xref: /openbmc/linux/drivers/infiniband/sw/rdmavt/qp.c (revision ddc141e5)
1 /*
2  * Copyright(c) 2016, 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include "qp.h"
57 #include "vt.h"
58 #include "trace.h"
59 
60 static void rvt_rc_timeout(struct timer_list *t);
61 
62 /*
63  * Convert the AETH RNR timeout code into the number of microseconds.
64  */
65 static const u32 ib_rvt_rnr_table[32] = {
66 	655360, /* 00: 655.36 */
67 	10,     /* 01:    .01 */
68 	20,     /* 02     .02 */
69 	30,     /* 03:    .03 */
70 	40,     /* 04:    .04 */
71 	60,     /* 05:    .06 */
72 	80,     /* 06:    .08 */
73 	120,    /* 07:    .12 */
74 	160,    /* 08:    .16 */
75 	240,    /* 09:    .24 */
76 	320,    /* 0A:    .32 */
77 	480,    /* 0B:    .48 */
78 	640,    /* 0C:    .64 */
79 	960,    /* 0D:    .96 */
80 	1280,   /* 0E:   1.28 */
81 	1920,   /* 0F:   1.92 */
82 	2560,   /* 10:   2.56 */
83 	3840,   /* 11:   3.84 */
84 	5120,   /* 12:   5.12 */
85 	7680,   /* 13:   7.68 */
86 	10240,  /* 14:  10.24 */
87 	15360,  /* 15:  15.36 */
88 	20480,  /* 16:  20.48 */
89 	30720,  /* 17:  30.72 */
90 	40960,  /* 18:  40.96 */
91 	61440,  /* 19:  61.44 */
92 	81920,  /* 1A:  81.92 */
93 	122880, /* 1B: 122.88 */
94 	163840, /* 1C: 163.84 */
95 	245760, /* 1D: 245.76 */
96 	327680, /* 1E: 327.68 */
97 	491520  /* 1F: 491.52 */
98 };
99 
100 /*
101  * Note that it is OK to post send work requests in the SQE and ERR
102  * states; rvt_do_send() will process them and generate error
103  * completions as per IB 1.2 C10-96.
104  */
105 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
106 	[IB_QPS_RESET] = 0,
107 	[IB_QPS_INIT] = RVT_POST_RECV_OK,
108 	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
109 	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
110 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
111 	    RVT_PROCESS_NEXT_SEND_OK,
112 	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
113 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
114 	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
116 	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
117 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
118 };
119 EXPORT_SYMBOL(ib_rvt_state_ops);
120 
121 static void get_map_page(struct rvt_qpn_table *qpt,
122 			 struct rvt_qpn_map *map)
123 {
124 	unsigned long page = get_zeroed_page(GFP_KERNEL);
125 
126 	/*
127 	 * Free the page if someone raced with us installing it.
128 	 */
129 
130 	spin_lock(&qpt->lock);
131 	if (map->page)
132 		free_page(page);
133 	else
134 		map->page = (void *)page;
135 	spin_unlock(&qpt->lock);
136 }
137 
138 /**
139  * init_qpn_table - initialize the QP number table for a device
140  * @qpt: the QPN table
141  */
142 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
143 {
144 	u32 offset, i;
145 	struct rvt_qpn_map *map;
146 	int ret = 0;
147 
148 	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
149 		return -EINVAL;
150 
151 	spin_lock_init(&qpt->lock);
152 
153 	qpt->last = rdi->dparms.qpn_start;
154 	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
155 
156 	/*
157 	 * Drivers may want some QPs beyond what we need for verbs let them use
158 	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
159 	 * for those. The reserved range must be *after* the range which verbs
160 	 * will pick from.
161 	 */
162 
163 	/* Figure out number of bit maps needed before reserved range */
164 	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
165 
166 	/* This should always be zero */
167 	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
168 
169 	/* Starting with the first reserved bit map */
170 	map = &qpt->map[qpt->nmaps];
171 
172 	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
173 		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
174 	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
175 		if (!map->page) {
176 			get_map_page(qpt, map);
177 			if (!map->page) {
178 				ret = -ENOMEM;
179 				break;
180 			}
181 		}
182 		set_bit(offset, map->page);
183 		offset++;
184 		if (offset == RVT_BITS_PER_PAGE) {
185 			/* next page */
186 			qpt->nmaps++;
187 			map++;
188 			offset = 0;
189 		}
190 	}
191 	return ret;
192 }
193 
194 /**
195  * free_qpn_table - free the QP number table for a device
196  * @qpt: the QPN table
197  */
198 static void free_qpn_table(struct rvt_qpn_table *qpt)
199 {
200 	int i;
201 
202 	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
203 		free_page((unsigned long)qpt->map[i].page);
204 }
205 
206 /**
207  * rvt_driver_qp_init - Init driver qp resources
208  * @rdi: rvt dev strucutre
209  *
210  * Return: 0 on success
211  */
212 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
213 {
214 	int i;
215 	int ret = -ENOMEM;
216 
217 	if (!rdi->dparms.qp_table_size)
218 		return -EINVAL;
219 
220 	/*
221 	 * If driver is not doing any QP allocation then make sure it is
222 	 * providing the necessary QP functions.
223 	 */
224 	if (!rdi->driver_f.free_all_qps ||
225 	    !rdi->driver_f.qp_priv_alloc ||
226 	    !rdi->driver_f.qp_priv_free ||
227 	    !rdi->driver_f.notify_qp_reset ||
228 	    !rdi->driver_f.notify_restart_rc)
229 		return -EINVAL;
230 
231 	/* allocate parent object */
232 	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
233 				   rdi->dparms.node);
234 	if (!rdi->qp_dev)
235 		return -ENOMEM;
236 
237 	/* allocate hash table */
238 	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
239 	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
240 	rdi->qp_dev->qp_table =
241 		kmalloc_array_node(rdi->qp_dev->qp_table_size,
242 			     sizeof(*rdi->qp_dev->qp_table),
243 			     GFP_KERNEL, rdi->dparms.node);
244 	if (!rdi->qp_dev->qp_table)
245 		goto no_qp_table;
246 
247 	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
248 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
249 
250 	spin_lock_init(&rdi->qp_dev->qpt_lock);
251 
252 	/* initialize qpn map */
253 	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
254 		goto fail_table;
255 
256 	spin_lock_init(&rdi->n_qps_lock);
257 
258 	return 0;
259 
260 fail_table:
261 	kfree(rdi->qp_dev->qp_table);
262 	free_qpn_table(&rdi->qp_dev->qpn_table);
263 
264 no_qp_table:
265 	kfree(rdi->qp_dev);
266 
267 	return ret;
268 }
269 
270 /**
271  * free_all_qps - check for QPs still in use
272  * @rdi: rvt device info structure
273  *
274  * There should not be any QPs still in use.
275  * Free memory for table.
276  */
277 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
278 {
279 	unsigned long flags;
280 	struct rvt_qp *qp;
281 	unsigned n, qp_inuse = 0;
282 	spinlock_t *ql; /* work around too long line below */
283 
284 	if (rdi->driver_f.free_all_qps)
285 		qp_inuse = rdi->driver_f.free_all_qps(rdi);
286 
287 	qp_inuse += rvt_mcast_tree_empty(rdi);
288 
289 	if (!rdi->qp_dev)
290 		return qp_inuse;
291 
292 	ql = &rdi->qp_dev->qpt_lock;
293 	spin_lock_irqsave(ql, flags);
294 	for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
295 		qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
296 					       lockdep_is_held(ql));
297 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
298 
299 		for (; qp; qp = rcu_dereference_protected(qp->next,
300 							  lockdep_is_held(ql)))
301 			qp_inuse++;
302 	}
303 	spin_unlock_irqrestore(ql, flags);
304 	synchronize_rcu();
305 	return qp_inuse;
306 }
307 
308 /**
309  * rvt_qp_exit - clean up qps on device exit
310  * @rdi: rvt dev structure
311  *
312  * Check for qp leaks and free resources.
313  */
314 void rvt_qp_exit(struct rvt_dev_info *rdi)
315 {
316 	u32 qps_inuse = rvt_free_all_qps(rdi);
317 
318 	if (qps_inuse)
319 		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
320 			   qps_inuse);
321 	if (!rdi->qp_dev)
322 		return;
323 
324 	kfree(rdi->qp_dev->qp_table);
325 	free_qpn_table(&rdi->qp_dev->qpn_table);
326 	kfree(rdi->qp_dev);
327 }
328 
329 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
330 			      struct rvt_qpn_map *map, unsigned off)
331 {
332 	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
333 }
334 
335 /**
336  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
337  *	       IB_QPT_SMI/IB_QPT_GSI
338  * @rdi: rvt device info structure
339  * @qpt: queue pair number table pointer
340  * @port_num: IB port number, 1 based, comes from core
341  *
342  * Return: The queue pair number
343  */
344 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
345 		     enum ib_qp_type type, u8 port_num)
346 {
347 	u32 i, offset, max_scan, qpn;
348 	struct rvt_qpn_map *map;
349 	u32 ret;
350 
351 	if (rdi->driver_f.alloc_qpn)
352 		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
353 
354 	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
355 		unsigned n;
356 
357 		ret = type == IB_QPT_GSI;
358 		n = 1 << (ret + 2 * (port_num - 1));
359 		spin_lock(&qpt->lock);
360 		if (qpt->flags & n)
361 			ret = -EINVAL;
362 		else
363 			qpt->flags |= n;
364 		spin_unlock(&qpt->lock);
365 		goto bail;
366 	}
367 
368 	qpn = qpt->last + qpt->incr;
369 	if (qpn >= RVT_QPN_MAX)
370 		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
371 	/* offset carries bit 0 */
372 	offset = qpn & RVT_BITS_PER_PAGE_MASK;
373 	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
374 	max_scan = qpt->nmaps - !offset;
375 	for (i = 0;;) {
376 		if (unlikely(!map->page)) {
377 			get_map_page(qpt, map);
378 			if (unlikely(!map->page))
379 				break;
380 		}
381 		do {
382 			if (!test_and_set_bit(offset, map->page)) {
383 				qpt->last = qpn;
384 				ret = qpn;
385 				goto bail;
386 			}
387 			offset += qpt->incr;
388 			/*
389 			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
390 			 * That is OK.   It gets re-assigned below
391 			 */
392 			qpn = mk_qpn(qpt, map, offset);
393 		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
394 		/*
395 		 * In order to keep the number of pages allocated to a
396 		 * minimum, we scan the all existing pages before increasing
397 		 * the size of the bitmap table.
