1 /* 2 * Copyright(c) 2016 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include <rdma/opa_addr.h> 56 #include "qp.h" 57 #include "vt.h" 58 #include "trace.h" 59 60 static void rvt_rc_timeout(struct timer_list *t); 61 62 /* 63 * Convert the AETH RNR timeout code into the number of microseconds. 64 */ 65 static const u32 ib_rvt_rnr_table[32] = { 66 655360, /* 00: 655.36 */ 67 10, /* 01: .01 */ 68 20, /* 02 .02 */ 69 30, /* 03: .03 */ 70 40, /* 04: .04 */ 71 60, /* 05: .06 */ 72 80, /* 06: .08 */ 73 120, /* 07: .12 */ 74 160, /* 08: .16 */ 75 240, /* 09: .24 */ 76 320, /* 0A: .32 */ 77 480, /* 0B: .48 */ 78 640, /* 0C: .64 */ 79 960, /* 0D: .96 */ 80 1280, /* 0E: 1.28 */ 81 1920, /* 0F: 1.92 */ 82 2560, /* 10: 2.56 */ 83 3840, /* 11: 3.84 */ 84 5120, /* 12: 5.12 */ 85 7680, /* 13: 7.68 */ 86 10240, /* 14: 10.24 */ 87 15360, /* 15: 15.36 */ 88 20480, /* 16: 20.48 */ 89 30720, /* 17: 30.72 */ 90 40960, /* 18: 40.96 */ 91 61440, /* 19: 61.44 */ 92 81920, /* 1A: 81.92 */ 93 122880, /* 1B: 122.88 */ 94 163840, /* 1C: 163.84 */ 95 245760, /* 1D: 245.76 */ 96 327680, /* 1E: 327.68 */ 97 491520 /* 1F: 491.52 */ 98 }; 99 100 /* 101 * Note that it is OK to post send work requests in the SQE and ERR 102 * states; rvt_do_send() will process them and generate error 103 * completions as per IB 1.2 C10-96. 104 */ 105 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 106 [IB_QPS_RESET] = 0, 107 [IB_QPS_INIT] = RVT_POST_RECV_OK, 108 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 109 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 110 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 111 RVT_PROCESS_NEXT_SEND_OK, 112 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 113 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 114 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 115 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 116 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 117 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 118 }; 119 EXPORT_SYMBOL(ib_rvt_state_ops); 120 121 /* platform specific: return the last level cache (llc) size, in KiB */ 122 static int rvt_wss_llc_size(void) 123 { 124 /* assume that the boot CPU value is universal for all CPUs */ 125 return boot_cpu_data.x86_cache_size; 126 } 127 128 /* platform specific: cacheless copy */ 129 static void cacheless_memcpy(void *dst, void *src, size_t n) 130 { 131 /* 132 * Use the only available X64 cacheless copy. Add a __user cast 133 * to quiet sparse. The src agument is already in the kernel so 134 * there are no security issues. The extra fault recovery machinery 135 * is not invoked. 136 */ 137 __copy_user_nocache(dst, (void __user *)src, n, 0); 138 } 139 140 void rvt_wss_exit(struct rvt_dev_info *rdi) 141 { 142 struct rvt_wss *wss = rdi->wss; 143 144 if (!wss) 145 return; 146 147 /* coded to handle partially initialized and repeat callers */ 148 kfree(wss->entries); 149 wss->entries = NULL; 150 kfree(rdi->wss); 151 rdi->wss = NULL; 152 } 153 154 /** 155 * rvt_wss_init - Init wss data structures 156 * 157 * Return: 0 on success 158 */ 159 int rvt_wss_init(struct rvt_dev_info *rdi) 160 { 161 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 162 unsigned int wss_threshold = rdi->dparms.wss_threshold; 163 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 164 long llc_size; 165 long llc_bits; 166 long table_size; 167 long table_bits; 168 struct rvt_wss *wss; 169 int node = rdi->dparms.node; 170 171 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 172 rdi->wss = NULL; 173 return 0; 174 } 175 176 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 177 if (!rdi->wss) 178 return -ENOMEM; 179 wss = rdi->wss; 180 181 /* check for a valid percent range - default to 80 if none or invalid */ 182 if (wss_threshold < 1 || wss_threshold > 100) 183 wss_threshold = 80; 184 185 /* reject a wildly large period */ 186 if (wss_clean_period > 1000000) 187 wss_clean_period = 256; 188 189 /* reject a zero period */ 190 if (wss_clean_period == 0) 191 wss_clean_period = 1; 192 193 /* 194 * Calculate the table size - the next power of 2 larger than the 195 * LLC size. LLC size is in KiB. 196 */ 197 llc_size = rvt_wss_llc_size() * 1024; 198 table_size = roundup_pow_of_two(llc_size); 199 200 /* one bit per page in rounded up table */ 201 llc_bits = llc_size / PAGE_SIZE; 202 table_bits = table_size / PAGE_SIZE; 203 wss->pages_mask = table_bits - 1; 204 wss->num_entries = table_bits / BITS_PER_LONG; 205 206 wss->threshold = (llc_bits * wss_threshold) / 100; 207 if (wss->threshold == 0) 208 wss->threshold = 1; 209 210 wss->clean_period = wss_clean_period; 211 atomic_set(&wss->clean_counter, wss_clean_period); 212 213 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 214 GFP_KERNEL, node); 215 if (!wss->entries) { 216 rvt_wss_exit(rdi); 217 return -ENOMEM; 218 } 219 220 return 0; 221 } 222 223 /* 224 * Advance the clean counter. When the clean period has expired, 225 * clean an entry. 226 * 227 * This is implemented in atomics to avoid locking. Because multiple 228 * variables are involved, it can be racy which can lead to slightly 229 * inaccurate information. Since this is only a heuristic, this is 230 * OK. Any innaccuracies will clean themselves out as the counter 231 * advances. That said, it is unlikely the entry clean operation will 232 * race - the next possible racer will not start until the next clean 233 * period. 234 * 235 * The clean counter is implemented as a decrement to zero. When zero 236 * is reached an entry is cleaned. 237 */ 238 static void wss_advance_clean_counter(struct rvt_wss *wss) 239 { 240 int entry; 241 int weight; 242 unsigned long bits; 243 244 /* become the cleaner if we decrement the counter to zero */ 245 if (atomic_dec_and_test(&wss->clean_counter)) { 246 /* 247 * Set, not add, the clean period. This avoids an issue 248 * where the counter could decrement below the clean period. 249 * Doing a set can result in lost decrements, slowing the 250 * clean advance. Since this a heuristic, this possible 251 * slowdown is OK. 252 * 253 * An alternative is to loop, advancing the counter by a 254 * clean period until the result is > 0. However, this could 255 * lead to several threads keeping another in the clean loop. 256 * This could be mitigated by limiting the number of times 257 * we stay in the loop. 258 */ 259 atomic_set(&wss->clean_counter, wss->clean_period); 260 261 /* 262 * Uniquely grab the entry to clean and move to next. 263 * The current entry is always the lower bits of 264 * wss.clean_entry. The table size, wss.num_entries, 265 * is always a power-of-2. 266 */ 267 entry = (atomic_inc_return(&wss->clean_entry) - 1) 268 & (wss->num_entries - 1); 269 270 /* clear the entry and count the bits */ 271 bits = xchg(&wss->entries[entry], 0); 272 weight = hweight64((u64)bits); 273 /* only adjust the contended total count if needed */ 274 if (weight) 275 atomic_sub(weight, &wss->total_count); 276 } 277 } 278 279 /* 280 * Insert the given address into the working set array. 281 */ 282 static void wss_insert(struct rvt_wss *wss, void *address) 283 { 284 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 285 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 286 u32 nr = page & (BITS_PER_LONG - 1); 287 288 if (!test_and_set_bit(nr, &wss->entries[entry])) 289 atomic_inc(&wss->total_count); 290 291 wss_advance_clean_counter(wss); 292 } 293 294 /* 295 * Is the working set larger than the threshold? 296 */ 297 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 298 { 299 return atomic_read(&wss->total_count) >= wss->threshold; 300 } 301 302 static void get_map_page(struct rvt_qpn_table *qpt, 303 struct rvt_qpn_map *map) 304 { 305 unsigned long page = get_zeroed_page(GFP_KERNEL); 306 307 /* 308 * Free the page if someone raced with us installing it. 309 */ 310 311 spin_lock(&qpt->lock); 312 if (map->page) 313 free_page(page); 314 else 315 map->page = (void *)page; 316 spin_unlock(&qpt->lock); 317 } 318 319 /** 320 * init_qpn_table - initialize the QP number table for a device 321 * @qpt: the QPN table 322 */ 323 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 324 { 325 u32 offset, i; 326 struct rvt_qpn_map *map; 327 int ret = 0; 328 329 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 330 return -EINVAL; 331 332 spin_lock_init(&qpt->lock); 333 334 qpt->last = rdi->dparms.qpn_start; 335 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 336 337 /* 338 * Drivers may want some QPs beyond what we need for verbs let them use 339 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 340 * for those. The reserved range must be *after* the range which verbs 341 * will pick from. 342 */ 343 344 /* Figure out number of bit maps needed before reserved range */ 345 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 346 347 /* This should always be zero */ 348 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 349 350 /* Starting with the first reserved bit map */ 351 map = &qpt->map[qpt->nmaps]; 352 353 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 354 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 355 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 356 if (!map->page) { 357 get_map_page(qpt, map); 358 if (!map->page) { 359 ret = -ENOMEM; 360 break; 361 } 362 } 363 set_bit(offset, map->page); 364 offset++; 365 if (offset == RVT_BITS_PER_PAGE) { 366 /* next page */ 367 qpt->nmaps++; 368 map++; 369 offset = 0; 370 } 371 } 372 return ret; 373 } 374 375 /** 376 * free_qpn_table - free the QP number table for a device 377 * @qpt: the QPN table 378 */ 379 static void free_qpn_table(struct rvt_qpn_table *qpt) 380 { 381 int i; 382 383 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 384 free_page((unsigned long)qpt->map[i].page); 385 } 386 387 /** 388 * rvt_driver_qp_init - Init driver qp resources 389 * @rdi: rvt dev strucutre 390 * 391 * Return: 0 on success 392 */ 393 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 394 { 395 int i; 396 int ret = -ENOMEM; 397 398 if (!rdi->dparms.qp_table_size) 399 return -EINVAL; 400 401 /* 402 * If driver is not doing any QP allocation then make sure it is 403 * providing the necessary QP functions. 404 */ 405 if (!rdi->driver_f.free_all_qps || 406 !rdi->driver_f.qp_priv_alloc || 407 !rdi->driver_f.qp_priv_free || 408 !rdi->driver_f.notify_qp_reset || 409 !rdi->driver_f.notify_restart_rc) 410 return -EINVAL; 411 412 /* allocate parent object */ 413 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 414 rdi->dparms.node); 415 if (!rdi->qp_dev) 416 return -ENOMEM; 417 418 /* allocate hash table */ 419 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 420 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 421 rdi->qp_dev->qp_table = 422 kmalloc_array_node(rdi->qp_dev->qp_table_size, 423 sizeof(*rdi->qp_dev->qp_table), 424 GFP_KERNEL, rdi->dparms.node); 425 if (!rdi->qp_dev->qp_table) 426 goto no_qp_table; 427 428 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 429 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 430 431 spin_lock_init(&rdi->qp_dev->qpt_lock); 432 433 /* initialize qpn map */ 434 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 435 goto fail_table; 436 437 spin_lock_init(&rdi->n_qps_lock); 438 439 return 0; 440 441 fail_table: 442 kfree(rdi->qp_dev->qp_table); 443 free_qpn_table(&rdi->qp_dev->qpn_table); 444 445 no_qp_table: 446 kfree(rdi->qp_dev); 447 448 return ret; 449 } 450 451 /** 452 * free_all_qps - check for QPs still in use 453 * @rdi: rvt device info structure 454 * 455 * There should not be any QPs still in use. 456 * Free memory for table. 