 u32 next; 1862 int i; 1863 1864 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1865 *bad_wr = wr; 1866 return -EINVAL; 1867 } 1868 1869 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags); 1870 next = wq->head + 1; 1871 if (next >= qp->r_rq.size) 1872 next = 0; 1873 if (next == READ_ONCE(wq->tail)) { 1874 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1875 *bad_wr = wr; 1876 return -ENOMEM; 1877 } 1878 if (unlikely(qp_err_flush)) { 1879 struct ib_wc wc; 1880 1881 memset(&wc, 0, sizeof(wc)); 1882 wc.qp = &qp->ibqp; 1883 wc.opcode = IB_WC_RECV; 1884 wc.wr_id = wr->wr_id; 1885 wc.status = IB_WC_WR_FLUSH_ERR; 1886 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1887 } else { 1888 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1889 wqe->wr_id = wr->wr_id; 1890 wqe->num_sge = wr->num_sge; 1891 for (i = 0; i < wr->num_sge; i++) { 1892 wqe->sg_list[i].addr = wr->sg_list[i].addr; 1893 wqe->sg_list[i].length = wr->sg_list[i].length; 1894 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 1895 } 1896 /* 1897 * Make sure queue entry is written 1898 * before the head index. 1899 */ 1900 smp_store_release(&wq->head, next); 1901 } 1902 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1903 } 1904 return 0; 1905 } 1906 1907 /** 1908 * rvt_qp_valid_operation - validate post send wr request 1909 * @qp: the qp 1910 * @post_parms: the post send table for the driver 1911 * @wr: the work request 1912 * 1913 * The routine validates the operation based on the 1914 * validation table an returns the length of the operation 1915 * which can extend beyond the ib_send_bw. Operation 1916 * dependent flags key atomic operation validation. 1917 * 1918 * There is an exception for UD qps that validates the pd and 1919 * overrides the length to include the additional UD specific 1920 * length. 1921 * 1922 * Returns a negative error or the length of the work request 1923 * for building the swqe. 1924 */ 1925 static inline int rvt_qp_valid_operation( 1926 struct rvt_qp *qp, 1927 const struct rvt_operation_params *post_parms, 1928 const struct ib_send_wr *wr) 1929 { 1930 int len; 1931 1932 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1933 return -EINVAL; 1934 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1935 return -EINVAL; 1936 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1937 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1938 return -EINVAL; 1939 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1940 (wr->num_sge == 0 || 1941 wr->sg_list[0].length < sizeof(u64) || 1942 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1943 return -EINVAL; 1944 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1945 !qp->s_max_rd_atomic) 1946 return -EINVAL; 1947 len = post_parms[wr->opcode].length; 1948 /* UD specific */ 1949 if (qp->ibqp.qp_type != IB_QPT_UC && 1950 qp->ibqp.qp_type != IB_QPT_RC) { 1951 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1952 return -EINVAL; 1953 len = sizeof(struct ib_ud_wr); 1954 } 1955 return len; 1956 } 1957 1958 /** 1959 * rvt_qp_is_avail - determine queue capacity 1960 * @qp: the qp 1961 * @rdi: the rdmavt device 1962 * @reserved_op: is reserved operation 1963 * 1964 * This assumes the s_hlock is held but the s_last 1965 * qp variable is uncontrolled. 1966 * 1967 * For non reserved operations, the qp->s_avail 1968 * may be changed. 1969 * 1970 * The return value is zero or a -ENOMEM. 1971 */ 1972 static inline int rvt_qp_is_avail( 1973 struct rvt_qp *qp, 1974 struct rvt_dev_info *rdi, 1975 bool reserved_op) 1976 { 1977 u32 slast; 1978 u32 avail; 1979 u32 reserved_used; 1980 1981 /* see rvt_qp_wqe_unreserve() */ 1982 smp_mb__before_atomic(); 1983 if (unlikely(reserved_op)) { 1984 /* see rvt_qp_wqe_unreserve() */ 1985 reserved_used = atomic_read(&qp->s_reserved_used); 1986 if (reserved_used >= rdi->dparms.reserved_operations) 1987 return -ENOMEM; 1988 return 0; 1989 } 1990 /* non-reserved operations */ 1991 if (likely(qp->s_avail)) 1992 return 0; 1993 /* See rvt_qp_complete_swqe() */ 1994 slast = smp_load_acquire(&qp->s_last); 1995 if (qp->s_head >= slast) 1996 avail = qp->s_size - (qp->s_head - slast); 1997 else 1998 avail = slast - qp->s_head; 1999 2000 reserved_used = atomic_read(&qp->s_reserved_used); 2001 avail = avail - 1 - 2002 (rdi->dparms.reserved_operations - reserved_used); 2003 /* insure we don't assign a negative s_avail */ 2004 if ((s32)avail <= 0) 2005 return -ENOMEM; 2006 qp->s_avail = avail; 2007 if (WARN_ON(qp->s_avail > 2008 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 2009 rvt_pr_err(rdi, 2010 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 2011 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 2012 qp->s_head, qp->s_tail, qp->s_cur, 2013 qp->s_acked, qp->s_last); 2014 return 0; 2015 } 2016 2017 /** 2018 * rvt_post_one_wr - post one RC, UC, or UD send work request 2019 * @qp: the QP to post on 2020 * @wr: the work request to send 2021 * @call_send: kick the send engine into gear 2022 */ 2023 static int rvt_post_one_wr(struct rvt_qp *qp, 2024 const struct ib_send_wr *wr, 2025 bool *call_send) 2026 { 2027 struct rvt_swqe *wqe; 2028 u32 next; 2029 int i; 2030 int j; 2031 int acc; 2032 struct rvt_lkey_table *rkt; 2033 struct rvt_pd *pd; 2034 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2035 u8 log_pmtu; 2036 int ret; 2037 size_t cplen; 2038 bool reserved_op; 2039 int local_ops_delayed = 0; 2040 2041 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 2042 2043 /* IB spec says that num_sge == 0 is OK. */ 2044 if (unlikely(wr->num_sge > qp->s_max_sge)) 2045 return -EINVAL; 2046 2047 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 2048 if (ret < 0) 2049 return ret; 2050 cplen = ret; 2051 2052 /* 2053 * Local operations include fast register and local invalidate. 