1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 /* 3 * Copyright(c) 2016 - 2020 Intel Corporation. 4 */ 5 6 #include <linux/hash.h> 7 #include <linux/bitops.h> 8 #include <linux/lockdep.h> 9 #include <linux/vmalloc.h> 10 #include <linux/slab.h> 11 #include <rdma/ib_verbs.h> 12 #include <rdma/ib_hdrs.h> 13 #include <rdma/opa_addr.h> 14 #include <rdma/uverbs_ioctl.h> 15 #include "qp.h" 16 #include "vt.h" 17 #include "trace.h" 18 19 #define RVT_RWQ_COUNT_THRESHOLD 16 20 21 static void rvt_rc_timeout(struct timer_list *t); 22 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 23 enum ib_qp_type type); 24 25 /* 26 * Convert the AETH RNR timeout code into the number of microseconds. 27 */ 28 static const u32 ib_rvt_rnr_table[32] = { 29 655360, /* 00: 655.36 */ 30 10, /* 01: .01 */ 31 20, /* 02 .02 */ 32 30, /* 03: .03 */ 33 40, /* 04: .04 */ 34 60, /* 05: .06 */ 35 80, /* 06: .08 */ 36 120, /* 07: .12 */ 37 160, /* 08: .16 */ 38 240, /* 09: .24 */ 39 320, /* 0A: .32 */ 40 480, /* 0B: .48 */ 41 640, /* 0C: .64 */ 42 960, /* 0D: .96 */ 43 1280, /* 0E: 1.28 */ 44 1920, /* 0F: 1.92 */ 45 2560, /* 10: 2.56 */ 46 3840, /* 11: 3.84 */ 47 5120, /* 12: 5.12 */ 48 7680, /* 13: 7.68 */ 49 10240, /* 14: 10.24 */ 50 15360, /* 15: 15.36 */ 51 20480, /* 16: 20.48 */ 52 30720, /* 17: 30.72 */ 53 40960, /* 18: 40.96 */ 54 61440, /* 19: 61.44 */ 55 81920, /* 1A: 81.92 */ 56 122880, /* 1B: 122.88 */ 57 163840, /* 1C: 163.84 */ 58 245760, /* 1D: 245.76 */ 59 327680, /* 1E: 327.68 */ 60 491520 /* 1F: 491.52 */ 61 }; 62 63 /* 64 * Note that it is OK to post send work requests in the SQE and ERR 65 * states; rvt_do_send() will process them and generate error 66 * completions as per IB 1.2 C10-96. 67 */ 68 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 69 [IB_QPS_RESET] = 0, 70 [IB_QPS_INIT] = RVT_POST_RECV_OK, 71 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 72 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 73 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 74 RVT_PROCESS_NEXT_SEND_OK, 75 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 76 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 77 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 78 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 79 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 80 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 81 }; 82 EXPORT_SYMBOL(ib_rvt_state_ops); 83 84 /* platform specific: return the last level cache (llc) size, in KiB */ 85 static int rvt_wss_llc_size(void) 86 { 87 /* assume that the boot CPU value is universal for all CPUs */ 88 return boot_cpu_data.x86_cache_size; 89 } 90 91 /* platform specific: cacheless copy */ 92 static void cacheless_memcpy(void *dst, void *src, size_t n) 93 { 94 /* 95 * Use the only available X64 cacheless copy. Add a __user cast 96 * to quiet sparse. The src agument is already in the kernel so 97 * there are no security issues. The extra fault recovery machinery 98 * is not invoked. 99 */ 100 __copy_user_nocache(dst, (void __user *)src, n); 101 } 102 103 void rvt_wss_exit(struct rvt_dev_info *rdi) 104 { 105 struct rvt_wss *wss = rdi->wss; 106 107 if (!wss) 108 return; 109 110 /* coded to handle partially initialized and repeat callers */ 111 kfree(wss->entries); 112 wss->entries = NULL; 113 kfree(rdi->wss); 114 rdi->wss = NULL; 115 } 116 117 /* 118 * rvt_wss_init - Init wss data structures 119 * 120 * Return: 0 on success 121 */ 122 int rvt_wss_init(struct rvt_dev_info *rdi) 123 { 124 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 125 unsigned int wss_threshold = rdi->dparms.wss_threshold; 126 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 127 long llc_size; 128 long llc_bits; 129 long table_size; 130 long table_bits; 131 struct rvt_wss *wss; 132 int node = rdi->dparms.node; 133 134 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 135 rdi->wss = NULL; 136 return 0; 137 } 138 139 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 140 if (!rdi->wss) 141 return -ENOMEM; 142 wss = rdi->wss; 143 144 /* check for a valid percent range - default to 80 if none or invalid */ 145 if (wss_threshold < 1 || wss_threshold > 100) 146 wss_threshold = 80; 147 148 /* reject a wildly large period */ 149 if (wss_clean_period > 1000000) 150 wss_clean_period = 256; 151 152 /* reject a zero period */ 153 if (wss_clean_period == 0) 154 wss_clean_period = 1; 155 156 /* 157 * Calculate the table size - the next power of 2 larger than the 158 * LLC size. LLC size is in KiB. 159 */ 160 llc_size = rvt_wss_llc_size() * 1024; 161 table_size = roundup_pow_of_two(llc_size); 162 163 /* one bit per page in rounded up table */ 164 llc_bits = llc_size / PAGE_SIZE; 165 table_bits = table_size / PAGE_SIZE; 166 wss->pages_mask = table_bits - 1; 167 wss->num_entries = table_bits / BITS_PER_LONG; 168 169 wss->threshold = (llc_bits * wss_threshold) / 100; 170 if (wss->threshold == 0) 171 wss->threshold = 1; 172 173 wss->clean_period = wss_clean_period; 174 atomic_set(&wss->clean_counter, wss_clean_period); 175 176 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 177 GFP_KERNEL, node); 178 if (!wss->entries) { 179 rvt_wss_exit(rdi); 180 return -ENOMEM; 181 } 182 183 return 0; 184 } 185 186 /* 187 * Advance the clean counter. When the clean period has expired, 188 * clean an entry. 189 * 190 * This is implemented in atomics to avoid locking. Because multiple 191 * variables are involved, it can be racy which can lead to slightly 192 * inaccurate information. Since this is only a heuristic, this is 193 * OK. Any innaccuracies will clean themselves out as the counter 194 * advances. That said, it is unlikely the entry clean operation will 195 * race - the next possible racer will not start until the next clean 196 * period. 197 * 198 * The clean counter is implemented as a decrement to zero. When zero 199 * is reached an entry is cleaned. 200 */ 201 static void wss_advance_clean_counter(struct rvt_wss *wss) 202 { 203 int entry; 204 int weight; 205 unsigned long bits; 206 207 /* become the cleaner if we decrement the counter to zero */ 208 if (atomic_dec_and_test(&wss->clean_counter)) { 209 /* 210 * Set, not add, the clean period. This avoids an issue 211 * where the counter could decrement below the clean period. 212 * Doing a set can result in lost decrements, slowing the 213 * clean advance. Since this a heuristic, this possible 214 * slowdown is OK. 215 * 216 * An alternative is to loop, advancing the counter by a 217 * clean period until the result is > 0. However, this could 218 * lead to several threads keeping another in the clean loop. 219 * This could be mitigated by limiting the number of times 220 * we stay in the loop. 221 */ 222 atomic_set(&wss->clean_counter, wss->clean_period); 223 224 /* 225 * Uniquely grab the entry to clean and move to next. 226 * The current entry is always the lower bits of 227 * wss.clean_entry. The table size, wss.num_entries, 228 * is always a power-of-2. 229 */ 230 entry = (atomic_inc_return(&wss->clean_entry) - 1) 231 & (wss->num_entries - 1); 232 233 /* clear the entry and count the bits */ 234 bits = xchg(&wss->entries[entry], 0); 235 weight = hweight64((u64)bits); 236 /* only adjust the contended total count if needed */ 237 if (weight) 238 atomic_sub(weight, &wss->total_count); 239 } 240 } 241 242 /* 243 * Insert the given address into the working set array. 244 */ 245 static void wss_insert(struct rvt_wss *wss, void *address) 246 { 247 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 248 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 249 u32 nr = page & (BITS_PER_LONG - 1); 250 251 if (!test_and_set_bit(nr, &wss->entries[entry])) 252 atomic_inc(&wss->total_count); 253 254 wss_advance_clean_counter(wss); 255 } 256 257 /* 258 * Is the working set larger than the threshold? 259 */ 260 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 261 { 262 return atomic_read(&wss->total_count) >= wss->threshold; 263 } 264 265 static void get_map_page(struct rvt_qpn_table *qpt, 266 struct rvt_qpn_map *map) 267 { 268 unsigned long page = get_zeroed_page(GFP_KERNEL); 269 270 /* 271 * Free the page if someone raced with us installing it. 272 */ 273 274 spin_lock(&qpt->lock); 275 if (map->page) 276 free_page(page); 277 else 278 map->page = (void *)page; 279 spin_unlock(&qpt->lock); 280 } 281 282 /** 283 * init_qpn_table - initialize the QP number table for a device 284 * @rdi: rvt dev struct 285 * @qpt: the QPN table 286 */ 287 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 288 { 289 u32 offset, i; 290 struct rvt_qpn_map *map; 291 int ret = 0; 292 293 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 294 return -EINVAL; 295 296 spin_lock_init(&qpt->lock); 297 298 qpt->last = rdi->dparms.qpn_start; 299 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 300 301 /* 302 * Drivers may want some QPs beyond what we need for verbs let them use 303 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 304 * for those. The reserved range must be *after* the range which verbs 305 * will pick from. 306 */ 307 308 /* Figure out number of bit maps needed before reserved range */ 309 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 310 311 /* This should always be zero */ 312 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 313 314 /* Starting with the first reserved bit map */ 315 map = &qpt->map[qpt->nmaps]; 316 317 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 318 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 319 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 320 if (!map->page) { 321 get_map_page(qpt, map); 322 if (!map->page) { 323 ret = -ENOMEM; 324 break; 325 } 326 } 327 set_bit(offset, map->page); 328 offset++; 329 if (offset == RVT_BITS_PER_PAGE) { 330 /* next page */ 331 qpt->nmaps++; 332 map++; 333 offset = 0; 334 } 335 } 336 return ret; 337 } 338 339 /** 340 * free_qpn_table - free the QP number table for a device 341 * @qpt: the QPN table 342 */ 343 static void free_qpn_table(struct rvt_qpn_table *qpt) 344 { 345 int i; 346 347 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 348 free_page((unsigned long)qpt->map[i].page); 349 } 350 351 /** 352 * rvt_driver_qp_init - Init driver qp resources 353 * @rdi: rvt dev strucutre 354 * 355 * Return: 0 on success 356 */ 357 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 358 { 359 int i; 360 int ret = -ENOMEM; 361 362 if (!rdi->dparms.qp_table_size) 363 return -EINVAL; 364 365 /* 366 * If driver is not doing any QP allocation then make sure it is 367 * providing the necessary QP functions. 368 */ 369 if (!rdi->driver_f.free_all_qps || 370 !rdi->driver_f.qp_priv_alloc || 371 !rdi->driver_f.qp_priv_free || 372 !rdi->driver_f.notify_qp_reset || 373 !rdi->driver_f.notify_restart_rc) 374 return -EINVAL; 375 376 /* allocate parent object */ 377 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 378 rdi->dparms.node); 379 if (!rdi->qp_dev) 380 return -ENOMEM; 381 382 /* allocate hash table */ 383 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 384 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 385 rdi->qp_dev->qp_table = 386 kmalloc_array_node(rdi->qp_dev->qp_table_size, 387 sizeof(*rdi->qp_dev->qp_table), 388 GFP_KERNEL, rdi->dparms.node); 389 if (!rdi->qp_dev->qp_table) 390 goto no_qp_table; 391 392 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 393 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 394 395 spin_lock_init(&rdi->qp_dev->qpt_lock); 396 397 /* initialize qpn map */ 398 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 399 goto fail_table; 400 401 spin_lock_init(&rdi->n_qps_lock); 402 403 return 0; 404 405 fail_table: 406 kfree(rdi->qp_dev->qp_table); 407 free_qpn_table(&rdi->qp_dev->qpn_table); 408 409 no_qp_table: 410 kfree(rdi->qp_dev); 411 412 return ret; 413 } 414 415 /** 416 * rvt_free_qp_cb - callback function to reset a qp 417 * @qp: the qp to reset 418 * @v: a 64-bit value 419 * 420 * This function resets the qp and removes it from the 421 * qp hash table. 