xref: /openbmc/linux/drivers/infiniband/sw/rdmavt/qp.c (revision 8dda2eac)
1 /*
2  * Copyright(c) 2016 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
60 
61 #define RVT_RWQ_COUNT_THRESHOLD 16
62 
63 static void rvt_rc_timeout(struct timer_list *t);
64 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
65 			 enum ib_qp_type type);
66 
67 /*
68  * Convert the AETH RNR timeout code into the number of microseconds.
69  */
70 static const u32 ib_rvt_rnr_table[32] = {
71 	655360, /* 00: 655.36 */
72 	10,     /* 01:    .01 */
73 	20,     /* 02     .02 */
74 	30,     /* 03:    .03 */
75 	40,     /* 04:    .04 */
76 	60,     /* 05:    .06 */
77 	80,     /* 06:    .08 */
78 	120,    /* 07:    .12 */
79 	160,    /* 08:    .16 */
80 	240,    /* 09:    .24 */
81 	320,    /* 0A:    .32 */
82 	480,    /* 0B:    .48 */
83 	640,    /* 0C:    .64 */
84 	960,    /* 0D:    .96 */
85 	1280,   /* 0E:   1.28 */
86 	1920,   /* 0F:   1.92 */
87 	2560,   /* 10:   2.56 */
88 	3840,   /* 11:   3.84 */
89 	5120,   /* 12:   5.12 */
90 	7680,   /* 13:   7.68 */
91 	10240,  /* 14:  10.24 */
92 	15360,  /* 15:  15.36 */
93 	20480,  /* 16:  20.48 */
94 	30720,  /* 17:  30.72 */
95 	40960,  /* 18:  40.96 */
96 	61440,  /* 19:  61.44 */
97 	81920,  /* 1A:  81.92 */
98 	122880, /* 1B: 122.88 */
99 	163840, /* 1C: 163.84 */
100 	245760, /* 1D: 245.76 */
101 	327680, /* 1E: 327.68 */
102 	491520  /* 1F: 491.52 */
103 };
104 
105 /*
106  * Note that it is OK to post send work requests in the SQE and ERR
107  * states; rvt_do_send() will process them and generate error
108  * completions as per IB 1.2 C10-96.
109  */
110 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
111 	[IB_QPS_RESET] = 0,
112 	[IB_QPS_INIT] = RVT_POST_RECV_OK,
113 	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
114 	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
116 	    RVT_PROCESS_NEXT_SEND_OK,
117 	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
118 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
119 	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
120 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
121 	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
122 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
123 };
124 EXPORT_SYMBOL(ib_rvt_state_ops);
125 
126 /* platform specific: return the last level cache (llc) size, in KiB */
127 static int rvt_wss_llc_size(void)
128 {
129 	/* assume that the boot CPU value is universal for all CPUs */
130 	return boot_cpu_data.x86_cache_size;
131 }
132 
133 /* platform specific: cacheless copy */
134 static void cacheless_memcpy(void *dst, void *src, size_t n)
135 {
136 	/*
137 	 * Use the only available X64 cacheless copy.  Add a __user cast
138 	 * to quiet sparse.  The src agument is already in the kernel so
139 	 * there are no security issues.  The extra fault recovery machinery
140 	 * is not invoked.
141 	 */
142 	__copy_user_nocache(dst, (void __user *)src, n, 0);
143 }
144 
145 void rvt_wss_exit(struct rvt_dev_info *rdi)
146 {
147 	struct rvt_wss *wss = rdi->wss;
148 
149 	if (!wss)
150 		return;
151 
152 	/* coded to handle partially initialized and repeat callers */
153 	kfree(wss->entries);
154 	wss->entries = NULL;
155 	kfree(rdi->wss);
156 	rdi->wss = NULL;
157 }
158 
159 /*
160  * rvt_wss_init - Init wss data structures
161  *
162  * Return: 0 on success
163  */
164 int rvt_wss_init(struct rvt_dev_info *rdi)
165 {
166 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
167 	unsigned int wss_threshold = rdi->dparms.wss_threshold;
168 	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
169 	long llc_size;
170 	long llc_bits;
171 	long table_size;
172 	long table_bits;
173 	struct rvt_wss *wss;
174 	int node = rdi->dparms.node;
175 
176 	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
177 		rdi->wss = NULL;
178 		return 0;
179 	}
180 
181 	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
182 	if (!rdi->wss)
183 		return -ENOMEM;
184 	wss = rdi->wss;
185 
186 	/* check for a valid percent range - default to 80 if none or invalid */
187 	if (wss_threshold < 1 || wss_threshold > 100)
188 		wss_threshold = 80;
189 
190 	/* reject a wildly large period */
191 	if (wss_clean_period > 1000000)
192 		wss_clean_period = 256;
193 
194 	/* reject a zero period */
195 	if (wss_clean_period == 0)
196 		wss_clean_period = 1;
197 
198 	/*
199 	 * Calculate the table size - the next power of 2 larger than the
200 	 * LLC size.  LLC size is in KiB.
201 	 */
202 	llc_size = rvt_wss_llc_size() * 1024;
203 	table_size = roundup_pow_of_two(llc_size);
204 
205 	/* one bit per page in rounded up table */
206 	llc_bits = llc_size / PAGE_SIZE;
207 	table_bits = table_size / PAGE_SIZE;
208 	wss->pages_mask = table_bits - 1;
209 	wss->num_entries = table_bits / BITS_PER_LONG;
210 
211 	wss->threshold = (llc_bits * wss_threshold) / 100;
212 	if (wss->threshold == 0)
213 		wss->threshold = 1;
214 
215 	wss->clean_period = wss_clean_period;
216 	atomic_set(&wss->clean_counter, wss_clean_period);
217 
218 	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
219 				    GFP_KERNEL, node);
220 	if (!wss->entries) {
221 		rvt_wss_exit(rdi);
222 		return -ENOMEM;
223 	}
224 
225 	return 0;
226 }
227 
228 /*
229  * Advance the clean counter.  When the clean period has expired,
230  * clean an entry.
231  *
232  * This is implemented in atomics to avoid locking.  Because multiple
233  * variables are involved, it can be racy which can lead to slightly
234  * inaccurate information.  Since this is only a heuristic, this is
235  * OK.  Any innaccuracies will clean themselves out as the counter
236  * advances.  That said, it is unlikely the entry clean operation will
237  * race - the next possible racer will not start until the next clean
238  * period.
239  *
240  * The clean counter is implemented as a decrement to zero.  When zero
241  * is reached an entry is cleaned.
242  */
243 static void wss_advance_clean_counter(struct rvt_wss *wss)
244 {
245 	int entry;
246 	int weight;
247 	unsigned long bits;
248 
249 	/* become the cleaner if we decrement the counter to zero */
250 	if (atomic_dec_and_test(&wss->clean_counter)) {
251 		/*
252 		 * Set, not add, the clean period.  This avoids an issue
253 		 * where the counter could decrement below the clean period.
254 		 * Doing a set can result in lost decrements, slowing the
255 		 * clean advance.  Since this a heuristic, this possible
256 		 * slowdown is OK.
257 		 *
258 		 * An alternative is to loop, advancing the counter by a
259 		 * clean period until the result is > 0. However, this could
260 		 * lead to several threads keeping another in the clean loop.
261 		 * This could be mitigated by limiting the number of times
262 		 * we stay in the loop.
263 		 */
264 		atomic_set(&wss->clean_counter, wss->clean_period);
265 
266 		/*
267 		 * Uniquely grab the entry to clean and move to next.
268 		 * The current entry is always the lower bits of
269 		 * wss.clean_entry.  The table size, wss.num_entries,
270 		 * is always a power-of-2.
271 		 */
272 		entry = (atomic_inc_return(&wss->clean_entry) - 1)
273 			& (wss->num_entries - 1);
274 
275 		/* clear the entry and count the bits */
276 		bits = xchg(&wss->entries[entry], 0);
277 		weight = hweight64((u64)bits);
278 		/* only adjust the contended total count if needed */
279 		if (weight)
280 			atomic_sub(weight, &wss->total_count);
281 	}
282 }
283 
284 /*
285  * Insert the given address into the working set array.
286  */
287 static void wss_insert(struct rvt_wss *wss, void *address)
288 {
289 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
290 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
291 	u32 nr = page & (BITS_PER_LONG - 1);
292 
293 	if (!test_and_set_bit(nr, &wss->entries[entry]))
294 		atomic_inc(&wss->total_count);
295 
296 	wss_advance_clean_counter(wss);
297 }
298 
299 /*
300  * Is the working set larger than the threshold?
301  */
302 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
303 {
304 	return atomic_read(&wss->total_count) >= wss->threshold;
305 }
306 
307 static void get_map_page(struct rvt_qpn_table *qpt,
308 			 struct rvt_qpn_map *map)
309 {
310 	unsigned long page = get_zeroed_page(GFP_KERNEL);
311 
312 	/*
313 	 * Free the page if someone raced with us installing it.
314 	 */
315 
316 	spin_lock(&qpt->lock);
317 	if (map->page)
318 		free_page(page);
319 	else
320 		map->page = (void *)page;
321 	spin_unlock(&qpt->lock);
322 }
323 
324 /**
325  * init_qpn_table - initialize the QP number table for a device
326  * @rdi: rvt dev struct
327  * @qpt: the QPN table
328  */
329 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
330 {
331 	u32 offset, i;
332 	struct rvt_qpn_map *map;
333 	int ret = 0;
334 
335 	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
336 		return -EINVAL;
337 
338 	spin_lock_init(&qpt->lock);
339 
340 	qpt->last = rdi->dparms.qpn_start;
341 	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
342 
343 	/*
344 	 * Drivers may want some QPs beyond what we need for verbs let them use
345 	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
346 	 * for those. The reserved range must be *after* the range which verbs
347 	 * will pick from.
348 	 */
349 
350 	/* Figure out number of bit maps needed before reserved range */
351 	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
352 
353 	/* This should always be zero */
354 	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
355 
356 	/* Starting with the first reserved bit map */
357 	map = &qpt->map[qpt->nmaps];
358 
359 	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
360 		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
361 	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
362 		if (!map->page) {
363 			get_map_page(qpt, map);
364 			if (!map->page) {
365 				ret = -ENOMEM;
366 				break;
367 			}
368 		}
369 		set_bit(offset, map->page);
370 		offset++;
371 		if (offset == RVT_BITS_PER_PAGE) {
372 			/* next page */
373 			qpt->nmaps++;
374 			map++;
375 			offset = 0;
376 		}
377 	}
378 	return ret;
379 }
380 
381 /**
382  * free_qpn_table - free the QP number table for a device
383  * @qpt: the QPN table
384  */
385 static void free_qpn_table(struct rvt_qpn_table *qpt)
386 {
387 	int i;
388 
389 	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
390 		free_page((unsigned long)qpt->map[i].page);
391 }
392 
393 /**
394  * rvt_driver_qp_init - Init driver qp resources
395  * @rdi: rvt dev strucutre
396  *
397  * Return: 0 on success
398  */
399 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
400 {
401 	int i;
402 	int ret = -ENOMEM;
403 
404 	if (!rdi->dparms.qp_table_size)
405 		return -EINVAL;
406 
407 	/*
408 	 * If driver is not doing any QP allocation then make sure it is
409 	 * providing the necessary QP functions.
410 	 */
411 	if (!rdi->driver_f.free_all_qps ||
412 	    !rdi->driver_f.qp_priv_alloc ||
413 	    !rdi->driver_f.qp_priv_free ||
414 	    !rdi->driver_f.notify_qp_reset ||
415 	    !rdi->driver_f.notify_restart_rc)
416 		return -EINVAL;
417 
418 	/* allocate parent object */
419 	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
420 				   rdi->dparms.node);
421 	if (!rdi->qp_dev)
422 		return -ENOMEM;
423 
424 	/* allocate hash table */
425 	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
426 	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
427 	rdi->qp_dev->qp_table =
428 		kmalloc_array_node(rdi->qp_dev->qp_table_size,
429 			     sizeof(*rdi->qp_dev->qp_table),
430 			     GFP_KERNEL, rdi->dparms.node);
431 	if (!rdi->qp_dev->qp_table)
432 		goto no_qp_table;
433 
434 	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
435 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
436 
437 	spin_lock_init(&rdi->qp_dev->qpt_lock);
438 
439 	/* initialize qpn map */
440 	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
441 		goto fail_table;
442 
443 	spin_lock_init(&rdi->n_qps_lock);
444 
445 	return 0;
446 
447 fail_table:
448 	kfree(rdi->qp_dev->qp_table);
449 	free_qpn_table(&rdi->qp_dev->qpn_table);
450 
451 no_qp_table:
452 	kfree(rdi->qp_dev);
453 
454 	return ret;
455 }
456 
457 /**
458  * rvt_free_qp_cb - callback function to reset a qp
459  * @qp: the qp to reset
460  * @v: a 64-bit value
461  *
462  * This function resets the qp and removes it from the
463  * qp hash table.
464  */
465 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
466 {
467 	unsigned int *qp_inuse = (unsigned int *)v;
468 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
469 
470 	/* Reset the qp and remove it from the qp hash list */
471 	rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
472 
473 	/* Increment the qp_inuse count */
474 	(*qp_inuse)++;
475 }
476 
477 /**
478  * rvt_free_all_qps - check for QPs still in use
479  * @rdi: rvt device info structure
480  *
481  * There should not be any QPs still in use.