2054 * Fast register needs to be processed immediately because the 2055 * registered lkey may be used by following work requests and the 2056 * lkey needs to be valid at the time those requests are posted. 2057 * Local invalidate can be processed immediately if fencing is 2058 * not required and no previous local invalidate ops are pending. 2059 * Signaled local operations that have been processed immediately 2060 * need to have requests with "completion only" flags set posted 2061 * to the send queue in order to generate completions. 2062 */ 2063 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 2064 switch (wr->opcode) { 2065 case IB_WR_REG_MR: 2066 ret = rvt_fast_reg_mr(qp, 2067 reg_wr(wr)->mr, 2068 reg_wr(wr)->key, 2069 reg_wr(wr)->access); 2070 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2071 return ret; 2072 break; 2073 case IB_WR_LOCAL_INV: 2074 if ((wr->send_flags & IB_SEND_FENCE) || 2075 atomic_read(&qp->local_ops_pending)) { 2076 local_ops_delayed = 1; 2077 } else { 2078 ret = rvt_invalidate_rkey( 2079 qp, wr->ex.invalidate_rkey); 2080 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2081 return ret; 2082 } 2083 break; 2084 default: 2085 return -EINVAL; 2086 } 2087 } 2088 2089 reserved_op = rdi->post_parms[wr->opcode].flags & 2090 RVT_OPERATION_USE_RESERVE; 2091 /* check for avail */ 2092 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 2093 if (ret) 2094 return ret; 2095 next = qp->s_head + 1; 2096 if (next >= qp->s_size) 2097 next = 0; 2098 2099 rkt = &rdi->lkey_table; 2100 pd = ibpd_to_rvtpd(qp->ibqp.pd); 2101 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 2102 2103 /* cplen has length from above */ 2104 memcpy(&wqe->wr, wr, cplen); 2105 2106 wqe->length = 0; 2107 j = 0; 2108 if (wr->num_sge) { 2109 struct rvt_sge *last_sge = NULL; 2110 2111 acc = wr->opcode >= IB_WR_RDMA_READ ? 2112 IB_ACCESS_LOCAL_WRITE : 0; 2113 for (i = 0; i < wr->num_sge; i++) { 2114 u32 length = wr->sg_list[i].length; 2115 2116 if (length == 0) 2117 continue; 2118 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 2119 &wr->sg_list[i], acc); 2120 if (unlikely(ret < 0)) 2121 goto bail_inval_free; 2122 wqe->length += length; 2123 if (ret) 2124 last_sge = &wqe->sg_list[j]; 2125 j += ret; 2126 } 2127 wqe->wr.num_sge = j; 2128 } 2129 2130 /* 2131 * Calculate and set SWQE PSN values prior to handing it off 2132 * to the driver's check routine. This give the driver the 2133 * opportunity to adjust PSN values based on internal checks. 2134 */ 2135 log_pmtu = qp->log_pmtu; 2136 if (qp->allowed_ops == IB_OPCODE_UD) { 2137 struct rvt_ah *ah = rvt_get_swqe_ah(wqe); 2138 2139 log_pmtu = ah->log_pmtu; 2140 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr); 2141 } 2142 2143 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2144 if (local_ops_delayed) 2145 atomic_inc(&qp->local_ops_pending); 2146 else 2147 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2148 wqe->ssn = 0; 2149 wqe->psn = 0; 2150 wqe->lpsn = 0; 2151 } else { 2152 wqe->ssn = qp->s_ssn++; 2153 wqe->psn = qp->s_next_psn; 2154 wqe->lpsn = wqe->psn + 2155 (wqe->length ? 2156 ((wqe->length - 1) >> log_pmtu) : 2157 0); 2158 } 2159 2160 /* general part of wqe valid - allow for driver checks */ 2161 if (rdi->driver_f.setup_wqe) { 2162 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2163 if (ret < 0) 2164 goto bail_inval_free_ref; 2165 } 2166 2167 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2168 qp->s_next_psn = wqe->lpsn + 1; 2169 2170 if (unlikely(reserved_op)) { 2171 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2172 rvt_qp_wqe_reserve(qp, wqe); 2173 } else { 2174 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2175 qp->s_avail--; 2176 } 2177 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2178 smp_wmb(); /* see request builders */ 2179 qp->s_head = next; 2180 2181 return 0; 2182 2183 bail_inval_free_ref: 2184 if (qp->allowed_ops == IB_OPCODE_UD) 2185 rdma_destroy_ah_attr(wqe->ud_wr.attr); 2186 bail_inval_free: 2187 /* release mr holds */ 2188 while (j) { 2189 struct rvt_sge *sge = &wqe->sg_list[--j]; 2190 2191 rvt_put_mr(sge->mr); 2192 } 2193 return ret; 2194 } 2195 2196 /** 2197 * rvt_post_send - post a send on a QP 2198 * @ibqp: the QP to post the send on 2199 * @wr: the list of work requests to post 2200 * @bad_wr: the first bad WR is put here 2201 * 2202 * This may be called from interrupt context. 