422 */ 423 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v) 424 { 425 unsigned int *qp_inuse = (unsigned int *)v; 426 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 427 428 /* Reset the qp and remove it from the qp hash list */ 429 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type); 430 431 /* Increment the qp_inuse count */ 432 (*qp_inuse)++; 433 } 434 435 /** 436 * rvt_free_all_qps - check for QPs still in use 437 * @rdi: rvt device info structure 438 * 439 * There should not be any QPs still in use. 440 * Free memory for table. 441 * Return the number of QPs still in use. 442 */ 443 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 444 { 445 unsigned int qp_inuse = 0; 446 447 qp_inuse += rvt_mcast_tree_empty(rdi); 448 449 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb); 450 451 return qp_inuse; 452 } 453 454 /** 455 * rvt_qp_exit - clean up qps on device exit 456 * @rdi: rvt dev structure 457 * 458 * Check for qp leaks and free resources. 459 */ 460 void rvt_qp_exit(struct rvt_dev_info *rdi) 461 { 462 u32 qps_inuse = rvt_free_all_qps(rdi); 463 464 if (qps_inuse) 465 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 466 qps_inuse); 467 if (!rdi->qp_dev) 468 return; 469 470 kfree(rdi->qp_dev->qp_table); 471 free_qpn_table(&rdi->qp_dev->qpn_table); 472 kfree(rdi->qp_dev); 473 } 474 475 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 476 struct rvt_qpn_map *map, unsigned off) 477 { 478 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 479 } 480 481 /** 482 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 483 * IB_QPT_SMI/IB_QPT_GSI 484 * @rdi: rvt device info structure 485 * @qpt: queue pair number table pointer 486 * @type: the QP type 487 * @port_num: IB port number, 1 based, comes from core 488 * @exclude_prefix: prefix of special queue pair number being allocated 489 * 490 * Return: The queue pair number 491 */ 492 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 493 enum ib_qp_type type, u8 port_num, u8 exclude_prefix) 494 { 495 u32 i, offset, max_scan, qpn; 496 struct rvt_qpn_map *map; 497 u32 ret; 498 u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ? 499 RVT_AIP_QPN_MAX : RVT_QPN_MAX; 500 501 if (rdi->driver_f.alloc_qpn) 502 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 503 504 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 505 unsigned n; 506 507 ret = type == IB_QPT_GSI; 508 n = 1 << (ret + 2 * (port_num - 1)); 509 spin_lock(&qpt->lock); 510 if (qpt->flags & n) 511 ret = -EINVAL; 512 else 513 qpt->flags |= n; 514 spin_unlock(&qpt->lock); 515 goto bail; 516 } 517 518 qpn = qpt->last + qpt->incr; 519 if (qpn >= max_qpn) 520 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 521 /* offset carries bit 0 */ 522 offset = qpn & RVT_BITS_PER_PAGE_MASK; 523 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 524 max_scan = qpt->nmaps - !offset; 525 for (i = 0;;) { 526 if (unlikely(!map->page)) { 527 get_map_page(qpt, map); 528 if (unlikely(!map->page)) 529 break; 530 } 531 do { 532 if (!test_and_set_bit(offset, map->page)) { 533 qpt->last = qpn; 534 ret = qpn; 535 goto bail; 536 } 537 offset += qpt->incr; 538 /* 539 * This qpn might be bogus if offset >= BITS_PER_PAGE. 540 * That is OK. It gets re-assigned below 541 */ 542 qpn = mk_qpn(qpt, map, offset); 543 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 544 /* 545 * In order to keep the number of pages allocated to a 546 * minimum, we scan the all existing pages before increasing 547 * the size of the bitmap table. 548 */ 549 if (++i > max_scan) { 550 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 551 break; 552 map = &qpt->map[qpt->nmaps++]; 553 /* start at incr with current bit 0 */ 554 offset = qpt->incr | (offset & 1); 555 } else if (map < &qpt->map[qpt->nmaps]) { 556 ++map; 557 /* start at incr with current bit 0 */ 558 offset = qpt->incr | (offset & 1); 559 } else { 560 map = &qpt->map[0]; 561 /* wrap to first map page, invert bit 0 */ 562 offset = qpt->incr | ((offset & 1) ^ 1); 563 } 564 /* there can be no set bits in low-order QoS bits */ 565 WARN_ON(rdi->dparms.qos_shift > 1 && 566 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1)); 567 qpn = mk_qpn(qpt, map, offset); 568 } 569 570 ret = -ENOMEM; 571 572 bail: 573 return ret; 574 } 575 576 /** 577 * rvt_clear_mr_refs - Drop help mr refs 578 * @qp: rvt qp data structure 579 * @clr_sends: If shoudl clear send side or not 580 */ 581 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 582 { 583 unsigned n; 584 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 585 586 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 587 rvt_put_ss(&qp->s_rdma_read_sge); 588 589 rvt_put_ss(&qp->r_sge); 590 591 if (clr_sends) { 592 while (qp->s_last != qp->s_head) { 593 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 594 595 rvt_put_qp_swqe(qp, wqe); 596 if (++qp->s_last >= qp->s_size) 597 qp->s_last = 0; 598 smp_wmb(); /* see qp_set_savail */ 599 } 600 if (qp->s_rdma_mr) { 601 rvt_put_mr(qp->s_rdma_mr); 602 qp->s_rdma_mr = NULL; 603 } 604 } 605 606 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 607 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 608 609 if (e->rdma_sge.mr) { 610 rvt_put_mr(e->rdma_sge.mr); 611 e->rdma_sge.mr = NULL; 612 } 613 } 614 } 615 616 /** 617 * rvt_swqe_has_lkey - return true if lkey is used by swqe 618 * @wqe: the send wqe 619 * @lkey: the lkey 620 * 621 * Test the swqe for using lkey 622 */ 623 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 624 { 625 int i; 626 627 for (i = 0; i < wqe->wr.num_sge; i++) { 628 struct rvt_sge *sge = &wqe->sg_list[i]; 629 630 if (rvt_mr_has_lkey(sge->mr, lkey)) 631 return true; 632 } 633 return false; 634 } 635 636 /** 637 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 638 * @qp: the rvt_qp 639 * @lkey: the lkey 640 */ 641 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 642 { 643 u32 s_last = qp->s_last; 644 645 while (s_last != qp->s_head) { 646 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 647 648 if (rvt_swqe_has_lkey(wqe, lkey)) 649 return true; 650 651 if (++s_last >= qp->s_size) 652 s_last = 0; 653 } 654 if (qp->s_rdma_mr) 655 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 656 return true; 657 return false; 658 } 659 660 /** 661 * rvt_qp_acks_has_lkey - return true if acks have lkey 662 * @qp: the qp 663 * @lkey: the lkey 664 */ 665 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 666 { 667 int i; 668 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 669 670 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 671 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 672 673 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 674 return true; 675 } 676 return false; 677 } 678 679 /** 680 * rvt_qp_mr_clean - clean up remote ops for lkey 681 * @qp: the qp 682 * @lkey: the lkey that is being de-registered 683 * 684 * This routine checks if the lkey is being used by 685 * the qp. 686 * 687 * If so, the qp is put into an error state to elminate 688 * any references from the qp. 689 */ 690 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 691 { 692 bool lastwqe = false; 693 694 if (qp->ibqp.qp_type == IB_QPT_SMI || 695 qp->ibqp.qp_type == IB_QPT_GSI) 696 /* avoid special QPs */ 697 return; 698 spin_lock_irq(&qp->r_lock); 699 spin_lock(&qp->s_hlock); 700 spin_lock(&qp->s_lock); 701 702 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 703 goto check_lwqe; 704 705 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 706 rvt_qp_sends_has_lkey(qp, lkey) || 707 rvt_qp_acks_has_lkey(qp, lkey)) 708 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 709 check_lwqe: 710 spin_unlock(&qp->s_lock); 711 spin_unlock(&qp->s_hlock); 712 spin_unlock_irq(&qp->r_lock); 713 if (lastwqe) { 714 struct ib_event ev; 715 716 ev.device = qp->ibqp.device; 717 ev.element.qp = &qp->ibqp; 718 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 719 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 720 } 721 } 722 723 /** 724 * rvt_remove_qp - remove qp form table 725 * @rdi: rvt dev struct 726 * @qp: qp to remove 727 * 728 * Remove the QP from the table so it can't be found asynchronously by 729 * the receive routine. 730 */ 731 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 732 { 733 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 734 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 735 unsigned long flags; 736 int removed = 1; 737 738 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 739 740 if (rcu_dereference_protected(rvp->qp[0], 741 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 742 RCU_INIT_POINTER(rvp->qp[0], NULL); 743 } else if (rcu_dereference_protected(rvp->qp[1], 744 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 745 RCU_INIT_POINTER(rvp->qp[1], NULL); 746 } else { 747 struct rvt_qp *q; 748 struct rvt_qp __rcu **qpp; 749 750 removed = 0; 751 qpp = &rdi->qp_dev->qp_table[n]; 752 for (; (q = rcu_dereference_protected(*qpp, 753 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 754 qpp = &q->next) { 755 if (q == qp) { 756 RCU_INIT_POINTER(*qpp, 757 rcu_dereference_protected(qp->next, 758 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 759 removed = 1; 760 trace_rvt_qpremove(qp, n); 761 break; 762 } 763 } 764 } 765 766 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 767 if (removed) { 768 synchronize_rcu(); 769 rvt_put_qp(qp); 770 } 771 } 772 773 /** 774 * rvt_alloc_rq - allocate memory for user or kernel buffer 775 * @rq: receive queue data structure 776 * @size: number of request queue entries 777 * @node: The NUMA node 778 * @udata: True if user data is available or not false 779 * 780 * Return: If memory allocation failed, return -ENONEM 781 * This function is used by both shared receive 782 * queues and non-shared receive queues to allocate 783 * memory. 784 */ 785 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node, 786 struct ib_udata *udata) 787 { 788 if (udata) { 789 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size); 790 if (!rq->wq) 791 goto bail; 792 /* need kwq with no buffers */ 793 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node); 794 if (!rq->kwq) 795 goto bail; 796 rq->kwq->curr_wq = rq->wq->wq; 797 } else { 798 /* need kwq with buffers */ 799 rq->kwq = 800 vzalloc_node(sizeof(struct rvt_krwq) + size, node); 801 if (!rq->kwq) 802 goto bail; 803 rq->kwq->curr_wq = rq->kwq->wq; 804 } 805 806 spin_lock_init(&rq->kwq->p_lock); 807 spin_lock_init(&rq->kwq->c_lock); 808 return 0; 809 bail: 810 rvt_free_rq(rq); 811 return -ENOMEM; 812 } 813 814 /** 815 * rvt_init_qp - initialize the QP state to the reset state 816 * @rdi: rvt dev struct 817 * @qp: the QP to init or reinit 818 * @type: the QP type 819 * 820 * This function is called from both rvt_create_qp() and 821 * rvt_reset_qp(). The difference is that the reset 822 * patch the necessary locks to protect against concurent 823 * access. 