398 		 */
399 		if (++i > max_scan) {
400 			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
401 				break;
402 			map = &qpt->map[qpt->nmaps++];
403 			/* start at incr with current bit 0 */
404 			offset = qpt->incr | (offset & 1);
405 		} else if (map < &qpt->map[qpt->nmaps]) {
406 			++map;
407 			/* start at incr with current bit 0 */
408 			offset = qpt->incr | (offset & 1);
409 		} else {
410 			map = &qpt->map[0];
411 			/* wrap to first map page, invert bit 0 */
412 			offset = qpt->incr | ((offset & 1) ^ 1);
413 		}
414 		/* there can be no set bits in low-order QoS bits */
415 		WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
416 		qpn = mk_qpn(qpt, map, offset);
417 	}
418 
419 	ret = -ENOMEM;
420 
421 bail:
422 	return ret;
423 }
424 
425 /**
426  * rvt_clear_mr_refs - Drop help mr refs
427  * @qp: rvt qp data structure
428  * @clr_sends: If shoudl clear send side or not
429  */
430 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
431 {
432 	unsigned n;
433 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
434 
435 	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
436 		rvt_put_ss(&qp->s_rdma_read_sge);
437 
438 	rvt_put_ss(&qp->r_sge);
439 
440 	if (clr_sends) {
441 		while (qp->s_last != qp->s_head) {
442 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
443 
444 			rvt_put_swqe(wqe);
445 
446 			if (qp->ibqp.qp_type == IB_QPT_UD ||
447 			    qp->ibqp.qp_type == IB_QPT_SMI ||
448 			    qp->ibqp.qp_type == IB_QPT_GSI)
449 				atomic_dec(&ibah_to_rvtah(
450 						wqe->ud_wr.ah)->refcount);
451 			if (++qp->s_last >= qp->s_size)
452 				qp->s_last = 0;
453 			smp_wmb(); /* see qp_set_savail */
454 		}
455 		if (qp->s_rdma_mr) {
456 			rvt_put_mr(qp->s_rdma_mr);
457 			qp->s_rdma_mr = NULL;
458 		}
459 	}
460 
461 	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
462 		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
463 
464 		if (e->rdma_sge.mr) {
465 			rvt_put_mr(e->rdma_sge.mr);
466 			e->rdma_sge.mr = NULL;
467 		}
468 	}
469 }
470 
471 /**
472  * rvt_swqe_has_lkey - return true if lkey is used by swqe
473  * @wqe - the send wqe
474  * @lkey - the lkey
475  *
476  * Test the swqe for using lkey
477  */
478 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
479 {
480 	int i;
481 
482 	for (i = 0; i < wqe->wr.num_sge; i++) {
483 		struct rvt_sge *sge = &wqe->sg_list[i];
484 
485 		if (rvt_mr_has_lkey(sge->mr, lkey))
486 			return true;
487 	}
488 	return false;
489 }
490 
491 /**
492  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
493  * @qp - the rvt_qp
494  * @lkey - the lkey
495  */
496 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
497 {
498 	u32 s_last = qp->s_last;
499 
500 	while (s_last != qp->s_head) {
501 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
502 
503 		if (rvt_swqe_has_lkey(wqe, lkey))
504 			return true;
505 
506 		if (++s_last >= qp->s_size)
507 			s_last = 0;
508 	}
509 	if (qp->s_rdma_mr)
510 		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
511 			return true;
512 	return false;
513 }
514 
515 /**
516  * rvt_qp_acks_has_lkey - return true if acks have lkey
517  * @qp - the qp
518  * @lkey - the lkey
519  */
520 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
521 {
522 	int i;
523 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
524 
525 	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
526 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
527 
528 		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
529 			return true;
530 	}
531 	return false;
532 }
533 
534 /*
535  * rvt_qp_mr_clean - clean up remote ops for lkey
536  * @qp - the qp
537  * @lkey - the lkey that is being de-registered
538  *
539  * This routine checks if the lkey is being used by
540  * the qp.
541  *
542  * If so, the qp is put into an error state to elminate
543  * any references from the qp.
544  */
545 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
546 {
547 	bool lastwqe = false;
548 
549 	if (qp->ibqp.qp_type == IB_QPT_SMI ||
550 	    qp->ibqp.qp_type == IB_QPT_GSI)
551 		/* avoid special QPs */
552 		return;
553 	spin_lock_irq(&qp->r_lock);
554 	spin_lock(&qp->s_hlock);
555 	spin_lock(&qp->s_lock);
556 
557 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
558 		goto check_lwqe;
559 
560 	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
561 	    rvt_qp_sends_has_lkey(qp, lkey) ||
562 	    rvt_qp_acks_has_lkey(qp, lkey))
563 		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
564 check_lwqe:
565 	spin_unlock(&qp->s_lock);
566 	spin_unlock(&qp->s_hlock);
567 	spin_unlock_irq(&qp->r_lock);
568 	if (lastwqe) {
569 		struct ib_event ev;
570 
571 		ev.device = qp->ibqp.device;
572 		ev.element.qp = &qp->ibqp;
573 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
574 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
575 	}
576 }
577 
578 /**
579  * rvt_remove_qp - remove qp form table
580  * @rdi: rvt dev struct
581  * @qp: qp to remove
582  *
583  * Remove the QP from the table so it can't be found asynchronously by
584  * the receive routine.
585  */
586 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
587 {
588 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
589 	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
590 	unsigned long flags;
591 	int removed = 1;
592 
593 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
594 
595 	if (rcu_dereference_protected(rvp->qp[0],
596 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
597 		RCU_INIT_POINTER(rvp->qp[0], NULL);
598 	} else if (rcu_dereference_protected(rvp->qp[1],
599 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
600 		RCU_INIT_POINTER(rvp->qp[1], NULL);
601 	} else {
602 		struct rvt_qp *q;
603 		struct rvt_qp __rcu **qpp;
604 
605 		removed = 0;
606 		qpp = &rdi->qp_dev->qp_table[n];
607 		for (; (q = rcu_dereference_protected(*qpp,
608 			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
609 			qpp = &q->next) {
610 			if (q == qp) {
611 				RCU_INIT_POINTER(*qpp,
612 				     rcu_dereference_protected(qp->next,
613 				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
614 				removed = 1;
615 				trace_rvt_qpremove(qp, n);
616 				break;
617 			}
618 		}
619 	}
620 
621 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
622 	if (removed) {
623 		synchronize_rcu();
624 		rvt_put_qp(qp);
625 	}
626 }
627 
628 /**
629  * rvt_init_qp - initialize the QP state to the reset state
630  * @qp: the QP to init or reinit
631  * @type: the QP type
632  *
633  * This function is called from both rvt_create_qp() and
634  * rvt_reset_qp().   The difference is that the reset
635  * patch the necessary locks to protect against concurent
636  * access.