2203 * 2204 * Return: 0 on success else errno 2205 */ 2206 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2207 const struct ib_send_wr **bad_wr) 2208 { 2209 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2210 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2211 unsigned long flags = 0; 2212 bool call_send; 2213 unsigned nreq = 0; 2214 int err = 0; 2215 2216 spin_lock_irqsave(&qp->s_hlock, flags); 2217 2218 /* 2219 * Ensure QP state is such that we can send. If not bail out early, 2220 * there is no need to do this every time we post a send. 2221 */ 2222 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2223 spin_unlock_irqrestore(&qp->s_hlock, flags); 2224 return -EINVAL; 2225 } 2226 2227 /* 2228 * If the send queue is empty, and we only have a single WR then just go 2229 * ahead and kick the send engine into gear. Otherwise we will always 2230 * just schedule the send to happen later. 2231 */ 2232 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2233 2234 for (; wr; wr = wr->next) { 2235 err = rvt_post_one_wr(qp, wr, &call_send); 2236 if (unlikely(err)) { 2237 *bad_wr = wr; 2238 goto bail; 2239 } 2240 nreq++; 2241 } 2242 bail: 2243 spin_unlock_irqrestore(&qp->s_hlock, flags); 2244 if (nreq) { 2245 /* 2246 * Only call do_send if there is exactly one packet, and the 2247 * driver said it was ok. 2248 */ 2249 if (nreq == 1 && call_send) 2250 rdi->driver_f.do_send(qp); 2251 else 2252 rdi->driver_f.schedule_send_no_lock(qp); 2253 } 2254 return err; 2255 } 2256 2257 /** 2258 * rvt_post_srq_recv - post a receive on a shared receive queue 2259 * @ibsrq: the SRQ to post the receive on 2260 * @wr: the list of work requests to post 2261 * @bad_wr: A pointer to the first WR to cause a problem is put here 2262 * 2263 * This may be called from interrupt context. 2264 * 2265 * Return: 0 on success else errno 2266 */ 2267 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2268 const struct ib_recv_wr **bad_wr) 2269 { 2270 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2271 struct rvt_krwq *wq; 2272 unsigned long flags; 2273 2274 for (; wr; wr = wr->next) { 2275 struct rvt_rwqe *wqe; 2276 u32 next; 2277 int i; 2278 2279 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2280 *bad_wr = wr; 2281 return -EINVAL; 2282 } 2283 2284 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags); 2285 wq = srq->rq.kwq; 2286 next = wq->head + 1; 2287 if (next >= srq->rq.size) 2288 next = 0; 2289 if (next == READ_ONCE(wq->tail)) { 2290 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2291 *bad_wr = wr; 2292 return -ENOMEM; 2293 } 2294 2295 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2296 wqe->wr_id = wr->wr_id; 2297 wqe->num_sge = wr->num_sge; 2298 for (i = 0; i < wr->num_sge; i++) { 2299 wqe->sg_list[i].addr = wr->sg_list[i].addr; 2300 wqe->sg_list[i].length = wr->sg_list[i].length; 2301 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 2302 } 2303 /* Make sure queue entry is written before the head index. */ 2304 smp_store_release(&wq->head, next); 2305 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2306 } 2307 return 0; 2308 } 2309 2310 /* 2311 * rvt used the internal kernel struct as part of its ABI, for now make sure 2312 * the kernel struct does not change layout. FIXME: rvt should never cast the 2313 * user struct to a kernel struct. 2314 */ 2315 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge) 2316 { 2317 BUILD_BUG_ON(offsetof(struct ib_sge, addr) != 2318 offsetof(struct rvt_wqe_sge, addr)); 2319 BUILD_BUG_ON(offsetof(struct ib_sge, length) != 2320 offsetof(struct rvt_wqe_sge, length)); 2321 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) != 2322 offsetof(struct rvt_wqe_sge, lkey)); 2323 return (struct ib_sge *)sge; 2324 } 2325 2326 /* 2327 * Validate a RWQE and fill in the SGE state. 2328 * Return 1 if OK. 2329 */ 2330 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2331 { 2332 int i, j, ret; 2333 struct ib_wc wc; 2334 struct rvt_lkey_table *rkt; 2335 struct rvt_pd *pd; 2336 struct rvt_sge_state *ss; 2337 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2338 2339 rkt = &rdi->lkey_table; 2340 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2341 ss = &qp->r_sge; 2342 ss->sg_list = qp->r_sg_list; 2343 qp->r_len = 0; 2344 for (i = j = 0; i < wqe->num_sge; i++) { 2345 if (wqe->sg_list[i].length == 0) 2346 continue; 2347 /* Check LKEY */ 2348 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2349 NULL, rvt_cast_sge(&wqe->sg_list[i]), 2350 IB_ACCESS_LOCAL_WRITE); 2351 if (unlikely(ret <= 0)) 2352 goto bad_lkey; 2353 qp->r_len += wqe->sg_list[i].length; 2354 j++; 2355 } 2356 ss->num_sge = j; 2357 ss->total_len = qp->r_len; 2358 return 1; 2359 2360 bad_lkey: 2361 while (j) { 2362 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2363 2364 rvt_put_mr(sge->mr); 2365 } 2366 ss->num_sge = 0; 2367 memset(&wc, 0, sizeof(wc)); 2368 wc.wr_id = wqe->wr_id; 2369 wc.status = IB_WC_LOC_PROT_ERR; 2370 wc.opcode = IB_WC_RECV; 2371 wc.qp = &qp->ibqp; 2372 /* Signal solicited completion