1 /* 2 * Copyright(c) 2016 - 2020 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include <rdma/opa_addr.h> 56 #include <rdma/uverbs_ioctl.h> 57 #include "qp.h" 58 #include "vt.h" 59 #include "trace.h" 60 61 #define RVT_RWQ_COUNT_THRESHOLD 16 62 63 static void rvt_rc_timeout(struct timer_list *t); 64 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 65 enum ib_qp_type type); 66 67 /* 68 * Convert the AETH RNR timeout code into the number of microseconds. 69 */ 70 static const u32 ib_rvt_rnr_table[32] = { 71 655360, /* 00: 655.36 */ 72 10, /* 01: .01 */ 73 20, /* 02 .02 */ 74 30, /* 03: .03 */ 75 40, /* 04: .04 */ 76 60, /* 05: .06 */ 77 80, /* 06: .08 */ 78 120, /* 07: .12 */ 79 160, /* 08: .16 */ 80 240, /* 09: .24 */ 81 320, /* 0A: .32 */ 82 480, /* 0B: .48 */ 83 640, /* 0C: .64 */ 84 960, /* 0D: .96 */ 85 1280, /* 0E: 1.28 */ 86 1920, /* 0F: 1.92 */ 87 2560, /* 10: 2.56 */ 88 3840, /* 11: 3.84 */ 89 5120, /* 12: 5.12 */ 90 7680, /* 13: 7.68 */ 91 10240, /* 14: 10.24 */ 92 15360, /* 15: 15.36 */ 93 20480, /* 16: 20.48 */ 94 30720, /* 17: 30.72 */ 95 40960, /* 18: 40.96 */ 96 61440, /* 19: 61.44 */ 97 81920, /* 1A: 81.92 */ 98 122880, /* 1B: 122.88 */ 99 163840, /* 1C: 163.84 */ 100 245760, /* 1D: 245.76 */ 101 327680, /* 1E: 327.68 */ 102 491520 /* 1F: 491.52 */ 103 }; 104 105 /* 106 * Note that it is OK to post send work requests in the SQE and ERR 107 * states; rvt_do_send() will process them and generate error 108 * completions as per IB 1.2 C10-96. 109 */ 110 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 111 [IB_QPS_RESET] = 0, 112 [IB_QPS_INIT] = RVT_POST_RECV_OK, 113 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 114 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 115 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 116 RVT_PROCESS_NEXT_SEND_OK, 117 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 118 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 119 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 120 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 121 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 122 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 123 }; 124 EXPORT_SYMBOL(ib_rvt_state_ops); 125 126 /* platform specific: return the last level cache (llc) size, in KiB */ 127 static int rvt_wss_llc_size(void) 128 { 129 /* assume that the boot CPU value is universal for all CPUs */ 130 return boot_cpu_data.x86_cache_size; 131 } 132 133 /* platform specific: cacheless copy */ 134 static void cacheless_memcpy(void *dst, void *src, size_t n) 135 { 136 /* 137 * Use the only available X64 cacheless copy. Add a __user cast 138 * to quiet sparse. The src agument is already in the kernel so 139 * there are no security issues. The extra fault recovery machinery 140 * is not invoked. 141 */ 142 __copy_user_nocache(dst, (void __user *)src, n, 0); 143 } 144 145 void rvt_wss_exit(struct rvt_dev_info *rdi) 146 { 147 struct rvt_wss *wss = rdi->wss; 148 149 if (!wss) 150 return; 151 152 /* coded to handle partially initialized and repeat callers */ 153 kfree(wss->entries); 154 wss->entries = NULL; 155 kfree(rdi->wss); 156 rdi->wss = NULL; 157 } 158 159 /* 160 * rvt_wss_init - Init wss data structures 161 * 162 * Return: 0 on success 163 */ 164 int rvt_wss_init(struct rvt_dev_info *rdi) 165 { 166 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 167 unsigned int wss_threshold = rdi->dparms.wss_threshold; 168 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 169 long llc_size; 170 long llc_bits; 171 long table_size; 172 long table_bits; 173 struct rvt_wss *wss; 174 int node = rdi->dparms.node; 175 176 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 177 rdi->wss = NULL; 178 return 0; 179 } 180 181 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 182 if (!rdi->wss) 183 return -ENOMEM; 184 wss = rdi->wss; 185 186 /* check for a valid percent range - default to 80 if none or invalid */ 187 if (wss_threshold < 1 || wss_threshold > 100) 188 wss_threshold = 80; 189 190 /* reject a wildly large period */ 191 if (wss_clean_period > 1000000) 192 wss_clean_period = 256; 193 194 /* reject a zero period */ 195 if (wss_clean_period == 0) 196 wss_clean_period = 1; 197 198 /* 199 * Calculate the table size - the next power of 2 larger than the 200 * LLC size. LLC size is in KiB. 201 */ 202 llc_size = rvt_wss_llc_size() * 1024; 203 table_size = roundup_pow_of_two(llc_size); 204 205 /* one bit per page in rounded up table */ 206 llc_bits = llc_size / PAGE_SIZE; 207 table_bits = table_size / PAGE_SIZE; 208 wss->pages_mask = table_bits - 1; 209 wss->num_entries = table_bits / BITS_PER_LONG; 210 211 wss->threshold = (llc_bits * wss_threshold) / 100; 212 if (wss->threshold == 0) 213 wss->threshold = 1; 214 215 wss->clean_period = wss_clean_period; 216 atomic_set(&wss->clean_counter, wss_clean_period); 217 218 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 219 GFP_KERNEL, node); 220 if (!wss->entries) { 221 rvt_wss_exit(rdi); 222 return -ENOMEM; 223 } 224 225 return 0; 226 } 227 228 /* 229 * Advance the clean counter. When the clean period has expired, 230 * clean an entry. 231 * 232 * This is implemented in atomics to avoid locking. Because multiple 233 * variables are involved, it can be racy which can lead to slightly 234 * inaccurate information. Since this is only a heuristic, this is 235 * OK. Any innaccuracies will clean themselves out as the counter 236 * advances. That said, it is unlikely the entry clean operation will 237 * race - the next possible racer will not start until the next clean 238 * period. 239 * 240 * The clean counter is implemented as a decrement to zero. When zero 241 * is reached an entry is cleaned. 242 */ 243 static void wss_advance_clean_counter(struct rvt_wss *wss) 244 { 245 int entry; 246 int weight; 247 unsigned long bits; 248 249 /* become the cleaner if we decrement the counter to zero */ 250 if (atomic_dec_and_test(&wss->clean_counter)) { 251 /* 252 * Set, not add, the clean period. This avoids an issue 253 * where the counter could decrement below the clean period. 254 * Doing a set can result in lost decrements, slowing the 255 * clean advance. Since this a heuristic, this possible 256 * slowdown is OK. 257 * 258 * An alternative is to loop, advancing the counter by a 259 * clean period until the result is > 0. However, this could 260 * lead to several threads keeping another in the clean loop. 261 * This could be mitigated by limiting the number of times 262 * we stay in the loop. 263 */ 264 atomic_set(&wss->clean_counter, wss->clean_period); 265 266 /* 267 * Uniquely grab the entry to clean and move to next. 268 * The current entry is always the lower bits of 269 * wss.clean_entry. The table size, wss.num_entries, 270 * is always a power-of-2. 