xref: /openbmc/linux/drivers/infiniband/sw/rdmavt/qp.c (revision d31131bb)
1 /*
2  * Copyright(c) 2016, 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include "qp.h"
57 #include "vt.h"
58 #include "trace.h"
59 
60 static void rvt_rc_timeout(struct timer_list *t);
61 
62 /*
63  * Convert the AETH RNR timeout code into the number of microseconds.
64  */
65 static const u32 ib_rvt_rnr_table[32] = {
66 	655360, /* 00: 655.36 */
67 	10,     /* 01:    .01 */
68 	20,     /* 02     .02 */
69 	30,     /* 03:    .03 */
70 	40,     /* 04:    .04 */
71 	60,     /* 05:    .06 */
72 	80,     /* 06:    .08 */
73 	120,    /* 07:    .12 */
74 	160,    /* 08:    .16 */
75 	240,    /* 09:    .24 */
76 	320,    /* 0A:    .32 */
77 	480,    /* 0B:    .48 */
78 	640,    /* 0C:    .64 */
79 	960,    /* 0D:    .96 */
80 	1280,   /* 0E:   1.28 */
81 	1920,   /* 0F:   1.92 */
82 	2560,   /* 10:   2.56 */
83 	3840,   /* 11:   3.84 */
84 	5120,   /* 12:   5.12 */
85 	7680,   /* 13:   7.68 */
86 	10240,  /* 14:  10.24 */
87 	15360,  /* 15:  15.36 */
88 	20480,  /* 16:  20.48 */
89 	30720,  /* 17:  30.72 */
90 	40960,  /* 18:  40.96 */
91 	61440,  /* 19:  61.44 */
92 	81920,  /* 1A:  81.92 */
93 	122880, /* 1B: 122.88 */
94 	163840, /* 1C: 163.84 */
95 	245760, /* 1D: 245.76 */
96 	327680, /* 1E: 327.68 */
97 	491520  /* 1F: 491.52 */
98 };
99 
100 /*
101  * Note that it is OK to post send work requests in the SQE and ERR
102  * states; rvt_do_send() will process them and generate error
103  * completions as per IB 1.2 C10-96.
104  */
105 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
106 	[IB_QPS_RESET] = 0,
107 	[IB_QPS_INIT] = RVT_POST_RECV_OK,
108 	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
109 	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
110 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
111 	    RVT_PROCESS_NEXT_SEND_OK,
112 	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
113 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
114 	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
116 	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
117 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
118 };
119 EXPORT_SYMBOL(ib_rvt_state_ops);
120 
121 static void get_map_page(struct rvt_qpn_table *qpt,
122 			 struct rvt_qpn_map *map)
123 {
124 	unsigned long page = get_zeroed_page(GFP_KERNEL);
125 
126 	/*
127 	 * Free the page if someone raced with us installing it.
128 	 */
129 
130 	spin_lock(&qpt->lock);
131 	if (map->page)
132 		free_page(page);
133 	else
134 		map->page = (void *)page;
135 	spin_unlock(&qpt->lock);
136 }
137 
138 /**
139  * init_qpn_table - initialize the QP number table for a device
140  * @qpt: the QPN table
141  */
142 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
143 {
144 	u32 offset, i;
145 	struct rvt_qpn_map *map;
146 	int ret = 0;
147 
148 	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
149 		return -EINVAL;
150 
151 	spin_lock_init(&qpt->lock);
152 
153 	qpt->last = rdi->dparms.qpn_start;
154 	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
155 
156 	/*
157 	 * Drivers may want some QPs beyond what we need for verbs let them use
158 	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
159 	 * for those. The reserved range must be *after* the range which verbs
160 	 * will pick from.
161 	 */
162 
163 	/* Figure out number of bit maps needed before reserved range */
164 	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
165 
166 	/* This should always be zero */
167 	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
168 
169 	/* Starting with the first reserved bit map */
170 	map = &qpt->map[qpt->nmaps];
171 
172 	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
173 		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
174 	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
175 		if (!map->page) {
176 			get_map_page(qpt, map);
177 			if (!map->page) {
178 				ret = -ENOMEM;
179 				break;
180 			}
181 		}
182 		set_bit(offset, map->page);
183 		offset++;
184 		if (offset == RVT_BITS_PER_PAGE) {
185 			/* next page */
186 			qpt->nmaps++;
187 			map++;
188 			offset = 0;
189 		}
190 	}
191 	return ret;
192 }
193 
194 /**
195  * free_qpn_table - free the QP number table for a device
196  * @qpt: the QPN table
197  */
198 static void free_qpn_table(struct rvt_qpn_table *qpt)
199 {
200 	int i;
201 
202 	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
203 		free_page((unsigned long)qpt->map[i].page);
204 }
205 
206 /**
207  * rvt_driver_qp_init - Init driver qp resources
208  * @rdi: rvt dev strucutre
209  *
210  * Return: 0 on success
211  */
212 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
213 {
214 	int i;
215 	int ret = -ENOMEM;
216 
217 	if (!rdi->dparms.qp_table_size)
218 		return -EINVAL;
219 
220 	/*
221 	 * If driver is not doing any QP allocation then make sure it is
222 	 * providing the necessary QP functions.
223 	 */
224 	if (!rdi->driver_f.free_all_qps ||
225 	    !rdi->driver_f.qp_priv_alloc ||
226 	    !rdi->driver_f.qp_priv_free ||
227 	    !rdi->driver_f.notify_qp_reset ||
228 	    !rdi->driver_f.notify_restart_rc)
229 		return -EINVAL;
230 
231 	/* allocate parent object */
232 	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
233 				   rdi->dparms.node);
234 	if (!rdi->qp_dev)
235 		return -ENOMEM;
236 
237 	/* allocate hash table */
238 	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
239 	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
240 	rdi->qp_dev->qp_table =
241 		kmalloc_array_node(rdi->qp_dev->qp_table_size,
242 			     sizeof(*rdi->qp_dev->qp_table),
243 			     GFP_KERNEL, rdi->dparms.node);
244 	if (!rdi->qp_dev->qp_table)
245 		goto no_qp_table;
246 
247 	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
248 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
249 
250 	spin_lock_init(&rdi->qp_dev->qpt_lock);
251 
252 	/* initialize qpn map */
253 	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
254 		goto fail_table;
255 
256 	spin_lock_init(&rdi->n_qps_lock);
257 
258 	return 0;
259 
260 fail_table:
261 	kfree(rdi->qp_dev->qp_table);
262 	free_qpn_table(&rdi->qp_dev->qpn_table);
263 
264 no_qp_table:
265 	kfree(rdi->qp_dev);
266 
267 	return ret;
268 }
269 
270 /**
271  * free_all_qps - check for QPs still in use
272  * @rdi: rvt device info structure
273  *
274  * There should not be any QPs still in use.
275  * Free memory for table.
276  */
277 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
278 {
279 	unsigned long flags;
280 	struct rvt_qp *qp;
281 	unsigned n, qp_inuse = 0;
282 	spinlock_t *ql; /* work around too long line below */
283 
284 	if (rdi->driver_f.free_all_qps)
285 		qp_inuse = rdi->driver_f.free_all_qps(rdi);
286 
287 	qp_inuse += rvt_mcast_tree_empty(rdi);
288 
289 	if (!rdi->qp_dev)
290 		return qp_inuse;
291 
292 	ql = &rdi->qp_dev->qpt_lock;
293 	spin_lock_irqsave(ql, flags);
294 	for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
295 		qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
296 					       lockdep_is_held(ql));
297 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
298 
299 		for (; qp; qp = rcu_dereference_protected(qp->next,
300 							  lockdep_is_held(ql)))
301 			qp_inuse++;
302 	}
303 	spin_unlock_irqrestore(ql, flags);
304 	synchronize_rcu();
305 	return qp_inuse;
306 }
307 
308 /**
309  * rvt_qp_exit - clean up qps on device exit
310  * @rdi: rvt dev structure
311  *
312  * Check for qp leaks and free resources.
313  */
314 void rvt_qp_exit(struct rvt_dev_info *rdi)
315 {
316 	u32 qps_inuse = rvt_free_all_qps(rdi);
317 
318 	if (qps_inuse)
319 		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
320 			   qps_inuse);
321 	if (!rdi->qp_dev)
322 		return;
323 
324 	kfree(rdi->qp_dev->qp_table);
325 	free_qpn_table(&rdi->qp_dev->qpn_table);
326 	kfree(rdi->qp_dev);
327 }
328 
329 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
330 			      struct rvt_qpn_map *map, unsigned off)
331 {
332 	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
333 }
334 
335 /**
336  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
337  *	       IB_QPT_SMI/IB_QPT_GSI
338  * @rdi: rvt device info structure
339  * @qpt: queue pair number table pointer
340  * @port_num: IB port number, 1 based, comes from core
341  *
342  * Return: The queue pair number
343  */
344 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
345 		     enum ib_qp_type type, u8 port_num)
346 {
347 	u32 i, offset, max_scan, qpn;
348 	struct rvt_qpn_map *map;
349 	u32 ret;
350 
351 	if (rdi->driver_f.alloc_qpn)
352 		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
353 
354 	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
355 		unsigned n;
356 
357 		ret = type == IB_QPT_GSI;
358 		n = 1 << (ret + 2 * (port_num - 1));
359 		spin_lock(&qpt->lock);
360 		if (qpt->flags & n)
361 			ret = -EINVAL;
362 		else
363 			qpt->flags |= n;
364 		spin_unlock(&qpt->lock);
365 		goto bail;
366 	}
367 
368 	qpn = qpt->last + qpt->incr;
369 	if (qpn >= RVT_QPN_MAX)
370 		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
371 	/* offset carries bit 0 */
372 	offset = qpn & RVT_BITS_PER_PAGE_MASK;
373 	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
374 	max_scan = qpt->nmaps - !offset;
375 	for (i = 0;;) {
376 		if (unlikely(!map->page)) {
377 			get_map_page(qpt, map);
378 			if (unlikely(!map->page))
379 				break;
380 		}
381 		do {
382 			if (!test_and_set_bit(offset, map->page)) {
383 				qpt->last = qpn;
384 				ret = qpn;
385 				goto bail;
386 			}
387 			offset += qpt->incr;
388 			/*
389 			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
390 			 * That is OK.   It gets re-assigned below
391 			 */
392 			qpn = mk_qpn(qpt, map, offset);
393 		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
394 		/*
395 		 * In order to keep the number of pages allocated to a
396 		 * minimum, we scan the all existing pages before increasing
397 		 * the size of the bitmap table.