824 */ 825 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 826 enum ib_qp_type type) 827 { 828 qp->remote_qpn = 0; 829 qp->qkey = 0; 830 qp->qp_access_flags = 0; 831 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 832 qp->s_hdrwords = 0; 833 qp->s_wqe = NULL; 834 qp->s_draining = 0; 835 qp->s_next_psn = 0; 836 qp->s_last_psn = 0; 837 qp->s_sending_psn = 0; 838 qp->s_sending_hpsn = 0; 839 qp->s_psn = 0; 840 qp->r_psn = 0; 841 qp->r_msn = 0; 842 if (type == IB_QPT_RC) { 843 qp->s_state = IB_OPCODE_RC_SEND_LAST; 844 qp->r_state = IB_OPCODE_RC_SEND_LAST; 845 } else { 846 qp->s_state = IB_OPCODE_UC_SEND_LAST; 847 qp->r_state = IB_OPCODE_UC_SEND_LAST; 848 } 849 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 850 qp->r_nak_state = 0; 851 qp->r_aflags = 0; 852 qp->r_flags = 0; 853 qp->s_head = 0; 854 qp->s_tail = 0; 855 qp->s_cur = 0; 856 qp->s_acked = 0; 857 qp->s_last = 0; 858 qp->s_ssn = 1; 859 qp->s_lsn = 0; 860 qp->s_mig_state = IB_MIG_MIGRATED; 861 qp->r_head_ack_queue = 0; 862 qp->s_tail_ack_queue = 0; 863 qp->s_acked_ack_queue = 0; 864 qp->s_num_rd_atomic = 0; 865 qp->r_sge.num_sge = 0; 866 atomic_set(&qp->s_reserved_used, 0); 867 } 868 869 /** 870 * _rvt_reset_qp - initialize the QP state to the reset state 871 * @rdi: rvt dev struct 872 * @qp: the QP to reset 873 * @type: the QP type 874 * 875 * r_lock, s_hlock, and s_lock are required to be held by the caller 876 */ 877 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 878 enum ib_qp_type type) 879 __must_hold(&qp->s_lock) 880 __must_hold(&qp->s_hlock) 881 __must_hold(&qp->r_lock) 882 { 883 lockdep_assert_held(&qp->r_lock); 884 lockdep_assert_held(&qp->s_hlock); 885 lockdep_assert_held(&qp->s_lock); 886 if (qp->state != IB_QPS_RESET) { 887 qp->state = IB_QPS_RESET; 888 889 /* Let drivers flush their waitlist */ 890 rdi->driver_f.flush_qp_waiters(qp); 891 rvt_stop_rc_timers(qp); 892 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 893 spin_unlock(&qp->s_lock); 894 spin_unlock(&qp->s_hlock); 895 spin_unlock_irq(&qp->r_lock); 896 897 /* Stop the send queue and the retry timer */ 898 rdi->driver_f.stop_send_queue(qp); 899 rvt_del_timers_sync(qp); 900 /* Wait for things to stop */ 901 rdi->driver_f.quiesce_qp(qp); 902 903 /* take qp out the hash and wait for it to be unused */ 904 rvt_remove_qp(rdi, qp); 905 906 /* grab the lock b/c it was locked at call time */ 907 spin_lock_irq(&qp->r_lock); 908 spin_lock(&qp->s_hlock); 909 spin_lock(&qp->s_lock); 910 911 rvt_clear_mr_refs(qp, 1); 912 /* 913 * Let the driver do any tear down or re-init it needs to for 914 * a qp that has been reset 915 */ 916 rdi->driver_f.notify_qp_reset(qp); 917 } 918 rvt_init_qp(rdi, qp, type); 919 lockdep_assert_held(&qp->r_lock); 920 lockdep_assert_held(&qp->s_hlock); 921 lockdep_assert_held(&qp->s_lock); 922 } 923 924 /** 925 * rvt_reset_qp - initialize the QP state to the reset state 926 * @rdi: the device info 927 * @qp: the QP to reset 928 * @type: the QP type 929 * 930 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock 931 * before calling _rvt_reset_qp(). 932 */ 933 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 934 enum ib_qp_type type) 935 { 936 spin_lock_irq(&qp->r_lock); 937 spin_lock(&qp->s_hlock); 938 spin_lock(&qp->s_lock); 939 _rvt_reset_qp(rdi, qp, type); 940 spin_unlock(&qp->s_lock); 941 spin_unlock(&qp->s_hlock); 942 spin_unlock_irq(&qp->r_lock); 943 } 944 945 /** 946 * rvt_free_qpn - Free a qpn from the bit map 947 * @qpt: QP table 948 * @qpn: queue pair number to free 949 */ 950 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 951 { 952 struct rvt_qpn_map *map; 953 954 if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE) 955 qpn &= RVT_AIP_QP_SUFFIX; 956 957 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 958 if (map->page) 959 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 960 } 961 962 /** 963 * get_allowed_ops - Given a QP type return the appropriate allowed OP 964 * @type: valid, supported, QP type 965 */ 966 static u8 get_allowed_ops(enum ib_qp_type type) 967 { 968 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ? 969 IB_OPCODE_UC : IB_OPCODE_UD; 970 } 971 972 /** 973 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs 974 * @qp: Valid QP with allowed_ops set 975 * 976 * The rvt_swqe data structure being used is a union, so this is 977 * only valid for UD QPs. 978 */ 979 static void free_ud_wq_attr(struct rvt_qp *qp) 980 { 981 struct rvt_swqe *wqe; 982 int i; 983 984 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 985 wqe = rvt_get_swqe_ptr(qp, i); 986 kfree(wqe->ud_wr.attr); 987 wqe->ud_wr.attr = NULL; 988 } 989 } 990 991 /** 992 * alloc_ud_wq_attr - AH attribute cache for UD QPs 993 * @qp: Valid QP with allowed_ops set 994 * @node: Numa node for allocation 995 * 996 * The rvt_swqe data structure being used is a union, so this is 997 * only valid for UD QPs. 998 */ 999 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node) 1000 { 1001 struct rvt_swqe *wqe; 1002 int i; 1003 1004 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1005 wqe = rvt_get_swqe_ptr(qp, i); 1006 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr), 1007 GFP_KERNEL, node); 1008 if (!wqe->ud_wr.attr) { 1009 free_ud_wq_attr(qp); 1010 return -ENOMEM; 1011 } 1012 } 1013 1014 return 0; 1015 } 1016 1017 /** 1018 * rvt_create_qp - create a queue pair for a device 1019 * @ibqp: the queue pair 1020 * @init_attr: the attributes of the queue pair 1021 * @udata: user data for libibverbs.so 1022 * 1023 * Queue pair creation is mostly an rvt issue. However, drivers have their own 1024 * unique idea of what queue pair numbers mean. For instance there is a reserved 1025 * range for PSM. 1026 * 1027 * Return: 0 on success, otherwise returns an errno. 1028 * 1029 * Called by the ib_create_qp() core verbs function. 1030 */ 1031 int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr, 1032 struct ib_udata *udata) 1033 { 1034 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1035 int ret = -ENOMEM; 1036 struct rvt_swqe *swq = NULL; 1037 size_t sz; 1038 size_t sg_list_sz = 0; 1039 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1040 void *priv = NULL; 1041 size_t sqsize; 1042 u8 exclude_prefix = 0; 1043 1044 if (!rdi) 1045 return -EINVAL; 1046 1047 if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE) 1048 return -EOPNOTSUPP; 1049 1050 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 1051 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr) 1052 return -EINVAL; 1053 1054 /* Check receive queue parameters if no SRQ is specified. */ 1055 if (!init_attr->srq) { 1056 if (init_attr->cap.max_recv_sge > 1057 rdi->dparms.props.max_recv_sge || 1058 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 1059 return -EINVAL; 1060 1061 if (init_attr->cap.max_send_sge + 1062 init_attr->cap.max_send_wr + 1063 init_attr->cap.max_recv_sge + 1064 init_attr->cap.max_recv_wr == 0) 1065 return -EINVAL; 1066 } 1067 sqsize = 1068 init_attr->cap.max_send_wr + 1 + 1069 rdi->dparms.reserved_operations; 1070 switch (init_attr->qp_type) { 1071 case IB_QPT_SMI: 1072 case IB_QPT_GSI: 1073 if (init_attr->port_num == 0 || 1074 init_attr->port_num > ibqp->device->phys_port_cnt) 1075 return -EINVAL; 1076 fallthrough; 1077 case IB_QPT_UC: 1078 case IB_QPT_RC: 1079 case IB_QPT_UD: 1080 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge); 1081 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 1082 if (!swq) 1083 return -ENOMEM; 1084 1085 if (init_attr->srq) { 1086 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1087 1088 if (srq->rq.max_sge > 1) 1089 sg_list_sz = sizeof(*qp->r_sg_list) * 1090 (srq->rq.max_sge - 1); 1091 } else if (init_attr->cap.max_recv_sge > 1) 1092 sg_list_sz = sizeof(*qp->r_sg_list) * 1093 (init_attr->cap.max_recv_sge - 1); 1094 qp->r_sg_list = 1095 kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node); 1096 if (!qp->r_sg_list) 1097 goto bail_qp; 1098 qp->allowed_ops = get_allowed_ops(init_attr->qp_type); 1099 1100 RCU_INIT_POINTER(qp->next, NULL); 1101 if (init_attr->qp_type == IB_QPT_RC) { 1102 qp->s_ack_queue = 1103 kcalloc_node(rvt_max_atomic(rdi), 1104 sizeof(*qp->s_ack_queue), 1105 GFP_KERNEL, 1106 rdi->dparms.node); 1107 if (!qp->s_ack_queue) 1108 goto bail_qp; 1109 } 1110 /* initialize timers needed for rc qp */ 1111 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1112 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 1113 HRTIMER_MODE_REL); 1114 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 1115 1116 /* 1117 * Driver needs to set up it's private QP structure and do any 1118 * initialization that is needed. 1119 */ 1120 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1121 if (IS_ERR(priv)) { 1122 ret = PTR_ERR(priv); 1123 goto bail_qp; 1124 } 1125 qp->priv = priv; 1126 qp->timeout_jiffies = 1127 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1128 1000UL); 1129 if (init_attr->srq) { 1130 sz = 0; 1131 } else { 1132 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1133 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1134 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1135 sizeof(struct rvt_rwqe); 1136 ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz, 1137 rdi->dparms.node, udata); 1138 if (ret) 1139 goto bail_driver_priv; 1140 } 1141 1142 /* 1143 * ib_create_qp() will initialize qp->ibqp 1144 * except for qp->ibqp.qp_num. 1145 */ 1146 spin_lock_init(&qp->r_lock); 1147 spin_lock_init(&qp->s_hlock); 1148 spin_lock_init(&qp->s_lock); 1149 atomic_set(&qp->refcount, 0); 1150 atomic_set(&qp->local_ops_pending, 0); 1151 init_waitqueue_head(&qp->wait); 1152 INIT_LIST_HEAD(&qp->rspwait); 1153 qp->state = IB_QPS_RESET; 1154 qp->s_wq = swq; 1155 qp->s_size = sqsize; 1156 qp->s_avail = init_attr->cap.max_send_wr; 1157 qp->s_max_sge = init_attr->cap.max_send_sge; 1158 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1159 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1160 ret = alloc_ud_wq_attr(qp, rdi->dparms.node); 1161 if (ret) 1162 goto bail_rq_rvt; 1163 1164 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1165 exclude_prefix = RVT_AIP_QP_PREFIX; 1166 1167 ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1168 init_attr->qp_type, 1169 init_attr->port_num, 1170 exclude_prefix); 1171 if (ret < 0) 1172 goto bail_rq_wq; 1173 1174 qp->ibqp.qp_num = ret; 1175 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1176 qp->ibqp.qp_num |= RVT_AIP_QP_BASE; 1177 qp->port_num = init_attr->port_num; 1178 rvt_init_qp(rdi, qp, init_attr->qp_type); 1179 if (rdi->driver_f.qp_priv_init) { 1180 ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); 1181 if (ret) 1182 goto bail_rq_wq; 1183 } 1184 break; 1185 1186 default: 1187 /* Don't support raw QPs */ 1188 return -EOPNOTSUPP; 1189 } 1190 1191 init_attr->cap.max_inline_data = 0; 1192 1193 /* 1194 * Return the address of the RWQ as the offset to mmap. 1195 * See rvt_mmap() for details. 1196 */ 1197 if (udata && udata->outlen >= sizeof(__u64)) { 1198 if (!qp->r_rq.wq) { 1199 __u64 offset = 0; 1200 1201 ret = ib_copy_to_udata(udata, &offset, 1202 sizeof(offset)); 1203 if (ret) 1204 goto bail_qpn; 1205 } else { 1206 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1207 1208 qp->ip = rvt_create_mmap_info(rdi, s, udata, 1209 qp->r_rq.wq); 1210 if (IS_ERR(qp->ip)) { 1211 ret = PTR_ERR(qp->ip); 1212 goto bail_qpn; 1213 } 1214 1215 ret = ib_copy_to_udata(udata, &qp->ip->offset, 1216 sizeof(qp->ip->offset)); 1217 if (ret) 1218 goto bail_ip; 1219 } 1220 qp->pid = current->pid; 1221 } 1222 1223 spin_lock(&rdi->n_qps_lock); 1224 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1225 spin_unlock(&rdi->n_qps_lock); 1226 ret = -ENOMEM; 1227 goto bail_ip; 1228 } 1229 1230 rdi->n_qps_allocated++; 1231 /* 1232 * Maintain a busy_jiffies variable that will be added to the timeout 1233 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1234 * is scaled by the number of rc qps created for the device to reduce 1235 * the number of timeouts occurring when there is a large number of 1236 * qps. busy_jiffies is incremented every rc qp scaling interval. 