457 */ 458 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 459 { 460 unsigned long flags; 461 struct rvt_qp *qp; 462 unsigned n, qp_inuse = 0; 463 spinlock_t *ql; /* work around too long line below */ 464 465 if (rdi->driver_f.free_all_qps) 466 qp_inuse = rdi->driver_f.free_all_qps(rdi); 467 468 qp_inuse += rvt_mcast_tree_empty(rdi); 469 470 if (!rdi->qp_dev) 471 return qp_inuse; 472 473 ql = &rdi->qp_dev->qpt_lock; 474 spin_lock_irqsave(ql, flags); 475 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) { 476 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n], 477 lockdep_is_held(ql)); 478 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL); 479 480 for (; qp; qp = rcu_dereference_protected(qp->next, 481 lockdep_is_held(ql))) 482 qp_inuse++; 483 } 484 spin_unlock_irqrestore(ql, flags); 485 synchronize_rcu(); 486 return qp_inuse; 487 } 488 489 /** 490 * rvt_qp_exit - clean up qps on device exit 491 * @rdi: rvt dev structure 492 * 493 * Check for qp leaks and free resources. 494 */ 495 void rvt_qp_exit(struct rvt_dev_info *rdi) 496 { 497 u32 qps_inuse = rvt_free_all_qps(rdi); 498 499 if (qps_inuse) 500 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 501 qps_inuse); 502 if (!rdi->qp_dev) 503 return; 504 505 kfree(rdi->qp_dev->qp_table); 506 free_qpn_table(&rdi->qp_dev->qpn_table); 507 kfree(rdi->qp_dev); 508 } 509 510 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 511 struct rvt_qpn_map *map, unsigned off) 512 { 513 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 514 } 515 516 /** 517 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 518 * IB_QPT_SMI/IB_QPT_GSI 519 * @rdi: rvt device info structure 520 * @qpt: queue pair number table pointer 521 * @port_num: IB port number, 1 based, comes from core 522 * 523 * Return: The queue pair number 524 */ 525 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 526 enum ib_qp_type type, u8 port_num) 527 { 528 u32 i, offset, max_scan, qpn; 529 struct rvt_qpn_map *map; 530 u32 ret; 531 532 if (rdi->driver_f.alloc_qpn) 533 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 534 535 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 536 unsigned n; 537 538 ret = type == IB_QPT_GSI; 539 n = 1 << (ret + 2 * (port_num - 1)); 540 spin_lock(&qpt->lock); 541 if (qpt->flags & n) 542 ret = -EINVAL; 543 else 544 qpt->flags |= n; 545 spin_unlock(&qpt->lock); 546 goto bail; 547 } 548 549 qpn = qpt->last + qpt->incr; 550 if (qpn >= RVT_QPN_MAX) 551 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 552 /* offset carries bit 0 */ 553 offset = qpn & RVT_BITS_PER_PAGE_MASK; 554 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 555 max_scan = qpt->nmaps - !offset; 556 for (i = 0;;) { 557 if (unlikely(!map->page)) { 558 get_map_page(qpt, map); 559 if (unlikely(!map->page)) 560 break; 561 } 562 do { 563 if (!test_and_set_bit(offset, map->page)) { 564 qpt->last = qpn; 565 ret = qpn; 566 goto bail; 567 } 568 offset += qpt->incr; 569 /* 570 * This qpn might be bogus if offset >= BITS_PER_PAGE. 571 * That is OK. It gets re-assigned below 572 */ 573 qpn = mk_qpn(qpt, map, offset); 574 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 575 /* 576 * In order to keep the number of pages allocated to a 577 * minimum, we scan the all existing pages before increasing 578 * the size of the bitmap table. 579 */ 580 if (++i > max_scan) { 581 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 582 break; 583 map = &qpt->map[qpt->nmaps++]; 584 /* start at incr with current bit 0 */ 585 offset = qpt->incr | (offset & 1); 586 } else if (map < &qpt->map[qpt->nmaps]) { 587 ++map; 588 /* start at incr with current bit 0 */ 589 offset = qpt->incr | (offset & 1); 590 } else { 591 map = &qpt->map[0]; 592 /* wrap to first map page, invert bit 0 */ 593 offset = qpt->incr | ((offset & 1) ^ 1); 594 } 595 /* there can be no set bits in low-order QoS bits */ 596 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1)); 597 qpn = mk_qpn(qpt, map, offset); 598 } 599 600 ret = -ENOMEM; 601 602 bail: 603 return ret; 604 } 605 606 /** 607 * rvt_clear_mr_refs - Drop help mr refs 608 * @qp: rvt qp data structure 609 * @clr_sends: If shoudl clear send side or not 610 */ 611 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 612 { 613 unsigned n; 614 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 615 616 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 617 rvt_put_ss(&qp->s_rdma_read_sge); 618 619 rvt_put_ss(&qp->r_sge); 620 621 if (clr_sends) { 622 while (qp->s_last != qp->s_head) { 623 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 624 625 rvt_put_swqe(wqe); 626 627 if (qp->ibqp.qp_type == IB_QPT_UD || 628 qp->ibqp.qp_type == IB_QPT_SMI || 629 qp->ibqp.qp_type == IB_QPT_GSI) 630 atomic_dec(&ibah_to_rvtah( 631 wqe->ud_wr.ah)->refcount); 632 if (++qp->s_last >= qp->s_size) 633 qp->s_last = 0; 634 smp_wmb(); /* see qp_set_savail */ 635 } 636 if (qp->s_rdma_mr) { 637 rvt_put_mr(qp->s_rdma_mr); 638 qp->s_rdma_mr = NULL; 639 } 640 } 641 642 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 643 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 644 645 if (e->rdma_sge.mr) { 646 rvt_put_mr(e->rdma_sge.mr); 647 e->rdma_sge.mr = NULL; 648 } 649 } 650 } 651 652 /** 653 * rvt_swqe_has_lkey - return true if lkey is used by swqe 654 * @wqe - the send wqe 655 * @lkey - the lkey 656 * 657 * Test the swqe for using lkey 658 */ 659 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 660 { 661 int i; 662 663 for (i = 0; i < wqe->wr.num_sge; i++) { 664 struct rvt_sge *sge = &wqe->sg_list[i]; 665 666 if (rvt_mr_has_lkey(sge->mr, lkey)) 667 return true; 668 } 669 return false; 670 } 671 672 /** 673 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 674 * @qp - the rvt_qp 675 * @lkey - the lkey 676 */ 677 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 678 { 679 u32 s_last = qp->s_last; 680 681 while (s_last != qp->s_head) { 682 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 683 684 if (rvt_swqe_has_lkey(wqe, lkey)) 685 return true; 686 687 if (++s_last >= qp->s_size) 688 s_last = 0; 689 } 690 if (qp->s_rdma_mr) 691 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 692 return true; 693 return false; 694 } 695 696 /** 697 * rvt_qp_acks_has_lkey - return true if acks have lkey 698 * @qp - the qp 699 * @lkey - the lkey 700 */ 701 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 702 { 703 int i; 704 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 705 706 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 707 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 708 709 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 710 return true; 711 } 712 return false; 713 } 714 715 /* 716 * rvt_qp_mr_clean - clean up remote ops for lkey 717 * @qp - the qp 718 * @lkey - the lkey that is being de-registered 719 * 720 * This routine checks if the lkey is being used by 721 * the qp. 722 * 723 * If so, the qp is put into an error state to elminate 724 * any references from the qp. 725 */ 726 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 727 { 728 bool lastwqe = false; 729 730 if (qp->ibqp.qp_type == IB_QPT_SMI || 731 qp->ibqp.qp_type == IB_QPT_GSI) 732 /* avoid special QPs */ 733 return; 734 spin_lock_irq(&qp->r_lock); 735 spin_lock(&qp->s_hlock); 736 spin_lock(&qp->s_lock); 737 738 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 739 goto check_lwqe; 740 741 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 742 rvt_qp_sends_has_lkey(qp, lkey) || 743 rvt_qp_acks_has_lkey(qp, lkey)) 744 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 745 check_lwqe: 746 spin_unlock(&qp->s_lock); 747 spin_unlock(&qp->s_hlock); 748 spin_unlock_irq(&qp->r_lock); 749 if (lastwqe) { 750 struct ib_event ev; 751 752 ev.device = qp->ibqp.device; 753 ev.element.qp = &qp->ibqp; 754 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 755 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 756 } 757 } 758 759 /** 760 * rvt_remove_qp - remove qp form table 761 * @rdi: rvt dev struct 762 * @qp: qp to remove 763 * 764 * Remove the QP from the table so it can't be found asynchronously by 765 * the receive routine. 766 */ 767 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 768 { 769 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 770 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 771 unsigned long flags; 772 int removed = 1; 773 774 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 775 776 if (rcu_dereference_protected(rvp->qp[0], 777 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 778 RCU_INIT_POINTER(rvp->qp[0], NULL); 779 } else if (rcu_dereference_protected(rvp->qp[1], 780 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 781 RCU_INIT_POINTER(rvp->qp[1], NULL); 782 } else { 783 struct rvt_qp *q; 784 struct rvt_qp __rcu **qpp; 785 786 removed = 0; 787 qpp = &rdi->qp_dev->qp_table[n]; 788 for (; (q = rcu_dereference_protected(*qpp, 789 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 790 qpp = &q->next) { 791 if (q == qp) { 792 RCU_INIT_POINTER(*qpp, 793 rcu_dereference_protected(qp->next, 794 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 795 removed = 1; 796 trace_rvt_qpremove(qp, n); 797 break; 798 } 799 } 800 } 801 802 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 803 if (removed) { 804 synchronize_rcu(); 805 rvt_put_qp(qp); 806 } 807 } 808 809 /** 810 * rvt_init_qp - initialize the QP state to the reset state 811 * @qp: the QP to init or reinit 812 * @type: the QP type 813 * 814 * This function is called from both rvt_create_qp() and 815 * rvt_reset_qp(). The difference is that the reset 816 * patch the necessary locks to protect against concurent 817 * access. 