event. */ 2373 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2374 return 0; 2375 } 2376 2377 /** 2378 * get_rvt_head - get head indices of the circular buffer 2379 * @rq: data structure for request queue entry 2380 * @ip: the QP 2381 * 2382 * Return - head index value 2383 */ 2384 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip) 2385 { 2386 u32 head; 2387 2388 if (ip) 2389 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head); 2390 else 2391 head = rq->kwq->head; 2392 2393 return head; 2394 } 2395 2396 /** 2397 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2398 * @qp: the QP 2399 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2400 * 2401 * Return -1 if there is a local error, 0 if no RWQE is available, 2402 * otherwise return 1. 2403 * 2404 * Can be called from interrupt level. 2405 */ 2406 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2407 { 2408 unsigned long flags; 2409 struct rvt_rq *rq; 2410 struct rvt_krwq *kwq = NULL; 2411 struct rvt_rwq *wq; 2412 struct rvt_srq *srq; 2413 struct rvt_rwqe *wqe; 2414 void (*handler)(struct ib_event *, void *); 2415 u32 tail; 2416 u32 head; 2417 int ret; 2418 void *ip = NULL; 2419 2420 if (qp->ibqp.srq) { 2421 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2422 handler = srq->ibsrq.event_handler; 2423 rq = &srq->rq; 2424 ip = srq->ip; 2425 } else { 2426 srq = NULL; 2427 handler = NULL; 2428 rq = &qp->r_rq; 2429 ip = qp->ip; 2430 } 2431 2432 spin_lock_irqsave(&rq->kwq->c_lock, flags); 2433 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2434 ret = 0; 2435 goto unlock; 2436 } 2437 kwq = rq->kwq; 2438 if (ip) { 2439 wq = rq->wq; 2440 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 2441 } else { 2442 tail = kwq->tail; 2443 } 2444 2445 /* Validate tail before using it since it is user writable. */ 2446 if (tail >= rq->size) 2447 tail = 0; 2448 2449 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) { 2450 head = get_rvt_head(rq, ip); 2451 kwq->count = rvt_get_rq_count(rq, head, tail); 2452 } 2453 if (unlikely(kwq->count == 0)) { 2454 ret = 0; 2455 goto unlock; 2456 } 2457 /* Make sure entry is read after the count is read. */ 2458 smp_rmb(); 2459 wqe = rvt_get_rwqe_ptr(rq, tail); 2460 /* 2461 * Even though we update the tail index in memory, the verbs 2462 * consumer is not supposed to post more entries until a 2463 * completion is generated. 2464 */ 2465 if (++tail >= rq->size) 2466 tail = 0; 2467 if (ip) 2468 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 2469 else 2470 kwq->tail = tail; 2471 if (!wr_id_only && !init_sge(qp, wqe)) { 2472 ret = -1; 2473 goto unlock; 2474 } 2475 qp->r_wr_id = wqe->wr_id; 2476 2477 kwq->count--; 2478 ret = 1; 2479 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2480 if (handler) { 2481 /* 2482 * Validate head pointer value and compute 2483 * the number of remaining WQEs. 2484 */ 2485 if (kwq->count < srq->limit) { 2486 kwq->count = 2487 rvt_get_rq_count(rq, 2488 get_rvt_head(rq, ip), tail); 2489 if (kwq->count < srq->limit) { 2490 struct ib_event ev; 2491 2492 srq->limit = 0; 2493 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2494 ev.device = qp->ibqp.device; 2495 ev.element.srq = qp->ibqp.srq; 2496 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2497 handler(&ev, srq->ibsrq.srq_context); 2498 goto bail; 2499 } 2500 } 2501 } 2502 unlock: 2503 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2504 bail: 2505 return ret; 2506 } 2507 EXPORT_SYMBOL(rvt_get_rwqe); 2508 2509 /** 2510 * rvt_comm_est - handle trap with QP established 2511 * @qp: the QP 2512 */ 2513 void rvt_comm_est(struct rvt_qp *qp) 2514 { 2515 qp->r_flags |= RVT_R_COMM_EST; 2516 if (qp->ibqp.event_handler) { 2517 struct ib_event ev; 2518 2519 ev.device = qp->ibqp.device; 2520 ev.element.qp = &qp->ibqp; 2521 ev.event = IB_EVENT_COMM_EST; 2522 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2523 } 2524 } 2525 EXPORT_SYMBOL(rvt_comm_est); 2526 2527 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2528 { 2529 unsigned long flags; 2530 int lastwqe; 2531 2532 spin_lock_irqsave(&qp->s_lock, flags); 2533 lastwqe = rvt_error_qp(qp, err); 2534 spin_unlock_irqrestore(&qp->s_lock, flags); 2535 2536 if (lastwqe) { 2537 struct ib_event ev; 2538 2539 ev.device = qp->ibqp.device; 2540 ev.element.qp = &qp->ibqp; 2541 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2542 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2543 } 2544 } 2545 EXPORT_SYMBOL(rvt_rc_error); 2546 2547 /* 2548 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2549 * @index - the index 2550 * return usec from an index into ib_rvt_rnr_table 2551 */ 2552 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2553 { 2554 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2555 } 2556 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2557 2558 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2559 { 2560 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2561 IB_AETH_CREDIT_MASK]; 2562 } 2563 2564 /* 2565 * rvt_add_retry_timer_ext - add/start a retry timer 2566 * @qp - the QP 