271 */ 272 entry = (atomic_inc_return(&wss->clean_entry) - 1) 273 & (wss->num_entries - 1); 274 275 /* clear the entry and count the bits */ 276 bits = xchg(&wss->entries[entry], 0); 277 weight = hweight64((u64)bits); 278 /* only adjust the contended total count if needed */ 279 if (weight) 280 atomic_sub(weight, &wss->total_count); 281 } 282 } 283 284 /* 285 * Insert the given address into the working set array. 286 */ 287 static void wss_insert(struct rvt_wss *wss, void *address) 288 { 289 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 290 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 291 u32 nr = page & (BITS_PER_LONG - 1); 292 293 if (!test_and_set_bit(nr, &wss->entries[entry])) 294 atomic_inc(&wss->total_count); 295 296 wss_advance_clean_counter(wss); 297 } 298 299 /* 300 * Is the working set larger than the threshold? 301 */ 302 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 303 { 304 return atomic_read(&wss->total_count) >= wss->threshold; 305 } 306 307 static void get_map_page(struct rvt_qpn_table *qpt, 308 struct rvt_qpn_map *map) 309 { 310 unsigned long page = get_zeroed_page(GFP_KERNEL); 311 312 /* 313 * Free the page if someone raced with us installing it. 314 */ 315 316 spin_lock(&qpt->lock); 317 if (map->page) 318 free_page(page); 319 else 320 map->page = (void *)page; 321 spin_unlock(&qpt->lock); 322 } 323 324 /** 325 * init_qpn_table - initialize the QP number table for a device 326 * @rdi: rvt dev struct 327 * @qpt: the QPN table 328 */ 329 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 330 { 331 u32 offset, i; 332 struct rvt_qpn_map *map; 333 int ret = 0; 334 335 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 336 return -EINVAL; 337 338 spin_lock_init(&qpt->lock); 339 340 qpt->last = rdi->dparms.qpn_start; 341 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 342 343 /* 344 * Drivers may want some QPs beyond what we need for verbs let them use 345 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 346 * for those. The reserved range must be *after* the range which verbs 347 * will pick from. 348 */ 349 350 /* Figure out number of bit maps needed before reserved range */ 351 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 352 353 /* This should always be zero */ 354 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 355 356 /* Starting with the first reserved bit map */ 357 map = &qpt->map[qpt->nmaps]; 358 359 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 360 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 361 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 362 if (!map->page) { 363 get_map_page(qpt, map); 364 if (!map->page) { 365 ret = -ENOMEM; 366 break; 367 } 368 } 369 set_bit(offset, map->page); 370 offset++; 371 if (offset == RVT_BITS_PER_PAGE) { 372 /* next page */ 373 qpt->nmaps++; 374 map++; 375 offset = 0; 376 } 377 } 378 return ret; 379 } 380 381 /** 382 * free_qpn_table - free the QP number table for a device 383 * @qpt: the QPN table 384 */ 385 static void free_qpn_table(struct rvt_qpn_table *qpt) 386 { 387 int i; 388 389 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 390 free_page((unsigned long)qpt->map[i].page); 391 } 392 393 /** 394 * rvt_driver_qp_init - Init driver qp resources 395 * @rdi: rvt dev strucutre 396 * 397 * Return: 0 on success 398 */ 399 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 400 { 401 int i; 402 int ret = -ENOMEM; 403 404 if (!rdi->dparms.qp_table_size) 405 return -EINVAL; 406 407 /* 408 * If driver is not doing any QP allocation then make sure it is 409 * providing the necessary QP functions. 410 */ 411 if (!rdi->driver_f.free_all_qps || 412 !rdi->driver_f.qp_priv_alloc || 413 !rdi->driver_f.qp_priv_free || 414 !rdi->driver_f.notify_qp_reset || 415 !rdi->driver_f.notify_restart_rc) 416 return -EINVAL; 417 418 /* allocate parent object */ 419 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 420 rdi->dparms.node); 421 if (!rdi->qp_dev) 422 return -ENOMEM; 423 424 /* allocate hash table */ 425 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 426 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 427 rdi->qp_dev->qp_table = 428 kmalloc_array_node(rdi->qp_dev->qp_table_size, 429 sizeof(*rdi->qp_dev->qp_table), 430 GFP_KERNEL, rdi->dparms.node); 431 if (!rdi->qp_dev->qp_table) 432 goto no_qp_table; 433 434 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 435 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 436 437 spin_lock_init(&rdi->qp_dev->qpt_lock); 438 439 /* initialize qpn map */ 440 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 441 goto fail_table; 442 443 spin_lock_init(&rdi->n_qps_lock); 444 445 return 0; 446 447 fail_table: 448 kfree(rdi->qp_dev->qp_table); 449 free_qpn_table(&rdi->qp_dev->qpn_table); 450 451 no_qp_table: 452 kfree(rdi->qp_dev); 453 454 return ret; 455 } 456 457 /** 458 * rvt_free_qp_cb - callback function to reset a qp 459 * @qp: the qp to reset 460 * @v: a 64-bit value 461 * 462 * This function resets the qp and removes it from the 463 * qp hash table. 464 */ 465 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v) 466 { 467 unsigned int *qp_inuse = (unsigned int *)v; 468 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 469 470 /* Reset the qp and remove it from the qp hash list */ 471 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type); 472 473 /* Increment the qp_inuse count */ 474 (*qp_inuse)++; 475 } 476 477 /** 478 * rvt_free_all_qps - check for QPs still in use 479 * @rdi: rvt device info structure 480 * 481 * There should not be any QPs still in use. 482 * Free memory for table. 483 * Return the number of QPs still in use. 484 */ 485 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 486 { 487 unsigned int qp_inuse = 0; 488 489 qp_inuse += rvt_mcast_tree_empty(rdi); 490 491 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb); 492 493 return qp_inuse; 494 } 495 496 /** 497 * rvt_qp_exit - clean up qps on device exit 498 * @rdi: rvt dev structure 499 * 500 * Check for qp leaks and free resources. 