818 */ 819 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 820 enum ib_qp_type type) 821 { 822 qp->remote_qpn = 0; 823 qp->qkey = 0; 824 qp->qp_access_flags = 0; 825 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 826 qp->s_hdrwords = 0; 827 qp->s_wqe = NULL; 828 qp->s_draining = 0; 829 qp->s_next_psn = 0; 830 qp->s_last_psn = 0; 831 qp->s_sending_psn = 0; 832 qp->s_sending_hpsn = 0; 833 qp->s_psn = 0; 834 qp->r_psn = 0; 835 qp->r_msn = 0; 836 if (type == IB_QPT_RC) { 837 qp->s_state = IB_OPCODE_RC_SEND_LAST; 838 qp->r_state = IB_OPCODE_RC_SEND_LAST; 839 } else { 840 qp->s_state = IB_OPCODE_UC_SEND_LAST; 841 qp->r_state = IB_OPCODE_UC_SEND_LAST; 842 } 843 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 844 qp->r_nak_state = 0; 845 qp->r_aflags = 0; 846 qp->r_flags = 0; 847 qp->s_head = 0; 848 qp->s_tail = 0; 849 qp->s_cur = 0; 850 qp->s_acked = 0; 851 qp->s_last = 0; 852 qp->s_ssn = 1; 853 qp->s_lsn = 0; 854 qp->s_mig_state = IB_MIG_MIGRATED; 855 qp->r_head_ack_queue = 0; 856 qp->s_tail_ack_queue = 0; 857 qp->s_num_rd_atomic = 0; 858 if (qp->r_rq.wq) { 859 qp->r_rq.wq->head = 0; 860 qp->r_rq.wq->tail = 0; 861 } 862 qp->r_sge.num_sge = 0; 863 atomic_set(&qp->s_reserved_used, 0); 864 } 865 866 /** 867 * rvt_reset_qp - initialize the QP state to the reset state 868 * @qp: the QP to reset 869 * @type: the QP type 870 * 871 * r_lock, s_hlock, and s_lock are required to be held by the caller 872 */ 873 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 874 enum ib_qp_type type) 875 __must_hold(&qp->s_lock) 876 __must_hold(&qp->s_hlock) 877 __must_hold(&qp->r_lock) 878 { 879 lockdep_assert_held(&qp->r_lock); 880 lockdep_assert_held(&qp->s_hlock); 881 lockdep_assert_held(&qp->s_lock); 882 if (qp->state != IB_QPS_RESET) { 883 qp->state = IB_QPS_RESET; 884 885 /* Let drivers flush their waitlist */ 886 rdi->driver_f.flush_qp_waiters(qp); 887 rvt_stop_rc_timers(qp); 888 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 889 spin_unlock(&qp->s_lock); 890 spin_unlock(&qp->s_hlock); 891 spin_unlock_irq(&qp->r_lock); 892 893 /* Stop the send queue and the retry timer */ 894 rdi->driver_f.stop_send_queue(qp); 895 rvt_del_timers_sync(qp); 896 /* Wait for things to stop */ 897 rdi->driver_f.quiesce_qp(qp); 898 899 /* take qp out the hash and wait for it to be unused */ 900 rvt_remove_qp(rdi, qp); 901 902 /* grab the lock b/c it was locked at call time */ 903 spin_lock_irq(&qp->r_lock); 904 spin_lock(&qp->s_hlock); 905 spin_lock(&qp->s_lock); 906 907 rvt_clear_mr_refs(qp, 1); 908 /* 909 * Let the driver do any tear down or re-init it needs to for 910 * a qp that has been reset 911 */ 912 rdi->driver_f.notify_qp_reset(qp); 913 } 914 rvt_init_qp(rdi, qp, type); 915 lockdep_assert_held(&qp->r_lock); 916 lockdep_assert_held(&qp->s_hlock); 917 lockdep_assert_held(&qp->s_lock); 918 } 919 920 /** rvt_free_qpn - Free a qpn from the bit map 921 * @qpt: QP table 922 * @qpn: queue pair number to free 923 */ 924 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 925 { 926 struct rvt_qpn_map *map; 927 928 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 929 if (map->page) 930 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 931 } 932 933 /** 934 * rvt_create_qp - create a queue pair for a device 935 * @ibpd: the protection domain who's device we create the queue pair for 936 * @init_attr: the attributes of the queue pair 937 * @udata: user data for libibverbs.so 938 * 939 * Queue pair creation is mostly an rvt issue. However, drivers have their own 940 * unique idea of what queue pair numbers mean. For instance there is a reserved 941 * range for PSM. 942 * 943 * Return: the queue pair on success, otherwise returns an errno. 944 * 945 * Called by the ib_create_qp() core verbs function. 946 */ 947 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 948 struct ib_qp_init_attr *init_attr, 949 struct ib_udata *udata) 950 { 951 struct rvt_qp *qp; 952 int err; 953 struct rvt_swqe *swq = NULL; 954 size_t sz; 955 size_t sg_list_sz; 956 struct ib_qp *ret = ERR_PTR(-ENOMEM); 957 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 958 void *priv = NULL; 959 size_t sqsize; 960 961 if (!rdi) 962 return ERR_PTR(-EINVAL); 963 964 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 965 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || 966 init_attr->create_flags) 967 return ERR_PTR(-EINVAL); 968 969 /* Check receive queue parameters if no SRQ is specified. */ 970 if (!init_attr->srq) { 971 if (init_attr->cap.max_recv_sge > 972 rdi->dparms.props.max_recv_sge || 973 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 974 return ERR_PTR(-EINVAL); 975 976 if (init_attr->cap.max_send_sge + 977 init_attr->cap.max_send_wr + 978 init_attr->cap.max_recv_sge + 979 init_attr->cap.max_recv_wr == 0) 980 return ERR_PTR(-EINVAL); 981 } 982 sqsize = 983 init_attr->cap.max_send_wr + 1 + 984 rdi->dparms.reserved_operations; 985 switch (init_attr->qp_type) { 986 case IB_QPT_SMI: 987 case IB_QPT_GSI: 988 if (init_attr->port_num == 0 || 989 init_attr->port_num > ibpd->device->phys_port_cnt) 990 return ERR_PTR(-EINVAL); 991 /* fall through */ 992 case IB_QPT_UC: 993 case IB_QPT_RC: 994 case IB_QPT_UD: 995 sz = sizeof(struct rvt_sge) * 996 init_attr->cap.max_send_sge + 997 sizeof(struct rvt_swqe); 998 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 999 if (!swq) 1000 return ERR_PTR(-ENOMEM); 1001 1002 sz = sizeof(*qp); 1003 sg_list_sz = 0; 1004 if (init_attr->srq) { 1005 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1006 1007 if (srq->rq.max_sge > 1) 1008 sg_list_sz = sizeof(*qp->r_sg_list) * 1009 (srq->rq.max_sge - 1); 1010 } else if (init_attr->cap.max_recv_sge > 1) 1011 sg_list_sz = sizeof(*qp->r_sg_list) * 1012 (init_attr->cap.max_recv_sge - 1); 1013 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, 1014 rdi->dparms.node); 1015 if (!qp) 1016 goto bail_swq; 1017 1018 RCU_INIT_POINTER(qp->next, NULL); 1019 if (init_attr->qp_type == IB_QPT_RC) { 1020 qp->s_ack_queue = 1021 kcalloc_node(rvt_max_atomic(rdi), 1022 sizeof(*qp->s_ack_queue), 1023 GFP_KERNEL, 1024 rdi->dparms.node); 1025 if (!qp->s_ack_queue) 1026 goto bail_qp; 1027 } 1028 /* initialize timers needed for rc qp */ 1029 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1030 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 1031 HRTIMER_MODE_REL); 1032 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 1033 1034 /* 1035 * Driver needs to set up it's private QP structure and do any 1036 * initialization that is needed. 1037 */ 1038 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1039 if (IS_ERR(priv)) { 1040 ret = priv; 1041 goto bail_qp; 1042 } 1043 qp->priv = priv; 1044 qp->timeout_jiffies = 1045 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1046 1000UL); 1047 if (init_attr->srq) { 1048 sz = 0; 1049 } else { 1050 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1051 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1052 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1053 sizeof(struct rvt_rwqe); 1054 if (udata) 1055 qp->r_rq.wq = vmalloc_user( 1056 sizeof(struct rvt_rwq) + 1057 qp->r_rq.size * sz); 1058 else 1059 qp->r_rq.wq = vzalloc_node( 1060 sizeof(struct rvt_rwq) + 1061 qp->r_rq.size * sz, 1062 rdi->dparms.node); 1063 if (!qp->r_rq.wq) 1064 goto bail_driver_priv; 1065 } 1066 1067 /* 1068 * ib_create_qp() will initialize qp->ibqp 1069 * except for qp->ibqp.qp_num. 1070 */ 1071 spin_lock_init(&qp->r_lock); 1072 spin_lock_init(&qp->s_hlock); 1073 spin_lock_init(&qp->s_lock); 1074 spin_lock_init(&qp->r_rq.lock); 1075 atomic_set(&qp->refcount, 0); 1076 atomic_set(&qp->local_ops_pending, 0); 1077 init_waitqueue_head(&qp->wait); 1078 INIT_LIST_HEAD(&qp->rspwait); 1079 qp->state = IB_QPS_RESET; 1080 qp->s_wq = swq; 1081 qp->s_size = sqsize; 1082 qp->s_avail = init_attr->cap.max_send_wr; 1083 qp->s_max_sge = init_attr->cap.max_send_sge; 1084 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1085 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1086 1087 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1088 init_attr->qp_type, 1089 init_attr->port_num); 1090 if (err < 0) { 1091 ret = ERR_PTR(err); 1092 goto bail_rq_wq; 1093 } 1094 qp->ibqp.qp_num = err; 1095 qp->port_num = init_attr->port_num; 1096 rvt_init_qp(rdi, qp, init_attr->qp_type); 1097 if (rdi->driver_f.qp_priv_init) { 1098 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); 1099 if (err) { 1100 ret = ERR_PTR(err); 1101 goto bail_rq_wq; 1102 } 1103 } 1104 break; 1105 1106 default: 1107 /* Don't support raw QPs */ 1108 return ERR_PTR(-EINVAL); 1109 } 1110 1111 init_attr->cap.max_inline_data = 0; 1112 1113 /* 1114 * Return the address of the RWQ as the offset to mmap. 1115 * See rvt_mmap() for details. 1116 */ 1117 if (udata && udata->outlen >= sizeof(__u64)) { 1118 if (!qp->r_rq.wq) { 1119 __u64 offset = 0; 1120 1121 err = ib_copy_to_udata(udata, &offset, 1122 sizeof(offset)); 1123 if (err) { 1124 ret = ERR_PTR(err); 1125 goto bail_qpn; 1126 } 1127 } else { 1128 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1129 1130 qp->ip = rvt_create_mmap_info(rdi, s, 1131 ibpd->uobject->context, 1132 qp->r_rq.wq); 1133 if (!qp->ip) { 1134 ret = ERR_PTR(-ENOMEM); 1135 goto bail_qpn; 1136 } 1137 1138 err = ib_copy_to_udata(udata, &qp->ip->offset, 1139 sizeof(qp->ip->offset)); 1140 if (err) { 1141 ret = ERR_PTR(err); 1142 goto bail_ip; 1143 } 1144 } 1145 qp->pid = current->pid; 1146 } 1147 1148 spin_lock(&rdi->n_qps_lock); 1149 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1150 spin_unlock(&rdi->n_qps_lock); 1151 ret = ERR_PTR(-ENOMEM); 1152 goto bail_ip; 1153 } 1154 1155 rdi->n_qps_allocated++; 1156 /* 1157 * Maintain a busy_jiffies variable that will be added to the timeout 1158 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1159 * is scaled by the number of rc qps created for the device to reduce 1160 * the number of timeouts occurring when there is a large number of 1161 * qps. busy_jiffies is incremented every rc qp scaling interval. 1162 * The scaling interval is selected based on extensive performance 1163 * evaluation of targeted workloads. 1164 */ 1165 if (init_attr->qp_type == IB_QPT_RC) { 1166 rdi->n_rc_qps++; 1167 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1168 } 1169 spin_unlock(&rdi->n_qps_lock); 1170 1171 if (qp->ip) { 1172 spin_lock_irq(&rdi->pending_lock); 1173 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1174 spin_unlock_irq(&rdi->pending_lock); 1175 } 1176 1177 ret = &qp->ibqp; 1178 1179 /* 1180 * We have our QP and its good, now keep track of what types of opcodes 1181 * can be processed on this QP. We do this by keeping track of what the 1182 * 3 high order bits of the opcode are. 1183 */ 1184 switch (init_attr->qp_type) { 1185 case IB_QPT_SMI: 1186 case IB_QPT_GSI: 1187 case IB_QPT_UD: 1188 qp->allowed_ops = IB_OPCODE_UD; 1189 break; 1190 case IB_QPT_RC: 1191 qp->allowed_ops = IB_OPCODE_RC; 1192 break; 1193 case IB_QPT_UC: 1194 qp->allowed_ops = IB_OPCODE_UC; 1195 break; 1196 default: 1197 ret = ERR_PTR(-EINVAL); 1198 goto bail_ip; 1199 } 1200 1201 return ret; 1202 1203 bail_ip: 1204 if (qp->ip) 1205 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1206 1207 bail_qpn: 1208 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1209 1210 bail_rq_wq: 1211 if (!qp->ip) 1212 vfree(qp->r_rq.wq); 1213 1214 bail_driver_priv: 1215 rdi->driver_f.qp_priv_free(rdi, qp); 1216 1217 bail_qp: 1218 kfree(qp->s_ack_queue); 1219 kfree(qp); 1220 1221 bail_swq: 1222 vfree(swq); 1223 1224 return ret; 1225 } 1226 1227 /** 1228 * rvt_error_qp - put a QP into the error state 1229 * @qp: the QP to put into the error state 1230 * @err: the receive completion error to signal if a RWQE is active 1231 * 1232 * Flushes both send and receive work queues. 