1237 * The scaling interval is selected based on extensive performance 1238 * evaluation of targeted workloads. 1239 */ 1240 if (init_attr->qp_type == IB_QPT_RC) { 1241 rdi->n_rc_qps++; 1242 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1243 } 1244 spin_unlock(&rdi->n_qps_lock); 1245 1246 if (qp->ip) { 1247 spin_lock_irq(&rdi->pending_lock); 1248 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1249 spin_unlock_irq(&rdi->pending_lock); 1250 } 1251 1252 return 0; 1253 1254 bail_ip: 1255 if (qp->ip) 1256 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1257 1258 bail_qpn: 1259 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1260 1261 bail_rq_wq: 1262 free_ud_wq_attr(qp); 1263 1264 bail_rq_rvt: 1265 rvt_free_rq(&qp->r_rq); 1266 1267 bail_driver_priv: 1268 rdi->driver_f.qp_priv_free(rdi, qp); 1269 1270 bail_qp: 1271 kfree(qp->s_ack_queue); 1272 kfree(qp->r_sg_list); 1273 vfree(swq); 1274 return ret; 1275 } 1276 1277 /** 1278 * rvt_error_qp - put a QP into the error state 1279 * @qp: the QP to put into the error state 1280 * @err: the receive completion error to signal if a RWQE is active 1281 * 1282 * Flushes both send and receive work queues. 1283 * 1284 * Return: true if last WQE event should be generated. 1285 * The QP r_lock and s_lock should be held and interrupts disabled. 1286 * If we are already in error state, just return. 1287 */ 1288 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1289 { 1290 struct ib_wc wc; 1291 int ret = 0; 1292 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1293 1294 lockdep_assert_held(&qp->r_lock); 1295 lockdep_assert_held(&qp->s_lock); 1296 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1297 goto bail; 1298 1299 qp->state = IB_QPS_ERR; 1300 1301 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1302 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1303 del_timer(&qp->s_timer); 1304 } 1305 1306 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1307 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1308 1309 rdi->driver_f.notify_error_qp(qp); 1310 1311 /* Schedule the sending tasklet to drain the send work queue. */ 1312 if (READ_ONCE(qp->s_last) != qp->s_head) 1313 rdi->driver_f.schedule_send(qp); 1314 1315 rvt_clear_mr_refs(qp, 0); 1316 1317 memset(&wc, 0, sizeof(wc)); 1318 wc.qp = &qp->ibqp; 1319 wc.opcode = IB_WC_RECV; 1320 1321 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1322 wc.wr_id = qp->r_wr_id; 1323 wc.status = err; 1324 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1325 } 1326 wc.status = IB_WC_WR_FLUSH_ERR; 1327 1328 if (qp->r_rq.kwq) { 1329 u32 head; 1330 u32 tail; 1331 struct rvt_rwq *wq = NULL; 1332 struct rvt_krwq *kwq = NULL; 1333 1334 spin_lock(&qp->r_rq.kwq->c_lock); 1335 /* qp->ip used to validate if there is a user buffer mmaped */ 1336 if (qp->ip) { 1337 wq = qp->r_rq.wq; 1338 head = RDMA_READ_UAPI_ATOMIC(wq->head); 1339 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 1340 } else { 1341 kwq = qp->r_rq.kwq; 1342 head = kwq->head; 1343 tail = kwq->tail; 1344 } 1345 /* sanity check pointers before trusting them */ 1346 if (head >= qp->r_rq.size) 1347 head = 0; 1348 if (tail >= qp->r_rq.size) 1349 tail = 0; 1350 while (tail != head) { 1351 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1352 if (++tail >= qp->r_rq.size) 1353 tail = 0; 1354 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1355 } 1356 if (qp->ip) 1357 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 1358 else 1359 kwq->tail = tail; 1360 spin_unlock(&qp->r_rq.kwq->c_lock); 1361 } else if (qp->ibqp.event_handler) { 1362 ret = 1; 1363 } 1364 1365 bail: 1366 return ret; 1367 } 1368 EXPORT_SYMBOL(rvt_error_qp); 1369 1370 /* 1371 * Put the QP into the hash table. 1372 * The hash table holds a reference to the QP. 1373 */ 1374 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1375 { 1376 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1377 unsigned long flags; 1378 1379 rvt_get_qp(qp); 1380 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1381 1382 if (qp->ibqp.qp_num <= 1) { 1383 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1384 } else { 1385 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1386 1387 qp->next = rdi->qp_dev->qp_table[n]; 1388 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1389 trace_rvt_qpinsert(qp, n); 1390 } 1391 1392 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1393 } 1394 1395 /** 1396 * rvt_modify_qp - modify the attributes of a queue pair 1397 * @ibqp: the queue pair who's attributes we're modifying 1398 * @attr: the new attributes 1399 * @attr_mask: the mask of attributes to modify 1400 * @udata: user data for libibverbs.so 1401 * 1402 * Return: 0 on success, otherwise returns an errno. 1403 */ 1404 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1405 int attr_mask, struct ib_udata *udata) 1406 { 1407 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1408 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1409 enum ib_qp_state cur_state, new_state; 1410 struct ib_event ev; 1411 int lastwqe = 0; 1412 int mig = 0; 1413 int pmtu = 0; /* for gcc warning only */ 1414 int opa_ah; 1415 1416 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS) 1417 return -EOPNOTSUPP; 1418 1419 spin_lock_irq(&qp->r_lock); 1420 spin_lock(&qp->s_hlock); 1421 spin_lock(&qp->s_lock); 1422 1423 cur_state = attr_mask & IB_QP_CUR_STATE ? 1424 attr->cur_qp_state : qp->state; 1425 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1426 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1427 1428 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1429 attr_mask)) 1430 goto inval; 1431 1432 if (rdi->driver_f.check_modify_qp && 1433 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1434 goto inval; 1435 1436 if (attr_mask & IB_QP_AV) { 1437 if (opa_ah) { 1438 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1439 opa_get_mcast_base(OPA_MCAST_NR)) 1440 goto inval; 1441 } else { 1442 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1443 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1444 goto inval; 1445 } 1446 1447 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1448 goto inval; 1449 } 1450 1451 if (attr_mask & IB_QP_ALT_PATH) { 1452 if (opa_ah) { 1453 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1454 opa_get_mcast_base(OPA_MCAST_NR)) 1455 goto inval; 1456 } else { 1457 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1458 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1459 goto inval; 1460 } 1461 1462 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1463 goto inval; 1464 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1465 goto inval; 1466 } 1467 1468 if (attr_mask & IB_QP_PKEY_INDEX) 1469 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1470 goto inval; 1471 1472 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1473 if (attr->min_rnr_timer > 31) 1474 goto inval; 1475 1476 if (attr_mask & IB_QP_PORT) 1477 if (qp->ibqp.qp_type == IB_QPT_SMI || 1478 qp->ibqp.qp_type == IB_QPT_GSI || 1479 attr->port_num == 0 || 1480 attr->port_num > ibqp->device->phys_port_cnt) 1481 goto inval; 1482 1483 if (attr_mask & IB_QP_DEST_QPN) 1484 if (attr->dest_qp_num > RVT_QPN_MASK) 1485 goto inval; 1486 1487 if (attr_mask & IB_QP_RETRY_CNT) 1488 if (attr->retry_cnt > 7) 1489 goto inval; 1490 1491 if (attr_mask & IB_QP_RNR_RETRY) 1492 if (attr->rnr_retry > 7) 1493 goto inval; 1494 1495 /* 1496 * Don't allow invalid path_mtu values. OK to set greater 1497 * than the active mtu (or even the max_cap, if we have tuned 1498 * that to a small mtu. We'll set qp->path_mtu 1499 * to the lesser of requested attribute mtu and active, 1500 * for packetizing messages. 1501 * Note that the QP port has to be set in INIT and MTU in RTR. 1502 */ 1503 if (attr_mask & IB_QP_PATH_MTU) { 1504 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1505 if (pmtu < 0) 1506 goto inval; 1507 } 1508 1509 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1510 if (attr->path_mig_state == IB_MIG_REARM) { 1511 if (qp->s_mig_state == IB_MIG_ARMED) 1512 goto inval; 1513 if (new_state != IB_QPS_RTS) 1514 goto inval; 1515 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1516 if (qp->s_mig_state == IB_MIG_REARM) 1517 goto inval; 1518 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1519 goto inval; 1520 if (qp->s_mig_state == IB_MIG_ARMED) 1521 mig = 1; 1522 } else { 1523 goto inval; 1524 } 1525 } 1526 1527 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1528 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1529 goto inval; 1530 1531 switch (new_state) { 1532 case IB_QPS_RESET: 1533 if (qp->state != IB_QPS_RESET) 1534 _rvt_reset_qp(rdi, qp, ibqp->qp_type); 1535 break; 1536 1537 case IB_QPS_RTR: 1538 /* Allow event to re-trigger if QP set to RTR more than once */ 1539 qp->r_flags &= ~RVT_R_COMM_EST; 1540 qp->state = new_state; 1541 break; 1542 1543 case IB_QPS_SQD: 1544 qp->s_draining = qp->s_last != qp->s_cur; 1545 qp->state = new_state; 1546 break; 1547 1548 case IB_QPS_SQE: 1549 if (qp->ibqp.qp_type == IB_QPT_RC) 1550 goto inval; 1551 qp->state = new_state; 1552 break; 1553 1554 case IB_QPS_ERR: 1555 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1556 break; 1557 1558 default: 1559 qp->state = new_state; 1560 break; 1561 } 1562 1563 if (attr_mask & IB_QP_PKEY_INDEX) 1564 qp->s_pkey_index = attr->pkey_index; 1565 1566 if (attr_mask & IB_QP_PORT) 1567 qp->port_num = attr->port_num; 1568 1569 if (attr_mask & IB_QP_DEST_QPN) 1570 qp->remote_qpn = attr->dest_qp_num; 1571 1572 if (attr_mask & IB_QP_SQ_PSN) { 1573 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1574 qp->s_psn = qp->s_next_psn; 1575 qp->s_sending_psn = qp->s_next_psn; 1576 qp->s_last_psn = qp->s_next_psn - 1; 1577 qp->s_sending_hpsn = qp->s_last_psn; 1578 } 1579 1580 if (attr_mask & IB_QP_RQ_PSN) 1581 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1582 1583 if (attr_mask & IB_QP_ACCESS_FLAGS) 1584 qp->qp_access_flags = attr->qp_access_flags; 1585 1586 if (attr_mask & IB_QP_AV) { 1587 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1588 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1589 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1590 } 1591 1592 if (attr_mask & IB_QP_ALT_PATH) { 1593 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1594 qp->s_alt_pkey_index = attr->alt_pkey_index; 1595 } 1596 1597 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1598 qp->s_mig_state = attr->path_mig_state; 1599 if (mig) { 1600 qp->remote_ah_attr = qp->alt_ah_attr; 1601 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1602 qp->s_pkey_index = qp->s_alt_pkey_index; 1603 } 1604 } 1605 1606 if (attr_mask & IB_QP_PATH_MTU) { 1607 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1608 qp->log_pmtu = ilog2(qp->pmtu); 1609 } 1610 1611 if (attr_mask & IB_QP_RETRY_CNT) { 1612 qp->s_retry_cnt = attr->retry_cnt; 1613 qp->s_retry = attr->retry_cnt; 1614 } 1615 1616 if (attr_mask & IB_QP_RNR_RETRY) { 1617 qp->s_rnr_retry_cnt = attr->rnr_retry; 1618 qp->s_rnr_retry = attr->rnr_retry; 1619 } 1620 1621 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1622 qp->r_min_rnr_timer = attr->min_rnr_timer; 1623 1624 if (attr_mask & IB_QP_TIMEOUT) { 1625 qp->timeout = attr->timeout; 1626 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1627 } 1628 1629 if (attr_mask & IB_QP_QKEY) 1630 qp->qkey = attr->qkey; 1631 1632 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1633 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1634 1635 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1636 qp->s_max_rd_atomic = attr->max_rd_atomic; 1637 1638 if (rdi->driver_f.modify_qp) 1639 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1640 1641 spin_unlock(&qp->s_lock); 1642 spin_unlock(&qp->s_hlock); 1643 spin_unlock_irq(&qp->r_lock); 1644 1645 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1646 rvt_insert_qp(rdi, qp); 1647 1648 if (lastwqe) { 1649 ev.device = qp->ibqp.device; 1650 ev.element.qp = &qp->ibqp; 1651 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1652 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1653 } 1654 if (mig) { 1655 ev.device = qp->ibqp.device; 1656 ev.element.qp = &qp->ibqp; 1657 ev.event = IB_EVENT_PATH_MIG; 1658 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1659 } 1660 return 0; 1661 1662 inval: 1663 spin_unlock(&qp->s_lock); 1664 spin_unlock(&qp->s_hlock); 1665 spin_unlock_irq(&qp->r_lock); 1666 return -EINVAL; 1667 } 1668 1669 /** 1670 * rvt_destroy_qp - destroy a queue pair 1671 * @ibqp: the queue pair to destroy 1672 * @udata: unused by the driver 1673 * 1674 * Note that this can be called while the QP is actively sending or 1675 * receiving! 