2567 * @shift - timeout shift to wait for multiple packets 2568 * add a retry timer on the QP 2569 */ 2570 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) 2571 { 2572 struct ib_qp *ibqp = &qp->ibqp; 2573 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2574 2575 lockdep_assert_held(&qp->s_lock); 2576 qp->s_flags |= RVT_S_TIMER; 2577 /* 4.096 usec. * (1 << qp->timeout) */ 2578 qp->s_timer.expires = jiffies + rdi->busy_jiffies + 2579 (qp->timeout_jiffies << shift); 2580 add_timer(&qp->s_timer); 2581 } 2582 EXPORT_SYMBOL(rvt_add_retry_timer_ext); 2583 2584 /** 2585 * rvt_add_rnr_timer - add/start an rnr timer on the QP 2586 * @qp: the QP 2587 * @aeth: aeth of RNR timeout, simulated aeth for loopback 2588 */ 2589 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2590 { 2591 u32 to; 2592 2593 lockdep_assert_held(&qp->s_lock); 2594 qp->s_flags |= RVT_S_WAIT_RNR; 2595 to = rvt_aeth_to_usec(aeth); 2596 trace_rvt_rnrnak_add(qp, to); 2597 hrtimer_start(&qp->s_rnr_timer, 2598 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2599 } 2600 EXPORT_SYMBOL(rvt_add_rnr_timer); 2601 2602 /** 2603 * rvt_stop_rc_timers - stop all timers 2604 * @qp: the QP 2605 * stop any pending timers 2606 */ 2607 void rvt_stop_rc_timers(struct rvt_qp *qp) 2608 { 2609 lockdep_assert_held(&qp->s_lock); 2610 /* Remove QP from all timers */ 2611 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2612 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2613 del_timer(&qp->s_timer); 2614 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2615 } 2616 } 2617 EXPORT_SYMBOL(rvt_stop_rc_timers); 2618 2619 /** 2620 * rvt_stop_rnr_timer - stop an rnr timer 2621 * @qp: the QP 2622 * 2623 * stop an rnr timer and return if the timer 2624 * had been pending. 2625 */ 2626 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2627 { 2628 lockdep_assert_held(&qp->s_lock); 2629 /* Remove QP from rnr timer */ 2630 if (qp->s_flags & RVT_S_WAIT_RNR) { 2631 qp->s_flags &= ~RVT_S_WAIT_RNR; 2632 trace_rvt_rnrnak_stop(qp, 0); 2633 } 2634 } 2635 2636 /** 2637 * rvt_del_timers_sync - wait for any timeout routines to exit 2638 * @qp: the QP 2639 */ 2640 void rvt_del_timers_sync(struct rvt_qp *qp) 2641 { 2642 del_timer_sync(&qp->s_timer); 2643 hrtimer_cancel(&qp->s_rnr_timer); 2644 } 2645 EXPORT_SYMBOL(rvt_del_timers_sync); 2646 2647 /* 2648 * This is called from s_timer for missing responses. 2649 */ 2650 static void rvt_rc_timeout(struct timer_list *t) 2651 { 2652 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2653 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2654 unsigned long flags; 2655 2656 spin_lock_irqsave(&qp->r_lock, flags); 2657 spin_lock(&qp->s_lock); 2658 if (qp->s_flags & RVT_S_TIMER) { 2659 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2660 2661 qp->s_flags &= ~RVT_S_TIMER; 2662 rvp->n_rc_timeouts++; 2663 del_timer(&qp->s_timer); 2664 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2665 if (rdi->driver_f.notify_restart_rc) 2666 rdi->driver_f.notify_restart_rc(qp, 2667 qp->s_last_psn + 1, 2668 1); 2669 rdi->driver_f.schedule_send(qp); 2670 } 2671 spin_unlock(&qp->s_lock); 2672 spin_unlock_irqrestore(&qp->r_lock, flags); 2673 } 2674 2675 /* 2676 * This is called from s_timer for RNR timeouts. 2677 */ 2678 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2679 { 2680 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2681 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2682 unsigned long flags; 2683 2684 spin_lock_irqsave(&qp->s_lock, flags); 2685 rvt_stop_rnr_timer(qp); 2686 trace_rvt_rnrnak_timeout(qp, 0); 2687 rdi->driver_f.schedule_send(qp); 2688 spin_unlock_irqrestore(&qp->s_lock, flags); 2689 return HRTIMER_NORESTART; 2690 } 2691 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2692 2693 /** 2694 * rvt_qp_iter_init - initial for QP iteration 2695 * @rdi: rvt devinfo 2696 * @v: u64 value 2697 * @cb: user-defined callback 2698 * 2699 * This returns an iterator suitable for iterating QPs 2700 * in the system. 2701 * 2702 * The @cb is a user-defined callback and @v is a 64-bit 2703 * value passed to and relevant for processing in the 2704 * @cb. An example use case would be to alter QP processing 2705 * based on criteria not part of the rvt_qp. 2706 * 2707 * Use cases that require memory allocation to succeed 2708 * must preallocate appropriately. 2709 * 2710 * Return: a pointer to an rvt_qp_iter or NULL 2711 */ 2712 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2713 u64 v, 2714 void (*cb)(struct rvt_qp *qp, u64 v)) 2715 { 2716 struct rvt_qp_iter *i; 2717 2718 i = kzalloc(sizeof(*i), GFP_KERNEL); 2719 if (!i) 2720 return NULL; 2721 2722 i->rdi = rdi; 2723 /* number of special QPs (SMI/GSI) for device */ 2724 i->specials = rdi->ibdev.phys_port_cnt * 2; 2725 i->v = v; 2726 i->cb = cb; 2727 2728 return i; 2729 } 2730 EXPORT_SYMBOL(rvt_qp_iter_init); 2731 2732 /** 2733 * rvt_qp_iter_next - return the next QP in iter 2734 * @iter: the iterator 2735 * 2736 * Fine grained QP iterator suitable for use 2737 * with debugfs seq_file mechanisms. 