1233 * 1234 * Return: true if last WQE event should be generated. 1235 * The QP r_lock and s_lock should be held and interrupts disabled. 1236 * If we are already in error state, just return. 1237 */ 1238 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1239 { 1240 struct ib_wc wc; 1241 int ret = 0; 1242 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1243 1244 lockdep_assert_held(&qp->r_lock); 1245 lockdep_assert_held(&qp->s_lock); 1246 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1247 goto bail; 1248 1249 qp->state = IB_QPS_ERR; 1250 1251 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1252 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1253 del_timer(&qp->s_timer); 1254 } 1255 1256 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1257 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1258 1259 rdi->driver_f.notify_error_qp(qp); 1260 1261 /* Schedule the sending tasklet to drain the send work queue. */ 1262 if (READ_ONCE(qp->s_last) != qp->s_head) 1263 rdi->driver_f.schedule_send(qp); 1264 1265 rvt_clear_mr_refs(qp, 0); 1266 1267 memset(&wc, 0, sizeof(wc)); 1268 wc.qp = &qp->ibqp; 1269 wc.opcode = IB_WC_RECV; 1270 1271 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1272 wc.wr_id = qp->r_wr_id; 1273 wc.status = err; 1274 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1275 } 1276 wc.status = IB_WC_WR_FLUSH_ERR; 1277 1278 if (qp->r_rq.wq) { 1279 struct rvt_rwq *wq; 1280 u32 head; 1281 u32 tail; 1282 1283 spin_lock(&qp->r_rq.lock); 1284 1285 /* sanity check pointers before trusting them */ 1286 wq = qp->r_rq.wq; 1287 head = wq->head; 1288 if (head >= qp->r_rq.size) 1289 head = 0; 1290 tail = wq->tail; 1291 if (tail >= qp->r_rq.size) 1292 tail = 0; 1293 while (tail != head) { 1294 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1295 if (++tail >= qp->r_rq.size) 1296 tail = 0; 1297 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1298 } 1299 wq->tail = tail; 1300 1301 spin_unlock(&qp->r_rq.lock); 1302 } else if (qp->ibqp.event_handler) { 1303 ret = 1; 1304 } 1305 1306 bail: 1307 return ret; 1308 } 1309 EXPORT_SYMBOL(rvt_error_qp); 1310 1311 /* 1312 * Put the QP into the hash table. 1313 * The hash table holds a reference to the QP. 1314 */ 1315 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1316 { 1317 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1318 unsigned long flags; 1319 1320 rvt_get_qp(qp); 1321 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1322 1323 if (qp->ibqp.qp_num <= 1) { 1324 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1325 } else { 1326 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1327 1328 qp->next = rdi->qp_dev->qp_table[n]; 1329 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1330 trace_rvt_qpinsert(qp, n); 1331 } 1332 1333 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1334 } 1335 1336 /** 1337 * rvt_modify_qp - modify the attributes of a queue pair 1338 * @ibqp: the queue pair who's attributes we're modifying 1339 * @attr: the new attributes 1340 * @attr_mask: the mask of attributes to modify 1341 * @udata: user data for libibverbs.so 1342 * 1343 * Return: 0 on success, otherwise returns an errno. 1344 */ 1345 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1346 int attr_mask, struct ib_udata *udata) 1347 { 1348 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1349 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1350 enum ib_qp_state cur_state, new_state; 1351 struct ib_event ev; 1352 int lastwqe = 0; 1353 int mig = 0; 1354 int pmtu = 0; /* for gcc warning only */ 1355 int opa_ah; 1356 1357 spin_lock_irq(&qp->r_lock); 1358 spin_lock(&qp->s_hlock); 1359 spin_lock(&qp->s_lock); 1360 1361 cur_state = attr_mask & IB_QP_CUR_STATE ? 1362 attr->cur_qp_state : qp->state; 1363 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1364 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1365 1366 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1367 attr_mask)) 1368 goto inval; 1369 1370 if (rdi->driver_f.check_modify_qp && 1371 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1372 goto inval; 1373 1374 if (attr_mask & IB_QP_AV) { 1375 if (opa_ah) { 1376 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1377 opa_get_mcast_base(OPA_MCAST_NR)) 1378 goto inval; 1379 } else { 1380 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1381 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1382 goto inval; 1383 } 1384 1385 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1386 goto inval; 1387 } 1388 1389 if (attr_mask & IB_QP_ALT_PATH) { 1390 if (opa_ah) { 1391 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1392 opa_get_mcast_base(OPA_MCAST_NR)) 1393 goto inval; 1394 } else { 1395 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1396 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1397 goto inval; 1398 } 1399 1400 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1401 goto inval; 1402 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1403 goto inval; 1404 } 1405 1406 if (attr_mask & IB_QP_PKEY_INDEX) 1407 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1408 goto inval; 1409 1410 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1411 if (attr->min_rnr_timer > 31) 1412 goto inval; 1413 1414 if (attr_mask & IB_QP_PORT) 1415 if (qp->ibqp.qp_type == IB_QPT_SMI || 1416 qp->ibqp.qp_type == IB_QPT_GSI || 1417 attr->port_num == 0 || 1418 attr->port_num > ibqp->device->phys_port_cnt) 1419 goto inval; 1420 1421 if (attr_mask & IB_QP_DEST_QPN) 1422 if (attr->dest_qp_num > RVT_QPN_MASK) 1423 goto inval; 1424 1425 if (attr_mask & IB_QP_RETRY_CNT) 1426 if (attr->retry_cnt > 7) 1427 goto inval; 1428 1429 if (attr_mask & IB_QP_RNR_RETRY) 1430 if (attr->rnr_retry > 7) 1431 goto inval; 1432 1433 /* 1434 * Don't allow invalid path_mtu values. OK to set greater 1435 * than the active mtu (or even the max_cap, if we have tuned 1436 * that to a small mtu. We'll set qp->path_mtu 1437 * to the lesser of requested attribute mtu and active, 1438 * for packetizing messages. 1439 * Note that the QP port has to be set in INIT and MTU in RTR. 1440 */ 1441 if (attr_mask & IB_QP_PATH_MTU) { 1442 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1443 if (pmtu < 0) 1444 goto inval; 1445 } 1446 1447 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1448 if (attr->path_mig_state == IB_MIG_REARM) { 1449 if (qp->s_mig_state == IB_MIG_ARMED) 1450 goto inval; 1451 if (new_state != IB_QPS_RTS) 1452 goto inval; 1453 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1454 if (qp->s_mig_state == IB_MIG_REARM) 1455 goto inval; 1456 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1457 goto inval; 1458 if (qp->s_mig_state == IB_MIG_ARMED) 1459 mig = 1; 1460 } else { 1461 goto inval; 1462 } 1463 } 1464 1465 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1466 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1467 goto inval; 1468 1469 switch (new_state) { 1470 case IB_QPS_RESET: 1471 if (qp->state != IB_QPS_RESET) 1472 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1473 break; 1474 1475 case IB_QPS_RTR: 1476 /* Allow event to re-trigger if QP set to RTR more than once */ 1477 qp->r_flags &= ~RVT_R_COMM_EST; 1478 qp->state = new_state; 1479 break; 1480 1481 case IB_QPS_SQD: 1482 qp->s_draining = qp->s_last != qp->s_cur; 1483 qp->state = new_state; 1484 break; 1485 1486 case IB_QPS_SQE: 1487 if (qp->ibqp.qp_type == IB_QPT_RC) 1488 goto inval; 1489 qp->state = new_state; 1490 break; 1491 1492 case IB_QPS_ERR: 1493 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1494 break; 1495 1496 default: 1497 qp->state = new_state; 1498 break; 1499 } 1500 1501 if (attr_mask & IB_QP_PKEY_INDEX) 1502 qp->s_pkey_index = attr->pkey_index; 1503 1504 if (attr_mask & IB_QP_PORT) 1505 qp->port_num = attr->port_num; 1506 1507 if (attr_mask & IB_QP_DEST_QPN) 1508 qp->remote_qpn = attr->dest_qp_num; 1509 1510 if (attr_mask & IB_QP_SQ_PSN) { 1511 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1512 qp->s_psn = qp->s_next_psn; 1513 qp->s_sending_psn = qp->s_next_psn; 1514 qp->s_last_psn = qp->s_next_psn - 1; 1515 qp->s_sending_hpsn = qp->s_last_psn; 1516 } 1517 1518 if (attr_mask & IB_QP_RQ_PSN) 1519 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1520 1521 if (attr_mask & IB_QP_ACCESS_FLAGS) 1522 qp->qp_access_flags = attr->qp_access_flags; 1523 1524 if (attr_mask & IB_QP_AV) { 1525 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1526 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1527 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1528 } 1529 1530 if (attr_mask & IB_QP_ALT_PATH) { 1531 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1532 qp->s_alt_pkey_index = attr->alt_pkey_index; 1533 } 1534 1535 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1536 qp->s_mig_state = attr->path_mig_state; 1537 if (mig) { 1538 qp->remote_ah_attr = qp->alt_ah_attr; 1539 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1540 qp->s_pkey_index = qp->s_alt_pkey_index; 1541 } 1542 } 1543 1544 if (attr_mask & IB_QP_PATH_MTU) { 1545 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1546 qp->log_pmtu = ilog2(qp->pmtu); 1547 } 1548 1549 if (attr_mask & IB_QP_RETRY_CNT) { 1550 qp->s_retry_cnt = attr->retry_cnt; 1551 qp->s_retry = attr->retry_cnt; 1552 } 1553 1554 if (attr_mask & IB_QP_RNR_RETRY) { 1555 qp->s_rnr_retry_cnt = attr->rnr_retry; 1556 qp->s_rnr_retry = attr->rnr_retry; 1557 } 1558 1559 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1560 qp->r_min_rnr_timer = attr->min_rnr_timer; 1561 1562 if (attr_mask & IB_QP_TIMEOUT) { 1563 qp->timeout = attr->timeout; 1564 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1565 } 1566 1567 if (attr_mask & IB_QP_QKEY) 1568 qp->qkey = attr->qkey; 1569 1570 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1571 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1572 1573 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1574 qp->s_max_rd_atomic = attr->max_rd_atomic; 1575 1576 if (rdi->driver_f.modify_qp) 1577 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1578 1579 spin_unlock(&qp->s_lock); 1580 spin_unlock(&qp->s_hlock); 1581 spin_unlock_irq(&qp->r_lock); 1582 1583 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1584 rvt_insert_qp(rdi, qp); 1585 1586 if (lastwqe) { 1587 ev.device = qp->ibqp.device; 1588 ev.element.qp = &qp->ibqp; 1589 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1590 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1591 } 1592 if (mig) { 1593 ev.device = qp->ibqp.device; 1594 ev.element.qp = &qp->ibqp; 1595 ev.event = IB_EVENT_PATH_MIG; 1596 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1597 } 1598 return 0; 1599 1600 inval: 1601 spin_unlock(&qp->s_lock); 1602 spin_unlock(&qp->s_hlock); 1603 spin_unlock_irq(&qp->r_lock); 1604 return -EINVAL; 1605 } 1606 1607 /** 1608 * rvt_destroy_qp - destroy a queue pair 1609 * @ibqp: the queue pair to destroy 1610 * 1611 * Note that this can be called while the QP is actively sending or 1612 * receiving! 