398 		 */
399 		if (++i > max_scan) {
400 			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
401 				break;
402 			map = &qpt->map[qpt->nmaps++];
403 			/* start at incr with current bit 0 */
404 			offset = qpt->incr | (offset & 1);
405 		} else if (map < &qpt->map[qpt->nmaps]) {
406 			++map;
407 			/* start at incr with current bit 0 */
408 			offset = qpt->incr | (offset & 1);
409 		} else {
410 			map = &qpt->map[0];
411 			/* wrap to first map page, invert bit 0 */
412 			offset = qpt->incr | ((offset & 1) ^ 1);
413 		}
414 		/* there can be no set bits in low-order QoS bits */
415 		WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
416 		qpn = mk_qpn(qpt, map, offset);
417 	}
418 
419 	ret = -ENOMEM;
420 
421 bail:
422 	return ret;
423 }
424 
425 /**
426  * rvt_clear_mr_refs - Drop help mr refs
427  * @qp: rvt qp data structure
428  * @clr_sends: If shoudl clear send side or not
429  */
430 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
431 {
432 	unsigned n;
433 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
434 
435 	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
436 		rvt_put_ss(&qp->s_rdma_read_sge);
437 
438 	rvt_put_ss(&qp->r_sge);
439 
440 	if (clr_sends) {
441 		while (qp->s_last != qp->s_head) {
442 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
443 
444 			rvt_put_swqe(wqe);
445 
446 			if (qp->ibqp.qp_type == IB_QPT_UD ||
447 			    qp->ibqp.qp_type == IB_QPT_SMI ||
448 			    qp->ibqp.qp_type == IB_QPT_GSI)
449 				atomic_dec(&ibah_to_rvtah(
450 						wqe->ud_wr.ah)->refcount);
451 			if (++qp->s_last >= qp->s_size)
452 				qp->s_last = 0;
453 			smp_wmb(); /* see qp_set_savail */
454 		}
455 		if (qp->s_rdma_mr) {
456 			rvt_put_mr(qp->s_rdma_mr);
457 			qp->s_rdma_mr = NULL;
458 		}
459 	}
460 
461 	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
462 		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
463 
464 		if (e->rdma_sge.mr) {
465 			rvt_put_mr(e->rdma_sge.mr);
466 			e->rdma_sge.mr = NULL;
467 		}
468 	}
469 }
470 
471 /**
472  * rvt_swqe_has_lkey - return true if lkey is used by swqe
473  * @wqe - the send wqe
474  * @lkey - the lkey
475  *
476  * Test the swqe for using lkey
477  */
478 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
479 {
480 	int i;
481 
482 	for (i = 0; i < wqe->wr.num_sge; i++) {
483 		struct rvt_sge *sge = &wqe->sg_list[i];
484 
485 		if (rvt_mr_has_lkey(sge->mr, lkey))
486 			return true;
487 	}
488 	return false;
489 }
490 
491 /**
492  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
493  * @qp - the rvt_qp
494  * @lkey - the lkey
495  */
496 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
497 {
498 	u32 s_last = qp->s_last;
499 
500 	while (s_last != qp->s_head) {
501 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
502 
503 		if (rvt_swqe_has_lkey(wqe, lkey))
504 			return true;
505 
506 		if (++s_last >= qp->s_size)
507 			s_last = 0;
508 	}
509 	if (qp->s_rdma_mr)
510 		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
511 			return true;
512 	return false;
513 }
514 
515 /**
516  * rvt_qp_acks_has_lkey - return true if acks have lkey
517  * @qp - the qp
518  * @lkey - the lkey
519  */
520 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
521 {
522 	int i;
523 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
524 
525 	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
526 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
527 
528 		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
529 			return true;
530 	}
531 	return false;
532 }
533 
534 /*
535  * rvt_qp_mr_clean - clean up remote ops for lkey
536  * @qp - the qp
537  * @lkey - the lkey that is being de-registered
538  *
539  * This routine checks if the lkey is being used by
540  * the qp.
541  *
542  * If so, the qp is put into an error state to elminate
543  * any references from the qp.
544  */
545 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
546 {
547 	bool lastwqe = false;
548 
549 	if (qp->ibqp.qp_type == IB_QPT_SMI ||
550 	    qp->ibqp.qp_type == IB_QPT_GSI)
551 		/* avoid special QPs */
552 		return;
553 	spin_lock_irq(&qp->r_lock);
554 	spin_lock(&qp->s_hlock);
555 	spin_lock(&qp->s_lock);
556 
557 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
558 		goto check_lwqe;
559 
560 	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
561 	    rvt_qp_sends_has_lkey(qp, lkey) ||
562 	    rvt_qp_acks_has_lkey(qp, lkey))
563 		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
564 check_lwqe:
565 	spin_unlock(&qp->s_lock);
566 	spin_unlock(&qp->s_hlock);
567 	spin_unlock_irq(&qp->r_lock);
568 	if (lastwqe) {
569 		struct ib_event ev;
570 
571 		ev.device = qp->ibqp.device;
572 		ev.element.qp = &qp->ibqp;
573 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
574 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
575 	}
576 }
577 
578 /**
579  * rvt_remove_qp - remove qp form table
580  * @rdi: rvt dev struct
581  * @qp: qp to remove
582  *
583  * Remove the QP from the table so it can't be found asynchronously by
584  * the receive routine.
585  */
586 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
587 {
588 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
589 	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
590 	unsigned long flags;
591 	int removed = 1;
592 
593 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
594 
595 	if (rcu_dereference_protected(rvp->qp[0],
596 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
597 		RCU_INIT_POINTER(rvp->qp[0], NULL);
598 	} else if (rcu_dereference_protected(rvp->qp[1],
599 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
600 		RCU_INIT_POINTER(rvp->qp[1], NULL);
601 	} else {
602 		struct rvt_qp *q;
603 		struct rvt_qp __rcu **qpp;
604 
605 		removed = 0;
606 		qpp = &rdi->qp_dev->qp_table[n];
607 		for (; (q = rcu_dereference_protected(*qpp,
608 			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
609 			qpp = &q->next) {
610 			if (q == qp) {
611 				RCU_INIT_POINTER(*qpp,
612 				     rcu_dereference_protected(qp->next,
613 				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
614 				removed = 1;
615 				trace_rvt_qpremove(qp, n);
616 				break;
617 			}
618 		}
619 	}
620 
621 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
622 	if (removed) {
623 		synchronize_rcu();
624 		rvt_put_qp(qp);
625 	}
626 }
627 
628 /**
629  * rvt_init_qp - initialize the QP state to the reset state
630  * @qp: the QP to init or reinit
631  * @type: the QP type
632  *
633  * This function is called from both rvt_create_qp() and
634  * rvt_reset_qp().   The difference is that the reset
635  * patch the necessary locks to protect against concurent
636  * access.
637  */
638 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
639 			enum ib_qp_type type)
640 {
641 	qp->remote_qpn = 0;
642 	qp->qkey = 0;
643 	qp->qp_access_flags = 0;
644 	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
645 	qp->s_hdrwords = 0;
646 	qp->s_wqe = NULL;
647 	qp->s_draining = 0;
648 	qp->s_next_psn = 0;
649 	qp->s_last_psn = 0;
650 	qp->s_sending_psn = 0;
651 	qp->s_sending_hpsn = 0;
652 	qp->s_psn = 0;
653 	qp->r_psn = 0;
654 	qp->r_msn = 0;
655 	if (type == IB_QPT_RC) {
656 		qp->s_state = IB_OPCODE_RC_SEND_LAST;
657 		qp->r_state = IB_OPCODE_RC_SEND_LAST;
658 	} else {
659 		qp->s_state = IB_OPCODE_UC_SEND_LAST;
660 		qp->r_state = IB_OPCODE_UC_SEND_LAST;
661 	}
662 	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
663 	qp->r_nak_state = 0;
664 	qp->r_aflags = 0;
665 	qp->r_flags = 0;
666 	qp->s_head = 0;
667 	qp->s_tail = 0;
668 	qp->s_cur = 0;
669 	qp->s_acked = 0;
670 	qp->s_last = 0;
671 	qp->s_ssn = 1;
672 	qp->s_lsn = 0;
673 	qp->s_mig_state = IB_MIG_MIGRATED;
674 	qp->r_head_ack_queue = 0;
675 	qp->s_tail_ack_queue = 0;
676 	qp->s_num_rd_atomic = 0;
677 	if (qp->r_rq.wq) {
678 		qp->r_rq.wq->head = 0;
679 		qp->r_rq.wq->tail = 0;
680 	}
681 	qp->r_sge.num_sge = 0;
682 	atomic_set(&qp->s_reserved_used, 0);
683 }
684 
685 /**
686  * rvt_reset_qp - initialize the QP state to the reset state
687  * @qp: the QP to reset
688  * @type: the QP type
689  *
690  * r_lock, s_hlock, and s_lock are required to be held by the caller
691  */
692 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
693 			 enum ib_qp_type type)
694 	__must_hold(&qp->s_lock)
695 	__must_hold(&qp->s_hlock)
696 	__must_hold(&qp->r_lock)
697 {
698 	lockdep_assert_held(&qp->r_lock);
699 	lockdep_assert_held(&qp->s_hlock);
700 	lockdep_assert_held(&qp->s_lock);
701 	if (qp->state != IB_QPS_RESET) {
702 		qp->state = IB_QPS_RESET;
703 
704 		/* Let drivers flush their waitlist */
705 		rdi->driver_f.flush_qp_waiters(qp);
706 		rvt_stop_rc_timers(qp);
707 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
708 		spin_unlock(&qp->s_lock);
709 		spin_unlock(&qp->s_hlock);
710 		spin_unlock_irq(&qp->r_lock);
711 
712 		/* Stop the send queue and the retry timer */
713 		rdi->driver_f.stop_send_queue(qp);
714 		rvt_del_timers_sync(qp);
715 		/* Wait for things to stop */
716 		rdi->driver_f.quiesce_qp(qp);
717 
718 		/* take qp out the hash and wait for it to be unused */
719 		rvt_remove_qp(rdi, qp);
720 
721 		/* grab the lock b/c it was locked at call time */
722 		spin_lock_irq(&qp->r_lock);
723 		spin_lock(&qp->s_hlock);
724 		spin_lock(&qp->s_lock);
725 
726 		rvt_clear_mr_refs(qp, 1);
727 		/*
728 		 * Let the driver do any tear down or re-init it needs to for
729 		 * a qp that has been reset
730 		 */
731 		rdi->driver_f.notify_qp_reset(qp);
732 	}
733 	rvt_init_qp(rdi, qp, type);
734 	lockdep_assert_held(&qp->r_lock);
735 	lockdep_assert_held(&qp->s_hlock);
736 	lockdep_assert_held(&qp->s_lock);
737 }
738 
739 /** rvt_free_qpn - Free a qpn from the bit map
740  * @qpt: QP table
741  * @qpn: queue pair number to free
742  */
743 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
744 {
745 	struct rvt_qpn_map *map;
746 
747 	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
748 	if (map->page)
749 		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
750 }
751 
752 /**
753  * rvt_create_qp - create a queue pair for a device
754  * @ibpd: the protection domain who's device we create the queue pair for
755  * @init_attr: the attributes of the queue pair
756  * @udata: user data for libibverbs.so
757  *
758  * Queue pair creation is mostly an rvt issue. However, drivers have their own
759  * unique idea of what queue pair numbers mean. For instance there is a reserved
760  * range for PSM.