1676 * 1677 * Return: 0 on success. 1678 */ 1679 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) 1680 { 1681 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1682 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1683 1684 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1685 1686 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1687 /* qpn is now available for use again */ 1688 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1689 1690 spin_lock(&rdi->n_qps_lock); 1691 rdi->n_qps_allocated--; 1692 if (qp->ibqp.qp_type == IB_QPT_RC) { 1693 rdi->n_rc_qps--; 1694 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1695 } 1696 spin_unlock(&rdi->n_qps_lock); 1697 1698 if (qp->ip) 1699 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1700 kvfree(qp->r_rq.kwq); 1701 rdi->driver_f.qp_priv_free(rdi, qp); 1702 kfree(qp->s_ack_queue); 1703 kfree(qp->r_sg_list); 1704 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1705 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1706 free_ud_wq_attr(qp); 1707 vfree(qp->s_wq); 1708 return 0; 1709 } 1710 1711 /** 1712 * rvt_query_qp - query an ipbq 1713 * @ibqp: IB qp to query 1714 * @attr: attr struct to fill in 1715 * @attr_mask: attr mask ignored 1716 * @init_attr: struct to fill in 1717 * 1718 * Return: always 0 1719 */ 1720 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1721 int attr_mask, struct ib_qp_init_attr *init_attr) 1722 { 1723 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1724 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1725 1726 attr->qp_state = qp->state; 1727 attr->cur_qp_state = attr->qp_state; 1728 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1729 attr->path_mig_state = qp->s_mig_state; 1730 attr->qkey = qp->qkey; 1731 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1732 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1733 attr->dest_qp_num = qp->remote_qpn; 1734 attr->qp_access_flags = qp->qp_access_flags; 1735 attr->cap.max_send_wr = qp->s_size - 1 - 1736 rdi->dparms.reserved_operations; 1737 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1738 attr->cap.max_send_sge = qp->s_max_sge; 1739 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1740 attr->cap.max_inline_data = 0; 1741 attr->ah_attr = qp->remote_ah_attr; 1742 attr->alt_ah_attr = qp->alt_ah_attr; 1743 attr->pkey_index = qp->s_pkey_index; 1744 attr->alt_pkey_index = qp->s_alt_pkey_index; 1745 attr->en_sqd_async_notify = 0; 1746 attr->sq_draining = qp->s_draining; 1747 attr->max_rd_atomic = qp->s_max_rd_atomic; 1748 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1749 attr->min_rnr_timer = qp->r_min_rnr_timer; 1750 attr->port_num = qp->port_num; 1751 attr->timeout = qp->timeout; 1752 attr->retry_cnt = qp->s_retry_cnt; 1753 attr->rnr_retry = qp->s_rnr_retry_cnt; 1754 attr->alt_port_num = 1755 rdma_ah_get_port_num(&qp->alt_ah_attr); 1756 attr->alt_timeout = qp->alt_timeout; 1757 1758 init_attr->event_handler = qp->ibqp.event_handler; 1759 init_attr->qp_context = qp->ibqp.qp_context; 1760 init_attr->send_cq = qp->ibqp.send_cq; 1761 init_attr->recv_cq = qp->ibqp.recv_cq; 1762 init_attr->srq = qp->ibqp.srq; 1763 init_attr->cap = attr->cap; 1764 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1765 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1766 else 1767 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1768 init_attr->qp_type = qp->ibqp.qp_type; 1769 init_attr->port_num = qp->port_num; 1770 return 0; 1771 } 1772 1773 /** 1774 * rvt_post_recv - post a receive on a QP 1775 * @ibqp: the QP to post the receive on 1776 * @wr: the WR to post 1777 * @bad_wr: the first bad WR is put here 1778 * 1779 * This may be called from interrupt context. 1780 * 1781 * Return: 0 on success otherwise errno 1782 */ 1783 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1784 const struct ib_recv_wr **bad_wr) 1785 { 1786 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1787 struct rvt_krwq *wq = qp->r_rq.kwq; 1788 unsigned long flags; 1789 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1790 !qp->ibqp.srq; 1791 1792 /* Check that state is OK to post receive. */ 1793 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1794 *bad_wr = wr; 1795 return -EINVAL; 1796 } 1797 1798 for (; wr; wr = wr->next) { 1799 struct rvt_rwqe *wqe; 1800 u32 next; 1801 int i; 1802 1803 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1804 *bad_wr = wr; 1805 return -EINVAL; 1806 } 1807 1808 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags); 1809 next = wq->head + 1; 1810 if (next >= qp->r_rq.size) 1811 next = 0; 1812 if (next == READ_ONCE(wq->tail)) { 1813 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1814 *bad_wr = wr; 1815 return -ENOMEM; 1816 } 1817 if (unlikely(qp_err_flush)) { 1818 struct ib_wc wc; 1819 1820 memset(&wc, 0, sizeof(wc)); 1821 wc.qp = &qp->ibqp; 1822 wc.opcode = IB_WC_RECV; 1823 wc.wr_id = wr->wr_id; 1824 wc.status = IB_WC_WR_FLUSH_ERR; 1825 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1826 } else { 1827 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1828 wqe->wr_id = wr->wr_id; 1829 wqe->num_sge = wr->num_sge; 1830 for (i = 0; i < wr->num_sge; i++) { 1831 wqe->sg_list[i].addr = wr->sg_list[i].addr; 1832 wqe->sg_list[i].length = wr->sg_list[i].length; 1833 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 1834 } 1835 /* 1836 * Make sure queue entry is written 1837 * before the head index. 1838 */ 1839 smp_store_release(&wq->head, next); 1840 } 1841 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1842 } 1843 return 0; 1844 } 1845 1846 /** 1847 * rvt_qp_valid_operation - validate post send wr request 1848 * @qp: the qp 1849 * @post_parms: the post send table for the driver 1850 * @wr: the work request 1851 * 1852 * The routine validates the operation based on the 1853 * validation table an returns the length of the operation 1854 * which can extend beyond the ib_send_bw. Operation 1855 * dependent flags key atomic operation validation. 1856 * 1857 * There is an exception for UD qps that validates the pd and 1858 * overrides the length to include the additional UD specific 1859 * length. 1860 * 1861 * Returns a negative error or the length of the work request 1862 * for building the swqe. 1863 */ 1864 static inline int rvt_qp_valid_operation( 1865 struct rvt_qp *qp, 1866 const struct rvt_operation_params *post_parms, 1867 const struct ib_send_wr *wr) 1868 { 1869 int len; 1870 1871 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1872 return -EINVAL; 1873 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1874 return -EINVAL; 1875 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1876 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1877 return -EINVAL; 1878 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1879 (wr->num_sge == 0 || 1880 wr->sg_list[0].length < sizeof(u64) || 1881 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1882 return -EINVAL; 1883 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1884 !qp->s_max_rd_atomic) 1885 return -EINVAL; 1886 len = post_parms[wr->opcode].length; 1887 /* UD specific */ 1888 if (qp->ibqp.qp_type != IB_QPT_UC && 1889 qp->ibqp.qp_type != IB_QPT_RC) { 1890 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1891 return -EINVAL; 1892 len = sizeof(struct ib_ud_wr); 1893 } 1894 return len; 1895 } 1896 1897 /** 1898 * rvt_qp_is_avail - determine queue capacity 1899 * @qp: the qp 1900 * @rdi: the rdmavt device 1901 * @reserved_op: is reserved operation 1902 * 1903 * This assumes the s_hlock is held but the s_last 1904 * qp variable is uncontrolled. 1905 * 1906 * For non reserved operations, the qp->s_avail 1907 * may be changed. 1908 * 1909 * The return value is zero or a -ENOMEM. 1910 */ 1911 static inline int rvt_qp_is_avail( 1912 struct rvt_qp *qp, 1913 struct rvt_dev_info *rdi, 1914 bool reserved_op) 1915 { 1916 u32 slast; 1917 u32 avail; 1918 u32 reserved_used; 1919 1920 /* see rvt_qp_wqe_unreserve() */ 1921 smp_mb__before_atomic(); 1922 if (unlikely(reserved_op)) { 1923 /* see rvt_qp_wqe_unreserve() */ 1924 reserved_used = atomic_read(&qp->s_reserved_used); 1925 if (reserved_used >= rdi->dparms.reserved_operations) 1926 return -ENOMEM; 1927 return 0; 1928 } 1929 /* non-reserved operations */ 1930 if (likely(qp->s_avail)) 1931 return 0; 1932 /* See rvt_qp_complete_swqe() */ 1933 slast = smp_load_acquire(&qp->s_last); 1934 if (qp->s_head >= slast) 1935 avail = qp->s_size - (qp->s_head - slast); 1936 else 1937 avail = slast - qp->s_head; 1938 1939 reserved_used = atomic_read(&qp->s_reserved_used); 1940 avail = avail - 1 - 1941 (rdi->dparms.reserved_operations - reserved_used); 1942 /* insure we don't assign a negative s_avail */ 1943 if ((s32)avail <= 0) 1944 return -ENOMEM; 1945 qp->s_avail = avail; 1946 if (WARN_ON(qp->s_avail > 1947 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1948 rvt_pr_err(rdi, 1949 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1950 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1951 qp->s_head, qp->s_tail, qp->s_cur, 1952 qp->s_acked, qp->s_last); 1953 return 0; 1954 } 1955 1956 /** 1957 * rvt_post_one_wr - post one RC, UC, or UD send work request 1958 * @qp: the QP to post on 1959 * @wr: the work request to send 1960 * @call_send: kick the send engine into gear 1961 */ 1962 static int rvt_post_one_wr(struct rvt_qp *qp, 1963 const struct ib_send_wr *wr, 1964 bool *call_send) 1965 { 1966 struct rvt_swqe *wqe; 1967 u32 next; 1968 int i; 1969 int j; 1970 int acc; 1971 struct rvt_lkey_table *rkt; 1972 struct rvt_pd *pd; 1973 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1974 u8 log_pmtu; 1975 int ret; 1976 size_t cplen; 1977 bool reserved_op; 1978 int local_ops_delayed = 0; 1979 1980 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1981 1982 /* IB spec says that num_sge == 0 is OK. */ 1983 if (unlikely(wr->num_sge > qp->s_max_sge)) 1984 return -EINVAL; 1985 1986 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1987 if (ret < 0) 1988 return ret; 1989 cplen = ret; 1990 1991 /* 1992 * Local operations include fast register and local invalidate. 1993 * Fast register needs to be processed immediately because the 1994 * registered lkey may be used by following work requests and the 1995 * lkey needs to be valid at the time those requests are posted. 