2738 * 2739 * Updates iter->qp with the current QP when the return 2740 * value is 0. 2741 * 2742 * Return: 0 - iter->qp is valid 1 - no more QPs 2743 */ 2744 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2745 __must_hold(RCU) 2746 { 2747 int n = iter->n; 2748 int ret = 1; 2749 struct rvt_qp *pqp = iter->qp; 2750 struct rvt_qp *qp; 2751 struct rvt_dev_info *rdi = iter->rdi; 2752 2753 /* 2754 * The approach is to consider the special qps 2755 * as additional table entries before the 2756 * real hash table. Since the qp code sets 2757 * the qp->next hash link to NULL, this works just fine. 2758 * 2759 * iter->specials is 2 * # ports 2760 * 2761 * n = 0..iter->specials is the special qp indices 2762 * 2763 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2764 * the potential hash bucket entries 2765 * 2766 */ 2767 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2768 if (pqp) { 2769 qp = rcu_dereference(pqp->next); 2770 } else { 2771 if (n < iter->specials) { 2772 struct rvt_ibport *rvp; 2773 int pidx; 2774 2775 pidx = n % rdi->ibdev.phys_port_cnt; 2776 rvp = rdi->ports[pidx]; 2777 qp = rcu_dereference(rvp->qp[n & 1]); 2778 } else { 2779 qp = rcu_dereference( 2780 rdi->qp_dev->qp_table[ 2781 (n - iter->specials)]); 2782 } 2783 } 2784 pqp = qp; 2785 if (qp) { 2786 iter->qp = qp; 2787 iter->n = n; 2788 return 0; 2789 } 2790 } 2791 return ret; 2792 } 2793 EXPORT_SYMBOL(rvt_qp_iter_next); 2794 2795 /** 2796 * rvt_qp_iter - iterate all QPs 2797 * @rdi: rvt devinfo 2798 * @v: a 64-bit value 2799 * @cb: a callback 2800 * 2801 * This provides a way for iterating all QPs. 2802 * 2803 * The @cb is a user-defined callback and @v is a 64-bit 2804 * value passed to and relevant for processing in the 2805 * cb. An example use case would be to alter QP processing 2806 * based on criteria not part of the rvt_qp. 2807 * 2808 * The code has an internal iterator to simplify 2809 * non seq_file use cases. 2810 */ 2811 void rvt_qp_iter(struct rvt_dev_info *rdi, 2812 u64 v, 2813 void (*cb)(struct rvt_qp *qp, u64 v)) 2814 { 2815 int ret; 2816 struct rvt_qp_iter i = { 2817 .rdi = rdi, 2818 .specials = rdi->ibdev.phys_port_cnt * 2, 2819 .v = v, 2820 .cb = cb 2821 }; 2822 2823 rcu_read_lock(); 2824 do { 2825 ret = rvt_qp_iter_next(&i); 2826 if (!ret) { 2827 rvt_get_qp(i.qp); 2828 rcu_read_unlock(); 2829 i.cb(i.qp, i.v); 2830 rcu_read_lock(); 2831 rvt_put_qp(i.qp); 2832 } 2833 } while (!ret); 2834 rcu_read_unlock(); 2835 } 2836 EXPORT_SYMBOL(rvt_qp_iter); 2837 2838 /* 2839 * This should be called with s_lock held. 2840 */ 2841 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2842 enum ib_wc_status status) 2843 { 2844 u32 old_last, last; 2845 struct rvt_dev_info *rdi; 2846 2847 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2848 return; 2849 rdi = ib_to_rvt(qp->ibqp.device); 2850 2851 old_last = qp->s_last; 2852 trace_rvt_qp_send_completion(qp, wqe, old_last); 2853 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode], 2854 status); 2855 if (qp->s_acked == old_last) 2856 qp->s_acked = last; 2857 if (qp->s_cur == old_last) 2858 qp->s_cur = last; 2859 if (qp->s_tail == old_last) 2860 qp->s_tail = last; 2861 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2862 qp->s_draining = 0; 2863 } 2864 EXPORT_SYMBOL(rvt_send_complete); 2865 2866 /** 2867 * rvt_copy_sge - copy data to SGE memory 2868 * @qp: associated QP 2869 * @ss: the SGE state 2870 * @data: the data to copy 2871 * @length: the length of the data 2872 * @release: boolean to release MR 2873 * @copy_last: do a separate copy of the last 8 bytes 2874 */ 2875 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2876 void *data, u32 length, 2877 bool release, bool copy_last) 2878 { 2879 struct rvt_sge *sge = &ss->sge; 2880 int i; 2881 bool in_last = false; 2882 bool cacheless_copy = false; 2883 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2884 struct rvt_wss *wss = rdi->wss; 2885 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2886 2887 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2888 cacheless_copy = length >= PAGE_SIZE; 2889 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2890 if (length >= PAGE_SIZE) { 2891 /* 2892 * NOTE: this *assumes*: 2893 * o The first vaddr is the dest. 2894 * o If multiple pages, then vaddr is sequential. 2895 */ 2896 wss_insert(wss, sge->vaddr); 2897 if (length >= (2 * PAGE_SIZE)) 2898 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2899 2900 cacheless_copy = wss_exceeds_threshold(wss); 2901 } else { 2902 wss_advance_clean_counter(wss); 2903 } 2904 } 2905 2906 if (copy_last) { 2907 if (length > 8) { 2908 length -= 8; 2909 } else { 2910 copy_last = false; 2911 in_last = true; 2912 } 2913 } 2914 2915 again: 2916 while (length) { 2917 u32 len = rvt_get_sge_length(sge, length); 2918 2919 WARN_ON_ONCE(len == 0); 2920 if (unlikely(in_last)) { 2921 /* enforce byte transfer ordering */ 2922 for (i = 0; i < len; i++) 2923 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2924 } else if (cacheless_copy) { 2925 cacheless_memcpy(sge->vaddr, data, len); 2926 } else { 2927 memcpy(sge->vaddr, data, len); 2928 } 2929 rvt_update_sge(ss, len, release); 2930 data += len; 2931 length -= len; 2932 } 2933 2934 if (copy_last) { 2935 copy_last = false; 2936 in_last = true; 2937 length = 8; 2938 goto again; 2939 } 2940 } 2941 EXPORT_SYMBOL(rvt_copy_sge); 2942 2943 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, 2944 struct rvt_qp *sqp) 2945 { 2946 rvp->n_pkt_drops++; 2947 /* 2948 * For RC, the requester would timeout and retry so 2949 * shortcut the timeouts and just signal too many retries. 