637  */
638 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
639 			enum ib_qp_type type)
640 {
641 	qp->remote_qpn = 0;
642 	qp->qkey = 0;
643 	qp->qp_access_flags = 0;
644 	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
645 	qp->s_hdrwords = 0;
646 	qp->s_wqe = NULL;
647 	qp->s_draining = 0;
648 	qp->s_next_psn = 0;
649 	qp->s_last_psn = 0;
650 	qp->s_sending_psn = 0;
651 	qp->s_sending_hpsn = 0;
652 	qp->s_psn = 0;
653 	qp->r_psn = 0;
654 	qp->r_msn = 0;
655 	if (type == IB_QPT_RC) {
656 		qp->s_state = IB_OPCODE_RC_SEND_LAST;
657 		qp->r_state = IB_OPCODE_RC_SEND_LAST;
658 	} else {
659 		qp->s_state = IB_OPCODE_UC_SEND_LAST;
660 		qp->r_state = IB_OPCODE_UC_SEND_LAST;
661 	}
662 	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
663 	qp->r_nak_state = 0;
664 	qp->r_aflags = 0;
665 	qp->r_flags = 0;
666 	qp->s_head = 0;
667 	qp->s_tail = 0;
668 	qp->s_cur = 0;
669 	qp->s_acked = 0;
670 	qp->s_last = 0;
671 	qp->s_ssn = 1;
672 	qp->s_lsn = 0;
673 	qp->s_mig_state = IB_MIG_MIGRATED;
674 	qp->r_head_ack_queue = 0;
675 	qp->s_tail_ack_queue = 0;
676 	qp->s_num_rd_atomic = 0;
677 	if (qp->r_rq.wq) {
678 		qp->r_rq.wq->head = 0;
679 		qp->r_rq.wq->tail = 0;
680 	}
681 	qp->r_sge.num_sge = 0;
682 	atomic_set(&qp->s_reserved_used, 0);
683 }
684 
685 /**
686  * rvt_reset_qp - initialize the QP state to the reset state
687  * @qp: the QP to reset
688  * @type: the QP type
689  *
690  * r_lock, s_hlock, and s_lock are required to be held by the caller
691  */
692 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
693 			 enum ib_qp_type type)
694 	__must_hold(&qp->s_lock)
695 	__must_hold(&qp->s_hlock)
696 	__must_hold(&qp->r_lock)
697 {
698 	lockdep_assert_held(&qp->r_lock);
699 	lockdep_assert_held(&qp->s_hlock);
700 	lockdep_assert_held(&qp->s_lock);
701 	if (qp->state != IB_QPS_RESET) {
702 		qp->state = IB_QPS_RESET;
703 
704 		/* Let drivers flush their waitlist */
705 		rdi->driver_f.flush_qp_waiters(qp);
706 		rvt_stop_rc_timers(qp);
707 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
708 		spin_unlock(&qp->s_lock);
709 		spin_unlock(&qp->s_hlock);
710 		spin_unlock_irq(&qp->r_lock);
711 
712 		/* Stop the send queue and the retry timer */
713 		rdi->driver_f.stop_send_queue(qp);
714 		rvt_del_timers_sync(qp);
715 		/* Wait for things to stop */
716 		rdi->driver_f.quiesce_qp(qp);
717 
718 		/* take qp out the hash and wait for it to be unused */
719 		rvt_remove_qp(rdi, qp);
720 
721 		/* grab the lock b/c it was locked at call time */
722 		spin_lock_irq(&qp->r_lock);
723 		spin_lock(&qp->s_hlock);
724 		spin_lock(&qp->s_lock);
725 
726 		rvt_clear_mr_refs(qp, 1);
727 		/*
728 		 * Let the driver do any tear down or re-init it needs to for
729 		 * a qp that has been reset
730 		 */
731 		rdi->driver_f.notify_qp_reset(qp);
732 	}
733 	rvt_init_qp(rdi, qp, type);
734 	lockdep_assert_held(&qp->r_lock);
735 	lockdep_assert_held(&qp->s_hlock);
736 	lockdep_assert_held(&qp->s_lock);
737 }
738 
739 /** rvt_free_qpn - Free a qpn from the bit map
740  * @qpt: QP table
741  * @qpn: queue pair number to free
742  */
743 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
744 {
745 	struct rvt_qpn_map *map;
746 
747 	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
748 	if (map->page)
749 		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
750 }
751 
752 /**
753  * rvt_create_qp - create a queue pair for a device
754  * @ibpd: the protection domain who's device we create the queue pair for
755  * @init_attr: the attributes of the queue pair
756  * @udata: user data for libibverbs.so
757  *
758  * Queue pair creation is mostly an rvt issue. However, drivers have their own
759  * unique idea of what queue pair numbers mean. For instance there is a reserved
760  * range for PSM.
761  *
762  * Return: the queue pair on success, otherwise returns an errno.
763  *
764  * Called by the ib_create_qp() core verbs function.
765  */
766 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
767 			    struct ib_qp_init_attr *init_attr,
768 			    struct ib_udata *udata)
769 {
770 	struct rvt_qp *qp;
771 	int err;
772 	struct rvt_swqe *swq = NULL;
773 	size_t sz;
774 	size_t sg_list_sz;
775 	struct ib_qp *ret = ERR_PTR(-ENOMEM);
776 	struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
777 	void *priv = NULL;
778 	size_t sqsize;
779 
780 	if (!rdi)
781 		return ERR_PTR(-EINVAL);
782 
783 	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_sge ||
784 	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
785 	    init_attr->create_flags)
786 		return ERR_PTR(-EINVAL);
787 
788 	/* Check receive queue parameters if no SRQ is specified. */
789 	if (!init_attr->srq) {
790 		if (init_attr->cap.max_recv_sge > rdi->dparms.props.max_sge ||
791 		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
792 			return ERR_PTR(-EINVAL);
793 
794 		if (init_attr->cap.max_send_sge +
795 		    init_attr->cap.max_send_wr +
796 		    init_attr->cap.max_recv_sge +
797 		    init_attr->cap.max_recv_wr == 0)
798 			return ERR_PTR(-EINVAL);
799 	}
800 	sqsize =
801 		init_attr->cap.max_send_wr + 1 +
802 		rdi->dparms.reserved_operations;
803 	switch (init_attr->qp_type) {
804 	case IB_QPT_SMI:
805 	case IB_QPT_GSI:
806 		if (init_attr->port_num == 0 ||
807 		    init_attr->port_num > ibpd->device->phys_port_cnt)
808 			return ERR_PTR(-EINVAL);
809 		/* fall through */
810 	case IB_QPT_UC:
811 	case IB_QPT_RC:
812 	case IB_QPT_UD:
813 		sz = sizeof(struct rvt_sge) *
814 			init_attr->cap.max_send_sge +
815 			sizeof(struct rvt_swqe);
816 		swq = vzalloc_node(sqsize * sz, rdi->dparms.node);
817 		if (!swq)
818 			return ERR_PTR(-ENOMEM);
819 
820 		sz = sizeof(*qp);
821 		sg_list_sz = 0;
822 		if (init_attr->srq) {
823 			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
824 
825 			if (srq->rq.max_sge > 1)
826 				sg_list_sz = sizeof(*qp->r_sg_list) *
827 					(srq->rq.max_sge - 1);
828 		} else if (init_attr->cap.max_recv_sge > 1)
829 			sg_list_sz = sizeof(*qp->r_sg_list) *
830 				(init_attr->cap.max_recv_sge - 1);
831 		qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
832 				  rdi->dparms.node);
833 		if (!qp)
834 			goto bail_swq;
835 
836 		RCU_INIT_POINTER(qp->next, NULL);
837 		if (init_attr->qp_type == IB_QPT_RC) {
838 			qp->s_ack_queue =
839 				kzalloc_node(
840 					sizeof(*qp->s_ack_queue) *
841 					 rvt_max_atomic(rdi),
842 					GFP_KERNEL,
843 					rdi->dparms.node);
844 			if (!qp->s_ack_queue)
845 				goto bail_qp;
846 		}
847 		/* initialize timers needed for rc qp */
848 		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
849 		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
850 			     HRTIMER_MODE_REL);
851 		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
852 
853 		/*
854 		 * Driver needs to set up it's private QP structure and do any
855 		 * initialization that is needed.
856 		 */
857 		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
858 		if (IS_ERR(priv)) {
859 			ret = priv;
860 			goto bail_qp;
861 		}
862 		qp->priv = priv;
863 		qp->timeout_jiffies =
864 			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
865 				1000UL);
866 		if (init_attr->srq) {
867 			sz = 0;
868 		} else {
869 			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
870 			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
871 			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
872 				sizeof(struct rvt_rwqe);
873 			if (udata)
874 				qp->r_rq.wq = vmalloc_user(
875 						sizeof(struct rvt_rwq) +
876 						qp->r_rq.size * sz);
877 			else
878 				qp->r_rq.wq = vzalloc_node(
879 						sizeof(struct rvt_rwq) +
880 						qp->r_rq.size * sz,
881 						rdi->dparms.node);
882 			if (!qp->r_rq.wq)
883 				goto bail_driver_priv;
884 		}
885 
886 		/*
887 		 * ib_create_qp() will initialize qp->ibqp
888 		 * except for qp->ibqp.qp_num.
889 		 */
890 		spin_lock_init(&qp->r_lock);
891 		spin_lock_init(&qp->s_hlock);
892 		spin_lock_init(&qp->s_lock);
893 		spin_lock_init(&qp->r_rq.lock);
894 		atomic_set(&qp->refcount, 0);
895 		atomic_set(&qp->local_ops_pending, 0);
896 		init_waitqueue_head(&qp->wait);
897 		INIT_LIST_HEAD(&qp->rspwait);
898 		qp->state = IB_QPS_RESET;
899 		qp->s_wq = swq;
900 		qp->s_size = sqsize;
901 		qp->s_avail = init_attr->cap.max_send_wr;
902 		qp->s_max_sge = init_attr->cap.max_send_sge;
903 		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
904 			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
905 
906 		err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
907 				init_attr->qp_type,
908 				init_attr->port_num);
909 		if (err < 0) {
910 			ret = ERR_PTR(err);
911 			goto bail_rq_wq;
912 		}
913 		qp->ibqp.qp_num = err;
914 		qp->port_num = init_attr->port_num;
915 		rvt_init_qp(rdi, qp, init_attr->qp_type);
916 		break;
917 
918 	default:
919 		/* Don't support raw QPs */
920 		return ERR_PTR(-EINVAL);
921 	}
922 
923 	init_attr->cap.max_inline_data = 0;
924 
925 	/*
926 	 * Return the address of the RWQ as the offset to mmap.
927 	 * See rvt_mmap() for details.