761  *
762  * Return: the queue pair on success, otherwise returns an errno.
763  *
764  * Called by the ib_create_qp() core verbs function.
765  */
766 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
767 			    struct ib_qp_init_attr *init_attr,
768 			    struct ib_udata *udata)
769 {
770 	struct rvt_qp *qp;
771 	int err;
772 	struct rvt_swqe *swq = NULL;
773 	size_t sz;
774 	size_t sg_list_sz;
775 	struct ib_qp *ret = ERR_PTR(-ENOMEM);
776 	struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
777 	void *priv = NULL;
778 	size_t sqsize;
779 
780 	if (!rdi)
781 		return ERR_PTR(-EINVAL);
782 
783 	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
784 	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
785 	    init_attr->create_flags)
786 		return ERR_PTR(-EINVAL);
787 
788 	/* Check receive queue parameters if no SRQ is specified. */
789 	if (!init_attr->srq) {
790 		if (init_attr->cap.max_recv_sge >
791 		    rdi->dparms.props.max_recv_sge ||
792 		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
793 			return ERR_PTR(-EINVAL);
794 
795 		if (init_attr->cap.max_send_sge +
796 		    init_attr->cap.max_send_wr +
797 		    init_attr->cap.max_recv_sge +
798 		    init_attr->cap.max_recv_wr == 0)
799 			return ERR_PTR(-EINVAL);
800 	}
801 	sqsize =
802 		init_attr->cap.max_send_wr + 1 +
803 		rdi->dparms.reserved_operations;
804 	switch (init_attr->qp_type) {
805 	case IB_QPT_SMI:
806 	case IB_QPT_GSI:
807 		if (init_attr->port_num == 0 ||
808 		    init_attr->port_num > ibpd->device->phys_port_cnt)
809 			return ERR_PTR(-EINVAL);
810 		/* fall through */
811 	case IB_QPT_UC:
812 	case IB_QPT_RC:
813 	case IB_QPT_UD:
814 		sz = sizeof(struct rvt_sge) *
815 			init_attr->cap.max_send_sge +
816 			sizeof(struct rvt_swqe);
817 		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
818 		if (!swq)
819 			return ERR_PTR(-ENOMEM);
820 
821 		sz = sizeof(*qp);
822 		sg_list_sz = 0;
823 		if (init_attr->srq) {
824 			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
825 
826 			if (srq->rq.max_sge > 1)
827 				sg_list_sz = sizeof(*qp->r_sg_list) *
828 					(srq->rq.max_sge - 1);
829 		} else if (init_attr->cap.max_recv_sge > 1)
830 			sg_list_sz = sizeof(*qp->r_sg_list) *
831 				(init_attr->cap.max_recv_sge - 1);
832 		qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
833 				  rdi->dparms.node);
834 		if (!qp)
835 			goto bail_swq;
836 
837 		RCU_INIT_POINTER(qp->next, NULL);
838 		if (init_attr->qp_type == IB_QPT_RC) {
839 			qp->s_ack_queue =
840 				kcalloc_node(rvt_max_atomic(rdi),
841 					     sizeof(*qp->s_ack_queue),
842 					     GFP_KERNEL,
843 					     rdi->dparms.node);
844 			if (!qp->s_ack_queue)
845 				goto bail_qp;
846 		}
847 		/* initialize timers needed for rc qp */
848 		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
849 		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
850 			     HRTIMER_MODE_REL);
851 		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
852 
853 		/*
854 		 * Driver needs to set up it's private QP structure and do any
855 		 * initialization that is needed.
856 		 */
857 		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
858 		if (IS_ERR(priv)) {
859 			ret = priv;
860 			goto bail_qp;
861 		}
862 		qp->priv = priv;
863 		qp->timeout_jiffies =
864 			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
865 				1000UL);
866 		if (init_attr->srq) {
867 			sz = 0;
868 		} else {
869 			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
870 			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
871 			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
872 				sizeof(struct rvt_rwqe);
873 			if (udata)
874 				qp->r_rq.wq = vmalloc_user(
875 						sizeof(struct rvt_rwq) +
876 						qp->r_rq.size * sz);
877 			else
878 				qp->r_rq.wq = vzalloc_node(
879 						sizeof(struct rvt_rwq) +
880 						qp->r_rq.size * sz,
881 						rdi->dparms.node);
882 			if (!qp->r_rq.wq)
883 				goto bail_driver_priv;
884 		}
885 
886 		/*
887 		 * ib_create_qp() will initialize qp->ibqp
888 		 * except for qp->ibqp.qp_num.
889 		 */
890 		spin_lock_init(&qp->r_lock);
891 		spin_lock_init(&qp->s_hlock);
892 		spin_lock_init(&qp->s_lock);
893 		spin_lock_init(&qp->r_rq.lock);
894 		atomic_set(&qp->refcount, 0);
895 		atomic_set(&qp->local_ops_pending, 0);
896 		init_waitqueue_head(&qp->wait);
897 		INIT_LIST_HEAD(&qp->rspwait);
898 		qp->state = IB_QPS_RESET;
899 		qp->s_wq = swq;
900 		qp->s_size = sqsize;
901 		qp->s_avail = init_attr->cap.max_send_wr;
902 		qp->s_max_sge = init_attr->cap.max_send_sge;
903 		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
904 			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
905 
906 		err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
907 				init_attr->qp_type,
908 				init_attr->port_num);
909 		if (err < 0) {
910 			ret = ERR_PTR(err);
911 			goto bail_rq_wq;
912 		}
913 		qp->ibqp.qp_num = err;
914 		qp->port_num = init_attr->port_num;
915 		rvt_init_qp(rdi, qp, init_attr->qp_type);
916 		break;
917 
918 	default:
919 		/* Don't support raw QPs */
920 		return ERR_PTR(-EINVAL);
921 	}
922 
923 	init_attr->cap.max_inline_data = 0;
924 
925 	/*
926 	 * Return the address of the RWQ as the offset to mmap.
927 	 * See rvt_mmap() for details.
928 	 */
929 	if (udata && udata->outlen >= sizeof(__u64)) {
930 		if (!qp->r_rq.wq) {
931 			__u64 offset = 0;
932 
933 			err = ib_copy_to_udata(udata, &offset,
934 					       sizeof(offset));
935 			if (err) {
936 				ret = ERR_PTR(err);
937 				goto bail_qpn;
938 			}
939 		} else {
940 			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
941 
942 			qp->ip = rvt_create_mmap_info(rdi, s,
943 						      ibpd->uobject->context,
944 						      qp->r_rq.wq);
945 			if (!qp->ip) {
946 				ret = ERR_PTR(-ENOMEM);
947 				goto bail_qpn;
948 			}
949 
950 			err = ib_copy_to_udata(udata, &qp->ip->offset,
951 					       sizeof(qp->ip->offset));
952 			if (err) {
953 				ret = ERR_PTR(err);
954 				goto bail_ip;
955 			}
956 		}
957 		qp->pid = current->pid;
958 	}
959 
960 	spin_lock(&rdi->n_qps_lock);
961 	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
962 		spin_unlock(&rdi->n_qps_lock);
963 		ret = ERR_PTR(-ENOMEM);
964 		goto bail_ip;
965 	}
966 
967 	rdi->n_qps_allocated++;
968 	/*
969 	 * Maintain a busy_jiffies variable that will be added to the timeout
970 	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
971 	 * is scaled by the number of rc qps created for the device to reduce
972 	 * the number of timeouts occurring when there is a large number of
973 	 * qps. busy_jiffies is incremented every rc qp scaling interval.
974 	 * The scaling interval is selected based on extensive performance
975 	 * evaluation of targeted workloads.