501 */ 502 void rvt_qp_exit(struct rvt_dev_info *rdi) 503 { 504 u32 qps_inuse = rvt_free_all_qps(rdi); 505 506 if (qps_inuse) 507 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 508 qps_inuse); 509 if (!rdi->qp_dev) 510 return; 511 512 kfree(rdi->qp_dev->qp_table); 513 free_qpn_table(&rdi->qp_dev->qpn_table); 514 kfree(rdi->qp_dev); 515 } 516 517 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 518 struct rvt_qpn_map *map, unsigned off) 519 { 520 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 521 } 522 523 /** 524 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 525 * IB_QPT_SMI/IB_QPT_GSI 526 * @rdi: rvt device info structure 527 * @qpt: queue pair number table pointer 528 * @type: the QP type 529 * @port_num: IB port number, 1 based, comes from core 530 * @exclude_prefix: prefix of special queue pair number being allocated 531 * 532 * Return: The queue pair number 533 */ 534 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 535 enum ib_qp_type type, u8 port_num, u8 exclude_prefix) 536 { 537 u32 i, offset, max_scan, qpn; 538 struct rvt_qpn_map *map; 539 u32 ret; 540 u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ? 541 RVT_AIP_QPN_MAX : RVT_QPN_MAX; 542 543 if (rdi->driver_f.alloc_qpn) 544 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 545 546 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 547 unsigned n; 548 549 ret = type == IB_QPT_GSI; 550 n = 1 << (ret + 2 * (port_num - 1)); 551 spin_lock(&qpt->lock); 552 if (qpt->flags & n) 553 ret = -EINVAL; 554 else 555 qpt->flags |= n; 556 spin_unlock(&qpt->lock); 557 goto bail; 558 } 559 560 qpn = qpt->last + qpt->incr; 561 if (qpn >= max_qpn) 562 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 563 /* offset carries bit 0 */ 564 offset = qpn & RVT_BITS_PER_PAGE_MASK; 565 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 566 max_scan = qpt->nmaps - !offset; 567 for (i = 0;;) { 568 if (unlikely(!map->page)) { 569 get_map_page(qpt, map); 570 if (unlikely(!map->page)) 571 break; 572 } 573 do { 574 if (!test_and_set_bit(offset, map->page)) { 575 qpt->last = qpn; 576 ret = qpn; 577 goto bail; 578 } 579 offset += qpt->incr; 580 /* 581 * This qpn might be bogus if offset >= BITS_PER_PAGE. 582 * That is OK. It gets re-assigned below 583 */ 584 qpn = mk_qpn(qpt, map, offset); 585 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 586 /* 587 * In order to keep the number of pages allocated to a 588 * minimum, we scan the all existing pages before increasing 589 * the size of the bitmap table. 590 */ 591 if (++i > max_scan) { 592 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 593 break; 594 map = &qpt->map[qpt->nmaps++]; 595 /* start at incr with current bit 0 */ 596 offset = qpt->incr | (offset & 1); 597 } else if (map < &qpt->map[qpt->nmaps]) { 598 ++map; 599 /* start at incr with current bit 0 */ 600 offset = qpt->incr | (offset & 1); 601 } else { 602 map = &qpt->map[0]; 603 /* wrap to first map page, invert bit 0 */ 604 offset = qpt->incr | ((offset & 1) ^ 1); 605 } 606 /* there can be no set bits in low-order QoS bits */ 607 WARN_ON(rdi->dparms.qos_shift > 1 && 608 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1)); 609 qpn = mk_qpn(qpt, map, offset); 610 } 611 612 ret = -ENOMEM; 613 614 bail: 615 return ret; 616 } 617 618 /** 619 * rvt_clear_mr_refs - Drop help mr refs 620 * @qp: rvt qp data structure 621 * @clr_sends: If shoudl clear send side or not 622 */ 623 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 624 { 625 unsigned n; 626 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 627 628 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 629 rvt_put_ss(&qp->s_rdma_read_sge); 630 631 rvt_put_ss(&qp->r_sge); 632 633 if (clr_sends) { 634 while (qp->s_last != qp->s_head) { 635 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 636 637 rvt_put_qp_swqe(qp, wqe); 638 if (++qp->s_last >= qp->s_size) 639 qp->s_last = 0; 640 smp_wmb(); /* see qp_set_savail */ 641 } 642 if (qp->s_rdma_mr) { 643 rvt_put_mr(qp->s_rdma_mr); 644 qp->s_rdma_mr = NULL; 645 } 646 } 647 648 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 649 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 650 651 if (e->rdma_sge.mr) { 652 rvt_put_mr(e->rdma_sge.mr); 653 e->rdma_sge.mr = NULL; 654 } 655 } 656 } 657 658 /** 659 * rvt_swqe_has_lkey - return true if lkey is used by swqe 660 * @wqe: the send wqe 661 * @lkey: the lkey 662 * 663 * Test the swqe for using lkey 664 */ 665 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 666 { 667 int i; 668 669 for (i = 0; i < wqe->wr.num_sge; i++) { 670 struct rvt_sge *sge = &wqe->sg_list[i]; 671 672 if (rvt_mr_has_lkey(sge->mr, lkey)) 673 return true; 674 } 675 return false; 676 } 677 678 /** 679 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 680 * @qp: the rvt_qp 681 * @lkey: the lkey 682 */ 683 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 684 { 685 u32 s_last = qp->s_last; 686 687 while (s_last != qp->s_head) { 688 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 689 690 if (rvt_swqe_has_lkey(wqe, lkey)) 691 return true; 692 693 if (++s_last >= qp->s_size) 694 s_last = 0; 695 } 696 if (qp->s_rdma_mr) 697 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 698 return true; 699 return false; 700 } 701 702 /** 703 * rvt_qp_acks_has_lkey - return true if acks have lkey 704 * @qp: the qp 705 * @lkey: the lkey 706 */ 707 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 708 { 709 int i; 710 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 711 712 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 713 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 714 715 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 716 return true; 717 } 718 return false; 719 } 720 721 /** 722 * rvt_qp_mr_clean - clean up remote ops for lkey 723 * @qp: the qp 724 * @lkey: the lkey that is being de-registered 725 * 726 * This routine checks if the lkey is being used by 727 * the qp. 728 * 729 * If so, the qp is put into an error state to elminate 730 * any references from the qp. 731 */ 732 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 733 { 734 bool lastwqe = false; 735 736 if (qp->ibqp.qp_type == IB_QPT_SMI || 737 qp->ibqp.qp_type == IB_QPT_GSI) 738 /* avoid special QPs */ 739 return; 740 spin_lock_irq(&qp->r_lock); 741 spin_lock(&qp->s_hlock); 742 spin_lock(&qp->s_lock); 743 744 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 745 goto check_lwqe; 746 747 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 748 rvt_qp_sends_has_lkey(qp, lkey) || 749 rvt_qp_acks_has_lkey(qp, lkey)) 750 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 751 check_lwqe: 752 spin_unlock(&qp->s_lock); 753 spin_unlock(&qp->s_hlock); 754 spin_unlock_irq(&qp->r_lock); 755 if (lastwqe) { 756 struct ib_event ev; 757 758 ev.device = qp->ibqp.device; 759 ev.element.qp = &qp->ibqp; 760 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 761 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 762 } 763 } 764 765 /** 766 * rvt_remove_qp - remove qp form table 767 * @rdi: rvt dev struct 768 * @qp: qp to remove 769 * 770 * Remove the QP from the table so it can't be found asynchronously by 771 * the receive routine. 