928 	 */
929 	if (udata && udata->outlen >= sizeof(__u64)) {
930 		if (!qp->r_rq.wq) {
931 			__u64 offset = 0;
932 
933 			err = ib_copy_to_udata(udata, &offset,
934 					       sizeof(offset));
935 			if (err) {
936 				ret = ERR_PTR(err);
937 				goto bail_qpn;
938 			}
939 		} else {
940 			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
941 
942 			qp->ip = rvt_create_mmap_info(rdi, s,
943 						      ibpd->uobject->context,
944 						      qp->r_rq.wq);
945 			if (!qp->ip) {
946 				ret = ERR_PTR(-ENOMEM);
947 				goto bail_qpn;
948 			}
949 
950 			err = ib_copy_to_udata(udata, &qp->ip->offset,
951 					       sizeof(qp->ip->offset));
952 			if (err) {
953 				ret = ERR_PTR(err);
954 				goto bail_ip;
955 			}
956 		}
957 		qp->pid = current->pid;
958 	}
959 
960 	spin_lock(&rdi->n_qps_lock);
961 	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
962 		spin_unlock(&rdi->n_qps_lock);
963 		ret = ERR_PTR(-ENOMEM);
964 		goto bail_ip;
965 	}
966 
967 	rdi->n_qps_allocated++;
968 	/*
969 	 * Maintain a busy_jiffies variable that will be added to the timeout
970 	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
971 	 * is scaled by the number of rc qps created for the device to reduce
972 	 * the number of timeouts occurring when there is a large number of
973 	 * qps. busy_jiffies is incremented every rc qp scaling interval.
974 	 * The scaling interval is selected based on extensive performance
975 	 * evaluation of targeted workloads.
976 	 */
977 	if (init_attr->qp_type == IB_QPT_RC) {
978 		rdi->n_rc_qps++;
979 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
980 	}
981 	spin_unlock(&rdi->n_qps_lock);
982 
983 	if (qp->ip) {
984 		spin_lock_irq(&rdi->pending_lock);
985 		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
986 		spin_unlock_irq(&rdi->pending_lock);
987 	}
988 
989 	ret = &qp->ibqp;
990 
991 	/*
992 	 * We have our QP and its good, now keep track of what types of opcodes
993 	 * can be processed on this QP. We do this by keeping track of what the
994 	 * 3 high order bits of the opcode are.
995 	 */
996 	switch (init_attr->qp_type) {
997 	case IB_QPT_SMI:
998 	case IB_QPT_GSI:
999 	case IB_QPT_UD:
1000 		qp->allowed_ops = IB_OPCODE_UD;
1001 		break;
1002 	case IB_QPT_RC:
1003 		qp->allowed_ops = IB_OPCODE_RC;
1004 		break;
1005 	case IB_QPT_UC:
1006 		qp->allowed_ops = IB_OPCODE_UC;
1007 		break;
1008 	default:
1009 		ret = ERR_PTR(-EINVAL);
1010 		goto bail_ip;
1011 	}
1012 
1013 	return ret;
1014 
1015 bail_ip:
1016 	if (qp->ip)
1017 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1018 
1019 bail_qpn:
1020 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1021 
1022 bail_rq_wq:
1023 	if (!qp->ip)
1024 		vfree(qp->r_rq.wq);
1025 
1026 bail_driver_priv:
1027 	rdi->driver_f.qp_priv_free(rdi, qp);
1028 
1029 bail_qp:
1030 	kfree(qp->s_ack_queue);
1031 	kfree(qp);
1032 
1033 bail_swq:
1034 	vfree(swq);
1035 
1036 	return ret;
1037 }
1038 
1039 /**
1040  * rvt_error_qp - put a QP into the error state
1041  * @qp: the QP to put into the error state
1042  * @err: the receive completion error to signal if a RWQE is active
1043  *
1044  * Flushes both send and receive work queues.
1045  *
1046  * Return: true if last WQE event should be generated.
1047  * The QP r_lock and s_lock should be held and interrupts disabled.
1048  * If we are already in error state, just return.
1049  */
1050 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1051 {
1052 	struct ib_wc wc;
1053 	int ret = 0;
1054 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1055 
1056 	lockdep_assert_held(&qp->r_lock);
1057 	lockdep_assert_held(&qp->s_lock);
1058 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1059 		goto bail;
1060 
1061 	qp->state = IB_QPS_ERR;
1062 
1063 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1064 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1065 		del_timer(&qp->s_timer);
1066 	}
1067 
1068 	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1069 		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1070 
1071 	rdi->driver_f.notify_error_qp(qp);
1072 
1073 	/* Schedule the sending tasklet to drain the send work queue. */
1074 	if (READ_ONCE(qp->s_last) != qp->s_head)
1075 		rdi->driver_f.schedule_send(qp);
1076 
1077 	rvt_clear_mr_refs(qp, 0);
1078 
1079 	memset(&wc, 0, sizeof(wc));
1080 	wc.qp = &qp->ibqp;
1081 	wc.opcode = IB_WC_RECV;
1082 
1083 	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1084 		wc.wr_id = qp->r_wr_id;
1085 		wc.status = err;
1086 		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1087 	}
1088 	wc.status = IB_WC_WR_FLUSH_ERR;
1089 
1090 	if (qp->r_rq.wq) {
1091 		struct rvt_rwq *wq;
1092 		u32 head;
1093 		u32 tail;
1094 
1095 		spin_lock(&qp->r_rq.lock);
1096 
1097 		/* sanity check pointers before trusting them */
1098 		wq = qp->r_rq.wq;
1099 		head = wq->head;
1100 		if (head >= qp->r_rq.size)
1101 			head = 0;
1102 		tail = wq->tail;
1103 		if (tail >= qp->r_rq.size)
1104 			tail = 0;
1105 		while (tail != head) {
1106 			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1107 			if (++tail >= qp->r_rq.size)
1108 				tail = 0;
1109 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1110 		}
1111 		wq->tail = tail;
1112 
1113 		spin_unlock(&qp->r_rq.lock);
1114 	} else if (qp->ibqp.event_handler) {
1115 		ret = 1;
1116 	}
1117 
1118 bail:
1119 	return ret;
1120 }
1121 EXPORT_SYMBOL(rvt_error_qp);
1122 
1123 /*
1124  * Put the QP into the hash table.
1125  * The hash table holds a reference to the QP.
1126  */
1127 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1128 {
1129 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1130 	unsigned long flags;
1131 
1132 	rvt_get_qp(qp);
1133 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1134 
1135 	if (qp->ibqp.qp_num <= 1) {
1136 		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1137 	} else {
1138 		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1139 
1140 		qp->next = rdi->qp_dev->qp_table[n];
1141 		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1142 		trace_rvt_qpinsert(qp, n);
1143 	}
1144 
1145 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1146 }
1147 
1148 /**
1149  * rvt_modify_qp - modify the attributes of a queue pair
1150  * @ibqp: the queue pair who's attributes we're modifying
1151  * @attr: the new attributes
1152  * @attr_mask: the mask of attributes to modify
1153  * @udata: user data for libibverbs.so
1154  *
1155  * Return: 0 on success, otherwise returns an errno.
1156  */
1157 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1158 		  int attr_mask, struct ib_udata *udata)
1159 {
1160 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1161 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1162 	enum ib_qp_state cur_state, new_state;
1163 	struct ib_event ev;
1164 	int lastwqe = 0;
1165 	int mig = 0;
1166 	int pmtu = 0; /* for gcc warning only */
1167 	enum rdma_link_layer link;
1168 	int opa_ah;
1169 
1170 	link = rdma_port_get_link_layer(ibqp->device, qp->port_num);
1171 
1172 	spin_lock_irq(&qp->r_lock);
1173 	spin_lock(&qp->s_hlock);
1174 	spin_lock(&qp->s_lock);
1175 
1176 	cur_state = attr_mask & IB_QP_CUR_STATE ?
1177 		attr->cur_qp_state : qp->state;
1178 	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1179 	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1180 
1181 	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1182 				attr_mask, link))
1183 		goto inval;
1184 
1185 	if (rdi->driver_f.check_modify_qp &&
1186 	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1187 		goto inval;
1188 
1189 	if (attr_mask & IB_QP_AV) {
1190 		if (opa_ah) {
1191 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1192 				opa_get_mcast_base(OPA_MCAST_NR))
1193 				goto inval;
1194 		} else {
1195 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1196 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1197 				goto inval;
1198 		}
1199 
1200 		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1201 			goto inval;
1202 	}
1203 
1204 	if (attr_mask & IB_QP_ALT_PATH) {
1205 		if (opa_ah) {
1206 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1207 				opa_get_mcast_base(OPA_MCAST_NR))
1208 				goto inval;
1209 		} else {
1210 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1211 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1212 				goto inval;
1213 		}
1214 
1215 		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1216 			goto inval;
1217 		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1218 			goto inval;
1219 	}
1220 
1221 	if (attr_mask & IB_QP_PKEY_INDEX)
1222 		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1223 			goto inval;
1224 
1225 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1226 		if (attr->min_rnr_timer > 31)
1227 			goto inval;
1228 
1229 	if (attr_mask & IB_QP_PORT)
1230 		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1231 		    qp->ibqp.qp_type == IB_QPT_GSI ||
1232 		    attr->port_num == 0 ||
1233 		    attr->port_num > ibqp->device->phys_port_cnt)
1234 			goto inval;
1235 
1236 	if (attr_mask & IB_QP_DEST_QPN)
1237 		if (attr->dest_qp_num > RVT_QPN_MASK)
1238 			goto inval;
1239 
1240 	if (attr_mask & IB_QP_RETRY_CNT)
1241 		if (attr->retry_cnt > 7)
1242 			goto inval;
1243 
1244 	if (attr_mask & IB_QP_RNR_RETRY)
1245 		if (attr->rnr_retry > 7)
1246 			goto inval;
1247 
1248 	/*
1249 	 * Don't allow invalid path_mtu values.  OK to set greater
1250 	 * than the active mtu (or even the max_cap, if we have tuned
1251 	 * that to a small mtu.  We'll set qp->path_mtu
1252 	 * to the lesser of requested attribute mtu and active,
1253 	 * for packetizing messages.