1613 * 1614 * Return: 0 on success. 1615 */ 1616 int rvt_destroy_qp(struct ib_qp *ibqp) 1617 { 1618 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1619 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1620 1621 spin_lock_irq(&qp->r_lock); 1622 spin_lock(&qp->s_hlock); 1623 spin_lock(&qp->s_lock); 1624 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1625 spin_unlock(&qp->s_lock); 1626 spin_unlock(&qp->s_hlock); 1627 spin_unlock_irq(&qp->r_lock); 1628 1629 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1630 /* qpn is now available for use again */ 1631 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1632 1633 spin_lock(&rdi->n_qps_lock); 1634 rdi->n_qps_allocated--; 1635 if (qp->ibqp.qp_type == IB_QPT_RC) { 1636 rdi->n_rc_qps--; 1637 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1638 } 1639 spin_unlock(&rdi->n_qps_lock); 1640 1641 if (qp->ip) 1642 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1643 else 1644 vfree(qp->r_rq.wq); 1645 vfree(qp->s_wq); 1646 rdi->driver_f.qp_priv_free(rdi, qp); 1647 kfree(qp->s_ack_queue); 1648 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1649 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1650 kfree(qp); 1651 return 0; 1652 } 1653 1654 /** 1655 * rvt_query_qp - query an ipbq 1656 * @ibqp: IB qp to query 1657 * @attr: attr struct to fill in 1658 * @attr_mask: attr mask ignored 1659 * @init_attr: struct to fill in 1660 * 1661 * Return: always 0 1662 */ 1663 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1664 int attr_mask, struct ib_qp_init_attr *init_attr) 1665 { 1666 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1667 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1668 1669 attr->qp_state = qp->state; 1670 attr->cur_qp_state = attr->qp_state; 1671 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1672 attr->path_mig_state = qp->s_mig_state; 1673 attr->qkey = qp->qkey; 1674 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1675 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1676 attr->dest_qp_num = qp->remote_qpn; 1677 attr->qp_access_flags = qp->qp_access_flags; 1678 attr->cap.max_send_wr = qp->s_size - 1 - 1679 rdi->dparms.reserved_operations; 1680 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1681 attr->cap.max_send_sge = qp->s_max_sge; 1682 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1683 attr->cap.max_inline_data = 0; 1684 attr->ah_attr = qp->remote_ah_attr; 1685 attr->alt_ah_attr = qp->alt_ah_attr; 1686 attr->pkey_index = qp->s_pkey_index; 1687 attr->alt_pkey_index = qp->s_alt_pkey_index; 1688 attr->en_sqd_async_notify = 0; 1689 attr->sq_draining = qp->s_draining; 1690 attr->max_rd_atomic = qp->s_max_rd_atomic; 1691 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1692 attr->min_rnr_timer = qp->r_min_rnr_timer; 1693 attr->port_num = qp->port_num; 1694 attr->timeout = qp->timeout; 1695 attr->retry_cnt = qp->s_retry_cnt; 1696 attr->rnr_retry = qp->s_rnr_retry_cnt; 1697 attr->alt_port_num = 1698 rdma_ah_get_port_num(&qp->alt_ah_attr); 1699 attr->alt_timeout = qp->alt_timeout; 1700 1701 init_attr->event_handler = qp->ibqp.event_handler; 1702 init_attr->qp_context = qp->ibqp.qp_context; 1703 init_attr->send_cq = qp->ibqp.send_cq; 1704 init_attr->recv_cq = qp->ibqp.recv_cq; 1705 init_attr->srq = qp->ibqp.srq; 1706 init_attr->cap = attr->cap; 1707 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1708 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1709 else 1710 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1711 init_attr->qp_type = qp->ibqp.qp_type; 1712 init_attr->port_num = qp->port_num; 1713 return 0; 1714 } 1715 1716 /** 1717 * rvt_post_receive - post a receive on a QP 1718 * @ibqp: the QP to post the receive on 1719 * @wr: the WR to post 1720 * @bad_wr: the first bad WR is put here 1721 * 1722 * This may be called from interrupt context. 1723 * 1724 * Return: 0 on success otherwise errno 1725 */ 1726 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1727 const struct ib_recv_wr **bad_wr) 1728 { 1729 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1730 struct rvt_rwq *wq = qp->r_rq.wq; 1731 unsigned long flags; 1732 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1733 !qp->ibqp.srq; 1734 1735 /* Check that state is OK to post receive. */ 1736 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1737 *bad_wr = wr; 1738 return -EINVAL; 1739 } 1740 1741 for (; wr; wr = wr->next) { 1742 struct rvt_rwqe *wqe; 1743 u32 next; 1744 int i; 1745 1746 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1747 *bad_wr = wr; 1748 return -EINVAL; 1749 } 1750 1751 spin_lock_irqsave(&qp->r_rq.lock, flags); 1752 next = wq->head + 1; 1753 if (next >= qp->r_rq.size) 1754 next = 0; 1755 if (next == wq->tail) { 1756 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1757 *bad_wr = wr; 1758 return -ENOMEM; 1759 } 1760 if (unlikely(qp_err_flush)) { 1761 struct ib_wc wc; 1762 1763 memset(&wc, 0, sizeof(wc)); 1764 wc.qp = &qp->ibqp; 1765 wc.opcode = IB_WC_RECV; 1766 wc.wr_id = wr->wr_id; 1767 wc.status = IB_WC_WR_FLUSH_ERR; 1768 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1769 } else { 1770 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1771 wqe->wr_id = wr->wr_id; 1772 wqe->num_sge = wr->num_sge; 1773 for (i = 0; i < wr->num_sge; i++) 1774 wqe->sg_list[i] = wr->sg_list[i]; 1775 /* 1776 * Make sure queue entry is written 1777 * before the head index. 1778 */ 1779 smp_wmb(); 1780 wq->head = next; 1781 } 1782 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1783 } 1784 return 0; 1785 } 1786 1787 /** 1788 * rvt_qp_valid_operation - validate post send wr request 1789 * @qp - the qp 1790 * @post-parms - the post send table for the driver 1791 * @wr - the work request 1792 * 1793 * The routine validates the operation based on the 1794 * validation table an returns the length of the operation 1795 * which can extend beyond the ib_send_bw. Operation 1796 * dependent flags key atomic operation validation. 1797 * 1798 * There is an exception for UD qps that validates the pd and 1799 * overrides the length to include the additional UD specific 1800 * length. 1801 * 1802 * Returns a negative error or the length of the work request 1803 * for building the swqe. 1804 */ 1805 static inline int rvt_qp_valid_operation( 1806 struct rvt_qp *qp, 1807 const struct rvt_operation_params *post_parms, 1808 const struct ib_send_wr *wr) 1809 { 1810 int len; 1811 1812 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1813 return -EINVAL; 1814 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1815 return -EINVAL; 1816 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1817 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1818 return -EINVAL; 1819 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1820 (wr->num_sge == 0 || 1821 wr->sg_list[0].length < sizeof(u64) || 1822 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1823 return -EINVAL; 1824 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1825 !qp->s_max_rd_atomic) 1826 return -EINVAL; 1827 len = post_parms[wr->opcode].length; 1828 /* UD specific */ 1829 if (qp->ibqp.qp_type != IB_QPT_UC && 1830 qp->ibqp.qp_type != IB_QPT_RC) { 1831 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1832 return -EINVAL; 1833 len = sizeof(struct ib_ud_wr); 1834 } 1835 return len; 1836 } 1837 1838 /** 1839 * rvt_qp_is_avail - determine queue capacity 1840 * @qp: the qp 1841 * @rdi: the rdmavt device 1842 * @reserved_op: is reserved operation 1843 * 1844 * This assumes the s_hlock is held but the s_last 1845 * qp variable is uncontrolled. 1846 * 1847 * For non reserved operations, the qp->s_avail 1848 * may be changed. 1849 * 1850 * The return value is zero or a -ENOMEM. 1851 */ 1852 static inline int rvt_qp_is_avail( 1853 struct rvt_qp *qp, 1854 struct rvt_dev_info *rdi, 1855 bool reserved_op) 1856 { 1857 u32 slast; 1858 u32 avail; 1859 u32 reserved_used; 1860 1861 /* see rvt_qp_wqe_unreserve() */ 1862 smp_mb__before_atomic(); 1863 reserved_used = atomic_read(&qp->s_reserved_used); 1864 if (unlikely(reserved_op)) { 1865 /* see rvt_qp_wqe_unreserve() */ 1866 smp_mb__before_atomic(); 1867 if (reserved_used >= rdi->dparms.reserved_operations) 1868 return -ENOMEM; 1869 return 0; 1870 } 1871 /* non-reserved operations */ 1872 if (likely(qp->s_avail)) 1873 return 0; 1874 slast = READ_ONCE(qp->s_last); 1875 if (qp->s_head >= slast) 1876 avail = qp->s_size - (qp->s_head - slast); 1877 else 1878 avail = slast - qp->s_head; 1879 1880 /* see rvt_qp_wqe_unreserve() */ 1881 smp_mb__before_atomic(); 1882 reserved_used = atomic_read(&qp->s_reserved_used); 1883 avail = avail - 1 - 1884 (rdi->dparms.reserved_operations - reserved_used); 1885 /* insure we don't assign a negative s_avail */ 1886 if ((s32)avail <= 0) 1887 return -ENOMEM; 1888 qp->s_avail = avail; 1889 if (WARN_ON(qp->s_avail > 1890 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1891 rvt_pr_err(rdi, 1892 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1893 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1894 qp->s_head, qp->s_tail, qp->s_cur, 1895 qp->s_acked, qp->s_last); 1896 return 0; 1897 } 1898 1899 /** 1900 * rvt_post_one_wr - post one RC, UC, or UD send work request 1901 * @qp: the QP to post on 1902 * @wr: the work request to send 1903 */ 1904 static int rvt_post_one_wr(struct rvt_qp *qp, 1905 const struct ib_send_wr *wr, 1906 bool *call_send) 1907 { 1908 struct rvt_swqe *wqe; 1909 u32 next; 1910 int i; 1911 int j; 1912 int acc; 1913 struct rvt_lkey_table *rkt; 1914 struct rvt_pd *pd; 1915 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1916 u8 log_pmtu; 1917 int ret; 1918 size_t cplen; 1919 bool reserved_op; 1920 int local_ops_delayed = 0; 1921 1922 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1923 1924 /* IB spec says that num_sge == 0 is OK. */ 1925 if (unlikely(wr->num_sge > qp->s_max_sge)) 1926 return -EINVAL; 1927 1928 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1929 if (ret < 0) 1930 return ret; 1931 cplen = ret; 1932 1933 /* 1934 * Local operations include fast register and local invalidate. 1935 * Fast register needs to be processed immediately because the 1936 * registered lkey may be used by following work requests and the 1937 * lkey needs to be valid at the time those requests are posted. 1938 * Local invalidate can be processed immediately if fencing is 1939 * not required and no previous local invalidate ops are pending. 1940 * Signaled local operations that have been processed immediately 1941 * need to have requests with "completion only" flags set posted 1942 * to the send queue in order to generate completions. 