482  * Free memory for table.
483  * Return the number of QPs still in use.
484  */
485 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
486 {
487 	unsigned int qp_inuse = 0;
488 
489 	qp_inuse += rvt_mcast_tree_empty(rdi);
490 
491 	rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
492 
493 	return qp_inuse;
494 }
495 
496 /**
497  * rvt_qp_exit - clean up qps on device exit
498  * @rdi: rvt dev structure
499  *
500  * Check for qp leaks and free resources.
501  */
502 void rvt_qp_exit(struct rvt_dev_info *rdi)
503 {
504 	u32 qps_inuse = rvt_free_all_qps(rdi);
505 
506 	if (qps_inuse)
507 		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
508 			   qps_inuse);
509 	if (!rdi->qp_dev)
510 		return;
511 
512 	kfree(rdi->qp_dev->qp_table);
513 	free_qpn_table(&rdi->qp_dev->qpn_table);
514 	kfree(rdi->qp_dev);
515 }
516 
517 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
518 			      struct rvt_qpn_map *map, unsigned off)
519 {
520 	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
521 }
522 
523 /**
524  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
525  *	       IB_QPT_SMI/IB_QPT_GSI
526  * @rdi: rvt device info structure
527  * @qpt: queue pair number table pointer
528  * @type: the QP type
529  * @port_num: IB port number, 1 based, comes from core
530  * @exclude_prefix: prefix of special queue pair number being allocated
531  *
532  * Return: The queue pair number
533  */
534 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
535 		     enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
536 {
537 	u32 i, offset, max_scan, qpn;
538 	struct rvt_qpn_map *map;
539 	u32 ret;
540 	u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
541 		RVT_AIP_QPN_MAX : RVT_QPN_MAX;
542 
543 	if (rdi->driver_f.alloc_qpn)
544 		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
545 
546 	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
547 		unsigned n;
548 
549 		ret = type == IB_QPT_GSI;
550 		n = 1 << (ret + 2 * (port_num - 1));
551 		spin_lock(&qpt->lock);
552 		if (qpt->flags & n)
553 			ret = -EINVAL;
554 		else
555 			qpt->flags |= n;
556 		spin_unlock(&qpt->lock);
557 		goto bail;
558 	}
559 
560 	qpn = qpt->last + qpt->incr;
561 	if (qpn >= max_qpn)
562 		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
563 	/* offset carries bit 0 */
564 	offset = qpn & RVT_BITS_PER_PAGE_MASK;
565 	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
566 	max_scan = qpt->nmaps - !offset;
567 	for (i = 0;;) {
568 		if (unlikely(!map->page)) {
569 			get_map_page(qpt, map);
570 			if (unlikely(!map->page))
571 				break;
572 		}
573 		do {
574 			if (!test_and_set_bit(offset, map->page)) {
575 				qpt->last = qpn;
576 				ret = qpn;
577 				goto bail;
578 			}
579 			offset += qpt->incr;
580 			/*
581 			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
582 			 * That is OK.   It gets re-assigned below
583 			 */
584 			qpn = mk_qpn(qpt, map, offset);
585 		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
586 		/*
587 		 * In order to keep the number of pages allocated to a
588 		 * minimum, we scan the all existing pages before increasing
589 		 * the size of the bitmap table.
590 		 */
591 		if (++i > max_scan) {
592 			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
593 				break;
594 			map = &qpt->map[qpt->nmaps++];
595 			/* start at incr with current bit 0 */
596 			offset = qpt->incr | (offset & 1);
597 		} else if (map < &qpt->map[qpt->nmaps]) {
598 			++map;
599 			/* start at incr with current bit 0 */
600 			offset = qpt->incr | (offset & 1);
601 		} else {
602 			map = &qpt->map[0];
603 			/* wrap to first map page, invert bit 0 */
604 			offset = qpt->incr | ((offset & 1) ^ 1);
605 		}
606 		/* there can be no set bits in low-order QoS bits */
607 		WARN_ON(rdi->dparms.qos_shift > 1 &&
608 			offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
609 		qpn = mk_qpn(qpt, map, offset);
610 	}
611 
612 	ret = -ENOMEM;
613 
614 bail:
615 	return ret;
616 }
617 
618 /**
619  * rvt_clear_mr_refs - Drop help mr refs
620  * @qp: rvt qp data structure
621  * @clr_sends: If shoudl clear send side or not
622  */
623 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
624 {
625 	unsigned n;
626 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
627 
628 	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
629 		rvt_put_ss(&qp->s_rdma_read_sge);
630 
631 	rvt_put_ss(&qp->r_sge);
632 
633 	if (clr_sends) {
634 		while (qp->s_last != qp->s_head) {
635 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
636 
637 			rvt_put_qp_swqe(qp, wqe);
638 			if (++qp->s_last >= qp->s_size)
639 				qp->s_last = 0;
640 			smp_wmb(); /* see qp_set_savail */
641 		}
642 		if (qp->s_rdma_mr) {
643 			rvt_put_mr(qp->s_rdma_mr);
644 			qp->s_rdma_mr = NULL;
645 		}
646 	}
647 
648 	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
649 		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
650 
651 		if (e->rdma_sge.mr) {
652 			rvt_put_mr(e->rdma_sge.mr);
653 			e->rdma_sge.mr = NULL;
654 		}
655 	}
656 }
657 
658 /**
659  * rvt_swqe_has_lkey - return true if lkey is used by swqe
660  * @wqe: the send wqe
661  * @lkey: the lkey
662  *
663  * Test the swqe for using lkey
664  */
665 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
666 {
667 	int i;
668 
669 	for (i = 0; i < wqe->wr.num_sge; i++) {
670 		struct rvt_sge *sge = &wqe->sg_list[i];
671 
672 		if (rvt_mr_has_lkey(sge->mr, lkey))
673 			return true;
674 	}
675 	return false;
676 }
677 
678 /**
679  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
680  * @qp: the rvt_qp
681  * @lkey: the lkey
682  */
683 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
684 {
685 	u32 s_last = qp->s_last;
686 
687 	while (s_last != qp->s_head) {
688 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
689 
690 		if (rvt_swqe_has_lkey(wqe, lkey))
691 			return true;
692 
693 		if (++s_last >= qp->s_size)
694 			s_last = 0;
695 	}
696 	if (qp->s_rdma_mr)
697 		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
698 			return true;
699 	return false;
700 }
701 
702 /**
703  * rvt_qp_acks_has_lkey - return true if acks have lkey
704  * @qp: the qp
705  * @lkey: the lkey
706  */
707 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
708 {
709 	int i;
710 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
711 
712 	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
713 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
714 
715 		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
716 			return true;
717 	}
718 	return false;
719 }
720 
721 /**
722  * rvt_qp_mr_clean - clean up remote ops for lkey
723  * @qp: the qp
724  * @lkey: the lkey that is being de-registered
725  *
726  * This routine checks if the lkey is being used by
727  * the qp.
728  *
729  * If so, the qp is put into an error state to elminate
730  * any references from the qp.
731  */
732 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
733 {
734 	bool lastwqe = false;
735 
736 	if (qp->ibqp.qp_type == IB_QPT_SMI ||
737 	    qp->ibqp.qp_type == IB_QPT_GSI)
738 		/* avoid special QPs */
739 		return;
740 	spin_lock_irq(&qp->r_lock);
741 	spin_lock(&qp->s_hlock);
742 	spin_lock(&qp->s_lock);
743 
744 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
745 		goto check_lwqe;
746 
747 	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
748 	    rvt_qp_sends_has_lkey(qp, lkey) ||
749 	    rvt_qp_acks_has_lkey(qp, lkey))
750 		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
751 check_lwqe:
752 	spin_unlock(&qp->s_lock);
753 	spin_unlock(&qp->s_hlock);
754 	spin_unlock_irq(&qp->r_lock);
755 	if (lastwqe) {
756 		struct ib_event ev;
757 
758 		ev.device = qp->ibqp.device;
759 		ev.element.qp = &qp->ibqp;
760 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
761 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
762 	}
763 }
764 
765 /**
766  * rvt_remove_qp - remove qp form table
767  * @rdi: rvt dev struct
768  * @qp: qp to remove
769  *
770  * Remove the QP from the table so it can't be found asynchronously by
771  * the receive routine.
772  */
773 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
774 {
775 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
776 	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
777 	unsigned long flags;
778 	int removed = 1;
779 
780 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
781 
782 	if (rcu_dereference_protected(rvp->qp[0],
783 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
784 		RCU_INIT_POINTER(rvp->qp[0], NULL);
785 	} else if (rcu_dereference_protected(rvp->qp[1],
786 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
787 		RCU_INIT_POINTER(rvp->qp[1], NULL);
788 	} else {
789 		struct rvt_qp *q;
790 		struct rvt_qp __rcu **qpp;
791 
792 		removed = 0;
793 		qpp = &rdi->qp_dev->qp_table[n];
794 		for (; (q = rcu_dereference_protected(*qpp,
795 			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
796 			qpp = &q->next) {
797 			if (q == qp) {
798 				RCU_INIT_POINTER(*qpp,
799 				     rcu_dereference_protected(qp->next,
800 				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
801 				removed = 1;
802 				trace_rvt_qpremove(qp, n);
803 				break;
804 			}
805 		}
806 	}
807 
808 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
809 	if (removed) {
810 		synchronize_rcu();
811 		rvt_put_qp(qp);
812 	}
813 }
814 
815 /**
816  * rvt_alloc_rq - allocate memory for user or kernel buffer
817  * @rq: receive queue data structure
818  * @size: number of request queue entries
819  * @node: The NUMA node
820  * @udata: True if user data is available or not false
821  *
822  * Return: If memory allocation failed, return -ENONEM
823  * This function is used by both shared receive
824  * queues and non-shared receive queues to allocate
825  * memory.
826  */
827 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
828 		 struct ib_udata *udata)
829 {
830 	if (udata) {
831 		rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
832 		if (!rq->wq)
833 			goto bail;
834 		/* need kwq with no buffers */
835 		rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
836 		if (!rq->kwq)
837 			goto bail;
838 		rq->kwq->curr_wq = rq->wq->wq;
839 	} else {
840 		/* need kwq with buffers */
841 		rq->kwq =
842 			vzalloc_node(sizeof(struct rvt_krwq) + size, node);
843 		if (!rq->kwq)
844 			goto bail;
845 		rq->kwq->curr_wq = rq->kwq->wq;
846 	}
847 
848 	spin_lock_init(&rq->kwq->p_lock);
849 	spin_lock_init(&rq->kwq->c_lock);
850 	return 0;
851 bail:
852 	rvt_free_rq(rq);
853 	return -ENOMEM;
854 }
855 
856 /**
857  * rvt_init_qp - initialize the QP state to the reset state
858  * @rdi: rvt dev struct
859  * @qp: the QP to init or reinit
860  * @type: the QP type
861  *
862  * This function is called from both rvt_create_qp() and
863  * rvt_reset_qp().   The difference is that the reset
864  * patch the necessary locks to protect against concurent
865  * access.