1254 	 * Note that the QP port has to be set in INIT and MTU in RTR.
1255 	 */
1256 	if (attr_mask & IB_QP_PATH_MTU) {
1257 		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1258 		if (pmtu < 0)
1259 			goto inval;
1260 	}
1261 
1262 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1263 		if (attr->path_mig_state == IB_MIG_REARM) {
1264 			if (qp->s_mig_state == IB_MIG_ARMED)
1265 				goto inval;
1266 			if (new_state != IB_QPS_RTS)
1267 				goto inval;
1268 		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1269 			if (qp->s_mig_state == IB_MIG_REARM)
1270 				goto inval;
1271 			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1272 				goto inval;
1273 			if (qp->s_mig_state == IB_MIG_ARMED)
1274 				mig = 1;
1275 		} else {
1276 			goto inval;
1277 		}
1278 	}
1279 
1280 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1281 		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1282 			goto inval;
1283 
1284 	switch (new_state) {
1285 	case IB_QPS_RESET:
1286 		if (qp->state != IB_QPS_RESET)
1287 			rvt_reset_qp(rdi, qp, ibqp->qp_type);
1288 		break;
1289 
1290 	case IB_QPS_RTR:
1291 		/* Allow event to re-trigger if QP set to RTR more than once */
1292 		qp->r_flags &= ~RVT_R_COMM_EST;
1293 		qp->state = new_state;
1294 		break;
1295 
1296 	case IB_QPS_SQD:
1297 		qp->s_draining = qp->s_last != qp->s_cur;
1298 		qp->state = new_state;
1299 		break;
1300 
1301 	case IB_QPS_SQE:
1302 		if (qp->ibqp.qp_type == IB_QPT_RC)
1303 			goto inval;
1304 		qp->state = new_state;
1305 		break;
1306 
1307 	case IB_QPS_ERR:
1308 		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1309 		break;
1310 
1311 	default:
1312 		qp->state = new_state;
1313 		break;
1314 	}
1315 
1316 	if (attr_mask & IB_QP_PKEY_INDEX)
1317 		qp->s_pkey_index = attr->pkey_index;
1318 
1319 	if (attr_mask & IB_QP_PORT)
1320 		qp->port_num = attr->port_num;
1321 
1322 	if (attr_mask & IB_QP_DEST_QPN)
1323 		qp->remote_qpn = attr->dest_qp_num;
1324 
1325 	if (attr_mask & IB_QP_SQ_PSN) {
1326 		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1327 		qp->s_psn = qp->s_next_psn;
1328 		qp->s_sending_psn = qp->s_next_psn;
1329 		qp->s_last_psn = qp->s_next_psn - 1;
1330 		qp->s_sending_hpsn = qp->s_last_psn;
1331 	}
1332 
1333 	if (attr_mask & IB_QP_RQ_PSN)
1334 		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1335 
1336 	if (attr_mask & IB_QP_ACCESS_FLAGS)
1337 		qp->qp_access_flags = attr->qp_access_flags;
1338 
1339 	if (attr_mask & IB_QP_AV) {
1340 		qp->remote_ah_attr = attr->ah_attr;
1341 		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1342 		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1343 	}
1344 
1345 	if (attr_mask & IB_QP_ALT_PATH) {
1346 		qp->alt_ah_attr = attr->alt_ah_attr;
1347 		qp->s_alt_pkey_index = attr->alt_pkey_index;
1348 	}
1349 
1350 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1351 		qp->s_mig_state = attr->path_mig_state;
1352 		if (mig) {
1353 			qp->remote_ah_attr = qp->alt_ah_attr;
1354 			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1355 			qp->s_pkey_index = qp->s_alt_pkey_index;
1356 		}
1357 	}
1358 
1359 	if (attr_mask & IB_QP_PATH_MTU) {
1360 		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1361 		qp->log_pmtu = ilog2(qp->pmtu);
1362 	}
1363 
1364 	if (attr_mask & IB_QP_RETRY_CNT) {
1365 		qp->s_retry_cnt = attr->retry_cnt;
1366 		qp->s_retry = attr->retry_cnt;
1367 	}
1368 
1369 	if (attr_mask & IB_QP_RNR_RETRY) {
1370 		qp->s_rnr_retry_cnt = attr->rnr_retry;
1371 		qp->s_rnr_retry = attr->rnr_retry;
1372 	}
1373 
1374 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1375 		qp->r_min_rnr_timer = attr->min_rnr_timer;
1376 
1377 	if (attr_mask & IB_QP_TIMEOUT) {
1378 		qp->timeout = attr->timeout;
1379 		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1380 	}
1381 
1382 	if (attr_mask & IB_QP_QKEY)
1383 		qp->qkey = attr->qkey;
1384 
1385 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1386 		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1387 
1388 	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1389 		qp->s_max_rd_atomic = attr->max_rd_atomic;
1390 
1391 	if (rdi->driver_f.modify_qp)
1392 		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1393 
1394 	spin_unlock(&qp->s_lock);
1395 	spin_unlock(&qp->s_hlock);
1396 	spin_unlock_irq(&qp->r_lock);
1397 
1398 	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1399 		rvt_insert_qp(rdi, qp);
1400 
1401 	if (lastwqe) {
1402 		ev.device = qp->ibqp.device;
1403 		ev.element.qp = &qp->ibqp;
1404 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1405 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1406 	}
1407 	if (mig) {
1408 		ev.device = qp->ibqp.device;
1409 		ev.element.qp = &qp->ibqp;
1410 		ev.event = IB_EVENT_PATH_MIG;
1411 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1412 	}
1413 	return 0;
1414 
1415 inval:
1416 	spin_unlock(&qp->s_lock);
1417 	spin_unlock(&qp->s_hlock);
1418 	spin_unlock_irq(&qp->r_lock);
1419 	return -EINVAL;
1420 }
1421 
1422 /**
1423  * rvt_destroy_qp - destroy a queue pair
1424  * @ibqp: the queue pair to destroy
1425  *
1426  * Note that this can be called while the QP is actively sending or
1427  * receiving!
1428  *
1429  * Return: 0 on success.
1430  */
1431 int rvt_destroy_qp(struct ib_qp *ibqp)
1432 {
1433 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1434 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1435 
1436 	spin_lock_irq(&qp->r_lock);
1437 	spin_lock(&qp->s_hlock);
1438 	spin_lock(&qp->s_lock);
1439 	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1440 	spin_unlock(&qp->s_lock);
1441 	spin_unlock(&qp->s_hlock);
1442 	spin_unlock_irq(&qp->r_lock);
1443 
1444 	wait_event(qp->wait, !atomic_read(&qp->refcount));
1445 	/* qpn is now available for use again */
1446 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1447 
1448 	spin_lock(&rdi->n_qps_lock);
1449 	rdi->n_qps_allocated--;
1450 	if (qp->ibqp.qp_type == IB_QPT_RC) {
1451 		rdi->n_rc_qps--;
1452 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1453 	}
1454 	spin_unlock(&rdi->n_qps_lock);
1455 
1456 	if (qp->ip)
1457 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1458 	else
1459 		vfree(qp->r_rq.wq);
1460 	vfree(qp->s_wq);
1461 	rdi->driver_f.qp_priv_free(rdi, qp);
1462 	kfree(qp->s_ack_queue);
1463 	kfree(qp);
1464 	return 0;
1465 }
1466 
1467 /**
1468  * rvt_query_qp - query an ipbq
1469  * @ibqp: IB qp to query
1470  * @attr: attr struct to fill in
1471  * @attr_mask: attr mask ignored
1472  * @init_attr: struct to fill in
1473  *
1474  * Return: always 0
1475  */
1476 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1477 		 int attr_mask, struct ib_qp_init_attr *init_attr)
1478 {
1479 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1480 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1481 
1482 	attr->qp_state = qp->state;
1483 	attr->cur_qp_state = attr->qp_state;
1484 	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1485 	attr->path_mig_state = qp->s_mig_state;
1486 	attr->qkey = qp->qkey;
1487 	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1488 	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1489 	attr->dest_qp_num = qp->remote_qpn;
1490 	attr->qp_access_flags = qp->qp_access_flags;
1491 	attr->cap.max_send_wr = qp->s_size - 1 -
1492 		rdi->dparms.reserved_operations;
1493 	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1494 	attr->cap.max_send_sge = qp->s_max_sge;
1495 	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1496 	attr->cap.max_inline_data = 0;
1497 	attr->ah_attr = qp->remote_ah_attr;
1498 	attr->alt_ah_attr = qp->alt_ah_attr;
1499 	attr->pkey_index = qp->s_pkey_index;
1500 	attr->alt_pkey_index = qp->s_alt_pkey_index;
1501 	attr->en_sqd_async_notify = 0;
1502 	attr->sq_draining = qp->s_draining;
1503 	attr->max_rd_atomic = qp->s_max_rd_atomic;
1504 	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1505 	attr->min_rnr_timer = qp->r_min_rnr_timer;
1506 	attr->port_num = qp->port_num;
1507 	attr->timeout = qp->timeout;
1508 	attr->retry_cnt = qp->s_retry_cnt;
1509 	attr->rnr_retry = qp->s_rnr_retry_cnt;
1510 	attr->alt_port_num =
1511 		rdma_ah_get_port_num(&qp->alt_ah_attr);
1512 	attr->alt_timeout = qp->alt_timeout;
1513 
1514 	init_attr->event_handler = qp->ibqp.event_handler;
1515 	init_attr->qp_context = qp->ibqp.qp_context;
1516 	init_attr->send_cq = qp->ibqp.send_cq;
1517 	init_attr->recv_cq = qp->ibqp.recv_cq;
1518 	init_attr->srq = qp->ibqp.srq;
1519 	init_attr->cap = attr->cap;
1520 	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1521 		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1522 	else
1523 		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1524 	init_attr->qp_type = qp->ibqp.qp_type;
1525 	init_attr->port_num = qp->port_num;
1526 	return 0;
1527 }
1528 
1529 /**
1530  * rvt_post_receive - post a receive on a QP
1531  * @ibqp: the QP to post the receive on
1532  * @wr: the WR to post
1533  * @bad_wr: the first bad WR is put here
1534  *
1535  * This may be called from interrupt context.