976 	 */
977 	if (init_attr->qp_type == IB_QPT_RC) {
978 		rdi->n_rc_qps++;
979 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
980 	}
981 	spin_unlock(&rdi->n_qps_lock);
982 
983 	if (qp->ip) {
984 		spin_lock_irq(&rdi->pending_lock);
985 		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
986 		spin_unlock_irq(&rdi->pending_lock);
987 	}
988 
989 	ret = &qp->ibqp;
990 
991 	/*
992 	 * We have our QP and its good, now keep track of what types of opcodes
993 	 * can be processed on this QP. We do this by keeping track of what the
994 	 * 3 high order bits of the opcode are.
995 	 */
996 	switch (init_attr->qp_type) {
997 	case IB_QPT_SMI:
998 	case IB_QPT_GSI:
999 	case IB_QPT_UD:
1000 		qp->allowed_ops = IB_OPCODE_UD;
1001 		break;
1002 	case IB_QPT_RC:
1003 		qp->allowed_ops = IB_OPCODE_RC;
1004 		break;
1005 	case IB_QPT_UC:
1006 		qp->allowed_ops = IB_OPCODE_UC;
1007 		break;
1008 	default:
1009 		ret = ERR_PTR(-EINVAL);
1010 		goto bail_ip;
1011 	}
1012 
1013 	return ret;
1014 
1015 bail_ip:
1016 	if (qp->ip)
1017 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1018 
1019 bail_qpn:
1020 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1021 
1022 bail_rq_wq:
1023 	if (!qp->ip)
1024 		vfree(qp->r_rq.wq);
1025 
1026 bail_driver_priv:
1027 	rdi->driver_f.qp_priv_free(rdi, qp);
1028 
1029 bail_qp:
1030 	kfree(qp->s_ack_queue);
1031 	kfree(qp);
1032 
1033 bail_swq:
1034 	vfree(swq);
1035 
1036 	return ret;
1037 }
1038 
1039 /**
1040  * rvt_error_qp - put a QP into the error state
1041  * @qp: the QP to put into the error state
1042  * @err: the receive completion error to signal if a RWQE is active
1043  *
1044  * Flushes both send and receive work queues.
1045  *
1046  * Return: true if last WQE event should be generated.
1047  * The QP r_lock and s_lock should be held and interrupts disabled.
1048  * If we are already in error state, just return.
1049  */
1050 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1051 {
1052 	struct ib_wc wc;
1053 	int ret = 0;
1054 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1055 
1056 	lockdep_assert_held(&qp->r_lock);
1057 	lockdep_assert_held(&qp->s_lock);
1058 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1059 		goto bail;
1060 
1061 	qp->state = IB_QPS_ERR;
1062 
1063 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1064 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1065 		del_timer(&qp->s_timer);
1066 	}
1067 
1068 	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1069 		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1070 
1071 	rdi->driver_f.notify_error_qp(qp);
1072 
1073 	/* Schedule the sending tasklet to drain the send work queue. */
1074 	if (READ_ONCE(qp->s_last) != qp->s_head)
1075 		rdi->driver_f.schedule_send(qp);
1076 
1077 	rvt_clear_mr_refs(qp, 0);
1078 
1079 	memset(&wc, 0, sizeof(wc));
1080 	wc.qp = &qp->ibqp;
1081 	wc.opcode = IB_WC_RECV;
1082 
1083 	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1084 		wc.wr_id = qp->r_wr_id;
1085 		wc.status = err;
1086 		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1087 	}
1088 	wc.status = IB_WC_WR_FLUSH_ERR;
1089 
1090 	if (qp->r_rq.wq) {
1091 		struct rvt_rwq *wq;
1092 		u32 head;
1093 		u32 tail;
1094 
1095 		spin_lock(&qp->r_rq.lock);
1096 
1097 		/* sanity check pointers before trusting them */
1098 		wq = qp->r_rq.wq;
1099 		head = wq->head;
1100 		if (head >= qp->r_rq.size)
1101 			head = 0;
1102 		tail = wq->tail;
1103 		if (tail >= qp->r_rq.size)
1104 			tail = 0;
1105 		while (tail != head) {
1106 			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1107 			if (++tail >= qp->r_rq.size)
1108 				tail = 0;
1109 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1110 		}
1111 		wq->tail = tail;
1112 
1113 		spin_unlock(&qp->r_rq.lock);
1114 	} else if (qp->ibqp.event_handler) {
1115 		ret = 1;
1116 	}
1117 
1118 bail:
1119 	return ret;
1120 }
1121 EXPORT_SYMBOL(rvt_error_qp);
1122 
1123 /*
1124  * Put the QP into the hash table.
1125  * The hash table holds a reference to the QP.
1126  */
1127 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1128 {
1129 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1130 	unsigned long flags;
1131 
1132 	rvt_get_qp(qp);
1133 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1134 
1135 	if (qp->ibqp.qp_num <= 1) {
1136 		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1137 	} else {
1138 		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1139 
1140 		qp->next = rdi->qp_dev->qp_table[n];
1141 		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1142 		trace_rvt_qpinsert(qp, n);
1143 	}
1144 
1145 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1146 }
1147 
1148 /**
1149  * rvt_modify_qp - modify the attributes of a queue pair
1150  * @ibqp: the queue pair who's attributes we're modifying
1151  * @attr: the new attributes
1152  * @attr_mask: the mask of attributes to modify
1153  * @udata: user data for libibverbs.so
1154  *
1155  * Return: 0 on success, otherwise returns an errno.
1156  */
1157 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1158 		  int attr_mask, struct ib_udata *udata)
1159 {
1160 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1161 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1162 	enum ib_qp_state cur_state, new_state;
1163 	struct ib_event ev;
1164 	int lastwqe = 0;
1165 	int mig = 0;
1166 	int pmtu = 0; /* for gcc warning only */
1167 	int opa_ah;
1168 
1169 	spin_lock_irq(&qp->r_lock);
1170 	spin_lock(&qp->s_hlock);
1171 	spin_lock(&qp->s_lock);
1172 
1173 	cur_state = attr_mask & IB_QP_CUR_STATE ?
1174 		attr->cur_qp_state : qp->state;
1175 	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1176 	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1177 
1178 	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1179 				attr_mask))
1180 		goto inval;
1181 
1182 	if (rdi->driver_f.check_modify_qp &&
1183 	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1184 		goto inval;
1185 
1186 	if (attr_mask & IB_QP_AV) {
1187 		if (opa_ah) {
1188 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1189 				opa_get_mcast_base(OPA_MCAST_NR))
1190 				goto inval;
1191 		} else {
1192 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1193 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1194 				goto inval;
1195 		}
1196 
1197 		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1198 			goto inval;
1199 	}
1200 
1201 	if (attr_mask & IB_QP_ALT_PATH) {
1202 		if (opa_ah) {
1203 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1204 				opa_get_mcast_base(OPA_MCAST_NR))
1205 				goto inval;
1206 		} else {
1207 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1208 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1209 				goto inval;
1210 		}
1211 
1212 		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1213 			goto inval;
1214 		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1215 			goto inval;
1216 	}
1217 
1218 	if (attr_mask & IB_QP_PKEY_INDEX)
1219 		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1220 			goto inval;
1221 
1222 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1223 		if (attr->min_rnr_timer > 31)
1224 			goto inval;
1225 
1226 	if (attr_mask & IB_QP_PORT)
1227 		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1228 		    qp->ibqp.qp_type == IB_QPT_GSI ||
1229 		    attr->port_num == 0 ||
1230 		    attr->port_num > ibqp->device->phys_port_cnt)
1231 			goto inval;
1232 
1233 	if (attr_mask & IB_QP_DEST_QPN)
1234 		if (attr->dest_qp_num > RVT_QPN_MASK)
1235 			goto inval;
1236 
1237 	if (attr_mask & IB_QP_RETRY_CNT)
1238 		if (attr->retry_cnt > 7)
1239 			goto inval;
1240 
1241 	if (attr_mask & IB_QP_RNR_RETRY)
1242 		if (attr->rnr_retry > 7)
1243 			goto inval;
1244 
1245 	/*
1246 	 * Don't allow invalid path_mtu values.  OK to set greater
1247 	 * than the active mtu (or even the max_cap, if we have tuned
1248 	 * that to a small mtu.  We'll set qp->path_mtu
1249 	 * to the lesser of requested attribute mtu and active,
1250 	 * for packetizing messages.
1251 	 * Note that the QP port has to be set in INIT and MTU in RTR.