772 */ 773 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 774 { 775 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 776 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 777 unsigned long flags; 778 int removed = 1; 779 780 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 781 782 if (rcu_dereference_protected(rvp->qp[0], 783 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 784 RCU_INIT_POINTER(rvp->qp[0], NULL); 785 } else if (rcu_dereference_protected(rvp->qp[1], 786 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 787 RCU_INIT_POINTER(rvp->qp[1], NULL); 788 } else { 789 struct rvt_qp *q; 790 struct rvt_qp __rcu **qpp; 791 792 removed = 0; 793 qpp = &rdi->qp_dev->qp_table[n]; 794 for (; (q = rcu_dereference_protected(*qpp, 795 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 796 qpp = &q->next) { 797 if (q == qp) { 798 RCU_INIT_POINTER(*qpp, 799 rcu_dereference_protected(qp->next, 800 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 801 removed = 1; 802 trace_rvt_qpremove(qp, n); 803 break; 804 } 805 } 806 } 807 808 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 809 if (removed) { 810 synchronize_rcu(); 811 rvt_put_qp(qp); 812 } 813 } 814 815 /** 816 * rvt_alloc_rq - allocate memory for user or kernel buffer 817 * @rq: receive queue data structure 818 * @size: number of request queue entries 819 * @node: The NUMA node 820 * @udata: True if user data is available or not false 821 * 822 * Return: If memory allocation failed, return -ENONEM 823 * This function is used by both shared receive 824 * queues and non-shared receive queues to allocate 825 * memory. 826 */ 827 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node, 828 struct ib_udata *udata) 829 { 830 if (udata) { 831 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size); 832 if (!rq->wq) 833 goto bail; 834 /* need kwq with no buffers */ 835 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node); 836 if (!rq->kwq) 837 goto bail; 838 rq->kwq->curr_wq = rq->wq->wq; 839 } else { 840 /* need kwq with buffers */ 841 rq->kwq = 842 vzalloc_node(sizeof(struct rvt_krwq) + size, node); 843 if (!rq->kwq) 844 goto bail; 845 rq->kwq->curr_wq = rq->kwq->wq; 846 } 847 848 spin_lock_init(&rq->kwq->p_lock); 849 spin_lock_init(&rq->kwq->c_lock); 850 return 0; 851 bail: 852 rvt_free_rq(rq); 853 return -ENOMEM; 854 } 855 856 /** 857 * rvt_init_qp - initialize the QP state to the reset state 858 * @rdi: rvt dev struct 859 * @qp: the QP to init or reinit 860 * @type: the QP type 861 * 862 * This function is called from both rvt_create_qp() and 863 * rvt_reset_qp(). The difference is that the reset 864 * patch the necessary locks to protect against concurent 865 * access. 866 */ 867 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 868 enum ib_qp_type type) 869 { 870 qp->remote_qpn = 0; 871 qp->qkey = 0; 872 qp->qp_access_flags = 0; 873 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 874 qp->s_hdrwords = 0; 875 qp->s_wqe = NULL; 876 qp->s_draining = 0; 877 qp->s_next_psn = 0; 878 qp->s_last_psn = 0; 879 qp->s_sending_psn = 0; 880 qp->s_sending_hpsn = 0; 881 qp->s_psn = 0; 882 qp->r_psn = 0; 883 qp->r_msn = 0; 884 if (type == IB_QPT_RC) { 885 qp->s_state = IB_OPCODE_RC_SEND_LAST; 886 qp->r_state = IB_OPCODE_RC_SEND_LAST; 887 } else { 888 qp->s_state = IB_OPCODE_UC_SEND_LAST; 889 qp->r_state = IB_OPCODE_UC_SEND_LAST; 890 } 891 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 892 qp->r_nak_state = 0; 893 qp->r_aflags = 0; 894 qp->r_flags = 0; 895 qp->s_head = 0; 896 qp->s_tail = 0; 897 qp->s_cur = 0; 898 qp->s_acked = 0; 899 qp->s_last = 0; 900 qp->s_ssn = 1; 901 qp->s_lsn = 0; 902 qp->s_mig_state = IB_MIG_MIGRATED; 903 qp->r_head_ack_queue = 0; 904 qp->s_tail_ack_queue = 0; 905 qp->s_acked_ack_queue = 0; 906 qp->s_num_rd_atomic = 0; 907 qp->r_sge.num_sge = 0; 908 atomic_set(&qp->s_reserved_used, 0); 909 } 910 911 /** 912 * _rvt_reset_qp - initialize the QP state to the reset state 913 * @rdi: rvt dev struct 914 * @qp: the QP to reset 915 * @type: the QP type 916 * 917 * r_lock, s_hlock, and s_lock are required to be held by the caller 918 */ 919 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 920 enum ib_qp_type type) 921 __must_hold(&qp->s_lock) 922 __must_hold(&qp->s_hlock) 923 __must_hold(&qp->r_lock) 924 { 925 lockdep_assert_held(&qp->r_lock); 926 lockdep_assert_held(&qp->s_hlock); 927 lockdep_assert_held(&qp->s_lock); 928 if (qp->state != IB_QPS_RESET) { 929 qp->state = IB_QPS_RESET; 930 931 /* Let drivers flush their waitlist */ 932 rdi->driver_f.flush_qp_waiters(qp); 933 rvt_stop_rc_timers(qp); 934 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 935 spin_unlock(&qp->s_lock); 936 spin_unlock(&qp->s_hlock); 937 spin_unlock_irq(&qp->r_lock); 938 939 /* Stop the send queue and the retry timer */ 940 rdi->driver_f.stop_send_queue(qp); 941 rvt_del_timers_sync(qp); 942 /* Wait for things to stop */ 943 rdi->driver_f.quiesce_qp(qp); 944 945 /* take qp out the hash and wait for it to be unused */ 946 rvt_remove_qp(rdi, qp); 947 948 /* grab the lock b/c it was locked at call time */ 949 spin_lock_irq(&qp->r_lock); 950 spin_lock(&qp->s_hlock); 951 spin_lock(&qp->s_lock); 952 953 rvt_clear_mr_refs(qp, 1); 954 /* 955 * Let the driver do any tear down or re-init it needs to for 956 * a qp that has been reset 957 */ 958 rdi->driver_f.notify_qp_reset(qp); 959 } 960 rvt_init_qp(rdi, qp, type); 961 lockdep_assert_held(&qp->r_lock); 962 lockdep_assert_held(&qp->s_hlock); 963 lockdep_assert_held(&qp->s_lock); 964 } 965 966 /** 967 * rvt_reset_qp - initialize the QP state to the reset state 968 * @rdi: the device info 969 * @qp: the QP to reset 970 * @type: the QP type 971 * 972 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock 973 * before calling _rvt_reset_qp(). 974 */ 975 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 976 enum ib_qp_type type) 977 { 978 spin_lock_irq(&qp->r_lock); 979 spin_lock(&qp->s_hlock); 980 spin_lock(&qp->s_lock); 981 _rvt_reset_qp(rdi, qp, type); 982 spin_unlock(&qp->s_lock); 983 spin_unlock(&qp->s_hlock); 984 spin_unlock_irq(&qp->r_lock); 985 } 986 987 /** 988 * rvt_free_qpn - Free a qpn from the bit map 989 * @qpt: QP table 990 * @qpn: queue pair number to free 991 */ 992 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 993 { 994 struct rvt_qpn_map *map; 995 996 if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE) 997 qpn &= RVT_AIP_QP_SUFFIX; 998 999 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 1000 if (map->page) 1001 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 1002 } 1003 1004 /** 1005 * get_allowed_ops - Given a QP type return the appropriate allowed OP 1006 * @type: valid, supported, QP type 1007 */ 1008 static u8 get_allowed_ops(enum ib_qp_type type) 1009 { 1010 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ? 