1996 * Local invalidate can be processed immediately if fencing is 1997 * not required and no previous local invalidate ops are pending. 1998 * Signaled local operations that have been processed immediately 1999 * need to have requests with "completion only" flags set posted 2000 * to the send queue in order to generate completions. 2001 */ 2002 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 2003 switch (wr->opcode) { 2004 case IB_WR_REG_MR: 2005 ret = rvt_fast_reg_mr(qp, 2006 reg_wr(wr)->mr, 2007 reg_wr(wr)->key, 2008 reg_wr(wr)->access); 2009 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2010 return ret; 2011 break; 2012 case IB_WR_LOCAL_INV: 2013 if ((wr->send_flags & IB_SEND_FENCE) || 2014 atomic_read(&qp->local_ops_pending)) { 2015 local_ops_delayed = 1; 2016 } else { 2017 ret = rvt_invalidate_rkey( 2018 qp, wr->ex.invalidate_rkey); 2019 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2020 return ret; 2021 } 2022 break; 2023 default: 2024 return -EINVAL; 2025 } 2026 } 2027 2028 reserved_op = rdi->post_parms[wr->opcode].flags & 2029 RVT_OPERATION_USE_RESERVE; 2030 /* check for avail */ 2031 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 2032 if (ret) 2033 return ret; 2034 next = qp->s_head + 1; 2035 if (next >= qp->s_size) 2036 next = 0; 2037 2038 rkt = &rdi->lkey_table; 2039 pd = ibpd_to_rvtpd(qp->ibqp.pd); 2040 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 2041 2042 /* cplen has length from above */ 2043 memcpy(&wqe->wr, wr, cplen); 2044 2045 wqe->length = 0; 2046 j = 0; 2047 if (wr->num_sge) { 2048 struct rvt_sge *last_sge = NULL; 2049 2050 acc = wr->opcode >= IB_WR_RDMA_READ ? 2051 IB_ACCESS_LOCAL_WRITE : 0; 2052 for (i = 0; i < wr->num_sge; i++) { 2053 u32 length = wr->sg_list[i].length; 2054 2055 if (length == 0) 2056 continue; 2057 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 2058 &wr->sg_list[i], acc); 2059 if (unlikely(ret < 0)) 2060 goto bail_inval_free; 2061 wqe->length += length; 2062 if (ret) 2063 last_sge = &wqe->sg_list[j]; 2064 j += ret; 2065 } 2066 wqe->wr.num_sge = j; 2067 } 2068 2069 /* 2070 * Calculate and set SWQE PSN values prior to handing it off 2071 * to the driver's check routine. This give the driver the 2072 * opportunity to adjust PSN values based on internal checks. 2073 */ 2074 log_pmtu = qp->log_pmtu; 2075 if (qp->allowed_ops == IB_OPCODE_UD) { 2076 struct rvt_ah *ah = rvt_get_swqe_ah(wqe); 2077 2078 log_pmtu = ah->log_pmtu; 2079 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr); 2080 } 2081 2082 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2083 if (local_ops_delayed) 2084 atomic_inc(&qp->local_ops_pending); 2085 else 2086 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2087 wqe->ssn = 0; 2088 wqe->psn = 0; 2089 wqe->lpsn = 0; 2090 } else { 2091 wqe->ssn = qp->s_ssn++; 2092 wqe->psn = qp->s_next_psn; 2093 wqe->lpsn = wqe->psn + 2094 (wqe->length ? 2095 ((wqe->length - 1) >> log_pmtu) : 2096 0); 2097 } 2098 2099 /* general part of wqe valid - allow for driver checks */ 2100 if (rdi->driver_f.setup_wqe) { 2101 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2102 if (ret < 0) 2103 goto bail_inval_free_ref; 2104 } 2105 2106 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2107 qp->s_next_psn = wqe->lpsn + 1; 2108 2109 if (unlikely(reserved_op)) { 2110 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2111 rvt_qp_wqe_reserve(qp, wqe); 2112 } else { 2113 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2114 qp->s_avail--; 2115 } 2116 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2117 smp_wmb(); /* see request builders */ 2118 qp->s_head = next; 2119 2120 return 0; 2121 2122 bail_inval_free_ref: 2123 if (qp->allowed_ops == IB_OPCODE_UD) 2124 rdma_destroy_ah_attr(wqe->ud_wr.attr); 2125 bail_inval_free: 2126 /* release mr holds */ 2127 while (j) { 2128 struct rvt_sge *sge = &wqe->sg_list[--j]; 2129 2130 rvt_put_mr(sge->mr); 2131 } 2132 return ret; 2133 } 2134 2135 /** 2136 * rvt_post_send - post a send on a QP 2137 * @ibqp: the QP to post the send on 2138 * @wr: the list of work requests to post 2139 * @bad_wr: the first bad WR is put here 2140 * 2141 * This may be called from interrupt context. 2142 * 2143 * Return: 0 on success else errno 2144 */ 2145 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2146 const struct ib_send_wr **bad_wr) 2147 { 2148 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2149 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2150 unsigned long flags = 0; 2151 bool call_send; 2152 unsigned nreq = 0; 2153 int err = 0; 2154 2155 spin_lock_irqsave(&qp->s_hlock, flags); 2156 2157 /* 2158 * Ensure QP state is such that we can send. If not bail out early, 2159 * there is no need to do this every time we post a send. 2160 */ 2161 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2162 spin_unlock_irqrestore(&qp->s_hlock, flags); 2163 return -EINVAL; 2164 } 2165 2166 /* 2167 * If the send queue is empty, and we only have a single WR then just go 2168 * ahead and kick the send engine into gear. Otherwise we will always 2169 * just schedule the send to happen later. 2170 */ 2171 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2172 2173 for (; wr; wr = wr->next) { 2174 err = rvt_post_one_wr(qp, wr, &call_send); 2175 if (unlikely(err)) { 2176 *bad_wr = wr; 2177 goto bail; 2178 } 2179 nreq++; 2180 } 2181 bail: 2182 spin_unlock_irqrestore(&qp->s_hlock, flags); 2183 if (nreq) { 2184 /* 2185 * Only call do_send if there is exactly one packet, and the 2186 * driver said it was ok. 2187 */ 2188 if (nreq == 1 && call_send) 2189 rdi->driver_f.do_send(qp); 2190 else 2191 rdi->driver_f.schedule_send_no_lock(qp); 2192 } 2193 return err; 2194 } 2195 2196 /** 2197 * rvt_post_srq_recv - post a receive on a shared receive queue 2198 * @ibsrq: the SRQ to post the receive on 2199 * @wr: the list of work requests to post 2200 * @bad_wr: A pointer to the first WR to cause a problem is put here 2201 * 2202 * This may be called from interrupt context. 2203 * 2204 * Return: 0 on success else errno 2205 */ 2206 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2207 const struct ib_recv_wr **bad_wr) 2208 { 2209 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2210 struct rvt_krwq *wq; 2211 unsigned long flags; 2212 2213 for (; wr; wr = wr->next) { 2214 struct rvt_rwqe *wqe; 2215 u32 next; 2216 int i; 2217 2218 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2219 *bad_wr = wr; 2220 return -EINVAL; 2221 } 2222 2223 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags); 2224 wq = srq->rq.kwq; 2225 next = wq->head + 1; 2226 if (next >= srq->rq.size) 2227 next = 0; 2228 if (next == READ_ONCE(wq->tail)) { 2229 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2230 *bad_wr = wr; 2231 return -ENOMEM; 2232 } 2233 2234 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2235 wqe->wr_id = wr->wr_id; 2236 wqe->num_sge = wr->num_sge; 2237 for (i = 0; i < wr->num_sge; i++) { 2238 wqe->sg_list[i].addr = wr->sg_list[i].addr; 2239 wqe->sg_list[i].length = wr->sg_list[i].length; 2240 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 2241 } 2242 /* Make sure queue entry is written before the head index. */ 2243 smp_store_release(&wq->head, next); 2244 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2245 } 2246 return 0; 2247 } 2248 2249 /* 2250 * rvt used the internal kernel struct as part of its ABI, for now make sure 2251 * the kernel struct does not change layout. FIXME: rvt should never cast the 2252 * user struct to a kernel struct. 2253 */ 2254 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge) 2255 { 2256 BUILD_BUG_ON(offsetof(struct ib_sge, addr) != 2257 offsetof(struct rvt_wqe_sge, addr)); 2258 BUILD_BUG_ON(offsetof(struct ib_sge, length) != 2259 offsetof(struct rvt_wqe_sge, length)); 2260 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) != 2261 offsetof(struct rvt_wqe_sge, lkey)); 2262 return (struct ib_sge *)sge; 2263 } 2264 2265 /* 2266 * Validate a RWQE and fill in the SGE state. 2267 * Return 1 if OK. 2268 */ 2269 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2270 { 2271 int i, j, ret; 2272 struct ib_wc wc; 2273 struct rvt_lkey_table *rkt; 2274 struct rvt_pd *pd; 2275 struct rvt_sge_state *ss; 2276 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2277 2278 rkt = &rdi->lkey_table; 2279 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2280 ss = &qp->r_sge; 2281 ss->sg_list = qp->r_sg_list; 2282 qp->r_len = 0; 2283 for (i = j = 0; i < wqe->num_sge; i++) { 2284 if (wqe->sg_list[i].length == 0) 2285 continue; 2286 /* Check LKEY */ 2287 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2288 NULL, rvt_cast_sge(&wqe->sg_list[i]), 2289 IB_ACCESS_LOCAL_WRITE); 2290 if (unlikely(ret <= 0)) 2291 goto bad_lkey; 2292 qp->r_len += wqe->sg_list[i].length; 2293 j++; 2294 } 2295 ss->num_sge = j; 2296 ss->total_len = qp->r_len; 2297 return 1; 2298 2299 bad_lkey: 2300 while (j) { 2301 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2302 2303 rvt_put_mr(sge->mr); 2304 } 2305 ss->num_sge = 0; 2306 memset(&wc, 0, sizeof(wc)); 2307 wc.wr_id = wqe->wr_id; 2308 wc.status = IB_WC_LOC_PROT_ERR; 2309 wc.opcode = IB_WC_RECV; 2310 wc.qp = &qp->ibqp; 2311 /* Signal solicited completion event. */ 2312 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2313 return 0; 2314 } 2315 2316 /** 2317 * get_rvt_head - get head indices of the circular buffer 2318 * @rq: data structure for request queue entry 2319 * @ip: the QP 2320 * 2321 * Return - head index value 2322 */ 2323 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip) 2324 { 2325 u32 head; 2326 2327 if (ip) 2328 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head); 2329 else 2330 head = rq->kwq->head; 2331 2332 return head; 2333 } 2334 2335 /** 2336 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2337 * @qp: the QP 2338 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2339 * 2340 * Return -1 if there is a local error, 0 if no RWQE is available, 2341 * otherwise return 1. 2342 * 2343 * Can be called from interrupt level. 2344 */ 2345 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2346 { 2347 unsigned long flags; 2348 struct rvt_rq *rq; 2349 struct rvt_krwq *kwq = NULL; 2350 struct rvt_rwq *wq; 2351 struct rvt_srq *srq; 2352 struct rvt_rwqe *wqe; 2353 void (*handler)(struct ib_event *, void *); 2354 u32 tail; 2355 u32 head; 2356 int ret; 2357 void *ip = NULL; 2358 2359 if (qp->ibqp.srq) { 2360 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2361 handler = srq->ibsrq.event_handler; 2362 rq = &srq->rq; 2363 ip = srq->ip; 2364 } else { 2365 srq = NULL; 2366 handler = NULL; 2367 rq = &qp->r_rq; 2368 ip = qp->ip; 2369 } 2370 2371 spin_lock_irqsave(&rq->kwq->c_lock, flags); 2372 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2373 ret = 0; 2374 goto unlock; 2375 } 2376 kwq = rq->kwq; 2377 if (ip) { 2378 wq = rq->wq; 2379 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 2380 } else { 2381 tail = kwq->tail; 2382 } 2383 2384 /* Validate tail before using it since it is user writable. */ 2385 if (tail >= rq->size) 2386 tail = 0; 2387 2388 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) { 2389 head = get_rvt_head(rq, ip); 2390 kwq->count = rvt_get_rq_count(rq, head, tail); 2391 } 2392 if (unlikely(kwq->count == 0)) { 2393 ret = 0; 2394 goto unlock; 2395 } 2396 /* Make sure entry is read after the count is read. */ 2397 smp_rmb(); 2398 wqe = rvt_get_rwqe_ptr(rq, tail); 2399 /* 2400 * Even though we update the tail index in memory, the verbs 2401 * consumer is not supposed to post more entries until a 2402 * completion is generated. 