1943 */ 1944 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 1945 switch (wr->opcode) { 1946 case IB_WR_REG_MR: 1947 ret = rvt_fast_reg_mr(qp, 1948 reg_wr(wr)->mr, 1949 reg_wr(wr)->key, 1950 reg_wr(wr)->access); 1951 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1952 return ret; 1953 break; 1954 case IB_WR_LOCAL_INV: 1955 if ((wr->send_flags & IB_SEND_FENCE) || 1956 atomic_read(&qp->local_ops_pending)) { 1957 local_ops_delayed = 1; 1958 } else { 1959 ret = rvt_invalidate_rkey( 1960 qp, wr->ex.invalidate_rkey); 1961 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1962 return ret; 1963 } 1964 break; 1965 default: 1966 return -EINVAL; 1967 } 1968 } 1969 1970 reserved_op = rdi->post_parms[wr->opcode].flags & 1971 RVT_OPERATION_USE_RESERVE; 1972 /* check for avail */ 1973 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 1974 if (ret) 1975 return ret; 1976 next = qp->s_head + 1; 1977 if (next >= qp->s_size) 1978 next = 0; 1979 1980 rkt = &rdi->lkey_table; 1981 pd = ibpd_to_rvtpd(qp->ibqp.pd); 1982 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 1983 1984 /* cplen has length from above */ 1985 memcpy(&wqe->wr, wr, cplen); 1986 1987 wqe->length = 0; 1988 j = 0; 1989 if (wr->num_sge) { 1990 struct rvt_sge *last_sge = NULL; 1991 1992 acc = wr->opcode >= IB_WR_RDMA_READ ? 1993 IB_ACCESS_LOCAL_WRITE : 0; 1994 for (i = 0; i < wr->num_sge; i++) { 1995 u32 length = wr->sg_list[i].length; 1996 1997 if (length == 0) 1998 continue; 1999 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 2000 &wr->sg_list[i], acc); 2001 if (unlikely(ret < 0)) 2002 goto bail_inval_free; 2003 wqe->length += length; 2004 if (ret) 2005 last_sge = &wqe->sg_list[j]; 2006 j += ret; 2007 } 2008 wqe->wr.num_sge = j; 2009 } 2010 2011 /* 2012 * Calculate and set SWQE PSN values prior to handing it off 2013 * to the driver's check routine. This give the driver the 2014 * opportunity to adjust PSN values based on internal checks. 2015 */ 2016 log_pmtu = qp->log_pmtu; 2017 if (qp->ibqp.qp_type != IB_QPT_UC && 2018 qp->ibqp.qp_type != IB_QPT_RC) { 2019 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah); 2020 2021 log_pmtu = ah->log_pmtu; 2022 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 2023 } 2024 2025 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2026 if (local_ops_delayed) 2027 atomic_inc(&qp->local_ops_pending); 2028 else 2029 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2030 wqe->ssn = 0; 2031 wqe->psn = 0; 2032 wqe->lpsn = 0; 2033 } else { 2034 wqe->ssn = qp->s_ssn++; 2035 wqe->psn = qp->s_next_psn; 2036 wqe->lpsn = wqe->psn + 2037 (wqe->length ? 2038 ((wqe->length - 1) >> log_pmtu) : 2039 0); 2040 } 2041 2042 /* general part of wqe valid - allow for driver checks */ 2043 if (rdi->driver_f.setup_wqe) { 2044 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2045 if (ret < 0) 2046 goto bail_inval_free_ref; 2047 } 2048 2049 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2050 qp->s_next_psn = wqe->lpsn + 1; 2051 2052 if (unlikely(reserved_op)) { 2053 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2054 rvt_qp_wqe_reserve(qp, wqe); 2055 } else { 2056 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2057 qp->s_avail--; 2058 } 2059 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2060 smp_wmb(); /* see request builders */ 2061 qp->s_head = next; 2062 2063 return 0; 2064 2065 bail_inval_free_ref: 2066 if (qp->ibqp.qp_type != IB_QPT_UC && 2067 qp->ibqp.qp_type != IB_QPT_RC) 2068 atomic_dec(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 2069 bail_inval_free: 2070 /* release mr holds */ 2071 while (j) { 2072 struct rvt_sge *sge = &wqe->sg_list[--j]; 2073 2074 rvt_put_mr(sge->mr); 2075 } 2076 return ret; 2077 } 2078 2079 /** 2080 * rvt_post_send - post a send on a QP 2081 * @ibqp: the QP to post the send on 2082 * @wr: the list of work requests to post 2083 * @bad_wr: the first bad WR is put here 2084 * 2085 * This may be called from interrupt context. 2086 * 2087 * Return: 0 on success else errno 2088 */ 2089 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2090 const struct ib_send_wr **bad_wr) 2091 { 2092 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2093 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2094 unsigned long flags = 0; 2095 bool call_send; 2096 unsigned nreq = 0; 2097 int err = 0; 2098 2099 spin_lock_irqsave(&qp->s_hlock, flags); 2100 2101 /* 2102 * Ensure QP state is such that we can send. If not bail out early, 2103 * there is no need to do this every time we post a send. 2104 */ 2105 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2106 spin_unlock_irqrestore(&qp->s_hlock, flags); 2107 return -EINVAL; 2108 } 2109 2110 /* 2111 * If the send queue is empty, and we only have a single WR then just go 2112 * ahead and kick the send engine into gear. Otherwise we will always 2113 * just schedule the send to happen later. 2114 */ 2115 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2116 2117 for (; wr; wr = wr->next) { 2118 err = rvt_post_one_wr(qp, wr, &call_send); 2119 if (unlikely(err)) { 2120 *bad_wr = wr; 2121 goto bail; 2122 } 2123 nreq++; 2124 } 2125 bail: 2126 spin_unlock_irqrestore(&qp->s_hlock, flags); 2127 if (nreq) { 2128 /* 2129 * Only call do_send if there is exactly one packet, and the 2130 * driver said it was ok. 2131 */ 2132 if (nreq == 1 && call_send) 2133 rdi->driver_f.do_send(qp); 2134 else 2135 rdi->driver_f.schedule_send_no_lock(qp); 2136 } 2137 return err; 2138 } 2139 2140 /** 2141 * rvt_post_srq_receive - post a receive on a shared receive queue 2142 * @ibsrq: the SRQ to post the receive on 2143 * @wr: the list of work requests to post 2144 * @bad_wr: A pointer to the first WR to cause a problem is put here 2145 * 2146 * This may be called from interrupt context. 2147 * 2148 * Return: 0 on success else errno 2149 */ 2150 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2151 const struct ib_recv_wr **bad_wr) 2152 { 2153 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2154 struct rvt_rwq *wq; 2155 unsigned long flags; 2156 2157 for (; wr; wr = wr->next) { 2158 struct rvt_rwqe *wqe; 2159 u32 next; 2160 int i; 2161 2162 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2163 *bad_wr = wr; 2164 return -EINVAL; 2165 } 2166 2167 spin_lock_irqsave(&srq->rq.lock, flags); 2168 wq = srq->rq.wq; 2169 next = wq->head + 1; 2170 if (next >= srq->rq.size) 2171 next = 0; 2172 if (next == wq->tail) { 2173 spin_unlock_irqrestore(&srq->rq.lock, flags); 2174 *bad_wr = wr; 2175 return -ENOMEM; 2176 } 2177 2178 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2179 wqe->wr_id = wr->wr_id; 2180 wqe->num_sge = wr->num_sge; 2181 for (i = 0; i < wr->num_sge; i++) 2182 wqe->sg_list[i] = wr->sg_list[i]; 2183 /* Make sure queue entry is written before the head index. */ 2184 smp_wmb(); 2185 wq->head = next; 2186 spin_unlock_irqrestore(&srq->rq.lock, flags); 2187 } 2188 return 0; 2189 } 2190 2191 /* 2192 * Validate a RWQE and fill in the SGE state. 2193 * Return 1 if OK. 2194 */ 2195 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2196 { 2197 int i, j, ret; 2198 struct ib_wc wc; 2199 struct rvt_lkey_table *rkt; 2200 struct rvt_pd *pd; 2201 struct rvt_sge_state *ss; 2202 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2203 2204 rkt = &rdi->lkey_table; 2205 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2206 ss = &qp->r_sge; 2207 ss->sg_list = qp->r_sg_list; 2208 qp->r_len = 0; 2209 for (i = j = 0; i < wqe->num_sge; i++) { 2210 if (wqe->sg_list[i].length == 0) 2211 continue; 2212 /* Check LKEY */ 2213 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2214 NULL, &wqe->sg_list[i], 2215 IB_ACCESS_LOCAL_WRITE); 2216 if (unlikely(ret <= 0)) 2217 goto bad_lkey; 2218 qp->r_len += wqe->sg_list[i].length; 2219 j++; 2220 } 2221 ss->num_sge = j; 2222 ss->total_len = qp->r_len; 2223 return 1; 2224 2225 bad_lkey: 2226 while (j) { 2227 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2228 2229 rvt_put_mr(sge->mr); 2230 } 2231 ss->num_sge = 0; 2232 memset(&wc, 0, sizeof(wc)); 2233 wc.wr_id = wqe->wr_id; 2234 wc.status = IB_WC_LOC_PROT_ERR; 2235 wc.opcode = IB_WC_RECV; 2236 wc.qp = &qp->ibqp; 2237 /* Signal solicited completion event. */ 2238 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2239 return 0; 2240 } 2241 2242 /** 2243 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2244 * @qp: the QP 2245 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2246 * 2247 * Return -1 if there is a local error, 0 if no RWQE is available, 2248 * otherwise return 1. 2249 * 2250 * Can be called from interrupt level. 2251 */ 2252 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2253 { 2254 unsigned long flags; 2255 struct rvt_rq *rq; 2256 struct rvt_rwq *wq; 2257 struct rvt_srq *srq; 2258 struct rvt_rwqe *wqe; 2259 void (*handler)(struct ib_event *, void *); 2260 u32 tail; 2261 int ret; 2262 2263 if (qp->ibqp.srq) { 2264 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2265 handler = srq->ibsrq.event_handler; 2266 rq = &srq->rq; 2267 } else { 2268 srq = NULL; 2269 handler = NULL; 2270 rq = &qp->r_rq; 2271 } 2272 2273 spin_lock_irqsave(&rq->lock, flags); 2274 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2275 ret = 0; 2276 goto unlock; 2277 } 2278 2279 wq = rq->wq; 2280 tail = wq->tail; 2281 /* Validate tail before using it since it is user writable. */ 2282 if (tail >= rq->size) 2283 tail = 0; 2284 if (unlikely(tail == wq->head)) { 2285 ret = 0; 2286 goto unlock; 2287 } 2288 /* Make sure entry is read after head index is read. */ 2289 smp_rmb(); 2290 wqe = rvt_get_rwqe_ptr(rq, tail); 2291 /* 2292 * Even though we update the tail index in memory, the verbs 2293 * consumer is not supposed to post more entries until a 2294 * completion is generated. 