1536  *
1537  * Return: 0 on success otherwise errno
1538  */
1539 int rvt_post_recv(struct ib_qp *ibqp, struct ib_recv_wr *wr,
1540 		  struct ib_recv_wr **bad_wr)
1541 {
1542 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1543 	struct rvt_rwq *wq = qp->r_rq.wq;
1544 	unsigned long flags;
1545 	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1546 				!qp->ibqp.srq;
1547 
1548 	/* Check that state is OK to post receive. */
1549 	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1550 		*bad_wr = wr;
1551 		return -EINVAL;
1552 	}
1553 
1554 	for (; wr; wr = wr->next) {
1555 		struct rvt_rwqe *wqe;
1556 		u32 next;
1557 		int i;
1558 
1559 		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1560 			*bad_wr = wr;
1561 			return -EINVAL;
1562 		}
1563 
1564 		spin_lock_irqsave(&qp->r_rq.lock, flags);
1565 		next = wq->head + 1;
1566 		if (next >= qp->r_rq.size)
1567 			next = 0;
1568 		if (next == wq->tail) {
1569 			spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1570 			*bad_wr = wr;
1571 			return -ENOMEM;
1572 		}
1573 		if (unlikely(qp_err_flush)) {
1574 			struct ib_wc wc;
1575 
1576 			memset(&wc, 0, sizeof(wc));
1577 			wc.qp = &qp->ibqp;
1578 			wc.opcode = IB_WC_RECV;
1579 			wc.wr_id = wr->wr_id;
1580 			wc.status = IB_WC_WR_FLUSH_ERR;
1581 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1582 		} else {
1583 			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1584 			wqe->wr_id = wr->wr_id;
1585 			wqe->num_sge = wr->num_sge;
1586 			for (i = 0; i < wr->num_sge; i++)
1587 				wqe->sg_list[i] = wr->sg_list[i];
1588 			/*
1589 			 * Make sure queue entry is written
1590 			 * before the head index.
1591 			 */
1592 			smp_wmb();
1593 			wq->head = next;
1594 		}
1595 		spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1596 	}
1597 	return 0;
1598 }
1599 
1600 /**
1601  * rvt_qp_valid_operation - validate post send wr request
1602  * @qp - the qp
1603  * @post-parms - the post send table for the driver
1604  * @wr - the work request
1605  *
1606  * The routine validates the operation based on the
1607  * validation table an returns the length of the operation
1608  * which can extend beyond the ib_send_bw.  Operation
1609  * dependent flags key atomic operation validation.
1610  *
1611  * There is an exception for UD qps that validates the pd and
1612  * overrides the length to include the additional UD specific
1613  * length.
1614  *
1615  * Returns a negative error or the length of the work request
1616  * for building the swqe.
1617  */
1618 static inline int rvt_qp_valid_operation(
1619 	struct rvt_qp *qp,
1620 	const struct rvt_operation_params *post_parms,
1621 	struct ib_send_wr *wr)
1622 {
1623 	int len;
1624 
1625 	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1626 		return -EINVAL;
1627 	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1628 		return -EINVAL;
1629 	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1630 	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1631 		return -EINVAL;
1632 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1633 	    (wr->num_sge == 0 ||
1634 	     wr->sg_list[0].length < sizeof(u64) ||
1635 	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1636 		return -EINVAL;
1637 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1638 	    !qp->s_max_rd_atomic)
1639 		return -EINVAL;
1640 	len = post_parms[wr->opcode].length;
1641 	/* UD specific */
1642 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1643 	    qp->ibqp.qp_type != IB_QPT_RC) {
1644 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1645 			return -EINVAL;
1646 		len = sizeof(struct ib_ud_wr);
1647 	}
1648 	return len;
1649 }
1650 
1651 /**
1652  * rvt_qp_is_avail - determine queue capacity
1653  * @qp: the qp
1654  * @rdi: the rdmavt device
1655  * @reserved_op: is reserved operation
1656  *
1657  * This assumes the s_hlock is held but the s_last
1658  * qp variable is uncontrolled.
1659  *
1660  * For non reserved operations, the qp->s_avail
1661  * may be changed.
1662  *
1663  * The return value is zero or a -ENOMEM.
1664  */
1665 static inline int rvt_qp_is_avail(
1666 	struct rvt_qp *qp,
1667 	struct rvt_dev_info *rdi,
1668 	bool reserved_op)
1669 {
1670 	u32 slast;
1671 	u32 avail;
1672 	u32 reserved_used;
1673 
1674 	/* see rvt_qp_wqe_unreserve() */
1675 	smp_mb__before_atomic();
1676 	reserved_used = atomic_read(&qp->s_reserved_used);
1677 	if (unlikely(reserved_op)) {
1678 		/* see rvt_qp_wqe_unreserve() */
1679 		smp_mb__before_atomic();
1680 		if (reserved_used >= rdi->dparms.reserved_operations)
1681 			return -ENOMEM;
1682 		return 0;
1683 	}
1684 	/* non-reserved operations */
1685 	if (likely(qp->s_avail))
1686 		return 0;
1687 	slast = READ_ONCE(qp->s_last);
1688 	if (qp->s_head >= slast)
1689 		avail = qp->s_size - (qp->s_head - slast);
1690 	else
1691 		avail = slast - qp->s_head;
1692 
1693 	/* see rvt_qp_wqe_unreserve() */
1694 	smp_mb__before_atomic();
1695 	reserved_used = atomic_read(&qp->s_reserved_used);
1696 	avail =  avail - 1 -
1697 		(rdi->dparms.reserved_operations - reserved_used);
1698 	/* insure we don't assign a negative s_avail */
1699 	if ((s32)avail <= 0)
1700 		return -ENOMEM;
1701 	qp->s_avail = avail;
1702 	if (WARN_ON(qp->s_avail >
1703 		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1704 		rvt_pr_err(rdi,
1705 			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1706 			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1707 			   qp->s_head, qp->s_tail, qp->s_cur,
1708 			   qp->s_acked, qp->s_last);
1709 	return 0;
1710 }
1711 
1712 /**
1713  * rvt_post_one_wr - post one RC, UC, or UD send work request
1714  * @qp: the QP to post on
1715  * @wr: the work request to send
1716  */
1717 static int rvt_post_one_wr(struct rvt_qp *qp,
1718 			   struct ib_send_wr *wr,
1719 			   int *call_send)
1720 {
1721 	struct rvt_swqe *wqe;
1722 	u32 next;
1723 	int i;
1724 	int j;
1725 	int acc;
1726 	struct rvt_lkey_table *rkt;
1727 	struct rvt_pd *pd;
1728 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1729 	u8 log_pmtu;
1730 	int ret;
1731 	size_t cplen;
1732 	bool reserved_op;
1733 	int local_ops_delayed = 0;
1734 
1735 	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1736 
1737 	/* IB spec says that num_sge == 0 is OK. */
1738 	if (unlikely(wr->num_sge > qp->s_max_sge))
1739 		return -EINVAL;
1740 
1741 	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1742 	if (ret < 0)
1743 		return ret;
1744 	cplen = ret;
1745 
1746 	/*
1747 	 * Local operations include fast register and local invalidate.
1748 	 * Fast register needs to be processed immediately because the
1749 	 * registered lkey may be used by following work requests and the
1750 	 * lkey needs to be valid at the time those requests are posted.
1751 	 * Local invalidate can be processed immediately if fencing is
1752 	 * not required and no previous local invalidate ops are pending.
1753 	 * Signaled local operations that have been processed immediately
1754 	 * need to have requests with "completion only" flags set posted
1755 	 * to the send queue in order to generate completions.