2403 */ 2404 if (++tail >= rq->size) 2405 tail = 0; 2406 if (ip) 2407 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 2408 else 2409 kwq->tail = tail; 2410 if (!wr_id_only && !init_sge(qp, wqe)) { 2411 ret = -1; 2412 goto unlock; 2413 } 2414 qp->r_wr_id = wqe->wr_id; 2415 2416 kwq->count--; 2417 ret = 1; 2418 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2419 if (handler) { 2420 /* 2421 * Validate head pointer value and compute 2422 * the number of remaining WQEs. 2423 */ 2424 if (kwq->count < srq->limit) { 2425 kwq->count = 2426 rvt_get_rq_count(rq, 2427 get_rvt_head(rq, ip), tail); 2428 if (kwq->count < srq->limit) { 2429 struct ib_event ev; 2430 2431 srq->limit = 0; 2432 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2433 ev.device = qp->ibqp.device; 2434 ev.element.srq = qp->ibqp.srq; 2435 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2436 handler(&ev, srq->ibsrq.srq_context); 2437 goto bail; 2438 } 2439 } 2440 } 2441 unlock: 2442 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2443 bail: 2444 return ret; 2445 } 2446 EXPORT_SYMBOL(rvt_get_rwqe); 2447 2448 /** 2449 * rvt_comm_est - handle trap with QP established 2450 * @qp: the QP 2451 */ 2452 void rvt_comm_est(struct rvt_qp *qp) 2453 { 2454 qp->r_flags |= RVT_R_COMM_EST; 2455 if (qp->ibqp.event_handler) { 2456 struct ib_event ev; 2457 2458 ev.device = qp->ibqp.device; 2459 ev.element.qp = &qp->ibqp; 2460 ev.event = IB_EVENT_COMM_EST; 2461 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2462 } 2463 } 2464 EXPORT_SYMBOL(rvt_comm_est); 2465 2466 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2467 { 2468 unsigned long flags; 2469 int lastwqe; 2470 2471 spin_lock_irqsave(&qp->s_lock, flags); 2472 lastwqe = rvt_error_qp(qp, err); 2473 spin_unlock_irqrestore(&qp->s_lock, flags); 2474 2475 if (lastwqe) { 2476 struct ib_event ev; 2477 2478 ev.device = qp->ibqp.device; 2479 ev.element.qp = &qp->ibqp; 2480 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2481 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2482 } 2483 } 2484 EXPORT_SYMBOL(rvt_rc_error); 2485 2486 /* 2487 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2488 * @index - the index 2489 * return usec from an index into ib_rvt_rnr_table 2490 */ 2491 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2492 { 2493 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2494 } 2495 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2496 2497 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2498 { 2499 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2500 IB_AETH_CREDIT_MASK]; 2501 } 2502 2503 /* 2504 * rvt_add_retry_timer_ext - add/start a retry timer 2505 * @qp - the QP 2506 * @shift - timeout shift to wait for multiple packets 2507 * add a retry timer on the QP 2508 */ 2509 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) 2510 { 2511 struct ib_qp *ibqp = &qp->ibqp; 2512 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2513 2514 lockdep_assert_held(&qp->s_lock); 2515 qp->s_flags |= RVT_S_TIMER; 2516 /* 4.096 usec. * (1 << qp->timeout) */ 2517 qp->s_timer.expires = jiffies + rdi->busy_jiffies + 2518 (qp->timeout_jiffies << shift); 2519 add_timer(&qp->s_timer); 2520 } 2521 EXPORT_SYMBOL(rvt_add_retry_timer_ext); 2522 2523 /** 2524 * rvt_add_rnr_timer - add/start an rnr timer on the QP 2525 * @qp: the QP 2526 * @aeth: aeth of RNR timeout, simulated aeth for loopback 2527 */ 2528 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2529 { 2530 u32 to; 2531 2532 lockdep_assert_held(&qp->s_lock); 2533 qp->s_flags |= RVT_S_WAIT_RNR; 2534 to = rvt_aeth_to_usec(aeth); 2535 trace_rvt_rnrnak_add(qp, to); 2536 hrtimer_start(&qp->s_rnr_timer, 2537 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2538 } 2539 EXPORT_SYMBOL(rvt_add_rnr_timer); 2540 2541 /** 2542 * rvt_stop_rc_timers - stop all timers 2543 * @qp: the QP 2544 * stop any pending timers 2545 */ 2546 void rvt_stop_rc_timers(struct rvt_qp *qp) 2547 { 2548 lockdep_assert_held(&qp->s_lock); 2549 /* Remove QP from all timers */ 2550 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2551 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2552 del_timer(&qp->s_timer); 2553 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2554 } 2555 } 2556 EXPORT_SYMBOL(rvt_stop_rc_timers); 2557 2558 /** 2559 * rvt_stop_rnr_timer - stop an rnr timer 2560 * @qp: the QP 2561 * 2562 * stop an rnr timer and return if the timer 2563 * had been pending. 2564 */ 2565 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2566 { 2567 lockdep_assert_held(&qp->s_lock); 2568 /* Remove QP from rnr timer */ 2569 if (qp->s_flags & RVT_S_WAIT_RNR) { 2570 qp->s_flags &= ~RVT_S_WAIT_RNR; 2571 trace_rvt_rnrnak_stop(qp, 0); 2572 } 2573 } 2574 2575 /** 2576 * rvt_del_timers_sync - wait for any timeout routines to exit 2577 * @qp: the QP 2578 */ 2579 void rvt_del_timers_sync(struct rvt_qp *qp) 2580 { 2581 del_timer_sync(&qp->s_timer); 2582 hrtimer_cancel(&qp->s_rnr_timer); 2583 } 2584 EXPORT_SYMBOL(rvt_del_timers_sync); 2585 2586 /* 2587 * This is called from s_timer for missing responses. 2588 */ 2589 static void rvt_rc_timeout(struct timer_list *t) 2590 { 2591 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2592 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2593 unsigned long flags; 2594 2595 spin_lock_irqsave(&qp->r_lock, flags); 2596 spin_lock(&qp->s_lock); 2597 if (qp->s_flags & RVT_S_TIMER) { 2598 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2599 2600 qp->s_flags &= ~RVT_S_TIMER; 2601 rvp->n_rc_timeouts++; 2602 del_timer(&qp->s_timer); 2603 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2604 if (rdi->driver_f.notify_restart_rc) 2605 rdi->driver_f.notify_restart_rc(qp, 2606 qp->s_last_psn + 1, 2607 1); 2608 rdi->driver_f.schedule_send(qp); 2609 } 2610 spin_unlock(&qp->s_lock); 2611 spin_unlock_irqrestore(&qp->r_lock, flags); 2612 } 2613 2614 /* 2615 * This is called from s_timer for RNR timeouts. 2616 */ 2617 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2618 { 2619 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2620 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2621 unsigned long flags; 2622 2623 spin_lock_irqsave(&qp->s_lock, flags); 2624 rvt_stop_rnr_timer(qp); 2625 trace_rvt_rnrnak_timeout(qp, 0); 2626 rdi->driver_f.schedule_send(qp); 2627 spin_unlock_irqrestore(&qp->s_lock, flags); 2628 return HRTIMER_NORESTART; 2629 } 2630 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2631 2632 /** 2633 * rvt_qp_iter_init - initial for QP iteration 2634 * @rdi: rvt devinfo 2635 * @v: u64 value 2636 * @cb: user-defined callback 2637 * 2638 * This returns an iterator suitable for iterating QPs 2639 * in the system. 2640 * 2641 * The @cb is a user-defined callback and @v is a 64-bit 2642 * value passed to and relevant for processing in the 2643 * @cb. An example use case would be to alter QP processing 2644 * based on criteria not part of the rvt_qp. 2645 * 2646 * Use cases that require memory allocation to succeed 2647 * must preallocate appropriately. 2648 * 2649 * Return: a pointer to an rvt_qp_iter or NULL 2650 */ 2651 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2652 u64 v, 2653 void (*cb)(struct rvt_qp *qp, u64 v)) 2654 { 2655 struct rvt_qp_iter *i; 2656 2657 i = kzalloc(sizeof(*i), GFP_KERNEL); 2658 if (!i) 2659 return NULL; 2660 2661 i->rdi = rdi; 2662 /* number of special QPs (SMI/GSI) for device */ 2663 i->specials = rdi->ibdev.phys_port_cnt * 2; 2664 i->v = v; 2665 i->cb = cb; 2666 2667 return i; 2668 } 2669 EXPORT_SYMBOL(rvt_qp_iter_init); 2670 2671 /** 2672 * rvt_qp_iter_next - return the next QP in iter 2673 * @iter: the iterator 2674 * 2675 * Fine grained QP iterator suitable for use 2676 * with debugfs seq_file mechanisms. 2677 * 2678 * Updates iter->qp with the current QP when the return 2679 * value is 0. 2680 * 2681 * Return: 0 - iter->qp is valid 1 - no more QPs 2682 */ 2683 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2684 __must_hold(RCU) 2685 { 2686 int n = iter->n; 2687 int ret = 1; 2688 struct rvt_qp *pqp = iter->qp; 2689 struct rvt_qp *qp; 2690 struct rvt_dev_info *rdi = iter->rdi; 2691 2692 /* 2693 * The approach is to consider the special qps 2694 * as additional table entries before the 2695 * real hash table. Since the qp code sets 2696 * the qp->next hash link to NULL, this works just fine. 2697 * 2698 * iter->specials is 2 * # ports 2699 * 2700 * n = 0..iter->specials is the special qp indices 2701 * 2702 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2703 * the potential hash bucket entries 2704 * 2705 */ 2706 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2707 if (pqp) { 2708 qp = rcu_dereference(pqp->next); 2709 } else { 2710 if (n < iter->specials) { 2711 struct rvt_ibport *rvp; 2712 int pidx; 2713 2714 pidx = n % rdi->ibdev.phys_port_cnt; 2715 rvp = rdi->ports[pidx]; 2716 qp = rcu_dereference(rvp->qp[n & 1]); 2717 } else { 2718 qp = rcu_dereference( 2719 rdi->qp_dev->qp_table[ 2720 (n - iter->specials)]); 2721 } 2722 } 2723 pqp = qp; 2724 if (qp) { 2725 iter->qp = qp; 2726 iter->n = n; 2727 return 0; 2728 } 2729 } 2730 return ret; 2731 } 2732 EXPORT_SYMBOL(rvt_qp_iter_next); 2733 2734 /** 2735 * rvt_qp_iter - iterate all QPs 2736 * @rdi: rvt devinfo 2737 * @v: a 64-bit value 2738 * @cb: a callback 2739 * 2740 * This provides a way for iterating all QPs. 2741 * 2742 * The @cb is a user-defined callback and @v is a 64-bit 2743 * value passed to and relevant for processing in the 2744 * cb. An example use case would be to alter QP processing 2745 * based on criteria not part of the rvt_qp. 2746 * 2747 * The code has an internal iterator to simplify 2748 * non seq_file use cases. 2749 */ 2750 void rvt_qp_iter(struct rvt_dev_info *rdi, 2751 u64 v, 2752 void (*cb)(struct rvt_qp *qp, u64 v)) 2753 { 2754 int ret; 2755 struct rvt_qp_iter i = { 2756 .rdi = rdi, 2757 .specials = rdi->ibdev.phys_port_cnt * 2, 2758 .v = v, 2759 .cb = cb 2760 }; 2761 2762 rcu_read_lock(); 2763 do { 2764 ret = rvt_qp_iter_next(&i); 2765 if (!ret) { 2766 rvt_get_qp(i.qp); 2767 rcu_read_unlock(); 2768 i.cb(i.qp, i.v); 2769 rcu_read_lock(); 2770 rvt_put_qp(i.qp); 2771 } 2772 } while (!ret); 2773 rcu_read_unlock(); 2774 } 2775 EXPORT_SYMBOL(rvt_qp_iter); 2776 2777 /* 2778 * This should be called with s_lock and r_lock held. 2779 */ 2780 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2781 enum ib_wc_status status) 2782 { 2783 u32 old_last, last; 2784 struct rvt_dev_info *rdi; 2785 2786 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2787 return; 2788 rdi = ib_to_rvt(qp->ibqp.device); 2789 2790 old_last = qp->s_last; 2791 trace_rvt_qp_send_completion(qp, wqe, old_last); 2792 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode], 2793 status); 2794 if (qp->s_acked == old_last) 2795 qp->s_acked = last; 2796 if (qp->s_cur == old_last) 2797 qp->s_cur = last; 2798 if (qp->s_tail == old_last) 2799 qp->s_tail = last; 2800 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2801 qp->s_draining = 0; 2802 } 2803 EXPORT_SYMBOL(rvt_send_complete); 2804 2805 /** 2806 * rvt_copy_sge - copy data to SGE memory 2807 * @qp: associated QP 2808 * @ss: the SGE state 2809 * @data: the data to copy 2810 * @length: the length of the data 2811 * @release: boolean to release MR 2812 * @copy_last: do a separate copy of the last 8 bytes 2813 */ 2814 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2815 void *data, u32 length, 2816 bool release, bool copy_last) 2817 { 2818 struct rvt_sge *sge = &ss->sge; 2819 int i; 2820 bool in_last = false; 2821 bool cacheless_copy = false; 2822 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2823 struct rvt_wss *wss = rdi->wss; 2824 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2825 2826 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2827 cacheless_copy = length >= PAGE_SIZE; 2828 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2829 if (length >= PAGE_SIZE) { 2830 /* 2831 * NOTE: this *assumes*: 2832 * o The first vaddr is the dest. 2833 * o If multiple pages, then vaddr is sequential. 