2295 */ 2296 if (++tail >= rq->size) 2297 tail = 0; 2298 wq->tail = tail; 2299 if (!wr_id_only && !init_sge(qp, wqe)) { 2300 ret = -1; 2301 goto unlock; 2302 } 2303 qp->r_wr_id = wqe->wr_id; 2304 2305 ret = 1; 2306 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2307 if (handler) { 2308 u32 n; 2309 2310 /* 2311 * Validate head pointer value and compute 2312 * the number of remaining WQEs. 2313 */ 2314 n = wq->head; 2315 if (n >= rq->size) 2316 n = 0; 2317 if (n < tail) 2318 n += rq->size - tail; 2319 else 2320 n -= tail; 2321 if (n < srq->limit) { 2322 struct ib_event ev; 2323 2324 srq->limit = 0; 2325 spin_unlock_irqrestore(&rq->lock, flags); 2326 ev.device = qp->ibqp.device; 2327 ev.element.srq = qp->ibqp.srq; 2328 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2329 handler(&ev, srq->ibsrq.srq_context); 2330 goto bail; 2331 } 2332 } 2333 unlock: 2334 spin_unlock_irqrestore(&rq->lock, flags); 2335 bail: 2336 return ret; 2337 } 2338 EXPORT_SYMBOL(rvt_get_rwqe); 2339 2340 /** 2341 * qp_comm_est - handle trap with QP established 2342 * @qp: the QP 2343 */ 2344 void rvt_comm_est(struct rvt_qp *qp) 2345 { 2346 qp->r_flags |= RVT_R_COMM_EST; 2347 if (qp->ibqp.event_handler) { 2348 struct ib_event ev; 2349 2350 ev.device = qp->ibqp.device; 2351 ev.element.qp = &qp->ibqp; 2352 ev.event = IB_EVENT_COMM_EST; 2353 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2354 } 2355 } 2356 EXPORT_SYMBOL(rvt_comm_est); 2357 2358 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2359 { 2360 unsigned long flags; 2361 int lastwqe; 2362 2363 spin_lock_irqsave(&qp->s_lock, flags); 2364 lastwqe = rvt_error_qp(qp, err); 2365 spin_unlock_irqrestore(&qp->s_lock, flags); 2366 2367 if (lastwqe) { 2368 struct ib_event ev; 2369 2370 ev.device = qp->ibqp.device; 2371 ev.element.qp = &qp->ibqp; 2372 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2373 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2374 } 2375 } 2376 EXPORT_SYMBOL(rvt_rc_error); 2377 2378 /* 2379 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2380 * @index - the index 2381 * return usec from an index into ib_rvt_rnr_table 2382 */ 2383 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2384 { 2385 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2386 } 2387 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2388 2389 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2390 { 2391 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2392 IB_AETH_CREDIT_MASK]; 2393 } 2394 2395 /* 2396 * rvt_add_retry_timer - add/start a retry timer 2397 * @qp - the QP 2398 * add a retry timer on the QP 2399 */ 2400 void rvt_add_retry_timer(struct rvt_qp *qp) 2401 { 2402 struct ib_qp *ibqp = &qp->ibqp; 2403 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2404 2405 lockdep_assert_held(&qp->s_lock); 2406 qp->s_flags |= RVT_S_TIMER; 2407 /* 4.096 usec. * (1 << qp->timeout) */ 2408 qp->s_timer.expires = jiffies + qp->timeout_jiffies + 2409 rdi->busy_jiffies; 2410 add_timer(&qp->s_timer); 2411 } 2412 EXPORT_SYMBOL(rvt_add_retry_timer); 2413 2414 /** 2415 * rvt_add_rnr_timer - add/start an rnr timer 2416 * @qp - the QP 2417 * @aeth - aeth of RNR timeout, simulated aeth for loopback 2418 * add an rnr timer on the QP 2419 */ 2420 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2421 { 2422 u32 to; 2423 2424 lockdep_assert_held(&qp->s_lock); 2425 qp->s_flags |= RVT_S_WAIT_RNR; 2426 to = rvt_aeth_to_usec(aeth); 2427 trace_rvt_rnrnak_add(qp, to); 2428 hrtimer_start(&qp->s_rnr_timer, 2429 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2430 } 2431 EXPORT_SYMBOL(rvt_add_rnr_timer); 2432 2433 /** 2434 * rvt_stop_rc_timers - stop all timers 2435 * @qp - the QP 2436 * stop any pending timers 2437 */ 2438 void rvt_stop_rc_timers(struct rvt_qp *qp) 2439 { 2440 lockdep_assert_held(&qp->s_lock); 2441 /* Remove QP from all timers */ 2442 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2443 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2444 del_timer(&qp->s_timer); 2445 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2446 } 2447 } 2448 EXPORT_SYMBOL(rvt_stop_rc_timers); 2449 2450 /** 2451 * rvt_stop_rnr_timer - stop an rnr timer 2452 * @qp - the QP 2453 * 2454 * stop an rnr timer and return if the timer 2455 * had been pending. 2456 */ 2457 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2458 { 2459 lockdep_assert_held(&qp->s_lock); 2460 /* Remove QP from rnr timer */ 2461 if (qp->s_flags & RVT_S_WAIT_RNR) { 2462 qp->s_flags &= ~RVT_S_WAIT_RNR; 2463 trace_rvt_rnrnak_stop(qp, 0); 2464 } 2465 } 2466 2467 /** 2468 * rvt_del_timers_sync - wait for any timeout routines to exit 2469 * @qp - the QP 2470 */ 2471 void rvt_del_timers_sync(struct rvt_qp *qp) 2472 { 2473 del_timer_sync(&qp->s_timer); 2474 hrtimer_cancel(&qp->s_rnr_timer); 2475 } 2476 EXPORT_SYMBOL(rvt_del_timers_sync); 2477 2478 /** 2479 * This is called from s_timer for missing responses. 2480 */ 2481 static void rvt_rc_timeout(struct timer_list *t) 2482 { 2483 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2484 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2485 unsigned long flags; 2486 2487 spin_lock_irqsave(&qp->r_lock, flags); 2488 spin_lock(&qp->s_lock); 2489 if (qp->s_flags & RVT_S_TIMER) { 2490 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2491 2492 qp->s_flags &= ~RVT_S_TIMER; 2493 rvp->n_rc_timeouts++; 2494 del_timer(&qp->s_timer); 2495 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2496 if (rdi->driver_f.notify_restart_rc) 2497 rdi->driver_f.notify_restart_rc(qp, 2498 qp->s_last_psn + 1, 2499 1); 2500 rdi->driver_f.schedule_send(qp); 2501 } 2502 spin_unlock(&qp->s_lock); 2503 spin_unlock_irqrestore(&qp->r_lock, flags); 2504 } 2505 2506 /* 2507 * This is called from s_timer for RNR timeouts. 2508 */ 2509 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2510 { 2511 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2512 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2513 unsigned long flags; 2514 2515 spin_lock_irqsave(&qp->s_lock, flags); 2516 rvt_stop_rnr_timer(qp); 2517 trace_rvt_rnrnak_timeout(qp, 0); 2518 rdi->driver_f.schedule_send(qp); 2519 spin_unlock_irqrestore(&qp->s_lock, flags); 2520 return HRTIMER_NORESTART; 2521 } 2522 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2523 2524 /** 2525 * rvt_qp_iter_init - initial for QP iteration 2526 * @rdi: rvt devinfo 2527 * @v: u64 value 2528 * 2529 * This returns an iterator suitable for iterating QPs 2530 * in the system. 2531 * 2532 * The @cb is a user defined callback and @v is a 64 2533 * bit value passed to and relevant for processing in the 2534 * @cb. An example use case would be to alter QP processing 2535 * based on criteria not part of the rvt_qp. 2536 * 2537 * Use cases that require memory allocation to succeed 2538 * must preallocate appropriately. 2539 * 2540 * Return: a pointer to an rvt_qp_iter or NULL 2541 */ 2542 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2543 u64 v, 2544 void (*cb)(struct rvt_qp *qp, u64 v)) 2545 { 2546 struct rvt_qp_iter *i; 2547 2548 i = kzalloc(sizeof(*i), GFP_KERNEL); 2549 if (!i) 2550 return NULL; 2551 2552 i->rdi = rdi; 2553 /* number of special QPs (SMI/GSI) for device */ 2554 i->specials = rdi->ibdev.phys_port_cnt * 2; 2555 i->v = v; 2556 i->cb = cb; 2557 2558 return i; 2559 } 2560 EXPORT_SYMBOL(rvt_qp_iter_init); 2561 2562 /** 2563 * rvt_qp_iter_next - return the next QP in iter 2564 * @iter - the iterator 2565 * 2566 * Fine grained QP iterator suitable for use 2567 * with debugfs seq_file mechanisms. 2568 * 2569 * Updates iter->qp with the current QP when the return 2570 * value is 0. 2571 * 2572 * Return: 0 - iter->qp is valid 1 - no more QPs 2573 */ 2574 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2575 __must_hold(RCU) 2576 { 2577 int n = iter->n; 2578 int ret = 1; 2579 struct rvt_qp *pqp = iter->qp; 2580 struct rvt_qp *qp; 2581 struct rvt_dev_info *rdi = iter->rdi; 2582 2583 /* 2584 * The approach is to consider the special qps 2585 * as additional table entries before the 2586 * real hash table. Since the qp code sets 2587 * the qp->next hash link to NULL, this works just fine. 2588 * 2589 * iter->specials is 2 * # ports 2590 * 2591 * n = 0..iter->specials is the special qp indices 2592 * 2593 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2594 * the potential hash bucket entries 2595 * 2596 */ 2597 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2598 if (pqp) { 2599 qp = rcu_dereference(pqp->next); 2600 } else { 2601 if (n < iter->specials) { 2602 struct rvt_ibport *rvp; 2603 int pidx; 2604 2605 pidx = n % rdi->ibdev.phys_port_cnt; 2606 rvp = rdi->ports[pidx]; 2607 qp = rcu_dereference(rvp->qp[n & 1]); 2608 } else { 2609 qp = rcu_dereference( 2610 rdi->qp_dev->qp_table[ 2611 (n - iter->specials)]); 2612 } 2613 } 2614 pqp = qp; 2615 if (qp) { 2616 iter->qp = qp; 2617 iter->n = n; 2618 return 0; 2619 } 2620 } 2621 return ret; 2622 } 2623 EXPORT_SYMBOL(rvt_qp_iter_next); 2624 2625 /** 2626 * rvt_qp_iter - iterate all QPs 2627 * @rdi - rvt devinfo 2628 * @v - a 64 bit value 2629 * @cb - a callback 2630 * 2631 * This provides a way for iterating all QPs. 2632 * 2633 * The @cb is a user defined callback and @v is a 64 2634 * bit value passed to and relevant for processing in the 2635 * cb. An example use case would be to alter QP processing 2636 * based on criteria not part of the rvt_qp. 2637 * 2638 * The code has an internal iterator to simplify 2639 * non seq_file use cases. 2640 */ 2641 void rvt_qp_iter(struct rvt_dev_info *rdi, 2642 u64 v, 2643 void (*cb)(struct rvt_qp *qp, u64 v)) 2644 { 2645 int ret; 2646 struct rvt_qp_iter i = { 2647 .rdi = rdi, 2648 .specials = rdi->ibdev.phys_port_cnt * 2, 2649 .v = v, 2650 .cb = cb 2651 }; 2652 2653 rcu_read_lock(); 2654 do { 2655 ret = rvt_qp_iter_next(&i); 2656 if (!ret) { 2657 rvt_get_qp(i.qp); 2658 rcu_read_unlock(); 2659 i.cb(i.qp, i.v); 2660 rcu_read_lock(); 2661 rvt_put_qp(i.qp); 2662 } 2663 } while (!ret); 2664 rcu_read_unlock(); 2665 } 2666 EXPORT_SYMBOL(rvt_qp_iter); 2667 2668 /* 2669 * This should be called with s_lock held. 2670 */ 2671 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2672 enum ib_wc_status status) 2673 { 2674 u32 old_last, last; 2675 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2676 2677 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2678 return; 2679 2680 last = qp->s_last; 2681 old_last = last; 2682 trace_rvt_qp_send_completion(qp, wqe, last); 2683 if (++last >= qp->s_size) 2684 last = 0; 2685 trace_rvt_qp_send_completion(qp, wqe, last); 2686 qp->s_last = last; 2687 /* See post_send() */ 2688 barrier(); 2689 rvt_put_swqe(wqe); 2690 if (qp->ibqp.qp_type == IB_QPT_UD || 2691 qp->ibqp.qp_type == IB_QPT_SMI || 2692 qp->ibqp.qp_type == IB_QPT_GSI) 2693 atomic_dec(&ibah_to_rvtah(wqe->ud_wr.ah)->refcount); 2694 2695 rvt_qp_swqe_complete(qp, 2696 wqe, 2697 rdi->wc_opcode[wqe->wr.opcode], 2698 status); 2699 2700 if (qp->s_acked == old_last) 2701 qp->s_acked = last; 2702 if (qp->s_cur == old_last) 2703 qp->s_cur = last; 2704 if (qp->s_tail == old_last) 2705 qp->s_tail = last; 2706 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2707 qp->s_draining = 0; 2708 } 2709 EXPORT_SYMBOL(rvt_send_complete); 2710 2711 /** 2712 * rvt_copy_sge - copy data to SGE memory 2713 * @qp: associated QP 2714 * @ss: the SGE state 2715 * @data: the data to copy 2716 * @length: the length of the data 2717 * @release: boolean to release MR 2718 * @copy_last: do a separate copy of the last 8 bytes 2719 */ 2720 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2721 void *data, u32 length, 2722 bool release, bool copy_last) 2723 { 2724 struct rvt_sge *sge = &ss->sge; 2725 int i; 2726 bool in_last = false; 2727 bool cacheless_copy = false; 2728 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2729 struct rvt_wss *wss = rdi->wss; 2730 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2731 2732 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2733 cacheless_copy = length >= PAGE_SIZE; 2734 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2735 if (length >= PAGE_SIZE) { 2736 /* 2737 * NOTE: this *assumes*: 2738 * o The first vaddr is the dest. 2739 * o If multiple pages, then vaddr is sequential. 