1011 IB_OPCODE_UC : IB_OPCODE_UD; 1012 } 1013 1014 /** 1015 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs 1016 * @qp: Valid QP with allowed_ops set 1017 * 1018 * The rvt_swqe data structure being used is a union, so this is 1019 * only valid for UD QPs. 1020 */ 1021 static void free_ud_wq_attr(struct rvt_qp *qp) 1022 { 1023 struct rvt_swqe *wqe; 1024 int i; 1025 1026 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1027 wqe = rvt_get_swqe_ptr(qp, i); 1028 kfree(wqe->ud_wr.attr); 1029 wqe->ud_wr.attr = NULL; 1030 } 1031 } 1032 1033 /** 1034 * alloc_ud_wq_attr - AH attribute cache for UD QPs 1035 * @qp: Valid QP with allowed_ops set 1036 * @node: Numa node for allocation 1037 * 1038 * The rvt_swqe data structure being used is a union, so this is 1039 * only valid for UD QPs. 1040 */ 1041 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node) 1042 { 1043 struct rvt_swqe *wqe; 1044 int i; 1045 1046 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1047 wqe = rvt_get_swqe_ptr(qp, i); 1048 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr), 1049 GFP_KERNEL, node); 1050 if (!wqe->ud_wr.attr) { 1051 free_ud_wq_attr(qp); 1052 return -ENOMEM; 1053 } 1054 } 1055 1056 return 0; 1057 } 1058 1059 /** 1060 * rvt_create_qp - create a queue pair for a device 1061 * @ibpd: the protection domain who's device we create the queue pair for 1062 * @init_attr: the attributes of the queue pair 1063 * @udata: user data for libibverbs.so 1064 * 1065 * Queue pair creation is mostly an rvt issue. However, drivers have their own 1066 * unique idea of what queue pair numbers mean. For instance there is a reserved 1067 * range for PSM. 1068 * 1069 * Return: the queue pair on success, otherwise returns an errno. 1070 * 1071 * Called by the ib_create_qp() core verbs function. 1072 */ 1073 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 1074 struct ib_qp_init_attr *init_attr, 1075 struct ib_udata *udata) 1076 { 1077 struct rvt_qp *qp; 1078 int err; 1079 struct rvt_swqe *swq = NULL; 1080 size_t sz; 1081 size_t sg_list_sz; 1082 struct ib_qp *ret = ERR_PTR(-ENOMEM); 1083 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 1084 void *priv = NULL; 1085 size_t sqsize; 1086 u8 exclude_prefix = 0; 1087 1088 if (!rdi) 1089 return ERR_PTR(-EINVAL); 1090 1091 if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE) 1092 return ERR_PTR(-EOPNOTSUPP); 1093 1094 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 1095 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr) 1096 return ERR_PTR(-EINVAL); 1097 1098 /* Check receive queue parameters if no SRQ is specified. */ 1099 if (!init_attr->srq) { 1100 if (init_attr->cap.max_recv_sge > 1101 rdi->dparms.props.max_recv_sge || 1102 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 1103 return ERR_PTR(-EINVAL); 1104 1105 if (init_attr->cap.max_send_sge + 1106 init_attr->cap.max_send_wr + 1107 init_attr->cap.max_recv_sge + 1108 init_attr->cap.max_recv_wr == 0) 1109 return ERR_PTR(-EINVAL); 1110 } 1111 sqsize = 1112 init_attr->cap.max_send_wr + 1 + 1113 rdi->dparms.reserved_operations; 1114 switch (init_attr->qp_type) { 1115 case IB_QPT_SMI: 1116 case IB_QPT_GSI: 1117 if (init_attr->port_num == 0 || 1118 init_attr->port_num > ibpd->device->phys_port_cnt) 1119 return ERR_PTR(-EINVAL); 1120 fallthrough; 1121 case IB_QPT_UC: 1122 case IB_QPT_RC: 1123 case IB_QPT_UD: 1124 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge); 1125 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 1126 if (!swq) 1127 return ERR_PTR(-ENOMEM); 1128 1129 sz = sizeof(*qp); 1130 sg_list_sz = 0; 1131 if (init_attr->srq) { 1132 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1133 1134 if (srq->rq.max_sge > 1) 1135 sg_list_sz = sizeof(*qp->r_sg_list) * 1136 (srq->rq.max_sge - 1); 1137 } else if (init_attr->cap.max_recv_sge > 1) 1138 sg_list_sz = sizeof(*qp->r_sg_list) * 1139 (init_attr->cap.max_recv_sge - 1); 1140 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, 1141 rdi->dparms.node); 1142 if (!qp) 1143 goto bail_swq; 1144 qp->allowed_ops = get_allowed_ops(init_attr->qp_type); 1145 1146 RCU_INIT_POINTER(qp->next, NULL); 1147 if (init_attr->qp_type == IB_QPT_RC) { 1148 qp->s_ack_queue = 1149 kcalloc_node(rvt_max_atomic(rdi), 1150 sizeof(*qp->s_ack_queue), 1151 GFP_KERNEL, 1152 rdi->dparms.node); 1153 if (!qp->s_ack_queue) 1154 goto bail_qp; 1155 } 1156 /* initialize timers needed for rc qp */ 1157 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1158 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 1159 HRTIMER_MODE_REL); 1160 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 1161 1162 /* 1163 * Driver needs to set up it's private QP structure and do any 1164 * initialization that is needed. 1165 */ 1166 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1167 if (IS_ERR(priv)) { 1168 ret = priv; 1169 goto bail_qp; 1170 } 1171 qp->priv = priv; 1172 qp->timeout_jiffies = 1173 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1174 1000UL); 1175 if (init_attr->srq) { 1176 sz = 0; 1177 } else { 1178 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1179 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1180 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1181 sizeof(struct rvt_rwqe); 1182 err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz, 1183 rdi->dparms.node, udata); 1184 if (err) { 1185 ret = ERR_PTR(err); 1186 goto bail_driver_priv; 1187 } 1188 } 1189 1190 /* 1191 * ib_create_qp() will initialize qp->ibqp 1192 * except for qp->ibqp.qp_num. 1193 */ 1194 spin_lock_init(&qp->r_lock); 1195 spin_lock_init(&qp->s_hlock); 1196 spin_lock_init(&qp->s_lock); 1197 atomic_set(&qp->refcount, 0); 1198 atomic_set(&qp->local_ops_pending, 0); 1199 init_waitqueue_head(&qp->wait); 1200 INIT_LIST_HEAD(&qp->rspwait); 1201 qp->state = IB_QPS_RESET; 1202 qp->s_wq = swq; 1203 qp->s_size = sqsize; 1204 qp->s_avail = init_attr->cap.max_send_wr; 1205 qp->s_max_sge = init_attr->cap.max_send_sge; 1206 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1207 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1208 err = alloc_ud_wq_attr(qp, rdi->dparms.node); 1209 if (err) { 1210 ret = (ERR_PTR(err)); 1211 goto bail_rq_rvt; 1212 } 1213 1214 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1215 exclude_prefix = RVT_AIP_QP_PREFIX; 1216 1217 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1218 init_attr->qp_type, 1219 init_attr->port_num, 1220 exclude_prefix); 1221 if (err < 0) { 1222 ret = ERR_PTR(err); 1223 goto bail_rq_wq; 1224 } 1225 qp->ibqp.qp_num = err; 1226 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1227 qp->ibqp.qp_num |= RVT_AIP_QP_BASE; 1228 qp->port_num = init_attr->port_num; 1229 rvt_init_qp(rdi, qp, init_attr->qp_type); 1230 if (rdi->driver_f.qp_priv_init) { 1231 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); 1232 if (err) { 1233 ret = ERR_PTR(err); 1234 goto bail_rq_wq; 1235 } 1236 } 1237 break; 1238 1239 default: 1240 /* Don't support raw QPs */ 1241 return ERR_PTR(-EOPNOTSUPP); 1242 } 1243 1244 init_attr->cap.max_inline_data = 0; 1245 1246 /* 1247 * Return the address of the RWQ as the offset to mmap. 1248 * See rvt_mmap() for details. 