2950 */ 2951 return sqp->ibqp.qp_type == IB_QPT_RC ? 2952 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; 2953 } 2954 2955 /** 2956 * rvt_ruc_loopback - handle UC and RC loopback requests 2957 * @sqp: the sending QP 2958 * 2959 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2960 * Note that although we are single threaded due to the send engine, we still 2961 * have to protect against post_send(). We don't have to worry about 2962 * receive interrupts since this is a connected protocol and all packets 2963 * will pass through here. 2964 */ 2965 void rvt_ruc_loopback(struct rvt_qp *sqp) 2966 { 2967 struct rvt_ibport *rvp = NULL; 2968 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2969 struct rvt_qp *qp; 2970 struct rvt_swqe *wqe; 2971 struct rvt_sge *sge; 2972 unsigned long flags; 2973 struct ib_wc wc; 2974 u64 sdata; 2975 atomic64_t *maddr; 2976 enum ib_wc_status send_status; 2977 bool release; 2978 int ret; 2979 bool copy_last = false; 2980 int local_ops = 0; 2981 2982 rcu_read_lock(); 2983 rvp = rdi->ports[sqp->port_num - 1]; 2984 2985 /* 2986 * Note that we check the responder QP state after 2987 * checking the requester's state. 2988 */ 2989 2990 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2991 sqp->remote_qpn); 2992 2993 spin_lock_irqsave(&sqp->s_lock, flags); 2994 2995 /* Return if we are already busy processing a work request. */ 2996 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2997 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2998 goto unlock; 2999 3000 sqp->s_flags |= RVT_S_BUSY; 3001 3002 again: 3003 if (sqp->s_last == READ_ONCE(sqp->s_head)) 3004 goto clr_busy; 3005 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 3006 3007 /* Return if it is not OK to start a new work request. */ 3008 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 3009 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 3010 goto clr_busy; 3011 /* We are in the error state, flush the work request. */ 3012 send_status = IB_WC_WR_FLUSH_ERR; 3013 goto flush_send; 3014 } 3015 3016 /* 3017 * We can rely on the entry not changing without the s_lock 3018 * being held until we update s_last. 3019 * We increment s_cur to indicate s_last is in progress. 3020 */ 3021 if (sqp->s_last == sqp->s_cur) { 3022 if (++sqp->s_cur >= sqp->s_size) 3023 sqp->s_cur = 0; 3024 } 3025 spin_unlock_irqrestore(&sqp->s_lock, flags); 3026 3027 if (!qp) { 3028 send_status = loopback_qp_drop(rvp, sqp); 3029 goto serr_no_r_lock; 3030 } 3031 spin_lock_irqsave(&qp->r_lock, flags); 3032 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 3033 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 3034 send_status = loopback_qp_drop(rvp, sqp); 3035 goto serr; 3036 } 3037 3038 memset(&wc, 0, sizeof(wc)); 3039 send_status = IB_WC_SUCCESS; 3040 3041 release = true; 3042 sqp->s_sge.sge = wqe->sg_list[0]; 3043 sqp->s_sge.sg_list = wqe->sg_list + 1; 3044 sqp->s_sge.num_sge = wqe->wr.num_sge; 3045 sqp->s_len = wqe->length; 3046 switch (wqe->wr.opcode) { 3047 case IB_WR_REG_MR: 3048 goto send_comp; 3049 3050 case IB_WR_LOCAL_INV: 3051 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 3052 if (rvt_invalidate_rkey(sqp, 3053 wqe->wr.ex.invalidate_rkey)) 3054 send_status = IB_WC_LOC_PROT_ERR; 3055 local_ops = 1; 3056 } 3057 goto send_comp; 3058 3059 case IB_WR_SEND_WITH_INV: 3060 case IB_WR_SEND_WITH_IMM: 3061 case IB_WR_SEND: 3062 ret = rvt_get_rwqe(qp, false); 3063 if (ret < 0) 3064 goto op_err; 3065 if (!ret) 3066 goto rnr_nak; 3067 if (wqe->length > qp->r_len) 3068 goto inv_err; 3069 switch (wqe->wr.opcode) { 3070 case IB_WR_SEND_WITH_INV: 3071 if (!rvt_invalidate_rkey(qp, 3072 wqe->wr.ex.invalidate_rkey)) { 3073 wc.wc_flags = IB_WC_WITH_INVALIDATE; 3074 wc.ex.invalidate_rkey = 3075 wqe->wr.ex.invalidate_rkey; 3076 } 3077 break; 3078 case IB_WR_SEND_WITH_IMM: 3079 wc.wc_flags = IB_WC_WITH_IMM; 3080 wc.ex.imm_data = wqe->wr.ex.imm_data; 3081 break; 3082 default: 3083 break; 3084 } 3085 break; 3086 3087 case IB_WR_RDMA_WRITE_WITH_IMM: 3088 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3089 goto inv_err; 3090 wc.wc_flags = IB_WC_WITH_IMM; 3091 wc.ex.imm_data = wqe->wr.ex.imm_data; 3092 ret = rvt_get_rwqe(qp, true); 3093 if (ret < 0) 3094 goto op_err; 3095 if (!ret) 3096 goto rnr_nak; 3097 /* skip copy_last set and qp_access_flags recheck */ 3098 goto do_write; 3099 case IB_WR_RDMA_WRITE: 3100 copy_last = rvt_is_user_qp(qp); 3101 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3102 goto inv_err; 3103 do_write: 3104 if (wqe->length == 0) 3105 break; 3106 