866  */
867 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
868 			enum ib_qp_type type)
869 {
870 	qp->remote_qpn = 0;
871 	qp->qkey = 0;
872 	qp->qp_access_flags = 0;
873 	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
874 	qp->s_hdrwords = 0;
875 	qp->s_wqe = NULL;
876 	qp->s_draining = 0;
877 	qp->s_next_psn = 0;
878 	qp->s_last_psn = 0;
879 	qp->s_sending_psn = 0;
880 	qp->s_sending_hpsn = 0;
881 	qp->s_psn = 0;
882 	qp->r_psn = 0;
883 	qp->r_msn = 0;
884 	if (type == IB_QPT_RC) {
885 		qp->s_state = IB_OPCODE_RC_SEND_LAST;
886 		qp->r_state = IB_OPCODE_RC_SEND_LAST;
887 	} else {
888 		qp->s_state = IB_OPCODE_UC_SEND_LAST;
889 		qp->r_state = IB_OPCODE_UC_SEND_LAST;
890 	}
891 	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
892 	qp->r_nak_state = 0;
893 	qp->r_aflags = 0;
894 	qp->r_flags = 0;
895 	qp->s_head = 0;
896 	qp->s_tail = 0;
897 	qp->s_cur = 0;
898 	qp->s_acked = 0;
899 	qp->s_last = 0;
900 	qp->s_ssn = 1;
901 	qp->s_lsn = 0;
902 	qp->s_mig_state = IB_MIG_MIGRATED;
903 	qp->r_head_ack_queue = 0;
904 	qp->s_tail_ack_queue = 0;
905 	qp->s_acked_ack_queue = 0;
906 	qp->s_num_rd_atomic = 0;
907 	qp->r_sge.num_sge = 0;
908 	atomic_set(&qp->s_reserved_used, 0);
909 }
910 
911 /**
912  * _rvt_reset_qp - initialize the QP state to the reset state
913  * @rdi: rvt dev struct
914  * @qp: the QP to reset
915  * @type: the QP type
916  *
917  * r_lock, s_hlock, and s_lock are required to be held by the caller
918  */
919 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
920 			  enum ib_qp_type type)
921 	__must_hold(&qp->s_lock)
922 	__must_hold(&qp->s_hlock)
923 	__must_hold(&qp->r_lock)
924 {
925 	lockdep_assert_held(&qp->r_lock);
926 	lockdep_assert_held(&qp->s_hlock);
927 	lockdep_assert_held(&qp->s_lock);
928 	if (qp->state != IB_QPS_RESET) {
929 		qp->state = IB_QPS_RESET;
930 
931 		/* Let drivers flush their waitlist */
932 		rdi->driver_f.flush_qp_waiters(qp);
933 		rvt_stop_rc_timers(qp);
934 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
935 		spin_unlock(&qp->s_lock);
936 		spin_unlock(&qp->s_hlock);
937 		spin_unlock_irq(&qp->r_lock);
938 
939 		/* Stop the send queue and the retry timer */
940 		rdi->driver_f.stop_send_queue(qp);
941 		rvt_del_timers_sync(qp);
942 		/* Wait for things to stop */
943 		rdi->driver_f.quiesce_qp(qp);
944 
945 		/* take qp out the hash and wait for it to be unused */
946 		rvt_remove_qp(rdi, qp);
947 
948 		/* grab the lock b/c it was locked at call time */
949 		spin_lock_irq(&qp->r_lock);
950 		spin_lock(&qp->s_hlock);
951 		spin_lock(&qp->s_lock);
952 
953 		rvt_clear_mr_refs(qp, 1);
954 		/*
955 		 * Let the driver do any tear down or re-init it needs to for
956 		 * a qp that has been reset
957 		 */
958 		rdi->driver_f.notify_qp_reset(qp);
959 	}
960 	rvt_init_qp(rdi, qp, type);
961 	lockdep_assert_held(&qp->r_lock);
962 	lockdep_assert_held(&qp->s_hlock);
963 	lockdep_assert_held(&qp->s_lock);
964 }
965 
966 /**
967  * rvt_reset_qp - initialize the QP state to the reset state
968  * @rdi: the device info
969  * @qp: the QP to reset
970  * @type: the QP type
971  *
972  * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
973  * before calling _rvt_reset_qp().
974  */
975 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
976 			 enum ib_qp_type type)
977 {
978 	spin_lock_irq(&qp->r_lock);
979 	spin_lock(&qp->s_hlock);
980 	spin_lock(&qp->s_lock);
981 	_rvt_reset_qp(rdi, qp, type);
982 	spin_unlock(&qp->s_lock);
983 	spin_unlock(&qp->s_hlock);
984 	spin_unlock_irq(&qp->r_lock);
985 }
986 
987 /**
988  * rvt_free_qpn - Free a qpn from the bit map
989  * @qpt: QP table
990  * @qpn: queue pair number to free
991  */
992 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
993 {
994 	struct rvt_qpn_map *map;
995 
996 	if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
997 		qpn &= RVT_AIP_QP_SUFFIX;
998 
999 	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
1000 	if (map->page)
1001 		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
1002 }
1003 
1004 /**
1005  * get_allowed_ops - Given a QP type return the appropriate allowed OP
1006  * @type: valid, supported, QP type
1007  */
1008 static u8 get_allowed_ops(enum ib_qp_type type)
1009 {
1010 	return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
1011 		IB_OPCODE_UC : IB_OPCODE_UD;
1012 }
1013 
1014 /**
1015  * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
1016  * @qp: Valid QP with allowed_ops set
1017  *
1018  * The rvt_swqe data structure being used is a union, so this is
1019  * only valid for UD QPs.
1020  */
1021 static void free_ud_wq_attr(struct rvt_qp *qp)
1022 {
1023 	struct rvt_swqe *wqe;
1024 	int i;
1025 
1026 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1027 		wqe = rvt_get_swqe_ptr(qp, i);
1028 		kfree(wqe->ud_wr.attr);
1029 		wqe->ud_wr.attr = NULL;
1030 	}
1031 }
1032 
1033 /**
1034  * alloc_ud_wq_attr - AH attribute cache for UD QPs
1035  * @qp: Valid QP with allowed_ops set
1036  * @node: Numa node for allocation
1037  *
1038  * The rvt_swqe data structure being used is a union, so this is
1039  * only valid for UD QPs.
1040  */
1041 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1042 {
1043 	struct rvt_swqe *wqe;
1044 	int i;
1045 
1046 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1047 		wqe = rvt_get_swqe_ptr(qp, i);
1048 		wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1049 					       GFP_KERNEL, node);
1050 		if (!wqe->ud_wr.attr) {
1051 			free_ud_wq_attr(qp);
1052 			return -ENOMEM;
1053 		}
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 /**
1060  * rvt_create_qp - create a queue pair for a device
1061  * @ibpd: the protection domain who's device we create the queue pair for
1062  * @init_attr: the attributes of the queue pair
1063  * @udata: user data for libibverbs.so
1064  *
1065  * Queue pair creation is mostly an rvt issue. However, drivers have their own
1066  * unique idea of what queue pair numbers mean. For instance there is a reserved
1067  * range for PSM.
1068  *
1069  * Return: the queue pair on success, otherwise returns an errno.
1070  *
1071  * Called by the ib_create_qp() core verbs function.
1072  */
1073 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1074 			    struct ib_qp_init_attr *init_attr,
1075 			    struct ib_udata *udata)
1076 {
1077 	struct rvt_qp *qp;
1078 	int err;
1079 	struct rvt_swqe *swq = NULL;
1080 	size_t sz;
1081 	size_t sg_list_sz;
1082 	struct ib_qp *ret = ERR_PTR(-ENOMEM);
1083 	struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1084 	void *priv = NULL;
1085 	size_t sqsize;
1086 	u8 exclude_prefix = 0;
1087 
1088 	if (!rdi)
1089 		return ERR_PTR(-EINVAL);
1090 
1091 	if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1092 		return ERR_PTR(-EOPNOTSUPP);
1093 
1094 	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1095 	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1096 		return ERR_PTR(-EINVAL);
1097 
1098 	/* Check receive queue parameters if no SRQ is specified. */
1099 	if (!init_attr->srq) {
1100 		if (init_attr->cap.max_recv_sge >
1101 		    rdi->dparms.props.max_recv_sge ||
1102 		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1103 			return ERR_PTR(-EINVAL);
1104 
1105 		if (init_attr->cap.max_send_sge +
1106 		    init_attr->cap.max_send_wr +
1107 		    init_attr->cap.max_recv_sge +
1108 		    init_attr->cap.max_recv_wr == 0)
1109 			return ERR_PTR(-EINVAL);
1110 	}
1111 	sqsize =
1112 		init_attr->cap.max_send_wr + 1 +
1113 		rdi->dparms.reserved_operations;
1114 	switch (init_attr->qp_type) {
1115 	case IB_QPT_SMI:
1116 	case IB_QPT_GSI:
1117 		if (init_attr->port_num == 0 ||
1118 		    init_attr->port_num > ibpd->device->phys_port_cnt)
1119 			return ERR_PTR(-EINVAL);
1120 		fallthrough;
1121 	case IB_QPT_UC:
1122 	case IB_QPT_RC:
1123 	case IB_QPT_UD:
1124 		sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1125 		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1126 		if (!swq)
1127 			return ERR_PTR(-ENOMEM);
1128 
1129 		sz = sizeof(*qp);
1130 		sg_list_sz = 0;
1131 		if (init_attr->srq) {
1132 			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1133 
1134 			if (srq->rq.max_sge > 1)
1135 				sg_list_sz = sizeof(*qp->r_sg_list) *
1136 					(srq->rq.max_sge - 1);
1137 		} else if (init_attr->cap.max_recv_sge > 1)
1138 			sg_list_sz = sizeof(*qp->r_sg_list) *
1139 				(init_attr->cap.max_recv_sge - 1);
1140 		qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1141 				  rdi->dparms.node);
1142 		if (!qp)
1143 			goto bail_swq;
1144 		qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1145 
1146 		RCU_INIT_POINTER(qp->next, NULL);
1147 		if (init_attr->qp_type == IB_QPT_RC) {
1148 			qp->s_ack_queue =
1149 				kcalloc_node(rvt_max_atomic(rdi),
1150 					     sizeof(*qp->s_ack_queue),
1151 					     GFP_KERNEL,
1152 					     rdi->dparms.node);
1153 			if (!qp->s_ack_queue)
1154 				goto bail_qp;
1155 		}
1156 		/* initialize timers needed for rc qp */
1157 		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1158 		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1159 			     HRTIMER_MODE_REL);
1160 		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1161 
1162 		/*
1163 		 * Driver needs to set up it's private QP structure and do any
1164 		 * initialization that is needed.
1165 		 */
1166 		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1167 		if (IS_ERR(priv)) {
1168 			ret = priv;
1169 			goto bail_qp;
1170 		}
1171 		qp->priv = priv;
1172 		qp->timeout_jiffies =
1173 			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1174 				1000UL);
1175 		if (init_attr->srq) {
1176 			sz = 0;
1177 		} else {
1178 			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1179 			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1180 			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1181 				sizeof(struct rvt_rwqe);
1182 			err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1183 					   rdi->dparms.node, udata);
1184 			if (err) {
1185 				ret = ERR_PTR(err);
1186 				goto bail_driver_priv;
1187 			}
1188 		}
1189 
1190 		/*
1191 		 * ib_create_qp() will initialize qp->ibqp
1192 		 * except for qp->ibqp.qp_num.
1193 		 */
1194 		spin_lock_init(&qp->r_lock);
1195 		spin_lock_init(&qp->s_hlock);
1196 		spin_lock_init(&qp->s_lock);
1197 		atomic_set(&qp->refcount, 0);
1198 		atomic_set(&qp->local_ops_pending, 0);
1199 		init_waitqueue_head(&qp->wait);
1200 		INIT_LIST_HEAD(&qp->rspwait);
1201 		qp->state = IB_QPS_RESET;
1202 		qp->s_wq = swq;
1203 		qp->s_size = sqsize;
1204 		qp->s_avail = init_attr->cap.max_send_wr;
1205 		qp->s_max_sge = init_attr->cap.max_send_sge;
1206 		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1207 			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1208 		err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1209 		if (err) {
1210 			ret = (ERR_PTR(err));
1211 			goto bail_rq_rvt;
1212 		}
1213 
1214 		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1215 			exclude_prefix = RVT_AIP_QP_PREFIX;
1216 
1217 		err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1218 				init_attr->qp_type,
1219 				init_attr->port_num,
1220 				exclude_prefix);
1221 		if (err < 0) {
1222 			ret = ERR_PTR(err);
1223 			goto bail_rq_wq;
1224 		}
1225 		qp->ibqp.qp_num = err;
1226 		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1227 			qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1228 		qp->port_num = init_attr->port_num;
1229 		rvt_init_qp(rdi, qp, init_attr->qp_type);
1230 		if (rdi->driver_f.qp_priv_init) {
1231 			err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1232 			if (err) {
1233 				ret = ERR_PTR(err);
1234 				goto bail_rq_wq;
1235 			}
1236 		}
1237 		break;
1238 
1239 	default:
1240 		/* Don't support raw QPs */
1241 		return ERR_PTR(-EOPNOTSUPP);
1242 	}
1243 
1244 	init_attr->cap.max_inline_data = 0;
1245 
1246 	/*
1247 	 * Return the address of the RWQ as the offset to mmap.
1248 	 * See rvt_mmap() for details.
1249 	 */
1250 	if (udata && udata->outlen >= sizeof(__u64)) {
1251 		if (!qp->r_rq.wq) {
1252 			__u64 offset = 0;
1253 
1254 			err = ib_copy_to_udata(udata, &offset,
1255 					       sizeof(offset));
1256 			if (err) {
1257 				ret = ERR_PTR(err);
1258 				goto bail_qpn;
1259 			}
1260 		} else {
1261 			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1262 
1263 			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1264 						      qp->r_rq.wq);
1265 			if (IS_ERR(qp->ip)) {
1266 				ret = ERR_CAST(qp->ip);
1267 				goto bail_qpn;
1268 			}
1269 
1270 			err = ib_copy_to_udata(udata, &qp->ip->offset,
1271 					       sizeof(qp->ip->offset));
1272 			if (err) {
1273 				ret = ERR_PTR(err);
1274 				goto bail_ip;
1275 			}
1276 		}
1277 		qp->pid = current->pid;
1278 	}
1279 
1280 	spin_lock(&rdi->n_qps_lock);
1281 	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1282 		spin_unlock(&rdi->n_qps_lock);
1283 		ret = ERR_PTR(-ENOMEM);
1284 		goto bail_ip;
1285 	}
1286 
1287 	rdi->n_qps_allocated++;
1288 	/*
1289 	 * Maintain a busy_jiffies variable that will be added to the timeout
1290 	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1291 	 * is scaled by the number of rc qps created for the device to reduce
1292 	 * the number of timeouts occurring when there is a large number of
1293 	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1294 	 * The scaling interval is selected based on extensive performance
1295 	 * evaluation of targeted workloads.