1249 */ 1250 if (udata && udata->outlen >= sizeof(__u64)) { 1251 if (!qp->r_rq.wq) { 1252 __u64 offset = 0; 1253 1254 err = ib_copy_to_udata(udata, &offset, 1255 sizeof(offset)); 1256 if (err) { 1257 ret = ERR_PTR(err); 1258 goto bail_qpn; 1259 } 1260 } else { 1261 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1262 1263 qp->ip = rvt_create_mmap_info(rdi, s, udata, 1264 qp->r_rq.wq); 1265 if (IS_ERR(qp->ip)) { 1266 ret = ERR_CAST(qp->ip); 1267 goto bail_qpn; 1268 } 1269 1270 err = ib_copy_to_udata(udata, &qp->ip->offset, 1271 sizeof(qp->ip->offset)); 1272 if (err) { 1273 ret = ERR_PTR(err); 1274 goto bail_ip; 1275 } 1276 } 1277 qp->pid = current->pid; 1278 } 1279 1280 spin_lock(&rdi->n_qps_lock); 1281 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1282 spin_unlock(&rdi->n_qps_lock); 1283 ret = ERR_PTR(-ENOMEM); 1284 goto bail_ip; 1285 } 1286 1287 rdi->n_qps_allocated++; 1288 /* 1289 * Maintain a busy_jiffies variable that will be added to the timeout 1290 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1291 * is scaled by the number of rc qps created for the device to reduce 1292 * the number of timeouts occurring when there is a large number of 1293 * qps. busy_jiffies is incremented every rc qp scaling interval. 1294 * The scaling interval is selected based on extensive performance 1295 * evaluation of targeted workloads. 1296 */ 1297 if (init_attr->qp_type == IB_QPT_RC) { 1298 rdi->n_rc_qps++; 1299 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1300 } 1301 spin_unlock(&rdi->n_qps_lock); 1302 1303 if (qp->ip) { 1304 spin_lock_irq(&rdi->pending_lock); 1305 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1306 spin_unlock_irq(&rdi->pending_lock); 1307 } 1308 1309 ret = &qp->ibqp; 1310 1311 return ret; 1312 1313 bail_ip: 1314 if (qp->ip) 1315 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1316 1317 bail_qpn: 1318 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1319 1320 bail_rq_wq: 1321 free_ud_wq_attr(qp); 1322 1323 bail_rq_rvt: 1324 rvt_free_rq(&qp->r_rq); 1325 1326 bail_driver_priv: 1327 rdi->driver_f.qp_priv_free(rdi, qp); 1328 1329 bail_qp: 1330 kfree(qp->s_ack_queue); 1331 kfree(qp); 1332 1333 bail_swq: 1334 vfree(swq); 1335 1336 return ret; 1337 } 1338 1339 /** 1340 * rvt_error_qp - put a QP into the error state 1341 * @qp: the QP to put into the error state 1342 * @err: the receive completion error to signal if a RWQE is active 1343 * 1344 * Flushes both send and receive work queues. 1345 * 1346 * Return: true if last WQE event should be generated. 1347 * The QP r_lock and s_lock should be held and interrupts disabled. 1348 * If we are already in error state, just return. 1349 */ 1350 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1351 { 1352 struct ib_wc wc; 1353 int ret = 0; 1354 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1355 1356 lockdep_assert_held(&qp->r_lock); 1357 lockdep_assert_held(&qp->s_lock); 1358 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1359 goto bail; 1360 1361 qp->state = IB_QPS_ERR; 1362 1363 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1364 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1365 del_timer(&qp->s_timer); 1366 } 1367 1368 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1369 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1370 1371 rdi->driver_f.notify_error_qp(qp); 1372 1373 /* Schedule the sending tasklet to drain the send work queue. */ 1374 if (READ_ONCE(qp->s_last) != qp->s_head) 1375 rdi->driver_f.schedule_send(qp); 1376 1377 rvt_clear_mr_refs(qp, 0); 1378 1379 memset(&wc, 0, sizeof(wc)); 1380 wc.qp = &qp->ibqp; 1381 wc.opcode = IB_WC_RECV; 1382 1383 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1384 wc.wr_id = qp->r_wr_id; 1385 wc.status = err; 1386 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1387 } 1388 wc.status = IB_WC_WR_FLUSH_ERR; 1389 1390 if (qp->r_rq.kwq) { 1391 u32 head; 1392 u32 tail; 1393 struct rvt_rwq *wq = NULL; 1394 struct rvt_krwq *kwq = NULL; 1395 1396 spin_lock(&qp->r_rq.kwq->c_lock); 1397 /* qp->ip used to validate if there is a user buffer mmaped */ 1398 if (qp->ip) { 1399 wq = qp->r_rq.wq; 1400 head = RDMA_READ_UAPI_ATOMIC(wq->head); 1401 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 1402 } else { 1403 kwq = qp->r_rq.kwq; 1404 head = kwq->head; 1405 tail = kwq->tail; 1406 } 1407 /* sanity check pointers before trusting them */ 1408 if (head >= qp->r_rq.size) 1409 head = 0; 1410 if (tail >= qp->r_rq.size) 1411 tail = 0; 1412 while (tail != head) { 1413 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1414 if (++tail >= qp->r_rq.size) 1415 tail = 0; 1416 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1417 } 1418 if (qp->ip) 1419 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 1420 else 1421 kwq->tail = tail; 1422 spin_unlock(&qp->r_rq.kwq->c_lock); 1423 } else if (qp->ibqp.event_handler) { 1424 ret = 1; 1425 } 1426 1427 bail: 1428 return ret; 1429 } 1430 EXPORT_SYMBOL(rvt_error_qp); 1431 1432 /* 1433 * Put the QP into the hash table. 1434 * The hash table holds a reference to the QP. 1435 */ 1436 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1437 { 1438 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1439 unsigned long flags; 1440 1441 rvt_get_qp(qp); 1442 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1443 1444 if (qp->ibqp.qp_num <= 1) { 1445 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1446 } else { 1447 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1448 1449 qp->next = rdi->qp_dev->qp_table[n]; 1450 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1451 trace_rvt_qpinsert(qp, n); 1452 } 1453 1454 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1455 } 1456 1457 /** 1458 * rvt_modify_qp - modify the attributes of a queue pair 1459 * @ibqp: the queue pair who's attributes we're modifying 1460 * @attr: the new attributes 1461 * @attr_mask: the mask of attributes to modify 1462 * @udata: user data for libibverbs.so 1463 * 1464 * Return: 0 on success, otherwise returns an errno. 