1252 	 */
1253 	if (attr_mask & IB_QP_PATH_MTU) {
1254 		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1255 		if (pmtu < 0)
1256 			goto inval;
1257 	}
1258 
1259 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1260 		if (attr->path_mig_state == IB_MIG_REARM) {
1261 			if (qp->s_mig_state == IB_MIG_ARMED)
1262 				goto inval;
1263 			if (new_state != IB_QPS_RTS)
1264 				goto inval;
1265 		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1266 			if (qp->s_mig_state == IB_MIG_REARM)
1267 				goto inval;
1268 			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1269 				goto inval;
1270 			if (qp->s_mig_state == IB_MIG_ARMED)
1271 				mig = 1;
1272 		} else {
1273 			goto inval;
1274 		}
1275 	}
1276 
1277 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1278 		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1279 			goto inval;
1280 
1281 	switch (new_state) {
1282 	case IB_QPS_RESET:
1283 		if (qp->state != IB_QPS_RESET)
1284 			rvt_reset_qp(rdi, qp, ibqp->qp_type);
1285 		break;
1286 
1287 	case IB_QPS_RTR:
1288 		/* Allow event to re-trigger if QP set to RTR more than once */
1289 		qp->r_flags &= ~RVT_R_COMM_EST;
1290 		qp->state = new_state;
1291 		break;
1292 
1293 	case IB_QPS_SQD:
1294 		qp->s_draining = qp->s_last != qp->s_cur;
1295 		qp->state = new_state;
1296 		break;
1297 
1298 	case IB_QPS_SQE:
1299 		if (qp->ibqp.qp_type == IB_QPT_RC)
1300 			goto inval;
1301 		qp->state = new_state;
1302 		break;
1303 
1304 	case IB_QPS_ERR:
1305 		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1306 		break;
1307 
1308 	default:
1309 		qp->state = new_state;
1310 		break;
1311 	}
1312 
1313 	if (attr_mask & IB_QP_PKEY_INDEX)
1314 		qp->s_pkey_index = attr->pkey_index;
1315 
1316 	if (attr_mask & IB_QP_PORT)
1317 		qp->port_num = attr->port_num;
1318 
1319 	if (attr_mask & IB_QP_DEST_QPN)
1320 		qp->remote_qpn = attr->dest_qp_num;
1321 
1322 	if (attr_mask & IB_QP_SQ_PSN) {
1323 		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1324 		qp->s_psn = qp->s_next_psn;
1325 		qp->s_sending_psn = qp->s_next_psn;
1326 		qp->s_last_psn = qp->s_next_psn - 1;
1327 		qp->s_sending_hpsn = qp->s_last_psn;
1328 	}
1329 
1330 	if (attr_mask & IB_QP_RQ_PSN)
1331 		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1332 
1333 	if (attr_mask & IB_QP_ACCESS_FLAGS)
1334 		qp->qp_access_flags = attr->qp_access_flags;
1335 
1336 	if (attr_mask & IB_QP_AV) {
1337 		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1338 		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1339 		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1340 	}
1341 
1342 	if (attr_mask & IB_QP_ALT_PATH) {
1343 		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1344 		qp->s_alt_pkey_index = attr->alt_pkey_index;
1345 	}
1346 
1347 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1348 		qp->s_mig_state = attr->path_mig_state;
1349 		if (mig) {
1350 			qp->remote_ah_attr = qp->alt_ah_attr;
1351 			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1352 			qp->s_pkey_index = qp->s_alt_pkey_index;
1353 		}
1354 	}
1355 
1356 	if (attr_mask & IB_QP_PATH_MTU) {
1357 		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1358 		qp->log_pmtu = ilog2(qp->pmtu);
1359 	}
1360 
1361 	if (attr_mask & IB_QP_RETRY_CNT) {
1362 		qp->s_retry_cnt = attr->retry_cnt;
1363 		qp->s_retry = attr->retry_cnt;
1364 	}
1365 
1366 	if (attr_mask & IB_QP_RNR_RETRY) {
1367 		qp->s_rnr_retry_cnt = attr->rnr_retry;
1368 		qp->s_rnr_retry = attr->rnr_retry;
1369 	}
1370 
1371 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1372 		qp->r_min_rnr_timer = attr->min_rnr_timer;
1373 
1374 	if (attr_mask & IB_QP_TIMEOUT) {
1375 		qp->timeout = attr->timeout;
1376 		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1377 	}
1378 
1379 	if (attr_mask & IB_QP_QKEY)
1380 		qp->qkey = attr->qkey;
1381 
1382 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1383 		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1384 
1385 	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1386 		qp->s_max_rd_atomic = attr->max_rd_atomic;
1387 
1388 	if (rdi->driver_f.modify_qp)
1389 		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1390 
1391 	spin_unlock(&qp->s_lock);
1392 	spin_unlock(&qp->s_hlock);
1393 	spin_unlock_irq(&qp->r_lock);
1394 
1395 	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1396 		rvt_insert_qp(rdi, qp);
1397 
1398 	if (lastwqe) {
1399 		ev.device = qp->ibqp.device;
1400 		ev.element.qp = &qp->ibqp;
1401 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1402 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1403 	}
1404 	if (mig) {
1405 		ev.device = qp->ibqp.device;
1406 		ev.element.qp = &qp->ibqp;
1407 		ev.event = IB_EVENT_PATH_MIG;
1408 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1409 	}
1410 	return 0;
1411 
1412 inval:
1413 	spin_unlock(&qp->s_lock);
1414 	spin_unlock(&qp->s_hlock);
1415 	spin_unlock_irq(&qp->r_lock);
1416 	return -EINVAL;
1417 }
1418 
1419 /**
1420  * rvt_destroy_qp - destroy a queue pair
1421  * @ibqp: the queue pair to destroy
1422  *
1423  * Note that this can be called while the QP is actively sending or
1424  * receiving!
1425  *
1426  * Return: 0 on success.
1427  */
1428 int rvt_destroy_qp(struct ib_qp *ibqp)
1429 {
1430 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1431 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1432 
1433 	spin_lock_irq(&qp->r_lock);
1434 	spin_lock(&qp->s_hlock);
1435 	spin_lock(&qp->s_lock);
1436 	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1437 	spin_unlock(&qp->s_lock);
1438 	spin_unlock(&qp->s_hlock);
1439 	spin_unlock_irq(&qp->r_lock);
1440 
1441 	wait_event(qp->wait, !atomic_read(&qp->refcount));
1442 	/* qpn is now available for use again */
1443 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1444 
1445 	spin_lock(&rdi->n_qps_lock);
1446 	rdi->n_qps_allocated--;
1447 	if (qp->ibqp.qp_type == IB_QPT_RC) {
1448 		rdi->n_rc_qps--;
1449 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1450 	}
1451 	spin_unlock(&rdi->n_qps_lock);
1452 
1453 	if (qp->ip)
1454 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1455 	else
1456 		vfree(qp->r_rq.wq);
1457 	vfree(qp->s_wq);
1458 	rdi->driver_f.qp_priv_free(rdi, qp);
1459 	kfree(qp->s_ack_queue);
1460 	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1461 	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1462 	kfree(qp);
1463 	return 0;
1464 }
1465 
1466 /**
1467  * rvt_query_qp - query an ipbq
1468  * @ibqp: IB qp to query
1469  * @attr: attr struct to fill in
1470  * @attr_mask: attr mask ignored
1471  * @init_attr: struct to fill in
1472  *
1473  * Return: always 0
1474  */
1475 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1476 		 int attr_mask, struct ib_qp_init_attr *init_attr)
1477 {
1478 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1479 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1480 
1481 	attr->qp_state = qp->state;
1482 	attr->cur_qp_state = attr->qp_state;
1483 	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1484 	attr->path_mig_state = qp->s_mig_state;
1485 	attr->qkey = qp->qkey;
1486 	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1487 	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1488 	attr->dest_qp_num = qp->remote_qpn;
1489 	attr->qp_access_flags = qp->qp_access_flags;
1490 	attr->cap.max_send_wr = qp->s_size - 1 -
1491 		rdi->dparms.reserved_operations;
1492 	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1493 	attr->cap.max_send_sge = qp->s_max_sge;
1494 	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1495 	attr->cap.max_inline_data = 0;
1496 	attr->ah_attr = qp->remote_ah_attr;
1497 	attr->alt_ah_attr = qp->alt_ah_attr;
1498 	attr->pkey_index = qp->s_pkey_index;
1499 	attr->alt_pkey_index = qp->s_alt_pkey_index;
1500 	attr->en_sqd_async_notify = 0;
1501 	attr->sq_draining = qp->s_draining;
1502 	attr->max_rd_atomic = qp->s_max_rd_atomic;
1503 	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1504 	attr->min_rnr_timer = qp->r_min_rnr_timer;
1505 	attr->port_num = qp->port_num;
1506 	attr->timeout = qp->timeout;
1507 	attr->retry_cnt = qp->s_retry_cnt;
1508 	attr->rnr_retry = qp->s_rnr_retry_cnt;
1509 	attr->alt_port_num =
1510 		rdma_ah_get_port_num(&qp->alt_ah_attr);
1511 	attr->alt_timeout = qp->alt_timeout;
1512 
1513 	init_attr->event_handler = qp->ibqp.event_handler;
1514 	init_attr->qp_context = qp->ibqp.qp_context;
1515 	init_attr->send_cq = qp->ibqp.send_cq;
1516 	init_attr->recv_cq = qp->ibqp.recv_cq;
1517 	init_attr->srq = qp->ibqp.srq;
1518 	init_attr->cap = attr->cap;
1519 	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1520 		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1521 	else
1522 		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1523 	init_attr->qp_type = qp->ibqp.qp_type;
1524 	init_attr->port_num = qp->port_num;
1525 	return 0;
1526 }
1527 
1528 /**
1529  * rvt_post_receive - post a receive on a QP
1530  * @ibqp: the QP to post the receive on
1531  * @wr: the WR to post
1532  * @bad_wr: the first bad WR is put here
1533  *
1534  * This may be called from interrupt context.
1535  *
1536  * Return: 0 on success otherwise errno
1537  */
1538 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1539 		  const struct ib_recv_wr **bad_wr)
1540 {
1541 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1542 	struct rvt_rwq *wq = qp->r_rq.wq;
1543 	unsigned long flags;
1544 	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1545 				!qp->ibqp.srq;
1546 
1547 	/* Check that state is OK to post receive. */
1548 	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1549 		*bad_wr = wr;
1550 		return -EINVAL;
1551 	}
1552 
1553 	for (; wr; wr = wr->next) {
1554 		struct rvt_rwqe *wqe;
1555 		u32 next;
1556 		int i;
1557 
1558 		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1559 			*bad_wr = wr;
1560 			return -EINVAL;
1561 		}
1562 
1563 		spin_lock_irqsave(&qp->r_rq.lock, flags);
1564 		next = wq->head + 1;
1565 		if (next >= qp->r_rq.size)
1566 			next = 0;
1567 		if (next == wq->tail) {
1568 			spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1569 			*bad_wr = wr;
1570 			return -ENOMEM;
1571 		}
1572 		if (unlikely(qp_err_flush)) {
1573 			struct ib_wc wc;
1574 
1575 			memset(&wc, 0, sizeof(wc));
1576 			wc.qp = &qp->ibqp;
1577 			wc.opcode = IB_WC_RECV;
1578 			wc.wr_id = wr->wr_id;
1579 			wc.status = IB_WC_WR_FLUSH_ERR;
1580 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1581 		} else {
1582 			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1583 			wqe->wr_id = wr->wr_id;
1584 			wqe->num_sge = wr->num_sge;
1585 			for (i = 0; i < wr->num_sge; i++)
1586 				wqe->sg_list[i] = wr->sg_list[i];
1587 			/*
1588 			 * Make sure queue entry is written
1589 			 * before the head index.