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 3107 wqe->rdma_wr.remote_addr, 3108 wqe->rdma_wr.rkey, 3109 IB_ACCESS_REMOTE_WRITE))) 3110 goto acc_err; 3111 qp->r_sge.sg_list = NULL; 3112 qp->r_sge.num_sge = 1; 3113 qp->r_sge.total_len = wqe->length; 3114 break; 3115 3116 case IB_WR_RDMA_READ: 3117 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 3118 goto inv_err; 3119 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 3120 wqe->rdma_wr.remote_addr, 3121 wqe->rdma_wr.rkey, 3122 IB_ACCESS_REMOTE_READ))) 3123 goto acc_err; 3124 release = false; 3125 sqp->s_sge.sg_list = NULL; 3126 sqp->s_sge.num_sge = 1; 3127 qp->r_sge.sge = wqe->sg_list[0]; 3128 qp->r_sge.sg_list = wqe->sg_list + 1; 3129 qp->r_sge.num_sge = wqe->wr.num_sge; 3130 qp->r_sge.total_len = wqe->length; 3131 break; 3132 3133 case IB_WR_ATOMIC_CMP_AND_SWP: 3134 case IB_WR_ATOMIC_FETCH_AND_ADD: 3135 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 3136 goto inv_err; 3137 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 3138 wqe->atomic_wr.remote_addr, 3139 wqe->atomic_wr.rkey, 3140 IB_ACCESS_REMOTE_ATOMIC))) 3141 goto acc_err; 3142 /* Perform atomic OP and save result. */ 3143 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 3144 sdata = wqe->atomic_wr.compare_add; 3145 *(u64 *)sqp->s_sge.sge.vaddr = 3146 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 3147 (u64)atomic64_add_return(sdata, maddr) - sdata : 3148 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 3149 sdata, wqe->atomic_wr.swap); 3150 rvt_put_mr(qp->r_sge.sge.mr); 3151 qp->r_sge.num_sge = 0; 3152 goto send_comp; 3153 3154 default: 3155 send_status = IB_WC_LOC_QP_OP_ERR; 3156 goto serr; 3157 } 3158 3159 sge = &sqp->s_sge.sge; 3160 while (sqp->s_len) { 3161 u32 len = rvt_get_sge_length(sge, sqp->s_len); 3162 3163 WARN_ON_ONCE(len == 0); 3164 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 3165 len, release, copy_last); 3166 rvt_update_sge(&sqp->s_sge, len, !release); 3167 sqp->s_len -= len; 3168 } 3169 if (release) 3170 rvt_put_ss(&qp->r_sge); 3171 3172 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3173 goto send_comp; 3174 3175 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3176 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3177 else 3178 wc.opcode = IB_WC_RECV; 3179 wc.wr_id = qp->r_wr_id; 3180 wc.status = IB_WC_SUCCESS; 3181 wc.byte_len = wqe->length; 3182 wc.qp = &qp->ibqp; 3183 wc.src_qp = qp->remote_qpn; 3184 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3185 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3186 wc.port_num = 1; 3187 /* Signal completion event if the solicited bit is set. */ 3188 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED); 3189 3190 send_comp: 3191 spin_unlock_irqrestore(&qp->r_lock, flags); 3192 spin_lock_irqsave(&sqp->s_lock, flags); 3193 rvp->n_loop_pkts++; 3194 flush_send: 3195 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3196 rvt_send_complete(sqp, wqe, send_status); 3197 if (local_ops) { 3198 atomic_dec(&sqp->local_ops_pending); 3199 local_ops = 0; 3200 } 3201 goto again; 3202 3203 rnr_nak: 3204 /* Handle RNR NAK */ 3205 if (qp->ibqp.qp_type == IB_QPT_UC) 3206 goto send_comp; 3207 rvp->n_rnr_naks++; 3208 /* 3209 * Note: we don't need the s_lock held since the BUSY flag 3210 * makes this single threaded. 3211 */ 3212 if (sqp->s_rnr_retry == 0) { 3213 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3214 goto serr; 3215 } 3216 if (sqp->s_rnr_retry_cnt < 7) 3217 sqp->s_rnr_retry--; 3218 spin_unlock_irqrestore(&qp->r_lock, flags); 3219 spin_lock_irqsave(&sqp->s_lock, flags); 3220 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3221 goto clr_busy; 3222 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3223 IB_AETH_CREDIT_SHIFT); 3224 goto clr_busy; 3225 3226 op_err: 3227 send_status = IB_WC_REM_OP_ERR; 3228 wc.status = IB_WC_LOC_QP_OP_ERR; 3229 goto err; 3230 3231 inv_err: 3232 send_status = 3233 sqp->ibqp.qp_type == IB_QPT_RC ? 3234 IB_WC_REM_INV_REQ_ERR : 3235 IB_WC_SUCCESS; 3236 wc.status = IB_WC_LOC_QP_OP_ERR; 3237 goto err; 3238 3239 acc_err: 3240 send_status = IB_WC_REM_ACCESS_ERR; 3241 wc.status = IB_WC_LOC_PROT_ERR; 3242 err: 3243 /* responder goes to error state */ 3244 rvt_rc_error(qp, wc.status); 3245 3246 serr: 3247 spin_unlock_irqrestore(&qp->r_lock, flags); 3248 serr_no_r_lock: 3249 spin_lock_irqsave(&sqp->s_lock, flags); 3250 rvt_send_complete(sqp, wqe, send_status); 3251 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3252 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3253 3254 sqp->s_flags &= ~RVT_S_BUSY; 3255 spin_unlock_irqrestore(&sqp->s_lock, flags); 3256 if (lastwqe) { 3257 struct ib_event ev; 3258 3259 ev.device = sqp->ibqp.device; 3260 ev.element.qp = &sqp->ibqp; 3261 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3262 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3263 } 3264 goto done; 3265 } 3266 clr_busy: 3267 sqp->s_flags &= ~RVT_S_BUSY; 3268 unlock: 3269 spin_unlock_irqrestore(&sqp->s_lock, flags); 3270 done: 3271 rcu_read_unlock(); 3272 } 3273 EXPORT_SYMBOL(rvt_ruc_loopback); 3274