1756 	 */
1757 	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1758 		switch (wr->opcode) {
1759 		case IB_WR_REG_MR:
1760 			ret = rvt_fast_reg_mr(qp,
1761 					      reg_wr(wr)->mr,
1762 					      reg_wr(wr)->key,
1763 					      reg_wr(wr)->access);
1764 			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1765 				return ret;
1766 			break;
1767 		case IB_WR_LOCAL_INV:
1768 			if ((wr->send_flags & IB_SEND_FENCE) ||
1769 			    atomic_read(&qp->local_ops_pending)) {
1770 				local_ops_delayed = 1;
1771 			} else {
1772 				ret = rvt_invalidate_rkey(
1773 					qp, wr->ex.invalidate_rkey);
1774 				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1775 					return ret;
1776 			}
1777 			break;
1778 		default:
1779 			return -EINVAL;
1780 		}
1781 	}
1782 
1783 	reserved_op = rdi->post_parms[wr->opcode].flags &
1784 			RVT_OPERATION_USE_RESERVE;
1785 	/* check for avail */
1786 	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
1787 	if (ret)
1788 		return ret;
1789 	next = qp->s_head + 1;
1790 	if (next >= qp->s_size)
1791 		next = 0;
1792 
1793 	rkt = &rdi->lkey_table;
1794 	pd = ibpd_to_rvtpd(qp->ibqp.pd);
1795 	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
1796 
1797 	/* cplen has length from above */
1798 	memcpy(&wqe->wr, wr, cplen);
1799 
1800 	wqe->length = 0;
1801 	j = 0;
1802 	if (wr->num_sge) {
1803 		struct rvt_sge *last_sge = NULL;
1804 
1805 		acc = wr->opcode >= IB_WR_RDMA_READ ?
1806 			IB_ACCESS_LOCAL_WRITE : 0;
1807 		for (i = 0; i < wr->num_sge; i++) {
1808 			u32 length = wr->sg_list[i].length;
1809 
1810 			if (length == 0)
1811 				continue;
1812 			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
1813 					  &wr->sg_list[i], acc);
1814 			if (unlikely(ret < 0))
1815 				goto bail_inval_free;
1816 			wqe->length += length;
1817 			if (ret)
1818 				last_sge = &wqe->sg_list[j];
1819 			j += ret;
1820 		}
1821 		wqe->wr.num_sge = j;
1822 	}
1823 
1824 	/* general part of wqe valid - allow for driver checks */
1825 	if (rdi->driver_f.check_send_wqe) {
1826 		ret = rdi->driver_f.check_send_wqe(qp, wqe);
1827 		if (ret < 0)
1828 			goto bail_inval_free;
1829 		if (ret)
1830 			*call_send = ret;
1831 	}
1832 
1833 	log_pmtu = qp->log_pmtu;
1834 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1835 	    qp->ibqp.qp_type != IB_QPT_RC) {
1836 		struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
1837 
1838 		log_pmtu = ah->log_pmtu;
1839 		atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
1840 	}
1841 
1842 	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
1843 		if (local_ops_delayed)
1844 			atomic_inc(&qp->local_ops_pending);
1845 		else
1846 			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
1847 		wqe->ssn = 0;
1848 		wqe->psn = 0;
1849 		wqe->lpsn = 0;
1850 	} else {
1851 		wqe->ssn = qp->s_ssn++;
1852 		wqe->psn = qp->s_next_psn;
1853 		wqe->lpsn = wqe->psn +
1854 				(wqe->length ?
1855 					((wqe->length - 1) >> log_pmtu) :
1856 					0);
1857 		qp->s_next_psn = wqe->lpsn + 1;
1858 	}
1859 	if (unlikely(reserved_op)) {
1860 		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
1861 		rvt_qp_wqe_reserve(qp, wqe);
1862 	} else {
1863 		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
1864 		qp->s_avail--;
1865 	}
1866 	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
1867 	smp_wmb(); /* see request builders */
1868 	qp->s_head = next;
1869 
1870 	return 0;
1871 
1872 bail_inval_free:
1873 	/* release mr holds */
1874 	while (j) {
1875 		struct rvt_sge *sge = &wqe->sg_list[--j];
1876 
1877 		rvt_put_mr(sge->mr);
1878 	}
1879 	return ret;
1880 }
1881 
1882 /**
1883  * rvt_post_send - post a send on a QP
1884  * @ibqp: the QP to post the send on
1885  * @wr: the list of work requests to post
1886  * @bad_wr: the first bad WR is put here
1887  *
1888  * This may be called from interrupt context.
1889  *
1890  * Return: 0 on success else errno
1891  */
1892 int rvt_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
1893 		  struct ib_send_wr **bad_wr)
1894 {
1895 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1896 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1897 	unsigned long flags = 0;
1898 	int call_send;
1899 	unsigned nreq = 0;
1900 	int err = 0;
1901 
1902 	spin_lock_irqsave(&qp->s_hlock, flags);
1903 
1904 	/*
1905 	 * Ensure QP state is such that we can send. If not bail out early,
1906 	 * there is no need to do this every time we post a send.
1907 	 */
1908 	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
1909 		spin_unlock_irqrestore(&qp->s_hlock, flags);
1910 		return -EINVAL;
1911 	}
1912 
1913 	/*
1914 	 * If the send queue is empty, and we only have a single WR then just go
1915 	 * ahead and kick the send engine into gear. Otherwise we will always
1916 	 * just schedule the send to happen later.
1917 	 */
1918 	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
1919 
1920 	for (; wr; wr = wr->next) {
1921 		err = rvt_post_one_wr(qp, wr, &call_send);
1922 		if (unlikely(err)) {
1923 			*bad_wr = wr;
1924 			goto bail;
1925 		}
1926 		nreq++;
1927 	}
1928 bail:
1929 	spin_unlock_irqrestore(&qp->s_hlock, flags);
1930 	if (nreq) {
1931 		if (call_send)
1932 			rdi->driver_f.do_send(qp);
1933 		else
1934 			rdi->driver_f.schedule_send_no_lock(qp);
1935 	}
1936 	return err;
1937 }
1938 
1939 /**
1940  * rvt_post_srq_receive - post a receive on a shared receive queue
1941  * @ibsrq: the SRQ to post the receive on
1942  * @wr: the list of work requests to post
1943  * @bad_wr: A pointer to the first WR to cause a problem is put here
1944  *
1945  * This may be called from interrupt context.
1946  *
1947  * Return: 0 on success else errno
1948  */
1949 int rvt_post_srq_recv(struct ib_srq *ibsrq, struct ib_recv_wr *wr,
1950 		      struct ib_recv_wr **bad_wr)
1951 {
1952 	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
1953 	struct rvt_rwq *wq;
1954 	unsigned long flags;
1955 
1956 	for (; wr; wr = wr->next) {
1957 		struct rvt_rwqe *wqe;
1958 		u32 next;
1959 		int i;
1960 
1961 		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
1962 			*bad_wr = wr;
1963 			return -EINVAL;
1964 		}
1965 
1966 		spin_lock_irqsave(&srq->rq.lock, flags);
1967 		wq = srq->rq.wq;
1968 		next = wq->head + 1;
1969 		if (next >= srq->rq.size)
1970 			next = 0;
1971 		if (next == wq->tail) {
1972 			spin_unlock_irqrestore(&srq->rq.lock, flags);
1973 			*bad_wr = wr;
1974 			return -ENOMEM;
1975 		}
1976 
1977 		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
1978 		wqe->wr_id = wr->wr_id;
1979 		wqe->num_sge = wr->num_sge;
1980 		for (i = 0; i < wr->num_sge; i++)
1981 			wqe->sg_list[i] = wr->sg_list[i];
1982 		/* Make sure queue entry is written before the head index. */
1983 		smp_wmb();
1984 		wq->head = next;
1985 		spin_unlock_irqrestore(&srq->rq.lock, flags);
1986 	}
1987 	return 0;
1988 }
1989 
1990 /**
1991  * qp_comm_est - handle trap with QP established
1992  * @qp: the QP
1993  */
1994 void rvt_comm_est(struct rvt_qp *qp)
1995 {
1996 	qp->r_flags |= RVT_R_COMM_EST;
1997 	if (qp->ibqp.event_handler) {
1998 		struct ib_event ev;
1999 
2000 		ev.device = qp->ibqp.device;
2001 		ev.element.qp = &qp->ibqp;
2002 		ev.event = IB_EVENT_COMM_EST;
2003 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2004 	}
2005 }
2006 EXPORT_SYMBOL(rvt_comm_est);
2007 
2008 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2009 {
2010 	unsigned long flags;
2011 	int lastwqe;
2012 
2013 	spin_lock_irqsave(&qp->s_lock, flags);
2014 	lastwqe = rvt_error_qp(qp, err);
2015 	spin_unlock_irqrestore(&qp->s_lock, flags);
2016 
2017 	if (lastwqe) {
2018 		struct ib_event ev;
2019 
2020 		ev.device = qp->ibqp.device;
2021 		ev.element.qp = &qp->ibqp;
2022 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2023 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2024 	}
2025 }
2026 EXPORT_SYMBOL(rvt_rc_error);
2027 
2028 /*
2029  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2030  *  @index - the index
2031  *  return usec from an index into ib_rvt_rnr_table
2032  */
2033 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2034 {
2035 	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2036 }
2037 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2038 
2039 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2040 {
2041 	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2042 				  IB_AETH_CREDIT_MASK];
2043 }
2044 
2045 /*
2046  *  rvt_add_retry_timer - add/start a retry timer
2047  *  @qp - the QP
2048  *  add a retry timer on the QP
2049  */
2050 void rvt_add_retry_timer(struct rvt_qp *qp)
2051 {
2052 	struct ib_qp *ibqp = &qp->ibqp;
2053 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2054 
2055 	lockdep_assert_held(&qp->s_lock);
2056 	qp->s_flags |= RVT_S_TIMER;
2057        /* 4.096 usec. * (1 << qp->timeout) */
2058 	qp->s_timer.expires = jiffies + qp->timeout_jiffies +
2059 			     rdi->busy_jiffies;
2060 	add_timer(&qp->s_timer);
2061 }
2062 EXPORT_SYMBOL(rvt_add_retry_timer);
2063 
2064 /**
2065  * rvt_add_rnr_timer - add/start an rnr timer
2066  * @qp - the QP
2067  * @aeth - aeth of RNR timeout, simulated aeth for loopback
2068  * add an rnr timer on the QP
2069  */
2070 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2071 {
2072 	u32 to;
2073 
2074 	lockdep_assert_held(&qp->s_lock);
2075 	qp->s_flags |= RVT_S_WAIT_RNR;
2076 	to = rvt_aeth_to_usec(aeth);
2077 	trace_rvt_rnrnak_add(qp, to);
2078 	hrtimer_start(&qp->s_rnr_timer,
2079 		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL);
2080 }
2081 EXPORT_SYMBOL(rvt_add_rnr_timer);
2082 
2083 /**
2084  * rvt_stop_rc_timers - stop all timers
2085  * @qp - the QP
2086  * stop any pending timers
2087  */
2088 void rvt_stop_rc_timers(struct rvt_qp *qp)
2089 {
2090 	lockdep_assert_held(&qp->s_lock);
2091 	/* Remove QP from all timers */
2092 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2093 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2094 		del_timer(&qp->s_timer);
2095 		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2096 	}
2097 }
2098 EXPORT_SYMBOL(rvt_stop_rc_timers);
2099 
2100 /**
2101  * rvt_stop_rnr_timer - stop an rnr timer
2102  * @qp - the QP
2103  *
2104  * stop an rnr timer and return if the timer
2105  * had been pending.