1590 			 */
1591 			smp_wmb();
1592 			wq->head = next;
1593 		}
1594 		spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1595 	}
1596 	return 0;
1597 }
1598 
1599 /**
1600  * rvt_qp_valid_operation - validate post send wr request
1601  * @qp - the qp
1602  * @post-parms - the post send table for the driver
1603  * @wr - the work request
1604  *
1605  * The routine validates the operation based on the
1606  * validation table an returns the length of the operation
1607  * which can extend beyond the ib_send_bw.  Operation
1608  * dependent flags key atomic operation validation.
1609  *
1610  * There is an exception for UD qps that validates the pd and
1611  * overrides the length to include the additional UD specific
1612  * length.
1613  *
1614  * Returns a negative error or the length of the work request
1615  * for building the swqe.
1616  */
1617 static inline int rvt_qp_valid_operation(
1618 	struct rvt_qp *qp,
1619 	const struct rvt_operation_params *post_parms,
1620 	const struct ib_send_wr *wr)
1621 {
1622 	int len;
1623 
1624 	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1625 		return -EINVAL;
1626 	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1627 		return -EINVAL;
1628 	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1629 	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1630 		return -EINVAL;
1631 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1632 	    (wr->num_sge == 0 ||
1633 	     wr->sg_list[0].length < sizeof(u64) ||
1634 	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1635 		return -EINVAL;
1636 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1637 	    !qp->s_max_rd_atomic)
1638 		return -EINVAL;
1639 	len = post_parms[wr->opcode].length;
1640 	/* UD specific */
1641 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1642 	    qp->ibqp.qp_type != IB_QPT_RC) {
1643 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1644 			return -EINVAL;
1645 		len = sizeof(struct ib_ud_wr);
1646 	}
1647 	return len;
1648 }
1649 
1650 /**
1651  * rvt_qp_is_avail - determine queue capacity
1652  * @qp: the qp
1653  * @rdi: the rdmavt device
1654  * @reserved_op: is reserved operation
1655  *
1656  * This assumes the s_hlock is held but the s_last
1657  * qp variable is uncontrolled.
1658  *
1659  * For non reserved operations, the qp->s_avail
1660  * may be changed.
1661  *
1662  * The return value is zero or a -ENOMEM.
1663  */
1664 static inline int rvt_qp_is_avail(
1665 	struct rvt_qp *qp,
1666 	struct rvt_dev_info *rdi,
1667 	bool reserved_op)
1668 {
1669 	u32 slast;
1670 	u32 avail;
1671 	u32 reserved_used;
1672 
1673 	/* see rvt_qp_wqe_unreserve() */
1674 	smp_mb__before_atomic();
1675 	reserved_used = atomic_read(&qp->s_reserved_used);
1676 	if (unlikely(reserved_op)) {
1677 		/* see rvt_qp_wqe_unreserve() */
1678 		smp_mb__before_atomic();
1679 		if (reserved_used >= rdi->dparms.reserved_operations)
1680 			return -ENOMEM;
1681 		return 0;
1682 	}
1683 	/* non-reserved operations */
1684 	if (likely(qp->s_avail))
1685 		return 0;
1686 	slast = READ_ONCE(qp->s_last);
1687 	if (qp->s_head >= slast)
1688 		avail = qp->s_size - (qp->s_head - slast);
1689 	else
1690 		avail = slast - qp->s_head;
1691 
1692 	/* see rvt_qp_wqe_unreserve() */
1693 	smp_mb__before_atomic();
1694 	reserved_used = atomic_read(&qp->s_reserved_used);
1695 	avail =  avail - 1 -
1696 		(rdi->dparms.reserved_operations - reserved_used);
1697 	/* insure we don't assign a negative s_avail */
1698 	if ((s32)avail <= 0)
1699 		return -ENOMEM;
1700 	qp->s_avail = avail;
1701 	if (WARN_ON(qp->s_avail >
1702 		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1703 		rvt_pr_err(rdi,
1704 			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1705 			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1706 			   qp->s_head, qp->s_tail, qp->s_cur,
1707 			   qp->s_acked, qp->s_last);
1708 	return 0;
1709 }
1710 
1711 /**
1712  * rvt_post_one_wr - post one RC, UC, or UD send work request
1713  * @qp: the QP to post on
1714  * @wr: the work request to send
1715  */
1716 static int rvt_post_one_wr(struct rvt_qp *qp,
1717 			   const struct ib_send_wr *wr,
1718 			   bool *call_send)
1719 {
1720 	struct rvt_swqe *wqe;
1721 	u32 next;
1722 	int i;
1723 	int j;
1724 	int acc;
1725 	struct rvt_lkey_table *rkt;
1726 	struct rvt_pd *pd;
1727 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1728 	u8 log_pmtu;
1729 	int ret;
1730 	size_t cplen;
1731 	bool reserved_op;
1732 	int local_ops_delayed = 0;
1733 
1734 	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1735 
1736 	/* IB spec says that num_sge == 0 is OK. */
1737 	if (unlikely(wr->num_sge > qp->s_max_sge))
1738 		return -EINVAL;
1739 
1740 	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1741 	if (ret < 0)
1742 		return ret;
1743 	cplen = ret;
1744 
1745 	/*
1746 	 * Local operations include fast register and local invalidate.
1747 	 * Fast register needs to be processed immediately because the
1748 	 * registered lkey may be used by following work requests and the
1749 	 * lkey needs to be valid at the time those requests are posted.
1750 	 * Local invalidate can be processed immediately if fencing is
1751 	 * not required and no previous local invalidate ops are pending.
1752 	 * Signaled local operations that have been processed immediately
1753 	 * need to have requests with "completion only" flags set posted
1754 	 * to the send queue in order to generate completions.
1755 	 */
1756 	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1757 		switch (wr->opcode) {
1758 		case IB_WR_REG_MR:
1759 			ret = rvt_fast_reg_mr(qp,
1760 					      reg_wr(wr)->mr,
1761 					      reg_wr(wr)->key,
1762 					      reg_wr(wr)->access);
1763 			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1764 				return ret;
1765 			break;
1766 		case IB_WR_LOCAL_INV:
1767 			if ((wr->send_flags & IB_SEND_FENCE) ||
1768 			    atomic_read(&qp->local_ops_pending)) {
1769 				local_ops_delayed = 1;
1770 			} else {
1771 				ret = rvt_invalidate_rkey(
1772 					qp, wr->ex.invalidate_rkey);
1773 				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1774 					return ret;
1775 			}
1776 			break;
1777 		default:
1778 			return -EINVAL;
1779 		}
1780 	}
1781 
1782 	reserved_op = rdi->post_parms[wr->opcode].flags &
1783 			RVT_OPERATION_USE_RESERVE;
1784 	/* check for avail */
1785 	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
1786 	if (ret)
1787 		return ret;
1788 	next = qp->s_head + 1;
1789 	if (next >= qp->s_size)
1790 		next = 0;
1791 
1792 	rkt = &rdi->lkey_table;
1793 	pd = ibpd_to_rvtpd(qp->ibqp.pd);
1794 	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
1795 
1796 	/* cplen has length from above */
1797 	memcpy(&wqe->wr, wr, cplen);
1798 
1799 	wqe->length = 0;
1800 	j = 0;
1801 	if (wr->num_sge) {
1802 		struct rvt_sge *last_sge = NULL;
1803 
1804 		acc = wr->opcode >= IB_WR_RDMA_READ ?
1805 			IB_ACCESS_LOCAL_WRITE : 0;
1806 		for (i = 0; i < wr->num_sge; i++) {
1807 			u32 length = wr->sg_list[i].length;
1808 
1809 			if (length == 0)
1810 				continue;
1811 			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
1812 					  &wr->sg_list[i], acc);
1813 			if (unlikely(ret < 0))
1814 				goto bail_inval_free;
1815 			wqe->length += length;
1816 			if (ret)
1817 				last_sge = &wqe->sg_list[j];
1818 			j += ret;
1819 		}
1820 		wqe->wr.num_sge = j;
1821 	}
1822 
1823 	/*
1824 	 * Calculate and set SWQE PSN values prior to handing it off
1825 	 * to the driver's check routine. This give the driver the
1826 	 * opportunity to adjust PSN values based on internal checks.
1827 	 */
1828 	log_pmtu = qp->log_pmtu;
1829 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1830 	    qp->ibqp.qp_type != IB_QPT_RC) {
1831 		struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
1832 
1833 		log_pmtu = ah->log_pmtu;
1834 		atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
1835 	}
1836 
1837 	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
1838 		if (local_ops_delayed)
1839 			atomic_inc(&qp->local_ops_pending);
1840 		else
1841 			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
1842 		wqe->ssn = 0;
1843 		wqe->psn = 0;
1844 		wqe->lpsn = 0;
1845 	} else {
1846 		wqe->ssn = qp->s_ssn++;
1847 		wqe->psn = qp->s_next_psn;
1848 		wqe->lpsn = wqe->psn +
1849 				(wqe->length ?
1850 					((wqe->length - 1) >> log_pmtu) :
1851 					0);
1852 	}
1853 
1854 	/* general part of wqe valid - allow for driver checks */
1855 	if (rdi->driver_f.setup_wqe) {
1856 		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
1857 		if (ret < 0)
1858 			goto bail_inval_free_ref;
1859 	}
1860 
1861 	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
1862 		qp->s_next_psn = wqe->lpsn + 1;
1863 
1864 	if (unlikely(reserved_op)) {
1865 		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
1866 		rvt_qp_wqe_reserve(qp, wqe);
1867 	} else {
1868 		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
1869 		qp->s_avail--;
1870 	}
1871 	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
1872 	smp_wmb(); /* see request builders */
1873 	qp->s_head = next;
1874 
1875 	return 0;
1876 
1877 bail_inval_free_ref:
1878 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1879 	    qp->ibqp.qp_type != IB_QPT_RC)
1880 		atomic_dec(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
1881 bail_inval_free:
1882 	/* release mr holds */
1883 	while (j) {
1884 		struct rvt_sge *sge = &wqe->sg_list[--j];
1885 
1886 		rvt_put_mr(sge->mr);
1887 	}
1888 	return ret;
1889 }
1890 
1891 /**
1892  * rvt_post_send - post a send on a QP
1893  * @ibqp: the QP to post the send on
1894  * @wr: the list of work requests to post
1895  * @bad_wr: the first bad WR is put here
1896  *
1897  * This may be called from interrupt context.