2834 */ 2835 wss_insert(wss, sge->vaddr); 2836 if (length >= (2 * PAGE_SIZE)) 2837 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2838 2839 cacheless_copy = wss_exceeds_threshold(wss); 2840 } else { 2841 wss_advance_clean_counter(wss); 2842 } 2843 } 2844 2845 if (copy_last) { 2846 if (length > 8) { 2847 length -= 8; 2848 } else { 2849 copy_last = false; 2850 in_last = true; 2851 } 2852 } 2853 2854 again: 2855 while (length) { 2856 u32 len = rvt_get_sge_length(sge, length); 2857 2858 WARN_ON_ONCE(len == 0); 2859 if (unlikely(in_last)) { 2860 /* enforce byte transfer ordering */ 2861 for (i = 0; i < len; i++) 2862 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2863 } else if (cacheless_copy) { 2864 cacheless_memcpy(sge->vaddr, data, len); 2865 } else { 2866 memcpy(sge->vaddr, data, len); 2867 } 2868 rvt_update_sge(ss, len, release); 2869 data += len; 2870 length -= len; 2871 } 2872 2873 if (copy_last) { 2874 copy_last = false; 2875 in_last = true; 2876 length = 8; 2877 goto again; 2878 } 2879 } 2880 EXPORT_SYMBOL(rvt_copy_sge); 2881 2882 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, 2883 struct rvt_qp *sqp) 2884 { 2885 rvp->n_pkt_drops++; 2886 /* 2887 * For RC, the requester would timeout and retry so 2888 * shortcut the timeouts and just signal too many retries. 2889 */ 2890 return sqp->ibqp.qp_type == IB_QPT_RC ? 2891 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; 2892 } 2893 2894 /** 2895 * rvt_ruc_loopback - handle UC and RC loopback requests 2896 * @sqp: the sending QP 2897 * 2898 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2899 * Note that although we are single threaded due to the send engine, we still 2900 * have to protect against post_send(). We don't have to worry about 2901 * receive interrupts since this is a connected protocol and all packets 2902 * will pass through here. 2903 */ 2904 void rvt_ruc_loopback(struct rvt_qp *sqp) 2905 { 2906 struct rvt_ibport *rvp = NULL; 2907 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2908 struct rvt_qp *qp; 2909 struct rvt_swqe *wqe; 2910 struct rvt_sge *sge; 2911 unsigned long flags; 2912 struct ib_wc wc; 2913 u64 sdata; 2914 atomic64_t *maddr; 2915 enum ib_wc_status send_status; 2916 bool release; 2917 int ret; 2918 bool copy_last = false; 2919 int local_ops = 0; 2920 2921 rcu_read_lock(); 2922 rvp = rdi->ports[sqp->port_num - 1]; 2923 2924 /* 2925 * Note that we check the responder QP state after 2926 * checking the requester's state. 2927 */ 2928 2929 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2930 sqp->remote_qpn); 2931 2932 spin_lock_irqsave(&sqp->s_lock, flags); 2933 2934 /* Return if we are already busy processing a work request. */ 2935 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2936 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2937 goto unlock; 2938 2939 sqp->s_flags |= RVT_S_BUSY; 2940 2941 again: 2942 if (sqp->s_last == READ_ONCE(sqp->s_head)) 2943 goto clr_busy; 2944 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 2945 2946 /* Return if it is not OK to start a new work request. */ 2947 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 2948 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 2949 goto clr_busy; 2950 /* We are in the error state, flush the work request. */ 2951 send_status = IB_WC_WR_FLUSH_ERR; 2952 goto flush_send; 2953 } 2954 2955 /* 2956 * We can rely on the entry not changing without the s_lock 2957 * being held until we update s_last. 2958 * We increment s_cur to indicate s_last is in progress. 2959 */ 2960 if (sqp->s_last == sqp->s_cur) { 2961 if (++sqp->s_cur >= sqp->s_size) 2962 sqp->s_cur = 0; 2963 } 2964 spin_unlock_irqrestore(&sqp->s_lock, flags); 2965 2966 if (!qp) { 2967 send_status = loopback_qp_drop(rvp, sqp); 2968 goto serr_no_r_lock; 2969 } 2970 spin_lock_irqsave(&qp->r_lock, flags); 2971 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 2972 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 2973 send_status = loopback_qp_drop(rvp, sqp); 2974 goto serr; 2975 } 2976 2977 memset(&wc, 0, sizeof(wc)); 2978 send_status = IB_WC_SUCCESS; 2979 2980 release = true; 2981 sqp->s_sge.sge = wqe->sg_list[0]; 2982 sqp->s_sge.sg_list = wqe->sg_list + 1; 2983 sqp->s_sge.num_sge = wqe->wr.num_sge; 2984 sqp->s_len = wqe->length; 2985 switch (wqe->wr.opcode) { 2986 case IB_WR_REG_MR: 2987 goto send_comp; 2988 2989 case IB_WR_LOCAL_INV: 2990 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 2991 if (rvt_invalidate_rkey(sqp, 2992 wqe->wr.ex.invalidate_rkey)) 2993 send_status = IB_WC_LOC_PROT_ERR; 2994 local_ops = 1; 2995 } 2996 goto send_comp; 2997 2998 case IB_WR_SEND_WITH_INV: 2999 case IB_WR_SEND_WITH_IMM: 3000 case IB_WR_SEND: 3001 ret = rvt_get_rwqe(qp, false); 3002 if (ret < 0) 3003 goto op_err; 3004 if (!ret) 3005 goto rnr_nak; 3006 if (wqe->length > qp->r_len) 3007 goto inv_err; 3008 switch (wqe->wr.opcode) { 3009 case IB_WR_SEND_WITH_INV: 3010 if (!rvt_invalidate_rkey(qp, 3011 wqe->wr.ex.invalidate_rkey)) { 3012 wc.wc_flags = IB_WC_WITH_INVALIDATE; 3013 wc.ex.invalidate_rkey = 3014 wqe->wr.ex.invalidate_rkey; 3015 } 3016 break; 3017 case IB_WR_SEND_WITH_IMM: 3018 wc.wc_flags = IB_WC_WITH_IMM; 3019 wc.ex.imm_data = wqe->wr.ex.imm_data; 3020 break; 3021 default: 3022 break; 3023 } 3024 break; 3025 3026 case IB_WR_RDMA_WRITE_WITH_IMM: 3027 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3028 goto inv_err; 3029 wc.wc_flags = IB_WC_WITH_IMM; 3030 wc.ex.imm_data = wqe->wr.ex.imm_data; 3031 ret = rvt_get_rwqe(qp, true); 3032 if (ret < 0) 3033 goto op_err; 3034 if (!ret) 3035 goto rnr_nak; 3036 /* skip copy_last set and qp_access_flags recheck */ 3037 goto do_write; 3038 case IB_WR_RDMA_WRITE: 3039 copy_last = rvt_is_user_qp(qp); 3040 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3041 goto inv_err; 3042 do_write: 3043 if (wqe->length == 0) 3044 break; 3045 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 3046 wqe->rdma_wr.remote_addr, 3047 wqe->rdma_wr.rkey, 3048 IB_ACCESS_REMOTE_WRITE))) 3049 goto acc_err; 3050 qp->r_sge.sg_list = NULL; 3051 qp->r_sge.num_sge = 1; 3052 qp->r_sge.total_len = wqe->length; 3053 break; 3054 3055 case IB_WR_RDMA_READ: 3056 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 3057 goto inv_err; 3058 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 3059 wqe->rdma_wr.remote_addr, 3060 wqe->rdma_wr.rkey, 3061 IB_ACCESS_REMOTE_READ))) 3062 goto acc_err; 3063 release = false; 3064 sqp->s_sge.sg_list = NULL; 3065 sqp->s_sge.num_sge = 1; 3066 qp->r_sge.sge = wqe->sg_list[0]; 3067 qp->r_sge.sg_list = wqe->sg_list + 1; 3068 qp->r_sge.num_sge = wqe->wr.num_sge; 3069 qp->r_sge.total_len = wqe->length; 3070 break; 3071 3072 case IB_WR_ATOMIC_CMP_AND_SWP: 3073 case IB_WR_ATOMIC_FETCH_AND_ADD: 3074 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 3075 goto inv_err; 3076 if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1))) 3077 goto inv_err; 3078 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 3079 wqe->atomic_wr.remote_addr, 3080 wqe->atomic_wr.rkey, 3081 IB_ACCESS_REMOTE_ATOMIC))) 3082 goto acc_err; 3083 /* Perform atomic OP and save result. */ 3084 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 3085 sdata = wqe->atomic_wr.compare_add; 3086 *(u64 *)sqp->s_sge.sge.vaddr = 3087 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 3088 (u64)atomic64_add_return(sdata, maddr) - sdata : 3089 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 3090 sdata, wqe->atomic_wr.swap); 3091 rvt_put_mr(qp->r_sge.sge.mr); 3092 qp->r_sge.num_sge = 0; 3093 goto send_comp; 3094 3095 default: 3096 send_status = IB_WC_LOC_QP_OP_ERR; 3097 goto serr; 3098 } 3099 3100 sge = &sqp->s_sge.sge; 3101 while (sqp->s_len) { 3102 u32 len = rvt_get_sge_length(sge, sqp->s_len); 3103 3104 WARN_ON_ONCE(len == 0); 3105 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 3106 len, release, copy_last); 3107 rvt_update_sge(&sqp->s_sge, len, !release); 3108 sqp->s_len -= len; 3109 } 3110 if (release) 3111 rvt_put_ss(&qp->r_sge); 3112 3113 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3114 goto send_comp; 3115 3116 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3117 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3118 else 3119 wc.opcode = IB_WC_RECV; 3120 wc.wr_id = qp->r_wr_id; 3121 wc.status = IB_WC_SUCCESS; 3122 wc.byte_len = wqe->length; 3123 wc.qp = &qp->ibqp; 3124 wc.src_qp = qp->remote_qpn; 3125 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3126 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3127 wc.port_num = 1; 3128 /* Signal completion event if the solicited bit is set. */ 3129 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED); 3130 3131 send_comp: 3132 spin_unlock_irqrestore(&qp->r_lock, flags); 3133 spin_lock_irqsave(&sqp->s_lock, flags); 3134 rvp->n_loop_pkts++; 3135 flush_send: 3136 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3137 spin_lock(&sqp->r_lock); 3138 rvt_send_complete(sqp, wqe, send_status); 3139 spin_unlock(&sqp->r_lock); 3140 if (local_ops) { 3141 atomic_dec(&sqp->local_ops_pending); 3142 local_ops = 0; 3143 } 3144 goto again; 3145 3146 rnr_nak: 3147 /* Handle RNR NAK */ 3148 if (qp->ibqp.qp_type == IB_QPT_UC) 3149 goto send_comp; 3150 rvp->n_rnr_naks++; 3151 /* 3152 * Note: we don't need the s_lock held since the BUSY flag 3153 * makes this single threaded. 3154 */ 3155 if (sqp->s_rnr_retry == 0) { 3156 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3157 goto serr; 3158 } 3159 if (sqp->s_rnr_retry_cnt < 7) 3160 sqp->s_rnr_retry--; 3161 spin_unlock_irqrestore(&qp->r_lock, flags); 3162 spin_lock_irqsave(&sqp->s_lock, flags); 3163 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3164 goto clr_busy; 3165 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3166 IB_AETH_CREDIT_SHIFT); 3167 goto clr_busy; 3168 3169 op_err: 3170 send_status = IB_WC_REM_OP_ERR; 3171 wc.status = IB_WC_LOC_QP_OP_ERR; 3172 goto err; 3173 3174 inv_err: 3175 send_status = 3176 sqp->ibqp.qp_type == IB_QPT_RC ? 3177 IB_WC_REM_INV_REQ_ERR : 3178 IB_WC_SUCCESS; 3179 wc.status = IB_WC_LOC_QP_OP_ERR; 3180 goto err; 3181 3182 acc_err: 3183 send_status = IB_WC_REM_ACCESS_ERR; 3184 wc.status = IB_WC_LOC_PROT_ERR; 3185 err: 3186 /* responder goes to error state */ 3187 rvt_rc_error(qp, wc.status); 3188 3189 serr: 3190 spin_unlock_irqrestore(&qp->r_lock, flags); 3191 serr_no_r_lock: 3192 spin_lock_irqsave(&sqp->s_lock, flags); 3193 spin_lock(&sqp->r_lock); 3194 rvt_send_complete(sqp, wqe, send_status); 3195 spin_unlock(&sqp->r_lock); 3196 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3197 int lastwqe; 3198 3199 spin_lock(&sqp->r_lock); 3200 lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3201 spin_unlock(&sqp->r_lock); 3202 3203 sqp->s_flags &= ~RVT_S_BUSY; 3204 spin_unlock_irqrestore(&sqp->s_lock, flags); 3205 if (lastwqe) { 3206 struct ib_event ev; 3207 3208 ev.device = sqp->ibqp.device; 3209 ev.element.qp = &sqp->ibqp; 3210 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3211 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3212 } 3213 goto done; 3214 } 3215 clr_busy: 3216 sqp->s_flags &= ~RVT_S_BUSY; 3217 unlock: 3218 spin_unlock_irqrestore(&sqp->s_lock, flags); 3219 done: 3220 rcu_read_unlock(); 3221 } 3222 EXPORT_SYMBOL(rvt_ruc_loopback); 3223