2106  */
2107 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2108 {
2109 	lockdep_assert_held(&qp->s_lock);
2110 	/* Remove QP from rnr timer */
2111 	if (qp->s_flags & RVT_S_WAIT_RNR) {
2112 		qp->s_flags &= ~RVT_S_WAIT_RNR;
2113 		trace_rvt_rnrnak_stop(qp, 0);
2114 	}
2115 }
2116 
2117 /**
2118  * rvt_del_timers_sync - wait for any timeout routines to exit
2119  * @qp - the QP
2120  */
2121 void rvt_del_timers_sync(struct rvt_qp *qp)
2122 {
2123 	del_timer_sync(&qp->s_timer);
2124 	hrtimer_cancel(&qp->s_rnr_timer);
2125 }
2126 EXPORT_SYMBOL(rvt_del_timers_sync);
2127 
2128 /**
2129  * This is called from s_timer for missing responses.
2130  */
2131 static void rvt_rc_timeout(struct timer_list *t)
2132 {
2133 	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2134 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2135 	unsigned long flags;
2136 
2137 	spin_lock_irqsave(&qp->r_lock, flags);
2138 	spin_lock(&qp->s_lock);
2139 	if (qp->s_flags & RVT_S_TIMER) {
2140 		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2141 
2142 		qp->s_flags &= ~RVT_S_TIMER;
2143 		rvp->n_rc_timeouts++;
2144 		del_timer(&qp->s_timer);
2145 		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2146 		if (rdi->driver_f.notify_restart_rc)
2147 			rdi->driver_f.notify_restart_rc(qp,
2148 							qp->s_last_psn + 1,
2149 							1);
2150 		rdi->driver_f.schedule_send(qp);
2151 	}
2152 	spin_unlock(&qp->s_lock);
2153 	spin_unlock_irqrestore(&qp->r_lock, flags);
2154 }
2155 
2156 /*
2157  * This is called from s_timer for RNR timeouts.
2158  */
2159 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2160 {
2161 	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2162 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2163 	unsigned long flags;
2164 
2165 	spin_lock_irqsave(&qp->s_lock, flags);
2166 	rvt_stop_rnr_timer(qp);
2167 	trace_rvt_rnrnak_timeout(qp, 0);
2168 	rdi->driver_f.schedule_send(qp);
2169 	spin_unlock_irqrestore(&qp->s_lock, flags);
2170 	return HRTIMER_NORESTART;
2171 }
2172 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2173 
2174 /**
2175  * rvt_qp_iter_init - initial for QP iteration
2176  * @rdi: rvt devinfo
2177  * @v: u64 value
2178  *
2179  * This returns an iterator suitable for iterating QPs
2180  * in the system.
2181  *
2182  * The @cb is a user defined callback and @v is a 64
2183  * bit value passed to and relevant for processing in the
2184  * @cb.  An example use case would be to alter QP processing
2185  * based on criteria not part of the rvt_qp.
2186  *
2187  * Use cases that require memory allocation to succeed
2188  * must preallocate appropriately.
2189  *
2190  * Return: a pointer to an rvt_qp_iter or NULL
2191  */
2192 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2193 				     u64 v,
2194 				     void (*cb)(struct rvt_qp *qp, u64 v))
2195 {
2196 	struct rvt_qp_iter *i;
2197 
2198 	i = kzalloc(sizeof(*i), GFP_KERNEL);
2199 	if (!i)
2200 		return NULL;
2201 
2202 	i->rdi = rdi;
2203 	/* number of special QPs (SMI/GSI) for device */
2204 	i->specials = rdi->ibdev.phys_port_cnt * 2;
2205 	i->v = v;
2206 	i->cb = cb;
2207 
2208 	return i;
2209 }
2210 EXPORT_SYMBOL(rvt_qp_iter_init);
2211 
2212 /**
2213  * rvt_qp_iter_next - return the next QP in iter
2214  * @iter - the iterator
2215  *
2216  * Fine grained QP iterator suitable for use
2217  * with debugfs seq_file mechanisms.
2218  *
2219  * Updates iter->qp with the current QP when the return
2220  * value is 0.
2221  *
2222  * Return: 0 - iter->qp is valid 1 - no more QPs
2223  */
2224 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2225 	__must_hold(RCU)
2226 {
2227 	int n = iter->n;
2228 	int ret = 1;
2229 	struct rvt_qp *pqp = iter->qp;
2230 	struct rvt_qp *qp;
2231 	struct rvt_dev_info *rdi = iter->rdi;
2232 
2233 	/*
2234 	 * The approach is to consider the special qps
2235 	 * as additional table entries before the
2236 	 * real hash table.  Since the qp code sets
2237 	 * the qp->next hash link to NULL, this works just fine.
2238 	 *
2239 	 * iter->specials is 2 * # ports
2240 	 *
2241 	 * n = 0..iter->specials is the special qp indices
2242 	 *
2243 	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2244 	 * the potential hash bucket entries
2245 	 *
2246 	 */
2247 	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2248 		if (pqp) {
2249 			qp = rcu_dereference(pqp->next);
2250 		} else {
2251 			if (n < iter->specials) {
2252 				struct rvt_ibport *rvp;
2253 				int pidx;
2254 
2255 				pidx = n % rdi->ibdev.phys_port_cnt;
2256 				rvp = rdi->ports[pidx];
2257 				qp = rcu_dereference(rvp->qp[n & 1]);
2258 			} else {
2259 				qp = rcu_dereference(
2260 					rdi->qp_dev->qp_table[
2261 						(n - iter->specials)]);
2262 			}
2263 		}
2264 		pqp = qp;
2265 		if (qp) {
2266 			iter->qp = qp;
2267 			iter->n = n;
2268 			return 0;
2269 		}
2270 	}
2271 	return ret;
2272 }
2273 EXPORT_SYMBOL(rvt_qp_iter_next);
2274 
2275 /**
2276  * rvt_qp_iter - iterate all QPs
2277  * @rdi - rvt devinfo
2278  * @v - a 64 bit value
2279  * @cb - a callback
2280  *
2281  * This provides a way for iterating all QPs.
2282  *
2283  * The @cb is a user defined callback and @v is a 64
2284  * bit value passed to and relevant for processing in the
2285  * cb.  An example use case would be to alter QP processing
2286  * based on criteria not part of the rvt_qp.
2287  *
2288  * The code has an internal iterator to simplify
2289  * non seq_file use cases.
2290  */
2291 void rvt_qp_iter(struct rvt_dev_info *rdi,
2292 		 u64 v,
2293 		 void (*cb)(struct rvt_qp *qp, u64 v))
2294 {
2295 	int ret;
2296 	struct rvt_qp_iter i = {
2297 		.rdi = rdi,
2298 		.specials = rdi->ibdev.phys_port_cnt * 2,
2299 		.v = v,
2300 		.cb = cb
2301 	};
2302 
2303 	rcu_read_lock();
2304 	do {
2305 		ret = rvt_qp_iter_next(&i);
2306 		if (!ret) {
2307 			rvt_get_qp(i.qp);
2308 			rcu_read_unlock();
2309 			i.cb(i.qp, i.v);
2310 			rcu_read_lock();
2311 			rvt_put_qp(i.qp);
2312 		}
2313 	} while (!ret);
2314 	rcu_read_unlock();
2315 }
2316 EXPORT_SYMBOL(rvt_qp_iter);
2317