1898  *
1899  * Return: 0 on success else errno
1900  */
1901 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
1902 		  const struct ib_send_wr **bad_wr)
1903 {
1904 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1905 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1906 	unsigned long flags = 0;
1907 	bool call_send;
1908 	unsigned nreq = 0;
1909 	int err = 0;
1910 
1911 	spin_lock_irqsave(&qp->s_hlock, flags);
1912 
1913 	/*
1914 	 * Ensure QP state is such that we can send. If not bail out early,
1915 	 * there is no need to do this every time we post a send.
1916 	 */
1917 	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
1918 		spin_unlock_irqrestore(&qp->s_hlock, flags);
1919 		return -EINVAL;
1920 	}
1921 
1922 	/*
1923 	 * If the send queue is empty, and we only have a single WR then just go
1924 	 * ahead and kick the send engine into gear. Otherwise we will always
1925 	 * just schedule the send to happen later.
1926 	 */
1927 	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
1928 
1929 	for (; wr; wr = wr->next) {
1930 		err = rvt_post_one_wr(qp, wr, &call_send);
1931 		if (unlikely(err)) {
1932 			*bad_wr = wr;
1933 			goto bail;
1934 		}
1935 		nreq++;
1936 	}
1937 bail:
1938 	spin_unlock_irqrestore(&qp->s_hlock, flags);
1939 	if (nreq) {
1940 		/*
1941 		 * Only call do_send if there is exactly one packet, and the
1942 		 * driver said it was ok.
1943 		 */
1944 		if (nreq == 1 && call_send)
1945 			rdi->driver_f.do_send(qp);
1946 		else
1947 			rdi->driver_f.schedule_send_no_lock(qp);
1948 	}
1949 	return err;
1950 }
1951 
1952 /**
1953  * rvt_post_srq_receive - post a receive on a shared receive queue
1954  * @ibsrq: the SRQ to post the receive on
1955  * @wr: the list of work requests to post
1956  * @bad_wr: A pointer to the first WR to cause a problem is put here
1957  *
1958  * This may be called from interrupt context.
1959  *
1960  * Return: 0 on success else errno
1961  */
1962 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
1963 		      const struct ib_recv_wr **bad_wr)
1964 {
1965 	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
1966 	struct rvt_rwq *wq;
1967 	unsigned long flags;
1968 
1969 	for (; wr; wr = wr->next) {
1970 		struct rvt_rwqe *wqe;
1971 		u32 next;
1972 		int i;
1973 
1974 		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
1975 			*bad_wr = wr;
1976 			return -EINVAL;
1977 		}
1978 
1979 		spin_lock_irqsave(&srq->rq.lock, flags);
1980 		wq = srq->rq.wq;
1981 		next = wq->head + 1;
1982 		if (next >= srq->rq.size)
1983 			next = 0;
1984 		if (next == wq->tail) {
1985 			spin_unlock_irqrestore(&srq->rq.lock, flags);
1986 			*bad_wr = wr;
1987 			return -ENOMEM;
1988 		}
1989 
1990 		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
1991 		wqe->wr_id = wr->wr_id;
1992 		wqe->num_sge = wr->num_sge;
1993 		for (i = 0; i < wr->num_sge; i++)
1994 			wqe->sg_list[i] = wr->sg_list[i];
1995 		/* Make sure queue entry is written before the head index. */
1996 		smp_wmb();
1997 		wq->head = next;
1998 		spin_unlock_irqrestore(&srq->rq.lock, flags);
1999 	}
2000 	return 0;
2001 }
2002 
2003 /*
2004  * Validate a RWQE and fill in the SGE state.
2005  * Return 1 if OK.
2006  */
2007 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2008 {
2009 	int i, j, ret;
2010 	struct ib_wc wc;
2011 	struct rvt_lkey_table *rkt;
2012 	struct rvt_pd *pd;
2013 	struct rvt_sge_state *ss;
2014 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2015 
2016 	rkt = &rdi->lkey_table;
2017 	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2018 	ss = &qp->r_sge;
2019 	ss->sg_list = qp->r_sg_list;
2020 	qp->r_len = 0;
2021 	for (i = j = 0; i < wqe->num_sge; i++) {
2022 		if (wqe->sg_list[i].length == 0)
2023 			continue;
2024 		/* Check LKEY */
2025 		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2026 				  NULL, &wqe->sg_list[i],
2027 				  IB_ACCESS_LOCAL_WRITE);
2028 		if (unlikely(ret <= 0))
2029 			goto bad_lkey;
2030 		qp->r_len += wqe->sg_list[i].length;
2031 		j++;
2032 	}
2033 	ss->num_sge = j;
2034 	ss->total_len = qp->r_len;
2035 	return 1;
2036 
2037 bad_lkey:
2038 	while (j) {
2039 		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2040 
2041 		rvt_put_mr(sge->mr);
2042 	}
2043 	ss->num_sge = 0;
2044 	memset(&wc, 0, sizeof(wc));
2045 	wc.wr_id = wqe->wr_id;
2046 	wc.status = IB_WC_LOC_PROT_ERR;
2047 	wc.opcode = IB_WC_RECV;
2048 	wc.qp = &qp->ibqp;
2049 	/* Signal solicited completion event. */
2050 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2051 	return 0;
2052 }
2053 
2054 /**
2055  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2056  * @qp: the QP
2057  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2058  *
2059  * Return -1 if there is a local error, 0 if no RWQE is available,
2060  * otherwise return 1.
2061  *
2062  * Can be called from interrupt level.
2063  */
2064 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2065 {
2066 	unsigned long flags;
2067 	struct rvt_rq *rq;
2068 	struct rvt_rwq *wq;
2069 	struct rvt_srq *srq;
2070 	struct rvt_rwqe *wqe;
2071 	void (*handler)(struct ib_event *, void *);
2072 	u32 tail;
2073 	int ret;
2074 
2075 	if (qp->ibqp.srq) {
2076 		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2077 		handler = srq->ibsrq.event_handler;
2078 		rq = &srq->rq;
2079 	} else {
2080 		srq = NULL;
2081 		handler = NULL;
2082 		rq = &qp->r_rq;
2083 	}
2084 
2085 	spin_lock_irqsave(&rq->lock, flags);
2086 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2087 		ret = 0;
2088 		goto unlock;
2089 	}
2090 
2091 	wq = rq->wq;
2092 	tail = wq->tail;
2093 	/* Validate tail before using it since it is user writable. */
2094 	if (tail >= rq->size)
2095 		tail = 0;
2096 	if (unlikely(tail == wq->head)) {
2097 		ret = 0;
2098 		goto unlock;
2099 	}
2100 	/* Make sure entry is read after head index is read. */
2101 	smp_rmb();
2102 	wqe = rvt_get_rwqe_ptr(rq, tail);
2103 	/*
2104 	 * Even though we update the tail index in memory, the verbs
2105 	 * consumer is not supposed to post more entries until a
2106 	 * completion is generated.
2107 	 */
2108 	if (++tail >= rq->size)
2109 		tail = 0;
2110 	wq->tail = tail;
2111 	if (!wr_id_only && !init_sge(qp, wqe)) {
2112 		ret = -1;
2113 		goto unlock;
2114 	}
2115 	qp->r_wr_id = wqe->wr_id;
2116 
2117 	ret = 1;
2118 	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2119 	if (handler) {
2120 		u32 n;
2121 
2122 		/*
2123 		 * Validate head pointer value and compute
2124 		 * the number of remaining WQEs.