2740 */ 2741 wss_insert(wss, sge->vaddr); 2742 if (length >= (2 * PAGE_SIZE)) 2743 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2744 2745 cacheless_copy = wss_exceeds_threshold(wss); 2746 } else { 2747 wss_advance_clean_counter(wss); 2748 } 2749 } 2750 2751 if (copy_last) { 2752 if (length > 8) { 2753 length -= 8; 2754 } else { 2755 copy_last = false; 2756 in_last = true; 2757 } 2758 } 2759 2760 again: 2761 while (length) { 2762 u32 len = rvt_get_sge_length(sge, length); 2763 2764 WARN_ON_ONCE(len == 0); 2765 if (unlikely(in_last)) { 2766 /* enforce byte transfer ordering */ 2767 for (i = 0; i < len; i++) 2768 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2769 } else if (cacheless_copy) { 2770 cacheless_memcpy(sge->vaddr, data, len); 2771 } else { 2772 memcpy(sge->vaddr, data, len); 2773 } 2774 rvt_update_sge(ss, len, release); 2775 data += len; 2776 length -= len; 2777 } 2778 2779 if (copy_last) { 2780 copy_last = false; 2781 in_last = true; 2782 length = 8; 2783 goto again; 2784 } 2785 } 2786 EXPORT_SYMBOL(rvt_copy_sge); 2787 2788 /** 2789 * ruc_loopback - handle UC and RC loopback requests 2790 * @sqp: the sending QP 2791 * 2792 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2793 * Note that although we are single threaded due to the send engine, we still 2794 * have to protect against post_send(). We don't have to worry about 2795 * receive interrupts since this is a connected protocol and all packets 2796 * will pass through here. 2797 */ 2798 void rvt_ruc_loopback(struct rvt_qp *sqp) 2799 { 2800 struct rvt_ibport *rvp = NULL; 2801 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2802 struct rvt_qp *qp; 2803 struct rvt_swqe *wqe; 2804 struct rvt_sge *sge; 2805 unsigned long flags; 2806 struct ib_wc wc; 2807 u64 sdata; 2808 atomic64_t *maddr; 2809 enum ib_wc_status send_status; 2810 bool release; 2811 int ret; 2812 bool copy_last = false; 2813 int local_ops = 0; 2814 2815 rcu_read_lock(); 2816 rvp = rdi->ports[sqp->port_num - 1]; 2817 2818 /* 2819 * Note that we check the responder QP state after 2820 * checking the requester's state. 2821 */ 2822 2823 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2824 sqp->remote_qpn); 2825 2826 spin_lock_irqsave(&sqp->s_lock, flags); 2827 2828 /* Return if we are already busy processing a work request. */ 2829 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2830 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2831 goto unlock; 2832 2833 sqp->s_flags |= RVT_S_BUSY; 2834 2835 again: 2836 if (sqp->s_last == READ_ONCE(sqp->s_head)) 2837 goto clr_busy; 2838 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 2839 2840 /* Return if it is not OK to start a new work request. */ 2841 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 2842 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 2843 goto clr_busy; 2844 /* We are in the error state, flush the work request. */ 2845 send_status = IB_WC_WR_FLUSH_ERR; 2846 goto flush_send; 2847 } 2848 2849 /* 2850 * We can rely on the entry not changing without the s_lock 2851 * being held until we update s_last. 2852 * We increment s_cur to indicate s_last is in progress. 2853 */ 2854 if (sqp->s_last == sqp->s_cur) { 2855 if (++sqp->s_cur >= sqp->s_size) 2856 sqp->s_cur = 0; 2857 } 2858 spin_unlock_irqrestore(&sqp->s_lock, flags); 2859 2860 if (!qp || !(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 2861 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 2862 rvp->n_pkt_drops++; 2863 /* 2864 * For RC, the requester would timeout and retry so 2865 * shortcut the timeouts and just signal too many retries. 2866 */ 2867 if (sqp->ibqp.qp_type == IB_QPT_RC) 2868 send_status = IB_WC_RETRY_EXC_ERR; 2869 else 2870 send_status = IB_WC_SUCCESS; 2871 goto serr; 2872 } 2873 2874 memset(&wc, 0, sizeof(wc)); 2875 send_status = IB_WC_SUCCESS; 2876 2877 release = true; 2878 sqp->s_sge.sge = wqe->sg_list[0]; 2879 sqp->s_sge.sg_list = wqe->sg_list + 1; 2880 sqp->s_sge.num_sge = wqe->wr.num_sge; 2881 sqp->s_len = wqe->length; 2882 switch (wqe->wr.opcode) { 2883 case IB_WR_REG_MR: 2884 goto send_comp; 2885 2886 case IB_WR_LOCAL_INV: 2887 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 2888 if (rvt_invalidate_rkey(sqp, 2889 wqe->wr.ex.invalidate_rkey)) 2890 send_status = IB_WC_LOC_PROT_ERR; 2891 local_ops = 1; 2892 } 2893 goto send_comp; 2894 2895 case IB_WR_SEND_WITH_INV: 2896 if (!rvt_invalidate_rkey(qp, wqe->wr.ex.invalidate_rkey)) { 2897 wc.wc_flags = IB_WC_WITH_INVALIDATE; 2898 wc.ex.invalidate_rkey = wqe->wr.ex.invalidate_rkey; 2899 } 2900 goto send; 2901 2902 case IB_WR_SEND_WITH_IMM: 2903 wc.wc_flags = IB_WC_WITH_IMM; 2904 wc.ex.imm_data = wqe->wr.ex.imm_data; 2905 /* FALLTHROUGH */ 2906 case IB_WR_SEND: 2907 send: 2908 ret = rvt_get_rwqe(qp, false); 2909 if (ret < 0) 2910 goto op_err; 2911 if (!ret) 2912 goto rnr_nak; 2913 break; 2914 2915 case IB_WR_RDMA_WRITE_WITH_IMM: 2916 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 2917 goto inv_err; 2918 wc.wc_flags = IB_WC_WITH_IMM; 2919 wc.ex.imm_data = wqe->wr.ex.imm_data; 2920 ret = rvt_get_rwqe(qp, true); 2921 if (ret < 0) 2922 goto op_err; 2923 if (!ret) 2924 goto rnr_nak; 2925 /* skip copy_last set and qp_access_flags recheck */ 2926 goto do_write; 2927 case IB_WR_RDMA_WRITE: 2928 copy_last = rvt_is_user_qp(qp); 2929 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 2930 goto inv_err; 2931 do_write: 2932 if (wqe->length == 0) 2933 break; 2934 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 2935 wqe->rdma_wr.remote_addr, 2936 wqe->rdma_wr.rkey, 2937 IB_ACCESS_REMOTE_WRITE))) 2938 goto acc_err; 2939 qp->r_sge.sg_list = NULL; 2940 qp->r_sge.num_sge = 1; 2941 qp->r_sge.total_len = wqe->length; 2942 break; 2943 2944 case IB_WR_RDMA_READ: 2945 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 2946 goto inv_err; 2947 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 2948 wqe->rdma_wr.remote_addr, 2949 wqe->rdma_wr.rkey, 2950 IB_ACCESS_REMOTE_READ))) 2951 goto acc_err; 2952 release = false; 2953 sqp->s_sge.sg_list = NULL; 2954 sqp->s_sge.num_sge = 1; 2955 qp->r_sge.sge = wqe->sg_list[0]; 2956 qp->r_sge.sg_list = wqe->sg_list + 1; 2957 qp->r_sge.num_sge = wqe->wr.num_sge; 2958 qp->r_sge.total_len = wqe->length; 2959 break; 2960 2961 case IB_WR_ATOMIC_CMP_AND_SWP: 2962 case IB_WR_ATOMIC_FETCH_AND_ADD: 2963 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 2964 goto inv_err; 2965 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 2966 wqe->atomic_wr.remote_addr, 2967 wqe->atomic_wr.rkey, 2968 IB_ACCESS_REMOTE_ATOMIC))) 2969 goto acc_err; 2970 /* Perform atomic OP and save result. */ 2971 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 2972 sdata = wqe->atomic_wr.compare_add; 2973 *(u64 *)sqp->s_sge.sge.vaddr = 2974 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 2975 (u64)atomic64_add_return(sdata, maddr) - sdata : 2976 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 2977 sdata, wqe->atomic_wr.swap); 2978 rvt_put_mr(qp->r_sge.sge.mr); 2979 qp->r_sge.num_sge = 0; 2980 goto send_comp; 2981 2982 default: 2983 send_status = IB_WC_LOC_QP_OP_ERR; 2984 goto serr; 2985 } 2986 2987 sge = &sqp->s_sge.sge; 2988 while (sqp->s_len) { 2989 u32 len = sqp->s_len; 2990 2991 if (len > sge->length) 2992 len = sge->length; 2993 if (len > sge->sge_length) 2994 len = sge->sge_length; 2995 WARN_ON_ONCE(len == 0); 2996 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 2997 len, release, copy_last); 2998 sge->vaddr += len; 2999 sge->length -= len; 3000 sge->sge_length -= len; 3001 if (sge->sge_length == 0) { 3002 if (!release) 3003 rvt_put_mr(sge->mr); 3004 if (--sqp->s_sge.num_sge) 3005 *sge = *sqp->s_sge.sg_list++; 3006 } else if (sge->length == 0 && sge->mr->lkey) { 3007 if (++sge->n >= RVT_SEGSZ) { 3008 if (++sge->m >= sge->mr->mapsz) 3009 break; 3010 sge->n = 0; 3011 } 3012 sge->vaddr = 3013 sge->mr->map[sge->m]->segs[sge->n].vaddr; 3014 sge->length = 3015 sge->mr->map[sge->m]->segs[sge->n].length; 3016 } 3017 sqp->s_len -= len; 3018 } 3019 if (release) 3020 rvt_put_ss(&qp->r_sge); 3021 3022 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3023 goto send_comp; 3024 3025 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3026 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3027 else 3028 wc.opcode = IB_WC_RECV; 3029 wc.wr_id = qp->r_wr_id; 3030 wc.status = IB_WC_SUCCESS; 3031 wc.byte_len = wqe->length; 3032 wc.qp = &qp->ibqp; 3033 wc.src_qp = qp->remote_qpn; 3034 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3035 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3036 wc.port_num = 1; 3037 /* Signal completion event if the solicited bit is set. */ 3038 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 3039 wqe->wr.send_flags & IB_SEND_SOLICITED); 3040 3041 send_comp: 3042 spin_lock_irqsave(&sqp->s_lock, flags); 3043 rvp->n_loop_pkts++; 3044 flush_send: 3045 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3046 rvt_send_complete(sqp, wqe, send_status); 3047 if (local_ops) { 3048 atomic_dec(&sqp->local_ops_pending); 3049 local_ops = 0; 3050 } 3051 goto again; 3052 3053 rnr_nak: 3054 /* Handle RNR NAK */ 3055 if (qp->ibqp.qp_type == IB_QPT_UC) 3056 goto send_comp; 3057 rvp->n_rnr_naks++; 3058 /* 3059 * Note: we don't need the s_lock held since the BUSY flag 3060 * makes this single threaded. 3061 */ 3062 if (sqp->s_rnr_retry == 0) { 3063 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3064 goto serr; 3065 } 3066 if (sqp->s_rnr_retry_cnt < 7) 3067 sqp->s_rnr_retry--; 3068 spin_lock_irqsave(&sqp->s_lock, flags); 3069 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3070 goto clr_busy; 3071 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3072 IB_AETH_CREDIT_SHIFT); 3073 goto clr_busy; 3074 3075 op_err: 3076 send_status = IB_WC_REM_OP_ERR; 3077 wc.status = IB_WC_LOC_QP_OP_ERR; 3078 goto err; 3079 3080 inv_err: 3081 send_status = IB_WC_REM_INV_REQ_ERR; 3082 wc.status = IB_WC_LOC_QP_OP_ERR; 3083 goto err; 3084 3085 acc_err: 3086 send_status = IB_WC_REM_ACCESS_ERR; 3087 wc.status = IB_WC_LOC_PROT_ERR; 3088 err: 3089 /* responder goes to error state */ 3090 rvt_rc_error(qp, wc.status); 3091 3092 serr: 3093 spin_lock_irqsave(&sqp->s_lock, flags); 3094 rvt_send_complete(sqp, wqe, send_status); 3095 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3096 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3097 3098 sqp->s_flags &= ~RVT_S_BUSY; 3099 spin_unlock_irqrestore(&sqp->s_lock, flags); 3100 if (lastwqe) { 3101 struct ib_event ev; 3102 3103 ev.device = sqp->ibqp.device; 3104 ev.element.qp = &sqp->ibqp; 3105 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3106 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3107 } 3108 goto done; 3109 } 3110 clr_busy: 3111 sqp->s_flags &= ~RVT_S_BUSY; 3112 unlock: 3113 spin_unlock_irqrestore(&sqp->s_lock, flags); 3114 done: 3115 rcu_read_unlock(); 3116 } 3117 EXPORT_SYMBOL(rvt_ruc_loopback); 3118