1296 	 */
1297 	if (init_attr->qp_type == IB_QPT_RC) {
1298 		rdi->n_rc_qps++;
1299 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1300 	}
1301 	spin_unlock(&rdi->n_qps_lock);
1302 
1303 	if (qp->ip) {
1304 		spin_lock_irq(&rdi->pending_lock);
1305 		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1306 		spin_unlock_irq(&rdi->pending_lock);
1307 	}
1308 
1309 	ret = &qp->ibqp;
1310 
1311 	return ret;
1312 
1313 bail_ip:
1314 	if (qp->ip)
1315 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1316 
1317 bail_qpn:
1318 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1319 
1320 bail_rq_wq:
1321 	free_ud_wq_attr(qp);
1322 
1323 bail_rq_rvt:
1324 	rvt_free_rq(&qp->r_rq);
1325 
1326 bail_driver_priv:
1327 	rdi->driver_f.qp_priv_free(rdi, qp);
1328 
1329 bail_qp:
1330 	kfree(qp->s_ack_queue);
1331 	kfree(qp);
1332 
1333 bail_swq:
1334 	vfree(swq);
1335 
1336 	return ret;
1337 }
1338 
1339 /**
1340  * rvt_error_qp - put a QP into the error state
1341  * @qp: the QP to put into the error state
1342  * @err: the receive completion error to signal if a RWQE is active
1343  *
1344  * Flushes both send and receive work queues.
1345  *
1346  * Return: true if last WQE event should be generated.
1347  * The QP r_lock and s_lock should be held and interrupts disabled.
1348  * If we are already in error state, just return.
1349  */
1350 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1351 {
1352 	struct ib_wc wc;
1353 	int ret = 0;
1354 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1355 
1356 	lockdep_assert_held(&qp->r_lock);
1357 	lockdep_assert_held(&qp->s_lock);
1358 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1359 		goto bail;
1360 
1361 	qp->state = IB_QPS_ERR;
1362 
1363 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1364 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1365 		del_timer(&qp->s_timer);
1366 	}
1367 
1368 	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1369 		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1370 
1371 	rdi->driver_f.notify_error_qp(qp);
1372 
1373 	/* Schedule the sending tasklet to drain the send work queue. */
1374 	if (READ_ONCE(qp->s_last) != qp->s_head)
1375 		rdi->driver_f.schedule_send(qp);
1376 
1377 	rvt_clear_mr_refs(qp, 0);
1378 
1379 	memset(&wc, 0, sizeof(wc));
1380 	wc.qp = &qp->ibqp;
1381 	wc.opcode = IB_WC_RECV;
1382 
1383 	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1384 		wc.wr_id = qp->r_wr_id;
1385 		wc.status = err;
1386 		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1387 	}
1388 	wc.status = IB_WC_WR_FLUSH_ERR;
1389 
1390 	if (qp->r_rq.kwq) {
1391 		u32 head;
1392 		u32 tail;
1393 		struct rvt_rwq *wq = NULL;
1394 		struct rvt_krwq *kwq = NULL;
1395 
1396 		spin_lock(&qp->r_rq.kwq->c_lock);
1397 		/* qp->ip used to validate if there is a  user buffer mmaped */
1398 		if (qp->ip) {
1399 			wq = qp->r_rq.wq;
1400 			head = RDMA_READ_UAPI_ATOMIC(wq->head);
1401 			tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1402 		} else {
1403 			kwq = qp->r_rq.kwq;
1404 			head = kwq->head;
1405 			tail = kwq->tail;
1406 		}
1407 		/* sanity check pointers before trusting them */
1408 		if (head >= qp->r_rq.size)
1409 			head = 0;
1410 		if (tail >= qp->r_rq.size)
1411 			tail = 0;
1412 		while (tail != head) {
1413 			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1414 			if (++tail >= qp->r_rq.size)
1415 				tail = 0;
1416 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1417 		}
1418 		if (qp->ip)
1419 			RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1420 		else
1421 			kwq->tail = tail;
1422 		spin_unlock(&qp->r_rq.kwq->c_lock);
1423 	} else if (qp->ibqp.event_handler) {
1424 		ret = 1;
1425 	}
1426 
1427 bail:
1428 	return ret;
1429 }
1430 EXPORT_SYMBOL(rvt_error_qp);
1431 
1432 /*
1433  * Put the QP into the hash table.
1434  * The hash table holds a reference to the QP.
1435  */
1436 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1437 {
1438 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1439 	unsigned long flags;
1440 
1441 	rvt_get_qp(qp);
1442 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1443 
1444 	if (qp->ibqp.qp_num <= 1) {
1445 		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1446 	} else {
1447 		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1448 
1449 		qp->next = rdi->qp_dev->qp_table[n];
1450 		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1451 		trace_rvt_qpinsert(qp, n);
1452 	}
1453 
1454 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1455 }
1456 
1457 /**
1458  * rvt_modify_qp - modify the attributes of a queue pair
1459  * @ibqp: the queue pair who's attributes we're modifying
1460  * @attr: the new attributes
1461  * @attr_mask: the mask of attributes to modify
1462  * @udata: user data for libibverbs.so
1463  *
1464  * Return: 0 on success, otherwise returns an errno.
1465  */
1466 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1467 		  int attr_mask, struct ib_udata *udata)
1468 {
1469 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1470 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1471 	enum ib_qp_state cur_state, new_state;
1472 	struct ib_event ev;
1473 	int lastwqe = 0;
1474 	int mig = 0;
1475 	int pmtu = 0; /* for gcc warning only */
1476 	int opa_ah;
1477 
1478 	if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1479 		return -EOPNOTSUPP;
1480 
1481 	spin_lock_irq(&qp->r_lock);
1482 	spin_lock(&qp->s_hlock);
1483 	spin_lock(&qp->s_lock);
1484 
1485 	cur_state = attr_mask & IB_QP_CUR_STATE ?
1486 		attr->cur_qp_state : qp->state;
1487 	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1488 	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1489 
1490 	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1491 				attr_mask))
1492 		goto inval;
1493 
1494 	if (rdi->driver_f.check_modify_qp &&
1495 	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1496 		goto inval;
1497 
1498 	if (attr_mask & IB_QP_AV) {
1499 		if (opa_ah) {
1500 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1501 				opa_get_mcast_base(OPA_MCAST_NR))
1502 				goto inval;
1503 		} else {
1504 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1505 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1506 				goto inval;
1507 		}
1508 
1509 		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1510 			goto inval;
1511 	}
1512 
1513 	if (attr_mask & IB_QP_ALT_PATH) {
1514 		if (opa_ah) {
1515 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1516 				opa_get_mcast_base(OPA_MCAST_NR))
1517 				goto inval;
1518 		} else {
1519 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1520 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1521 				goto inval;
1522 		}
1523 
1524 		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1525 			goto inval;
1526 		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1527 			goto inval;
1528 	}
1529 
1530 	if (attr_mask & IB_QP_PKEY_INDEX)
1531 		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1532 			goto inval;
1533 
1534 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1535 		if (attr->min_rnr_timer > 31)
1536 			goto inval;
1537 
1538 	if (attr_mask & IB_QP_PORT)
1539 		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1540 		    qp->ibqp.qp_type == IB_QPT_GSI ||
1541 		    attr->port_num == 0 ||
1542 		    attr->port_num > ibqp->device->phys_port_cnt)
1543 			goto inval;
1544 
1545 	if (attr_mask & IB_QP_DEST_QPN)
1546 		if (attr->dest_qp_num > RVT_QPN_MASK)
1547 			goto inval;
1548 
1549 	if (attr_mask & IB_QP_RETRY_CNT)
1550 		if (attr->retry_cnt > 7)
1551 			goto inval;
1552 
1553 	if (attr_mask & IB_QP_RNR_RETRY)
1554 		if (attr->rnr_retry > 7)
1555 			goto inval;
1556 
1557 	/*
1558 	 * Don't allow invalid path_mtu values.  OK to set greater
1559 	 * than the active mtu (or even the max_cap, if we have tuned
1560 	 * that to a small mtu.  We'll set qp->path_mtu
1561 	 * to the lesser of requested attribute mtu and active,
1562 	 * for packetizing messages.
1563 	 * Note that the QP port has to be set in INIT and MTU in RTR.
1564 	 */
1565 	if (attr_mask & IB_QP_PATH_MTU) {
1566 		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1567 		if (pmtu < 0)
1568 			goto inval;
1569 	}
1570 
1571 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1572 		if (attr->path_mig_state == IB_MIG_REARM) {
1573 			if (qp->s_mig_state == IB_MIG_ARMED)
1574 				goto inval;
1575 			if (new_state != IB_QPS_RTS)
1576 				goto inval;
1577 		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1578 			if (qp->s_mig_state == IB_MIG_REARM)
1579 				goto inval;
1580 			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1581 				goto inval;
1582 			if (qp->s_mig_state == IB_MIG_ARMED)
1583 				mig = 1;
1584 		} else {
1585 			goto inval;
1586 		}
1587 	}
1588 
1589 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1590 		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1591 			goto inval;
1592 
1593 	switch (new_state) {
1594 	case IB_QPS_RESET:
1595 		if (qp->state != IB_QPS_RESET)
1596 			_rvt_reset_qp(rdi, qp, ibqp->qp_type);
1597 		break;
1598 
1599 	case IB_QPS_RTR:
1600 		/* Allow event to re-trigger if QP set to RTR more than once */
1601 		qp->r_flags &= ~RVT_R_COMM_EST;
1602 		qp->state = new_state;
1603 		break;
1604 
1605 	case IB_QPS_SQD:
1606 		qp->s_draining = qp->s_last != qp->s_cur;
1607 		qp->state = new_state;
1608 		break;
1609 
1610 	case IB_QPS_SQE:
1611 		if (qp->ibqp.qp_type == IB_QPT_RC)
1612 			goto inval;
1613 		qp->state = new_state;
1614 		break;
1615 
1616 	case IB_QPS_ERR:
1617 		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1618 		break;
1619 
1620 	default:
1621 		qp->state = new_state;
1622 		break;
1623 	}
1624 
1625 	if (attr_mask & IB_QP_PKEY_INDEX)
1626 		qp->s_pkey_index = attr->pkey_index;
1627 
1628 	if (attr_mask & IB_QP_PORT)
1629 		qp->port_num = attr->port_num;
1630 
1631 	if (attr_mask & IB_QP_DEST_QPN)
1632 		qp->remote_qpn = attr->dest_qp_num;
1633 
1634 	if (attr_mask & IB_QP_SQ_PSN) {
1635 		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1636 		qp->s_psn = qp->s_next_psn;
1637 		qp->s_sending_psn = qp->s_next_psn;
1638 		qp->s_last_psn = qp->s_next_psn - 1;
1639 		qp->s_sending_hpsn = qp->s_last_psn;
1640 	}
1641 
1642 	if (attr_mask & IB_QP_RQ_PSN)
1643 		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1644 
1645 	if (attr_mask & IB_QP_ACCESS_FLAGS)
1646 		qp->qp_access_flags = attr->qp_access_flags;
1647 
1648 	if (attr_mask & IB_QP_AV) {
1649 		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1650 		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1651 		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1652 	}
1653 
1654 	if (attr_mask & IB_QP_ALT_PATH) {
1655 		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1656 		qp->s_alt_pkey_index = attr->alt_pkey_index;
1657 	}
1658 
1659 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1660 		qp->s_mig_state = attr->path_mig_state;
1661 		if (mig) {
1662 			qp->remote_ah_attr = qp->alt_ah_attr;
1663 			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1664 			qp->s_pkey_index = qp->s_alt_pkey_index;
1665 		}
1666 	}
1667 
1668 	if (attr_mask & IB_QP_PATH_MTU) {
1669 		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1670 		qp->log_pmtu = ilog2(qp->pmtu);
1671 	}
1672 
1673 	if (attr_mask & IB_QP_RETRY_CNT) {
1674 		qp->s_retry_cnt = attr->retry_cnt;
1675 		qp->s_retry = attr->retry_cnt;
1676 	}
1677 
1678 	if (attr_mask & IB_QP_RNR_RETRY) {
1679 		qp->s_rnr_retry_cnt = attr->rnr_retry;
1680 		qp->s_rnr_retry = attr->rnr_retry;
1681 	}
1682 
1683 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1684 		qp->r_min_rnr_timer = attr->min_rnr_timer;
1685 
1686 	if (attr_mask & IB_QP_TIMEOUT) {
1687 		qp->timeout = attr->timeout;
1688 		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1689 	}
1690 
1691 	if (attr_mask & IB_QP_QKEY)
1692 		qp->qkey = attr->qkey;
1693 
1694 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1695 		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1696 
1697 	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1698 		qp->s_max_rd_atomic = attr->max_rd_atomic;
1699 
1700 	if (rdi->driver_f.modify_qp)
1701 		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1702 
1703 	spin_unlock(&qp->s_lock);
1704 	spin_unlock(&qp->s_hlock);
1705 	spin_unlock_irq(&qp->r_lock);
1706 
1707 	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1708 		rvt_insert_qp(rdi, qp);
1709 
1710 	if (lastwqe) {
1711 		ev.device = qp->ibqp.device;
1712 		ev.element.qp = &qp->ibqp;
1713 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1714 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1715 	}
1716 	if (mig) {
1717 		ev.device = qp->ibqp.device;
1718 		ev.element.qp = &qp->ibqp;
1719 		ev.event = IB_EVENT_PATH_MIG;
1720 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1721 	}
1722 	return 0;
1723 
1724 inval:
1725 	spin_unlock(&qp->s_lock);
1726 	spin_unlock(&qp->s_hlock);
1727 	spin_unlock_irq(&qp->r_lock);
1728 	return -EINVAL;
1729 }
1730 
1731 /**
1732  * rvt_destroy_qp - destroy a queue pair
1733  * @ibqp: the queue pair to destroy
1734  * @udata: unused by the driver
1735  *
1736  * Note that this can be called while the QP is actively sending or
1737  * receiving!