2125 		 */
2126 		n = wq->head;
2127 		if (n >= rq->size)
2128 			n = 0;
2129 		if (n < tail)
2130 			n += rq->size - tail;
2131 		else
2132 			n -= tail;
2133 		if (n < srq->limit) {
2134 			struct ib_event ev;
2135 
2136 			srq->limit = 0;
2137 			spin_unlock_irqrestore(&rq->lock, flags);
2138 			ev.device = qp->ibqp.device;
2139 			ev.element.srq = qp->ibqp.srq;
2140 			ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2141 			handler(&ev, srq->ibsrq.srq_context);
2142 			goto bail;
2143 		}
2144 	}
2145 unlock:
2146 	spin_unlock_irqrestore(&rq->lock, flags);
2147 bail:
2148 	return ret;
2149 }
2150 EXPORT_SYMBOL(rvt_get_rwqe);
2151 
2152 /**
2153  * qp_comm_est - handle trap with QP established
2154  * @qp: the QP
2155  */
2156 void rvt_comm_est(struct rvt_qp *qp)
2157 {
2158 	qp->r_flags |= RVT_R_COMM_EST;
2159 	if (qp->ibqp.event_handler) {
2160 		struct ib_event ev;
2161 
2162 		ev.device = qp->ibqp.device;
2163 		ev.element.qp = &qp->ibqp;
2164 		ev.event = IB_EVENT_COMM_EST;
2165 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2166 	}
2167 }
2168 EXPORT_SYMBOL(rvt_comm_est);
2169 
2170 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2171 {
2172 	unsigned long flags;
2173 	int lastwqe;
2174 
2175 	spin_lock_irqsave(&qp->s_lock, flags);
2176 	lastwqe = rvt_error_qp(qp, err);
2177 	spin_unlock_irqrestore(&qp->s_lock, flags);
2178 
2179 	if (lastwqe) {
2180 		struct ib_event ev;
2181 
2182 		ev.device = qp->ibqp.device;
2183 		ev.element.qp = &qp->ibqp;
2184 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2185 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2186 	}
2187 }
2188 EXPORT_SYMBOL(rvt_rc_error);
2189 
2190 /*
2191  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2192  *  @index - the index
2193  *  return usec from an index into ib_rvt_rnr_table
2194  */
2195 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2196 {
2197 	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2198 }
2199 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2200 
2201 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2202 {
2203 	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2204 				  IB_AETH_CREDIT_MASK];
2205 }
2206 
2207 /*
2208  *  rvt_add_retry_timer - add/start a retry timer
2209  *  @qp - the QP
2210  *  add a retry timer on the QP
2211  */
2212 void rvt_add_retry_timer(struct rvt_qp *qp)
2213 {
2214 	struct ib_qp *ibqp = &qp->ibqp;
2215 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2216 
2217 	lockdep_assert_held(&qp->s_lock);
2218 	qp->s_flags |= RVT_S_TIMER;
2219        /* 4.096 usec. * (1 << qp->timeout) */
2220 	qp->s_timer.expires = jiffies + qp->timeout_jiffies +
2221 			     rdi->busy_jiffies;
2222 	add_timer(&qp->s_timer);
2223 }
2224 EXPORT_SYMBOL(rvt_add_retry_timer);
2225 
2226 /**
2227  * rvt_add_rnr_timer - add/start an rnr timer
2228  * @qp - the QP
2229  * @aeth - aeth of RNR timeout, simulated aeth for loopback
2230  * add an rnr timer on the QP
2231  */
2232 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2233 {
2234 	u32 to;
2235 
2236 	lockdep_assert_held(&qp->s_lock);
2237 	qp->s_flags |= RVT_S_WAIT_RNR;
2238 	to = rvt_aeth_to_usec(aeth);
2239 	trace_rvt_rnrnak_add(qp, to);
2240 	hrtimer_start(&qp->s_rnr_timer,
2241 		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2242 }
2243 EXPORT_SYMBOL(rvt_add_rnr_timer);
2244 
2245 /**
2246  * rvt_stop_rc_timers - stop all timers
2247  * @qp - the QP
2248  * stop any pending timers
2249  */
2250 void rvt_stop_rc_timers(struct rvt_qp *qp)
2251 {
2252 	lockdep_assert_held(&qp->s_lock);
2253 	/* Remove QP from all timers */
2254 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2255 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2256 		del_timer(&qp->s_timer);
2257 		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2258 	}
2259 }
2260 EXPORT_SYMBOL(rvt_stop_rc_timers);
2261 
2262 /**
2263  * rvt_stop_rnr_timer - stop an rnr timer
2264  * @qp - the QP
2265  *
2266  * stop an rnr timer and return if the timer
2267  * had been pending.
2268  */
2269 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2270 {
2271 	lockdep_assert_held(&qp->s_lock);
2272 	/* Remove QP from rnr timer */
2273 	if (qp->s_flags & RVT_S_WAIT_RNR) {
2274 		qp->s_flags &= ~RVT_S_WAIT_RNR;
2275 		trace_rvt_rnrnak_stop(qp, 0);
2276 	}
2277 }
2278 
2279 /**
2280  * rvt_del_timers_sync - wait for any timeout routines to exit
2281  * @qp - the QP
2282  */
2283 void rvt_del_timers_sync(struct rvt_qp *qp)
2284 {
2285 	del_timer_sync(&qp->s_timer);
2286 	hrtimer_cancel(&qp->s_rnr_timer);
2287 }
2288 EXPORT_SYMBOL(rvt_del_timers_sync);
2289 
2290 /**
2291  * This is called from s_timer for missing responses.
2292  */
2293 static void rvt_rc_timeout(struct timer_list *t)
2294 {
2295 	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2296 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2297 	unsigned long flags;
2298 
2299 	spin_lock_irqsave(&qp->r_lock, flags);
2300 	spin_lock(&qp->s_lock);
2301 	if (qp->s_flags & RVT_S_TIMER) {
2302 		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2303 
2304 		qp->s_flags &= ~RVT_S_TIMER;
2305 		rvp->n_rc_timeouts++;
2306 		del_timer(&qp->s_timer);
2307 		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2308 		if (rdi->driver_f.notify_restart_rc)
2309 			rdi->driver_f.notify_restart_rc(qp,
2310 							qp->s_last_psn + 1,
2311 							1);
2312 		rdi->driver_f.schedule_send(qp);
2313 	}
2314 	spin_unlock(&qp->s_lock);
2315 	spin_unlock_irqrestore(&qp->r_lock, flags);
2316 }
2317 
2318 /*
2319  * This is called from s_timer for RNR timeouts.
2320  */
2321 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2322 {
2323 	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2324 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2325 	unsigned long flags;
2326 
2327 	spin_lock_irqsave(&qp->s_lock, flags);
2328 	rvt_stop_rnr_timer(qp);
2329 	trace_rvt_rnrnak_timeout(qp, 0);
2330 	rdi->driver_f.schedule_send(qp);
2331 	spin_unlock_irqrestore(&qp->s_lock, flags);
2332 	return HRTIMER_NORESTART;
2333 }
2334 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2335 
2336 /**
2337  * rvt_qp_iter_init - initial for QP iteration
2338  * @rdi: rvt devinfo
2339  * @v: u64 value
2340  *
2341  * This returns an iterator suitable for iterating QPs
2342  * in the system.
2343  *
2344  * The @cb is a user defined callback and @v is a 64
2345  * bit value passed to and relevant for processing in the
2346  * @cb.  An example use case would be to alter QP processing
2347  * based on criteria not part of the rvt_qp.
2348  *
2349  * Use cases that require memory allocation to succeed
2350  * must preallocate appropriately.
2351  *
2352  * Return: a pointer to an rvt_qp_iter or NULL
2353  */
2354 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2355 				     u64 v,
2356 				     void (*cb)(struct rvt_qp *qp, u64 v))
2357 {
2358 	struct rvt_qp_iter *i;
2359 
2360 	i = kzalloc(sizeof(*i), GFP_KERNEL);
2361 	if (!i)
2362 		return NULL;
2363 
2364 	i->rdi = rdi;
2365 	/* number of special QPs (SMI/GSI) for device */
2366 	i->specials = rdi->ibdev.phys_port_cnt * 2;
2367 	i->v = v;
2368 	i->cb = cb;
2369 
2370 	return i;
2371 }
2372 EXPORT_SYMBOL(rvt_qp_iter_init);
2373 
2374 /**
2375  * rvt_qp_iter_next - return the next QP in iter
2376  * @iter - the iterator
2377  *
2378  * Fine grained QP iterator suitable for use
2379  * with debugfs seq_file mechanisms.
2380  *
2381  * Updates iter->qp with the current QP when the return
2382  * value is 0.
2383  *
2384  * Return: 0 - iter->qp is valid 1 - no more QPs
2385  */
2386 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2387 	__must_hold(RCU)
2388 {
2389 	int n = iter->n;
2390 	int ret = 1;
2391 	struct rvt_qp *pqp = iter->qp;
2392 	struct rvt_qp *qp;
2393 	struct rvt_dev_info *rdi = iter->rdi;
2394 
2395 	/*
2396 	 * The approach is to consider the special qps
2397 	 * as additional table entries before the
2398 	 * real hash table.  Since the qp code sets
2399 	 * the qp->next hash link to NULL, this works just fine.
2400 	 *
2401 	 * iter->specials is 2 * # ports
2402 	 *
2403 	 * n = 0..iter->specials is the special qp indices
2404 	 *
2405 	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2406 	 * the potential hash bucket entries
2407 	 *
2408 	 */
2409 	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2410 		if (pqp) {
2411 			qp = rcu_dereference(pqp->next);
2412 		} else {
2413 			if (n < iter->specials) {
2414 				struct rvt_ibport *rvp;
2415 				int pidx;
2416 
2417 				pidx = n % rdi->ibdev.phys_port_cnt;
2418 				rvp = rdi->ports[pidx];
2419 				qp = rcu_dereference(rvp->qp[n & 1]);
2420 			} else {
2421 				qp = rcu_dereference(
2422 					rdi->qp_dev->qp_table[
2423 						(n - iter->specials)]);
2424 			}
2425 		}
2426 		pqp = qp;
2427 		if (qp) {
2428 			iter->qp = qp;
2429 			iter->n = n;
2430 			return 0;
2431 		}
2432 	}
2433 	return ret;
2434 }
2435 EXPORT_SYMBOL(rvt_qp_iter_next);
2436 
2437 /**
2438  * rvt_qp_iter - iterate all QPs
2439  * @rdi - rvt devinfo
2440  * @v - a 64 bit value
2441  * @cb - a callback
2442  *
2443  * This provides a way for iterating all QPs.
2444  *
2445  * The @cb is a user defined callback and @v is a 64
2446  * bit value passed to and relevant for processing in the
2447  * cb.  An example use case would be to alter QP processing
2448  * based on criteria not part of the rvt_qp.
2449  *
2450  * The code has an internal iterator to simplify
2451  * non seq_file use cases.
2452  */
2453 void rvt_qp_iter(struct rvt_dev_info *rdi,
2454 		 u64 v,
2455 		 void (*cb)(struct rvt_qp *qp, u64 v))
2456 {
2457 	int ret;
2458 	struct rvt_qp_iter i = {
2459 		.rdi = rdi,
2460 		.specials = rdi->ibdev.phys_port_cnt * 2,
2461 		.v = v,
2462 		.cb = cb
2463 	};
2464 
2465 	rcu_read_lock();
2466 	do {
2467 		ret = rvt_qp_iter_next(&i);
2468 		if (!ret) {
2469 			rvt_get_qp(i.qp);
2470 			rcu_read_unlock();
2471 			i.cb(i.qp, i.v);
2472 			rcu_read_lock();
2473 			rvt_put_qp(i.qp);
2474 		}
2475 	} while (!ret);
2476 	rcu_read_unlock();
2477 }
2478 EXPORT_SYMBOL(rvt_qp_iter);
2479