1738  *
1739  * Return: 0 on success.
1740  */
1741 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1742 {
1743 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1744 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1745 
1746 	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1747 
1748 	wait_event(qp->wait, !atomic_read(&qp->refcount));
1749 	/* qpn is now available for use again */
1750 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1751 
1752 	spin_lock(&rdi->n_qps_lock);
1753 	rdi->n_qps_allocated--;
1754 	if (qp->ibqp.qp_type == IB_QPT_RC) {
1755 		rdi->n_rc_qps--;
1756 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1757 	}
1758 	spin_unlock(&rdi->n_qps_lock);
1759 
1760 	if (qp->ip)
1761 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1762 	kvfree(qp->r_rq.kwq);
1763 	rdi->driver_f.qp_priv_free(rdi, qp);
1764 	kfree(qp->s_ack_queue);
1765 	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1766 	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1767 	free_ud_wq_attr(qp);
1768 	vfree(qp->s_wq);
1769 	kfree(qp);
1770 	return 0;
1771 }
1772 
1773 /**
1774  * rvt_query_qp - query an ipbq
1775  * @ibqp: IB qp to query
1776  * @attr: attr struct to fill in
1777  * @attr_mask: attr mask ignored
1778  * @init_attr: struct to fill in
1779  *
1780  * Return: always 0
1781  */
1782 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1783 		 int attr_mask, struct ib_qp_init_attr *init_attr)
1784 {
1785 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1786 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1787 
1788 	attr->qp_state = qp->state;
1789 	attr->cur_qp_state = attr->qp_state;
1790 	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1791 	attr->path_mig_state = qp->s_mig_state;
1792 	attr->qkey = qp->qkey;
1793 	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1794 	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1795 	attr->dest_qp_num = qp->remote_qpn;
1796 	attr->qp_access_flags = qp->qp_access_flags;
1797 	attr->cap.max_send_wr = qp->s_size - 1 -
1798 		rdi->dparms.reserved_operations;
1799 	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1800 	attr->cap.max_send_sge = qp->s_max_sge;
1801 	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1802 	attr->cap.max_inline_data = 0;
1803 	attr->ah_attr = qp->remote_ah_attr;
1804 	attr->alt_ah_attr = qp->alt_ah_attr;
1805 	attr->pkey_index = qp->s_pkey_index;
1806 	attr->alt_pkey_index = qp->s_alt_pkey_index;
1807 	attr->en_sqd_async_notify = 0;
1808 	attr->sq_draining = qp->s_draining;
1809 	attr->max_rd_atomic = qp->s_max_rd_atomic;
1810 	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1811 	attr->min_rnr_timer = qp->r_min_rnr_timer;
1812 	attr->port_num = qp->port_num;
1813 	attr->timeout = qp->timeout;
1814 	attr->retry_cnt = qp->s_retry_cnt;
1815 	attr->rnr_retry = qp->s_rnr_retry_cnt;
1816 	attr->alt_port_num =
1817 		rdma_ah_get_port_num(&qp->alt_ah_attr);
1818 	attr->alt_timeout = qp->alt_timeout;
1819 
1820 	init_attr->event_handler = qp->ibqp.event_handler;
1821 	init_attr->qp_context = qp->ibqp.qp_context;
1822 	init_attr->send_cq = qp->ibqp.send_cq;
1823 	init_attr->recv_cq = qp->ibqp.recv_cq;
1824 	init_attr->srq = qp->ibqp.srq;
1825 	init_attr->cap = attr->cap;
1826 	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1827 		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1828 	else
1829 		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1830 	init_attr->qp_type = qp->ibqp.qp_type;
1831 	init_attr->port_num = qp->port_num;
1832 	return 0;
1833 }
1834 
1835 /**
1836  * rvt_post_recv - post a receive on a QP
1837  * @ibqp: the QP to post the receive on
1838  * @wr: the WR to post
1839  * @bad_wr: the first bad WR is put here
1840  *
1841  * This may be called from interrupt context.
1842  *
1843  * Return: 0 on success otherwise errno
1844  */
1845 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1846 		  const struct ib_recv_wr **bad_wr)
1847 {
1848 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1849 	struct rvt_krwq *wq = qp->r_rq.kwq;
1850 	unsigned long flags;
1851 	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1852 				!qp->ibqp.srq;
1853 
1854 	/* Check that state is OK to post receive. */
1855 	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1856 		*bad_wr = wr;
1857 		return -EINVAL;
1858 	}
1859 
1860 	for (; wr; wr = wr->next) {
1861 		struct rvt_rwqe *wqe;
1862 		u32 next;
1863 		int i;
1864 
1865 		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1866 			*bad_wr = wr;
1867 			return -EINVAL;
1868 		}
1869 
1870 		spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1871 		next = wq->head + 1;
1872 		if (next >= qp->r_rq.size)
1873 			next = 0;
1874 		if (next == READ_ONCE(wq->tail)) {
1875 			spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1876 			*bad_wr = wr;
1877 			return -ENOMEM;
1878 		}
1879 		if (unlikely(qp_err_flush)) {
1880 			struct ib_wc wc;
1881 
1882 			memset(&wc, 0, sizeof(wc));
1883 			wc.qp = &qp->ibqp;
1884 			wc.opcode = IB_WC_RECV;
1885 			wc.wr_id = wr->wr_id;
1886 			wc.status = IB_WC_WR_FLUSH_ERR;
1887 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1888 		} else {
1889 			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1890 			wqe->wr_id = wr->wr_id;
1891 			wqe->num_sge = wr->num_sge;
1892 			for (i = 0; i < wr->num_sge; i++) {
1893 				wqe->sg_list[i].addr = wr->sg_list[i].addr;
1894 				wqe->sg_list[i].length = wr->sg_list[i].length;
1895 				wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1896 			}
1897 			/*
1898 			 * Make sure queue entry is written
1899 			 * before the head index.
1900 			 */
1901 			smp_store_release(&wq->head, next);
1902 		}
1903 		spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1904 	}
1905 	return 0;
1906 }
1907 
1908 /**
1909  * rvt_qp_valid_operation - validate post send wr request
1910  * @qp: the qp
1911  * @post_parms: the post send table for the driver
1912  * @wr: the work request
1913  *
1914  * The routine validates the operation based on the
1915  * validation table an returns the length of the operation
1916  * which can extend beyond the ib_send_bw.  Operation
1917  * dependent flags key atomic operation validation.
1918  *
1919  * There is an exception for UD qps that validates the pd and
1920  * overrides the length to include the additional UD specific
1921  * length.
1922  *
1923  * Returns a negative error or the length of the work request
1924  * for building the swqe.
1925  */
1926 static inline int rvt_qp_valid_operation(
1927 	struct rvt_qp *qp,
1928 	const struct rvt_operation_params *post_parms,
1929 	const struct ib_send_wr *wr)
1930 {
1931 	int len;
1932 
1933 	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1934 		return -EINVAL;
1935 	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1936 		return -EINVAL;
1937 	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1938 	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1939 		return -EINVAL;
1940 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1941 	    (wr->num_sge == 0 ||
1942 	     wr->sg_list[0].length < sizeof(u64) ||
1943 	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1944 		return -EINVAL;
1945 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1946 	    !qp->s_max_rd_atomic)
1947 		return -EINVAL;
1948 	len = post_parms[wr->opcode].length;
1949 	/* UD specific */
1950 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1951 	    qp->ibqp.qp_type != IB_QPT_RC) {
1952 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1953 			return -EINVAL;
1954 		len = sizeof(struct ib_ud_wr);
1955 	}
1956 	return len;
1957 }
1958 
1959 /**
1960  * rvt_qp_is_avail - determine queue capacity
1961  * @qp: the qp
1962  * @rdi: the rdmavt device
1963  * @reserved_op: is reserved operation
1964  *
1965  * This assumes the s_hlock is held but the s_last
1966  * qp variable is uncontrolled.
1967  *
1968  * For non reserved operations, the qp->s_avail
1969  * may be changed.
1970  *
1971  * The return value is zero or a -ENOMEM.
1972  */
1973 static inline int rvt_qp_is_avail(
1974 	struct rvt_qp *qp,
1975 	struct rvt_dev_info *rdi,
1976 	bool reserved_op)
1977 {
1978 	u32 slast;
1979 	u32 avail;
1980 	u32 reserved_used;
1981 
1982 	/* see rvt_qp_wqe_unreserve() */
1983 	smp_mb__before_atomic();
1984 	if (unlikely(reserved_op)) {
1985 		/* see rvt_qp_wqe_unreserve() */
1986 		reserved_used = atomic_read(&qp->s_reserved_used);
1987 		if (reserved_used >= rdi->dparms.reserved_operations)
1988 			return -ENOMEM;
1989 		return 0;
1990 	}
1991 	/* non-reserved operations */
1992 	if (likely(qp->s_avail))
1993 		return 0;
1994 	/* See rvt_qp_complete_swqe() */
1995 	slast = smp_load_acquire(&qp->s_last);
1996 	if (qp->s_head >= slast)
1997 		avail = qp->s_size - (qp->s_head - slast);
1998 	else
1999 		avail = slast - qp->s_head;
2000 
2001 	reserved_used = atomic_read(&qp->s_reserved_used);
2002 	avail =  avail - 1 -
2003 		(rdi->dparms.reserved_operations - reserved_used);
2004 	/* insure we don't assign a negative s_avail */
2005 	if ((s32)avail <= 0)
2006 		return -ENOMEM;
2007 	qp->s_avail = avail;
2008 	if (WARN_ON(qp->s_avail >
2009 		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
2010 		rvt_pr_err(rdi,
2011 			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
2012 			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
2013 			   qp->s_head, qp->s_tail, qp->s_cur,
2014 			   qp->s_acked, qp->s_last);
2015 	return 0;
2016 }
2017 
2018 /**
2019  * rvt_post_one_wr - post one RC, UC, or UD send work request
2020  * @qp: the QP to post on
2021  * @wr: the work request to send
2022  * @call_send: kick the send engine into gear
2023  */
2024 static int rvt_post_one_wr(struct rvt_qp *qp,
2025 			   const struct ib_send_wr *wr,
2026 			   bool *call_send)
2027 {
2028 	struct rvt_swqe *wqe;
2029 	u32 next;
2030 	int i;
2031 	int j;
2032 	int acc;
2033 	struct rvt_lkey_table *rkt;
2034 	struct rvt_pd *pd;
2035 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2036 	u8 log_pmtu;
2037 	int ret;
2038 	size_t cplen;
2039 	bool reserved_op;
2040 	int local_ops_delayed = 0;
2041 
2042 	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2043 
2044 	/* IB spec says that num_sge == 0 is OK. */
2045 	if (unlikely(wr->num_sge > qp->s_max_sge))
2046 		return -EINVAL;
2047 
2048 	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2049 	if (ret < 0)
2050 		return ret;
2051 	cplen = ret;
2052 
2053 	/*
2054 	 * Local operations include fast register and local invalidate.
2055 	 * Fast register needs to be processed immediately because the
2056 	 * registered lkey may be used by following work requests and the
2057 	 * lkey needs to be valid at the time those requests are posted.
2058 	 * Local invalidate can be processed immediately if fencing is
2059 	 * not required and no previous local invalidate ops are pending.
2060 	 * Signaled local operations that have been processed immediately
2061 	 * need to have requests with "completion only" flags set posted
2062 	 * to the send queue in order to generate completions.
2063 	 */
2064 	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2065 		switch (wr->opcode) {
2066 		case IB_WR_REG_MR:
2067 			ret = rvt_fast_reg_mr(qp,
2068 					      reg_wr(wr)->mr,
2069 					      reg_wr(wr)->key,
2070 					      reg_wr(wr)->access);
2071 			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2072 				return ret;
2073 			break;
2074 		case IB_WR_LOCAL_INV:
2075 			if ((wr->send_flags & IB_SEND_FENCE) ||
2076 			    atomic_read(&qp->local_ops_pending)) {
2077 				local_ops_delayed = 1;
2078 			} else {
2079 				ret = rvt_invalidate_rkey(
2080 					qp, wr->ex.invalidate_rkey);
2081 				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2082 					return ret;
2083 			}
2084 			break;
2085 		default:
2086 			return -EINVAL;
2087 		}
2088 	}
2089 
2090 	reserved_op = rdi->post_parms[wr->opcode].flags &
2091 			RVT_OPERATION_USE_RESERVE;
2092 	/* check for avail */
2093 	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2094 	if (ret)
2095 		return ret;
2096 	next = qp->s_head + 1;
2097 	if (next >= qp->s_size)
2098 		next = 0;
2099 
2100 	rkt = &rdi->lkey_table;
2101 	pd = ibpd_to_rvtpd(qp->ibqp.pd);
2102 	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2103 
2104 	/* cplen has length from above */
2105 	memcpy(&wqe->wr, wr, cplen);
2106 
2107 	wqe->length = 0;
2108 	j = 0;
2109 	if (wr->num_sge) {
2110 		struct rvt_sge *last_sge = NULL;
2111 
2112 		acc = wr->opcode >= IB_WR_RDMA_READ ?
2113 			IB_ACCESS_LOCAL_WRITE : 0;
2114 		for (i = 0; i < wr->num_sge; i++) {
2115 			u32 length = wr->sg_list[i].length;
2116 
2117 			if (length == 0)
2118 				continue;
2119 			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2120 					  &wr->sg_list[i], acc);
2121 			if (unlikely(ret < 0))
2122 				goto bail_inval_free;
2123 			wqe->length += length;
2124 			if (ret)
2125 				last_sge = &wqe->sg_list[j];
2126 			j += ret;
2127 		}
2128 		wqe->wr.num_sge = j;
2129 	}
2130 
2131 	/*
2132 	 * Calculate and set SWQE PSN values prior to handing it off
2133 	 * to the driver's check routine. This give the driver the
2134 	 * opportunity to adjust PSN values based on internal checks.
2135 	 */
2136 	log_pmtu = qp->log_pmtu;
2137 	if (qp->allowed_ops == IB_OPCODE_UD) {
2138 		struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2139 
2140 		log_pmtu = ah->log_pmtu;
2141 		rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2142 	}
2143 
2144 	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2145 		if (local_ops_delayed)
2146 			atomic_inc(&qp->local_ops_pending);
2147 		else
2148 			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2149 		wqe->ssn = 0;
2150 		wqe->psn = 0;
2151 		wqe->lpsn = 0;
2152 	} else {
2153 		wqe->ssn = qp->s_ssn++;
2154 		wqe->psn = qp->s_next_psn;
2155 		wqe->lpsn = wqe->psn +
2156 				(wqe->length ?
2157 					((wqe->length - 1) >> log_pmtu) :
2158 					0);
2159 	}
2160 
2161 	/* general part of wqe valid - allow for driver checks */
2162 	if (rdi->driver_f.setup_wqe) {
2163 		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2164 		if (ret < 0)
2165 			goto bail_inval_free_ref;
2166 	}
2167 
2168 	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2169 		qp->s_next_psn = wqe->lpsn + 1;
2170 
2171 	if (unlikely(reserved_op)) {
2172 		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2173 		rvt_qp_wqe_reserve(qp, wqe);
2174 	} else {
2175 		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2176 		qp->s_avail--;
2177 	}
2178 	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2179 	smp_wmb(); /* see request builders */
2180 	qp->s_head = next;
2181 
2182 	return 0;
2183 
2184 bail_inval_free_ref:
2185 	if (qp->allowed_ops == IB_OPCODE_UD)
2186 		rdma_destroy_ah_attr(wqe->ud_wr.attr);
2187 bail_inval_free:
2188 	/* release mr holds */
2189 	while (j) {
2190 		struct rvt_sge *sge = &wqe->sg_list[--j];
2191 
2192 		rvt_put_mr(sge->mr);
2193 	}
2194 	return ret;
2195 }
2196 
2197 /**
2198  * rvt_post_send - post a send on a QP
2199  * @ibqp: the QP to post the send on
2200  * @wr: the list of work requests to post
2201  * @bad_wr: the first bad WR is put here
2202  *
2203  * This may be called from interrupt context.
2204  *
2205  * Return: 0 on success else errno
2206  */
2207 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2208 		  const struct ib_send_wr **bad_wr)
2209 {
2210 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2211 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2212 	unsigned long flags = 0;
2213 	bool call_send;
2214 	unsigned nreq = 0;
2215 	int err = 0;
2216 
2217 	spin_lock_irqsave(&qp->s_hlock, flags);
2218 
2219 	/*
2220 	 * Ensure QP state is such that we can send. If not bail out early,
2221 	 * there is no need to do this every time we post a send.
2222 	 */
2223 	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2224 		spin_unlock_irqrestore(&qp->s_hlock, flags);
2225 		return -EINVAL;
2226 	}
2227 
2228 	/*
2229 	 * If the send queue is empty, and we only have a single WR then just go
2230 	 * ahead and kick the send engine into gear. Otherwise we will always
2231 	 * just schedule the send to happen later.
2232 	 */
2233 	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2234 
2235 	for (; wr; wr = wr->next) {
2236 		err = rvt_post_one_wr(qp, wr, &call_send);
2237 		if (unlikely(err)) {
2238 			*bad_wr = wr;
2239 			goto bail;
2240 		}
2241 		nreq++;
2242 	}
2243 bail:
2244 	spin_unlock_irqrestore(&qp->s_hlock, flags);
2245 	if (nreq) {
2246 		/*
2247 		 * Only call do_send if there is exactly one packet, and the
2248 		 * driver said it was ok.
2249 		 */
2250 		if (nreq == 1 && call_send)
2251 			rdi->driver_f.do_send(qp);
2252 		else
2253 			rdi->driver_f.schedule_send_no_lock(qp);
2254 	}
2255 	return err;
2256 }
2257 
2258 /**
2259  * rvt_post_srq_recv - post a receive on a shared receive queue
2260  * @ibsrq: the SRQ to post the receive on
2261  * @wr: the list of work requests to post
2262  * @bad_wr: A pointer to the first WR to cause a problem is put here
2263  *
2264  * This may be called from interrupt context.
2265  *
2266  * Return: 0 on success else errno
2267  */
2268 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2269 		      const struct ib_recv_wr **bad_wr)
2270 {
2271 	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2272 	struct rvt_krwq *wq;
2273 	unsigned long flags;
2274 
2275 	for (; wr; wr = wr->next) {
2276 		struct rvt_rwqe *wqe;
2277 		u32 next;
2278 		int i;
2279 
2280 		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2281 			*bad_wr = wr;
2282 			return -EINVAL;
2283 		}
2284 
2285 		spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2286 		wq = srq->rq.kwq;
2287 		next = wq->head + 1;
2288 		if (next >= srq->rq.size)
2289 			next = 0;
2290 		if (next == READ_ONCE(wq->tail)) {
2291 			spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2292 			*bad_wr = wr;
2293 			return -ENOMEM;
2294 		}
2295 
2296 		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2297 		wqe->wr_id = wr->wr_id;
2298 		wqe->num_sge = wr->num_sge;
2299 		for (i = 0; i < wr->num_sge; i++) {
2300 			wqe->sg_list[i].addr = wr->sg_list[i].addr;
2301 			wqe->sg_list[i].length = wr->sg_list[i].length;
2302 			wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2303 		}
2304 		/* Make sure queue entry is written before the head index. */
2305 		smp_store_release(&wq->head, next);
2306 		spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2307 	}
2308 	return 0;
2309 }
2310 
2311 /*
2312  * rvt used the internal kernel struct as part of its ABI, for now make sure
2313  * the kernel struct does not change layout. FIXME: rvt should never cast the
2314  * user struct to a kernel struct.
2315  */
2316 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2317 {
2318 	BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2319 		     offsetof(struct rvt_wqe_sge, addr));
2320 	BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2321 		     offsetof(struct rvt_wqe_sge, length));
2322 	BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2323 		     offsetof(struct rvt_wqe_sge, lkey));
2324 	return (struct ib_sge *)sge;
2325 }
2326 
2327 /*
2328  * Validate a RWQE and fill in the SGE state.
2329  * Return 1 if OK.
2330  */
2331 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2332 {
2333 	int i, j, ret;
2334 	struct ib_wc wc;
2335 	struct rvt_lkey_table *rkt;
2336 	struct rvt_pd *pd;
2337 	struct rvt_sge_state *ss;
2338 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2339 
2340 	rkt = &rdi->lkey_table;
2341 	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2342 	ss = &qp->r_sge;
2343 	ss->sg_list = qp->r_sg_list;
2344 	qp->r_len = 0;
2345 	for (i = j = 0; i < wqe->num_sge; i++) {
2346 		if (wqe->sg_list[i].length == 0)
2347 			continue;
2348 		/* Check LKEY */
2349 		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2350 				  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2351 				  IB_ACCESS_LOCAL_WRITE);
2352 		if (unlikely(ret <= 0))
2353 			goto bad_lkey;
2354 		qp->r_len += wqe->sg_list[i].length;
2355 		j++;
2356 	}
2357 	ss->num_sge = j;
2358 	ss->total_len = qp->r_len;
2359 	return 1;
2360 
2361 bad_lkey:
2362 	while (j) {
2363 		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2364 
2365 		rvt_put_mr(sge->mr);
2366 	}
2367 	ss->num_sge = 0;
2368 	memset(&wc, 0, sizeof(wc));
2369 	wc.wr_id = wqe->wr_id;
2370 	wc.status = IB_WC_LOC_PROT_ERR;
2371 	wc.opcode = IB_WC_RECV;
2372 	wc.qp = &qp->ibqp;
2373 	/* Signal solicited completion event. */
2374 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2375 	return 0;
2376 }
2377 
2378 /**
2379  * get_rvt_head - get head indices of the circular buffer
2380  * @rq: data structure for request queue entry
2381  * @ip: the QP
2382  *
2383  * Return - head index value
2384  */
2385 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2386 {
2387 	u32 head;
2388 
2389 	if (ip)
2390 		head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2391 	else
2392 		head = rq->kwq->head;
2393 
2394 	return head;
2395 }
2396 
2397 /**
2398  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2399  * @qp: the QP
2400  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2401  *
2402  * Return -1 if there is a local error, 0 if no RWQE is available,
2403  * otherwise return 1.
2404  *
2405  * Can be called from interrupt level.
2406  */
2407 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2408 {
2409 	unsigned long flags;
2410 	struct rvt_rq *rq;
2411 	struct rvt_krwq *kwq = NULL;
2412 	struct rvt_rwq *wq;
2413 	struct rvt_srq *srq;
2414 	struct rvt_rwqe *wqe;
2415 	void (*handler)(struct ib_event *, void *);
2416 	u32 tail;
2417 	u32 head;
2418 	int ret;
2419 	void *ip = NULL;
2420 
2421 	if (qp->ibqp.srq) {
2422 		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2423 		handler = srq->ibsrq.event_handler;
2424 		rq = &srq->rq;
2425 		ip = srq->ip;
2426 	} else {
2427 		srq = NULL;
2428 		handler = NULL;
2429 		rq = &qp->r_rq;
2430 		ip = qp->ip;
2431 	}
2432 
2433 	spin_lock_irqsave(&rq->kwq->c_lock, flags);
2434 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2435 		ret = 0;
2436 		goto unlock;
2437 	}
2438 	kwq = rq->kwq;
2439 	if (ip) {
2440 		wq = rq->wq;
2441 		tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2442 	} else {
2443 		tail = kwq->tail;
2444 	}
2445 
2446 	/* Validate tail before using it since it is user writable. */
2447 	if (tail >= rq->size)
2448 		tail = 0;
2449 
2450 	if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2451 		head = get_rvt_head(rq, ip);
2452 		kwq->count = rvt_get_rq_count(rq, head, tail);
2453 	}
2454 	if (unlikely(kwq->count == 0)) {
2455 		ret = 0;
2456 		goto unlock;
2457 	}
2458 	/* Make sure entry is read after the count is read. */
2459 	smp_rmb();
2460 	wqe = rvt_get_rwqe_ptr(rq, tail);
2461 	/*
2462 	 * Even though we update the tail index in memory, the verbs
2463 	 * consumer is not supposed to post more entries until a
2464 	 * completion is generated.
2465 	 */
2466 	if (++tail >= rq->size)
2467 		tail = 0;
2468 	if (ip)
2469 		RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2470 	else
2471 		kwq->tail = tail;
2472 	if (!wr_id_only && !init_sge(qp, wqe)) {
2473 		ret = -1;
2474 		goto unlock;
2475 	}
2476 	qp->r_wr_id = wqe->wr_id;
2477 
2478 	kwq->count--;
2479 	ret = 1;
2480 	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2481 	if (handler) {
2482 		/*
2483 		 * Validate head pointer value and compute
2484 		 * the number of remaining WQEs.
2485 		 */
2486 		if (kwq->count < srq->limit) {
2487 			kwq->count =
2488 				rvt_get_rq_count(rq,
2489 						 get_rvt_head(rq, ip), tail);
2490 			if (kwq->count < srq->limit) {
2491 				struct ib_event ev;
2492 
2493 				srq->limit = 0;
2494 				spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2495 				ev.device = qp->ibqp.device;
2496 				ev.element.srq = qp->ibqp.srq;
2497 				ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2498 				handler(&ev, srq->ibsrq.srq_context);
2499 				goto bail;
2500 			}
2501 		}
2502 	}
2503 unlock:
2504 	spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2505 bail:
2506 	return ret;
2507 }
2508 EXPORT_SYMBOL(rvt_get_rwqe);
2509 
2510 /**
2511  * rvt_comm_est - handle trap with QP established
2512  * @qp: the QP
2513  */
2514 void rvt_comm_est(struct rvt_qp *qp)
2515 {
2516 	qp->r_flags |= RVT_R_COMM_EST;
2517 	if (qp->ibqp.event_handler) {
2518 		struct ib_event ev;
2519 
2520 		ev.device = qp->ibqp.device;
2521 		ev.element.qp = &qp->ibqp;
2522 		ev.event = IB_EVENT_COMM_EST;
2523 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2524 	}
2525 }
2526 EXPORT_SYMBOL(rvt_comm_est);
2527 
2528 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2529 {
2530 	unsigned long flags;
2531 	int lastwqe;
2532 
2533 	spin_lock_irqsave(&qp->s_lock, flags);
2534 	lastwqe = rvt_error_qp(qp, err);
2535 	spin_unlock_irqrestore(&qp->s_lock, flags);
2536 
2537 	if (lastwqe) {
2538 		struct ib_event ev;
2539 
2540 		ev.device = qp->ibqp.device;
2541 		ev.element.qp = &qp->ibqp;
2542 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2543 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2544 	}
2545 }
2546 EXPORT_SYMBOL(rvt_rc_error);
2547 
2548 /*
2549  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2550  *  @index - the index
2551  *  return usec from an index into ib_rvt_rnr_table
2552  */
2553 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2554 {
2555 	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2556 }
2557 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2558 
2559 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2560 {
2561 	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2562 				  IB_AETH_CREDIT_MASK];
2563 }
2564 
2565 /*
2566  *  rvt_add_retry_timer_ext - add/start a retry timer
2567  *  @qp - the QP
2568  *  @shift - timeout shift to wait for multiple packets
2569  *  add a retry timer on the QP
2570  */
2571 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2572 {
2573 	struct ib_qp *ibqp = &qp->ibqp;
2574 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2575 
2576 	lockdep_assert_held(&qp->s_lock);
2577 	qp->s_flags |= RVT_S_TIMER;
2578        /* 4.096 usec. * (1 << qp->timeout) */
2579 	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2580 			      (qp->timeout_jiffies << shift);
2581 	add_timer(&qp->s_timer);
2582 }
2583 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2584 
2585 /**
2586  * rvt_add_rnr_timer - add/start an rnr timer on the QP
2587  * @qp: the QP
2588  * @aeth: aeth of RNR timeout, simulated aeth for loopback
2589  */
2590 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2591 {
2592 	u32 to;
2593 
2594 	lockdep_assert_held(&qp->s_lock);
2595 	qp->s_flags |= RVT_S_WAIT_RNR;
2596 	to = rvt_aeth_to_usec(aeth);
2597 	trace_rvt_rnrnak_add(qp, to);
2598 	hrtimer_start(&qp->s_rnr_timer,
2599 		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2600 }
2601 EXPORT_SYMBOL(rvt_add_rnr_timer);
2602 
2603 /**
2604  * rvt_stop_rc_timers - stop all timers
2605  * @qp: the QP
2606  * stop any pending timers
2607  */
2608 void rvt_stop_rc_timers(struct rvt_qp *qp)
2609 {
2610 	lockdep_assert_held(&qp->s_lock);
2611 	/* Remove QP from all timers */
2612 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2613 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2614 		del_timer(&qp->s_timer);
2615 		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2616 	}
2617 }
2618 EXPORT_SYMBOL(rvt_stop_rc_timers);
2619 
2620 /**
2621  * rvt_stop_rnr_timer - stop an rnr timer
2622  * @qp: the QP
2623  *
2624  * stop an rnr timer and return if the timer
2625  * had been pending.
2626  */
2627 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2628 {
2629 	lockdep_assert_held(&qp->s_lock);
2630 	/* Remove QP from rnr timer */
2631 	if (qp->s_flags & RVT_S_WAIT_RNR) {
2632 		qp->s_flags &= ~RVT_S_WAIT_RNR;
2633 		trace_rvt_rnrnak_stop(qp, 0);
2634 	}
2635 }
2636 
2637 /**
2638  * rvt_del_timers_sync - wait for any timeout routines to exit
2639  * @qp: the QP
2640  */
2641 void rvt_del_timers_sync(struct rvt_qp *qp)
2642 {
2643 	del_timer_sync(&qp->s_timer);
2644 	hrtimer_cancel(&qp->s_rnr_timer);
2645 }
2646 EXPORT_SYMBOL(rvt_del_timers_sync);
2647 
2648 /*
2649  * This is called from s_timer for missing responses.
2650  */
2651 static void rvt_rc_timeout(struct timer_list *t)
2652 {
2653 	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2654 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2655 	unsigned long flags;
2656 
2657 	spin_lock_irqsave(&qp->r_lock, flags);
2658 	spin_lock(&qp->s_lock);
2659 	if (qp->s_flags & RVT_S_TIMER) {
2660 		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2661 
2662 		qp->s_flags &= ~RVT_S_TIMER;
2663 		rvp->n_rc_timeouts++;
2664 		del_timer(&qp->s_timer);
2665 		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2666 		if (rdi->driver_f.notify_restart_rc)
2667 			rdi->driver_f.notify_restart_rc(qp,
2668 							qp->s_last_psn + 1,
2669 							1);
2670 		rdi->driver_f.schedule_send(qp);
2671 	}
2672 	spin_unlock(&qp->s_lock);
2673 	spin_unlock_irqrestore(&qp->r_lock, flags);
2674 }
2675 
2676 /*
2677  * This is called from s_timer for RNR timeouts.
2678  */
2679 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2680 {
2681 	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2682 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2683 	unsigned long flags;
2684 
2685 	spin_lock_irqsave(&qp->s_lock, flags);
2686 	rvt_stop_rnr_timer(qp);
2687 	trace_rvt_rnrnak_timeout(qp, 0);
2688 	rdi->driver_f.schedule_send(qp);
2689 	spin_unlock_irqrestore(&qp->s_lock, flags);
2690 	return HRTIMER_NORESTART;
2691 }
2692 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2693 
2694 /**
2695  * rvt_qp_iter_init - initial for QP iteration
2696  * @rdi: rvt devinfo
2697  * @v: u64 value
2698  * @cb: user-defined callback
2699  *
2700  * This returns an iterator suitable for iterating QPs
2701  * in the system.
2702  *
2703  * The @cb is a user-defined callback and @v is a 64-bit
2704  * value passed to and relevant for processing in the
2705  * @cb.  An example use case would be to alter QP processing
2706  * based on criteria not part of the rvt_qp.
2707  *
2708  * Use cases that require memory allocation to succeed
2709  * must preallocate appropriately.
2710  *
2711  * Return: a pointer to an rvt_qp_iter or NULL
2712  */
2713 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2714 				     u64 v,
2715 				     void (*cb)(struct rvt_qp *qp, u64 v))
2716 {
2717 	struct rvt_qp_iter *i;
2718 
2719 	i = kzalloc(sizeof(*i), GFP_KERNEL);
2720 	if (!i)
2721 		return NULL;
2722 
2723 	i->rdi = rdi;
2724 	/* number of special QPs (SMI/GSI) for device */
2725 	i->specials = rdi->ibdev.phys_port_cnt * 2;
2726 	i->v = v;
2727 	i->cb = cb;
2728 
2729 	return i;
2730 }
2731 EXPORT_SYMBOL(rvt_qp_iter_init);
2732 
2733 /**
2734  * rvt_qp_iter_next - return the next QP in iter
2735  * @iter: the iterator
2736  *
2737  * Fine grained QP iterator suitable for use
2738  * with debugfs seq_file mechanisms.
2739  *
2740  * Updates iter->qp with the current QP when the return
2741  * value is 0.
2742  *
2743  * Return: 0 - iter->qp is valid 1 - no more QPs
2744  */
2745 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2746 	__must_hold(RCU)
2747 {
2748 	int n = iter->n;
2749 	int ret = 1;
2750 	struct rvt_qp *pqp = iter->qp;
2751 	struct rvt_qp *qp;
2752 	struct rvt_dev_info *rdi = iter->rdi;
2753 
2754 	/*
2755 	 * The approach is to consider the special qps
2756 	 * as additional table entries before the
2757 	 * real hash table.  Since the qp code sets
2758 	 * the qp->next hash link to NULL, this works just fine.
2759 	 *
2760 	 * iter->specials is 2 * # ports
2761 	 *
2762 	 * n = 0..iter->specials is the special qp indices
2763 	 *
2764 	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2765 	 * the potential hash bucket entries
2766 	 *
2767 	 */
2768 	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2769 		if (pqp) {
2770 			qp = rcu_dereference(pqp->next);
2771 		} else {
2772 			if (n < iter->specials) {
2773 				struct rvt_ibport *rvp;
2774 				int pidx;
2775 
2776 				pidx = n % rdi->ibdev.phys_port_cnt;
2777 				rvp = rdi->ports[pidx];
2778 				qp = rcu_dereference(rvp->qp[n & 1]);
2779 			} else {
2780 				qp = rcu_dereference(
2781 					rdi->qp_dev->qp_table[
2782 						(n - iter->specials)]);
2783 			}
2784 		}
2785 		pqp = qp;
2786 		if (qp) {
2787 			iter->qp = qp;
2788 			iter->n = n;
2789 			return 0;
2790 		}
2791 	}
2792 	return ret;
2793 }
2794 EXPORT_SYMBOL(rvt_qp_iter_next);
2795 
2796 /**
2797  * rvt_qp_iter - iterate all QPs
2798  * @rdi: rvt devinfo
2799  * @v: a 64-bit value
2800  * @cb: a callback
2801  *
2802  * This provides a way for iterating all QPs.
2803  *
2804  * The @cb is a user-defined callback and @v is a 64-bit
2805  * value passed to and relevant for processing in the
2806  * cb.  An example use case would be to alter QP processing
2807  * based on criteria not part of the rvt_qp.
2808  *
2809  * The code has an internal iterator to simplify
2810  * non seq_file use cases.
2811  */
2812 void rvt_qp_iter(struct rvt_dev_info *rdi,
2813 		 u64 v,
2814 		 void (*cb)(struct rvt_qp *qp, u64 v))
2815 {
2816 	int ret;
2817 	struct rvt_qp_iter i = {
2818 		.rdi = rdi,
2819 		.specials = rdi->ibdev.phys_port_cnt * 2,
2820 		.v = v,
2821 		.cb = cb
2822 	};
2823 
2824 	rcu_read_lock();
2825 	do {
2826 		ret = rvt_qp_iter_next(&i);
2827 		if (!ret) {
2828 			rvt_get_qp(i.qp);
2829 			rcu_read_unlock();
2830 			i.cb(i.qp, i.v);
2831 			rcu_read_lock();
2832 			rvt_put_qp(i.qp);
2833 		}
2834 	} while (!ret);
2835 	rcu_read_unlock();
2836 }
2837 EXPORT_SYMBOL(rvt_qp_iter);
2838 
2839 /*
2840  * This should be called with s_lock held.
2841  */
2842 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2843 		       enum ib_wc_status status)
2844 {
2845 	u32 old_last, last;
2846 	struct rvt_dev_info *rdi;
2847 
2848 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2849 		return;
2850 	rdi = ib_to_rvt(qp->ibqp.device);
2851 
2852 	old_last = qp->s_last;
2853 	trace_rvt_qp_send_completion(qp, wqe, old_last);
2854 	last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2855 				    status);
2856 	if (qp->s_acked == old_last)
2857 		qp->s_acked = last;
2858 	if (qp->s_cur == old_last)
2859 		qp->s_cur = last;
2860 	if (qp->s_tail == old_last)
2861 		qp->s_tail = last;
2862 	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2863 		qp->s_draining = 0;
2864 }
2865 EXPORT_SYMBOL(rvt_send_complete);
2866 
2867 /**
2868  * rvt_copy_sge - copy data to SGE memory
2869  * @qp: associated QP
2870  * @ss: the SGE state
2871  * @data: the data to copy
2872  * @length: the length of the data
2873  * @release: boolean to release MR
2874  * @copy_last: do a separate copy of the last 8 bytes
2875  */
2876 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2877 		  void *data, u32 length,
2878 		  bool release, bool copy_last)
2879 {
2880 	struct rvt_sge *sge = &ss->sge;
2881 	int i;
2882 	bool in_last = false;
2883 	bool cacheless_copy = false;
2884 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2885 	struct rvt_wss *wss = rdi->wss;
2886 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2887 
2888 	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2889 		cacheless_copy = length >= PAGE_SIZE;
2890 	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2891 		if (length >= PAGE_SIZE) {
2892 			/*
2893 			 * NOTE: this *assumes*:
2894 			 * o The first vaddr is the dest.
2895 			 * o If multiple pages, then vaddr is sequential.
2896 			 */
2897 			wss_insert(wss, sge->vaddr);
2898 			if (length >= (2 * PAGE_SIZE))
2899 				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2900 
2901 			cacheless_copy = wss_exceeds_threshold(wss);
2902 		} else {
2903 			wss_advance_clean_counter(wss);
2904 		}
2905 	}
2906 
2907 	if (copy_last) {
2908 		if (length > 8) {
2909 			length -= 8;
2910 		} else {
2911 			copy_last = false;
2912 			in_last = true;
2913 		}
2914 	}
2915 
2916 again:
2917 	while (length) {
2918 		u32 len = rvt_get_sge_length(sge, length);
2919 
2920 		WARN_ON_ONCE(len == 0);
2921 		if (unlikely(in_last)) {
2922 			/* enforce byte transfer ordering */
2923 			for (i = 0; i < len; i++)
2924 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2925 		} else if (cacheless_copy) {
2926 			cacheless_memcpy(sge->vaddr, data, len);
2927 		} else {
2928 			memcpy(sge->vaddr, data, len);
2929 		}
2930 		rvt_update_sge(ss, len, release);
2931 		data += len;
2932 		length -= len;
2933 	}
2934 
2935 	if (copy_last) {
2936 		copy_last = false;
2937 		in_last = true;
2938 		length = 8;
2939 		goto again;
2940 	}
2941 }
2942 EXPORT_SYMBOL(rvt_copy_sge);
2943 
2944 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2945 					  struct rvt_qp *sqp)
2946 {
2947 	rvp->n_pkt_drops++;
2948 	/*
2949 	 * For RC, the requester would timeout and retry so
2950 	 * shortcut the timeouts and just signal too many retries.
2951 	 */
2952 	return sqp->ibqp.qp_type == IB_QPT_RC ?
2953 		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2954 }
2955 
2956 /**
2957  * rvt_ruc_loopback - handle UC and RC loopback requests
2958  * @sqp: the sending QP
2959  *
2960  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2961  * Note that although we are single threaded due to the send engine, we still
2962  * have to protect against post_send().  We don't have to worry about
2963  * receive interrupts since this is a connected protocol and all packets
2964  * will pass through here.
2965  */
2966 void rvt_ruc_loopback(struct rvt_qp *sqp)
2967 {
2968 	struct rvt_ibport *rvp =  NULL;
2969 	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2970 	struct rvt_qp *qp;
2971 	struct rvt_swqe *wqe;
2972 	struct rvt_sge *sge;
2973 	unsigned long flags;
2974 	struct ib_wc wc;
2975 	u64 sdata;
2976 	atomic64_t *maddr;
2977 	enum ib_wc_status send_status;
2978 	bool release;
2979 	int ret;
2980 	bool copy_last = false;
2981 	int local_ops = 0;
2982 
2983 	rcu_read_lock();
2984 	rvp = rdi->ports[sqp->port_num - 1];
2985 
2986 	/*
2987 	 * Note that we check the responder QP state after
2988 	 * checking the requester's state.
2989 	 */
2990 
2991 	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2992 			    sqp->remote_qpn);
2993 
2994 	spin_lock_irqsave(&sqp->s_lock, flags);
2995 
2996 	/* Return if we are already busy processing a work request. */
2997 	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2998 	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2999 		goto unlock;
3000 
3001 	sqp->s_flags |= RVT_S_BUSY;
3002 
3003 again:
3004 	if (sqp->s_last == READ_ONCE(sqp->s_head))
3005 		goto clr_busy;
3006 	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
3007 
3008 	/* Return if it is not OK to start a new work request. */
3009 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
3010 		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
3011 			goto clr_busy;
3012 		/* We are in the error state, flush the work request. */
3013 		send_status = IB_WC_WR_FLUSH_ERR;
3014 		goto flush_send;
3015 	}
3016 
3017 	/*
3018 	 * We can rely on the entry not changing without the s_lock
3019 	 * being held until we update s_last.
3020 	 * We increment s_cur to indicate s_last is in progress.
3021 	 */
3022 	if (sqp->s_last == sqp->s_cur) {
3023 		if (++sqp->s_cur >= sqp->s_size)
3024 			sqp->s_cur = 0;
3025 	}
3026 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3027 
3028 	if (!qp) {
3029 		send_status = loopback_qp_drop(rvp, sqp);
3030 		goto serr_no_r_lock;
3031 	}
3032 	spin_lock_irqsave(&qp->r_lock, flags);
3033 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3034 	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3035 		send_status = loopback_qp_drop(rvp, sqp);
3036 		goto serr;
3037 	}
3038 
3039 	memset(&wc, 0, sizeof(wc));
3040 	send_status = IB_WC_SUCCESS;
3041 
3042 	release = true;
3043 	sqp->s_sge.sge = wqe->sg_list[0];
3044 	sqp->s_sge.sg_list = wqe->sg_list + 1;
3045 	sqp->s_sge.num_sge = wqe->wr.num_sge;
3046 	sqp->s_len = wqe->length;
3047 	switch (wqe->wr.opcode) {
3048 	case IB_WR_REG_MR:
3049 		goto send_comp;
3050 
3051 	case IB_WR_LOCAL_INV:
3052 		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3053 			if (rvt_invalidate_rkey(sqp,
3054 						wqe->wr.ex.invalidate_rkey))
3055 				send_status = IB_WC_LOC_PROT_ERR;
3056 			local_ops = 1;
3057 		}
3058 		goto send_comp;
3059 
3060 	case IB_WR_SEND_WITH_INV:
3061 	case IB_WR_SEND_WITH_IMM:
3062 	case IB_WR_SEND:
3063 		ret = rvt_get_rwqe(qp, false);
3064 		if (ret < 0)
3065 			goto op_err;
3066 		if (!ret)
3067 			goto rnr_nak;
3068 		if (wqe->length > qp->r_len)
3069 			goto inv_err;
3070 		switch (wqe->wr.opcode) {
3071 		case IB_WR_SEND_WITH_INV:
3072 			if (!rvt_invalidate_rkey(qp,
3073 						 wqe->wr.ex.invalidate_rkey)) {
3074 				wc.wc_flags = IB_WC_WITH_INVALIDATE;
3075 				wc.ex.invalidate_rkey =
3076 					wqe->wr.ex.invalidate_rkey;
3077 			}
3078 			break;
3079 		case IB_WR_SEND_WITH_IMM:
3080 			wc.wc_flags = IB_WC_WITH_IMM;
3081 			wc.ex.imm_data = wqe->wr.ex.imm_data;
3082 			break;
3083 		default:
3084 			break;
3085 		}
3086 		break;
3087 
3088 	case IB_WR_RDMA_WRITE_WITH_IMM:
3089 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3090 			goto inv_err;
3091 		wc.wc_flags = IB_WC_WITH_IMM;
3092 		wc.ex.imm_data = wqe->wr.ex.imm_data;
3093 		ret = rvt_get_rwqe(qp, true);
3094 		if (ret < 0)
3095 			goto op_err;
3096 		if (!ret)
3097 			goto rnr_nak;
3098 		/* skip copy_last set and qp_access_flags recheck */
3099 		goto do_write;
3100 	case IB_WR_RDMA_WRITE:
3101 		copy_last = rvt_is_user_qp(qp);
3102 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3103 			goto inv_err;
3104 do_write:
3105 		if (wqe->length == 0)
3106 			break;
3107 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3108 					  wqe->rdma_wr.remote_addr,
3109 					  wqe->rdma_wr.rkey,
3110 					  IB_ACCESS_REMOTE_WRITE)))
3111 			goto acc_err;
3112 		qp->r_sge.sg_list = NULL;
3113 		qp->r_sge.num_sge = 1;
3114 		qp->r_sge.total_len = wqe->length;
3115 		break;
3116 
3117 	case IB_WR_RDMA_READ:
3118 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3119 			goto inv_err;
3120 		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3121 					  wqe->rdma_wr.remote_addr,
3122 					  wqe->rdma_wr.rkey,
3123 					  IB_ACCESS_REMOTE_READ)))
3124 			goto acc_err;
3125 		release = false;
3126 		sqp->s_sge.sg_list = NULL;
3127 		sqp->s_sge.num_sge = 1;
3128 		qp->r_sge.sge = wqe->sg_list[0];
3129 		qp->r_sge.sg_list = wqe->sg_list + 1;
3130 		qp->r_sge.num_sge = wqe->wr.num_sge;
3131 		qp->r_sge.total_len = wqe->length;
3132 		break;
3133 
3134 	case IB_WR_ATOMIC_CMP_AND_SWP:
3135 	case IB_WR_ATOMIC_FETCH_AND_ADD:
3136 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3137 			goto inv_err;
3138 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3139 					  wqe->atomic_wr.remote_addr,
3140 					  wqe->atomic_wr.rkey,
3141 					  IB_ACCESS_REMOTE_ATOMIC)))
3142 			goto acc_err;
3143 		/* Perform atomic OP and save result. */
3144 		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3145 		sdata = wqe->atomic_wr.compare_add;
3146 		*(u64 *)sqp->s_sge.sge.vaddr =
3147 			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3148 			(u64)atomic64_add_return(sdata, maddr) - sdata :
3149 			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3150 				      sdata, wqe->atomic_wr.swap);
3151 		rvt_put_mr(qp->r_sge.sge.mr);
3152 		qp->r_sge.num_sge = 0;
3153 		goto send_comp;
3154 
3155 	default:
3156 		send_status = IB_WC_LOC_QP_OP_ERR;
3157 		goto serr;
3158 	}
3159 
3160 	sge = &sqp->s_sge.sge;
3161 	while (sqp->s_len) {
3162 		u32 len = rvt_get_sge_length(sge, sqp->s_len);
3163 
3164 		WARN_ON_ONCE(len == 0);
3165 		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3166 			     len, release, copy_last);
3167 		rvt_update_sge(&sqp->s_sge, len, !release);
3168 		sqp->s_len -= len;
3169 	}
3170 	if (release)
3171 		rvt_put_ss(&qp->r_sge);
3172 
3173 	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3174 		goto send_comp;
3175 
3176 	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3177 		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3178 	else
3179 		wc.opcode = IB_WC_RECV;
3180 	wc.wr_id = qp->r_wr_id;
3181 	wc.status = IB_WC_SUCCESS;
3182 	wc.byte_len = wqe->length;
3183 	wc.qp = &qp->ibqp;
3184 	wc.src_qp = qp->remote_qpn;
3185 	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3186 	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3187 	wc.port_num = 1;
3188 	/* Signal completion event if the solicited bit is set. */
3189 	rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3190 
3191 send_comp:
3192 	spin_unlock_irqrestore(&qp->r_lock, flags);
3193 	spin_lock_irqsave(&sqp->s_lock, flags);
3194 	rvp->n_loop_pkts++;
3195 flush_send:
3196 	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3197 	rvt_send_complete(sqp, wqe, send_status);
3198 	if (local_ops) {
3199 		atomic_dec(&sqp->local_ops_pending);
3200 		local_ops = 0;
3201 	}
3202 	goto again;
3203 
3204 rnr_nak:
3205 	/* Handle RNR NAK */
3206 	if (qp->ibqp.qp_type == IB_QPT_UC)
3207 		goto send_comp;
3208 	rvp->n_rnr_naks++;
3209 	/*
3210 	 * Note: we don't need the s_lock held since the BUSY flag
3211 	 * makes this single threaded.
3212 	 */
3213 	if (sqp->s_rnr_retry == 0) {
3214 		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3215 		goto serr;
3216 	}
3217 	if (sqp->s_rnr_retry_cnt < 7)
3218 		sqp->s_rnr_retry--;
3219 	spin_unlock_irqrestore(&qp->r_lock, flags);
3220 	spin_lock_irqsave(&sqp->s_lock, flags);
3221 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3222 		goto clr_busy;
3223 	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3224 				IB_AETH_CREDIT_SHIFT);
3225 	goto clr_busy;
3226 
3227 op_err:
3228 	send_status = IB_WC_REM_OP_ERR;
3229 	wc.status = IB_WC_LOC_QP_OP_ERR;
3230 	goto err;
3231 
3232 inv_err:
3233 	send_status =
3234 		sqp->ibqp.qp_type == IB_QPT_RC ?
3235 			IB_WC_REM_INV_REQ_ERR :
3236 			IB_WC_SUCCESS;
3237 	wc.status = IB_WC_LOC_QP_OP_ERR;
3238 	goto err;
3239 
3240 acc_err:
3241 	send_status = IB_WC_REM_ACCESS_ERR;
3242 	wc.status = IB_WC_LOC_PROT_ERR;
3243 err:
3244 	/* responder goes to error state */
3245 	rvt_rc_error(qp, wc.status);
3246 
3247 serr:
3248 	spin_unlock_irqrestore(&qp->r_lock, flags);
3249 serr_no_r_lock:
3250 	spin_lock_irqsave(&sqp->s_lock, flags);
3251 	rvt_send_complete(sqp, wqe, send_status);
3252 	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3253 		int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3254 
3255 		sqp->s_flags &= ~RVT_S_BUSY;
3256 		spin_unlock_irqrestore(&sqp->s_lock, flags);
3257 		if (lastwqe) {
3258 			struct ib_event ev;
3259 
3260 			ev.device = sqp->ibqp.device;
3261 			ev.element.qp = &sqp->ibqp;
3262 			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3263 			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3264 		}
3265 		goto done;
3266 	}
3267 clr_busy:
3268 	sqp->s_flags &= ~RVT_S_BUSY;
3269 unlock:
3270 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3271 done:
3272 	rcu_read_unlock();
3273 }
3274 EXPORT_SYMBOL(rvt_ruc_loopback);
3275