1465 */ 1466 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1467 int attr_mask, struct ib_udata *udata) 1468 { 1469 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1470 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1471 enum ib_qp_state cur_state, new_state; 1472 struct ib_event ev; 1473 int lastwqe = 0; 1474 int mig = 0; 1475 int pmtu = 0; /* for gcc warning only */ 1476 int opa_ah; 1477 1478 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS) 1479 return -EOPNOTSUPP; 1480 1481 spin_lock_irq(&qp->r_lock); 1482 spin_lock(&qp->s_hlock); 1483 spin_lock(&qp->s_lock); 1484 1485 cur_state = attr_mask & IB_QP_CUR_STATE ? 1486 attr->cur_qp_state : qp->state; 1487 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1488 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1489 1490 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1491 attr_mask)) 1492 goto inval; 1493 1494 if (rdi->driver_f.check_modify_qp && 1495 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1496 goto inval; 1497 1498 if (attr_mask & IB_QP_AV) { 1499 if (opa_ah) { 1500 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1501 opa_get_mcast_base(OPA_MCAST_NR)) 1502 goto inval; 1503 } else { 1504 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1505 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1506 goto inval; 1507 } 1508 1509 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1510 goto inval; 1511 } 1512 1513 if (attr_mask & IB_QP_ALT_PATH) { 1514 if (opa_ah) { 1515 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1516 opa_get_mcast_base(OPA_MCAST_NR)) 1517 goto inval; 1518 } else { 1519 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1520 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1521 goto inval; 1522 } 1523 1524 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1525 goto inval; 1526 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1527 goto inval; 1528 } 1529 1530 if (attr_mask & IB_QP_PKEY_INDEX) 1531 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1532 goto inval; 1533 1534 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1535 if (attr->min_rnr_timer > 31) 1536 goto inval; 1537 1538 if (attr_mask & IB_QP_PORT) 1539 if (qp->ibqp.qp_type == IB_QPT_SMI || 1540 qp->ibqp.qp_type == IB_QPT_GSI || 1541 attr->port_num == 0 || 1542 attr->port_num > ibqp->device->phys_port_cnt) 1543 goto inval; 1544 1545 if (attr_mask & IB_QP_DEST_QPN) 1546 if (attr->dest_qp_num > RVT_QPN_MASK) 1547 goto inval; 1548 1549 if (attr_mask & IB_QP_RETRY_CNT) 1550 if (attr->retry_cnt > 7) 1551 goto inval; 1552 1553 if (attr_mask & IB_QP_RNR_RETRY) 1554 if (attr->rnr_retry > 7) 1555 goto inval; 1556 1557 /* 1558 * Don't allow invalid path_mtu values. OK to set greater 1559 * than the active mtu (or even the max_cap, if we have tuned 1560 * that to a small mtu. We'll set qp->path_mtu 1561 * to the lesser of requested attribute mtu and active, 1562 * for packetizing messages. 1563 * Note that the QP port has to be set in INIT and MTU in RTR. 1564 */ 1565 if (attr_mask & IB_QP_PATH_MTU) { 1566 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1567 if (pmtu < 0) 1568 goto inval; 1569 } 1570 1571 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1572 if (attr->path_mig_state == IB_MIG_REARM) { 1573 if (qp->s_mig_state == IB_MIG_ARMED) 1574 goto inval; 1575 if (new_state != IB_QPS_RTS) 1576 goto inval; 1577 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1578 if (qp->s_mig_state == IB_MIG_REARM) 1579 goto inval; 1580 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1581 goto inval; 1582 if (qp->s_mig_state == IB_MIG_ARMED) 1583 mig = 1; 1584 } else { 1585 goto inval; 1586 } 1587 } 1588 1589 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1590 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1591 goto inval; 1592 1593 switch (new_state) { 1594 case IB_QPS_RESET: 1595 if (qp->state != IB_QPS_RESET) 1596 _rvt_reset_qp(rdi, qp, ibqp->qp_type); 1597 break; 1598 1599 case IB_QPS_RTR: 1600 /* Allow event to re-trigger if QP set to RTR more than once */ 1601 qp->r_flags &= ~RVT_R_COMM_EST; 1602 qp->state = new_state; 1603 break; 1604 1605 case IB_QPS_SQD: 1606 qp->s_draining = qp->s_last != qp->s_cur; 1607 qp->state = new_state; 1608 break; 1609 1610 case IB_QPS_SQE: 1611 if (qp->ibqp.qp_type == IB_QPT_RC) 1612 goto inval; 1613 qp->state = new_state; 1614 break; 1615 1616 case IB_QPS_ERR: 1617 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1618 break; 1619 1620 default: 1621 qp->state = new_state; 1622 break; 1623 } 1624 1625 if (attr_mask & IB_QP_PKEY_INDEX) 1626 qp->s_pkey_index = attr->pkey_index; 1627 1628 if (attr_mask & IB_QP_PORT) 1629 qp->port_num = attr->port_num; 1630 1631 if (attr_mask & IB_QP_DEST_QPN) 1632 qp->remote_qpn = attr->dest_qp_num; 1633 1634 if (attr_mask & IB_QP_SQ_PSN) { 1635 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1636 qp->s_psn = qp->s_next_psn; 1637 qp->s_sending_psn = qp->s_next_psn; 1638 qp->s_last_psn = qp->s_next_psn - 1; 1639 qp->s_sending_hpsn = qp->s_last_psn; 1640 } 1641 1642 if (attr_mask & IB_QP_RQ_PSN) 1643 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1644 1645 if (attr_mask & IB_QP_ACCESS_FLAGS) 1646 qp->qp_access_flags = attr->qp_access_flags; 1647 1648 if (attr_mask & IB_QP_AV) { 1649 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1650 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1651 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1652 } 1653 1654 if (attr_mask & IB_QP_ALT_PATH) { 1655 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1656 qp->s_alt_pkey_index = attr->alt_pkey_index; 1657 } 1658 1659 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1660 qp->s_mig_state = attr->path_mig_state; 1661 if (mig) { 1662 qp->remote_ah_attr = qp->alt_ah_attr; 1663 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1664 qp->s_pkey_index = qp->s_alt_pkey_index; 1665 } 1666 } 1667 1668 if (attr_mask & IB_QP_PATH_MTU) { 1669 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1670 qp->log_pmtu = ilog2(qp->pmtu); 1671 } 1672 1673 if (attr_mask & IB_QP_RETRY_CNT) { 1674 qp->s_retry_cnt = attr->retry_cnt; 1675 qp->s_retry = attr->retry_cnt; 1676 } 1677 1678 if (attr_mask & IB_QP_RNR_RETRY) { 1679 qp->s_rnr_retry_cnt = attr->rnr_retry; 1680 qp->s_rnr_retry = attr->rnr_retry; 1681 } 1682 1683 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1684 qp->r_min_rnr_timer = attr->min_rnr_timer; 1685 1686 if (attr_mask & IB_QP_TIMEOUT) { 1687 qp->timeout = attr->timeout; 1688 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1689 } 1690 1691 if (attr_mask & IB_QP_QKEY) 1692 qp->qkey = attr->qkey; 1693 1694 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1695 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1696 1697 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1698 qp->s_max_rd_atomic = attr->max_rd_atomic; 1699 1700 if (rdi->driver_f.modify_qp) 1701 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1702 1703 spin_unlock(&qp->s_lock); 1704 spin_unlock(&qp->s_hlock); 1705 spin_unlock_irq(&qp->r_lock); 1706 1707 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1708 rvt_insert_qp(rdi, qp); 1709 1710 if (lastwqe) { 1711 ev.device = qp->ibqp.device; 1712 ev.element.qp = &qp->ibqp; 1713 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1714 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1715 } 1716 if (mig) { 1717 ev.device = qp->ibqp.device; 1718 ev.element.qp = &qp->ibqp; 1719 ev.event = IB_EVENT_PATH_MIG; 1720 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1721 } 1722 return 0; 1723 1724 inval: 1725 spin_unlock(&qp->s_lock); 1726 spin_unlock(&qp->s_hlock); 1727 spin_unlock_irq(&qp->r_lock); 1728 return -EINVAL; 1729 } 1730 1731 /** 1732 * rvt_destroy_qp - destroy a queue pair 1733 * @ibqp: the queue pair to destroy 1734 * @udata: unused by the driver 1735 * 1736 * Note that this can be called while the QP is actively sending or 1737 * receiving! 1738 * 1739 * Return: 0 on success. 1740 */ 1741 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) 1742 { 1743 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1744 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1745 1746 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1747 1748 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1749 /* qpn is now available for use again */ 1750 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1751 1752 spin_lock(&rdi->n_qps_lock); 1753 rdi->n_qps_allocated--; 1754 if (qp->ibqp.qp_type == IB_QPT_RC) { 1755 rdi->n_rc_qps--; 1756 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1757 } 1758 spin_unlock(&rdi->n_qps_lock); 1759 1760 if (qp->ip) 1761 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1762 kvfree(qp->r_rq.kwq); 1763 rdi->driver_f.qp_priv_free(rdi, qp); 1764 kfree(qp->s_ack_queue); 1765 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1766 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1767 free_ud_wq_attr(qp); 1768 vfree(qp->s_wq); 1769 kfree(qp); 1770 return 0; 1771 } 1772 1773 /** 1774 * rvt_query_qp - query an ipbq 1775 * @ibqp: IB qp to query 1776 * @attr: attr struct to fill in 1777 * @attr_mask: attr mask ignored 1778 * @init_attr: struct to fill in 1779 * 1780 * Return: always 0 1781 */ 1782 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1783 int attr_mask, struct ib_qp_init_attr *init_attr) 1784 { 1785 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1786 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1787 1788 attr->qp_state = qp->state; 1789 attr->cur_qp_state = attr->qp_state; 1790 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1791 attr->path_mig_state = qp->s_mig_state; 1792 attr->qkey = qp->qkey; 1793 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1794 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1795 attr->dest_qp_num = qp->remote_qpn; 1796 attr->qp_access_flags = qp->qp_access_flags; 1797 attr->cap.max_send_wr = qp->s_size - 1 - 1798 rdi->dparms.reserved_operations; 1799 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1800 attr->cap.max_send_sge = qp->s_max_sge; 1801 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1802 attr->cap.max_inline_data = 0; 1803 attr->ah_attr = qp->remote_ah_attr; 1804 attr->alt_ah_attr = qp->alt_ah_attr; 1805 attr->pkey_index = qp->s_pkey_index; 1806 attr->alt_pkey_index = qp->s_alt_pkey_index; 1807 attr->en_sqd_async_notify = 0; 1808 attr->sq_draining = qp->s_draining; 1809 attr->max_rd_atomic = qp->s_max_rd_atomic; 1810 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1811 attr->min_rnr_timer = qp->r_min_rnr_timer; 1812 attr->port_num = qp->port_num; 1813 attr->timeout = qp->timeout; 1814 attr->retry_cnt = qp->s_retry_cnt; 1815 attr->rnr_retry = qp->s_rnr_retry_cnt; 1816 attr->alt_port_num = 1817 rdma_ah_get_port_num(&qp->alt_ah_attr); 1818 attr->alt_timeout = qp->alt_timeout; 1819 1820 init_attr->event_handler = qp->ibqp.event_handler; 1821 init_attr->qp_context = qp->ibqp.qp_context; 1822 init_attr->send_cq = qp->ibqp.send_cq; 1823 init_attr->recv_cq = qp->ibqp.recv_cq; 1824 init_attr->srq = qp->ibqp.srq; 1825 init_attr->cap = attr->cap; 1826 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1827 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1828 else 1829 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1830 init_attr->qp_type = qp->ibqp.qp_type; 1831 init_attr->port_num = qp->port_num; 1832 return 0; 1833 } 1834 1835 /** 1836 * rvt_post_recv - post a receive on a QP 1837 * @ibqp: the QP to post the receive on 1838 * @wr: the WR to post 1839 * @bad_wr: the first bad WR is put here 1840 * 1841 * This may be called from interrupt context. 1842 * 1843 * Return: 0 on success otherwise errno 1844 */ 1845 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1846 const struct ib_recv_wr **bad_wr) 1847 { 1848 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1849 struct rvt_krwq *wq = qp->r_rq.kwq; 1850 unsigned long flags; 1851 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1852 !qp->ibqp.srq; 1853 1854 /* Check that state is OK to post receive. */ 1855 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1856 *bad_wr = wr; 1857 return -EINVAL; 1858 } 1859 1860 for (; wr; wr = wr->next) { 1861 struct rvt_rwqe *wqe; 1862 u32 next; 1863 int i; 1864 1865 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1866 *bad_wr = wr; 1867 return -EINVAL; 1868 } 1869 1870 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags); 1871 next = wq->head + 1; 1872 if (next >= qp->r_rq.size) 1873 next = 0; 1874 if (next == READ_ONCE(wq->tail)) { 1875 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1876 *bad_wr = wr; 1877 return -ENOMEM; 1878 } 1879 if (unlikely(qp_err_flush)) { 1880 struct ib_wc wc; 1881 1882 memset(&wc, 0, sizeof(wc)); 1883 wc.qp = &qp->ibqp; 1884 wc.opcode = IB_WC_RECV; 1885 wc.wr_id = wr->wr_id; 1886 wc.status = IB_WC_WR_FLUSH_ERR; 1887 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1888 } else { 1889 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1890 wqe->wr_id = wr->wr_id; 1891 wqe->num_sge = wr->num_sge; 1892 for (i = 0; i < wr->num_sge; i++) { 1893 wqe->sg_list[i].addr = wr->sg_list[i].addr; 1894 wqe->sg_list[i].length = wr->sg_list[i].length; 1895 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 1896 } 1897 /* 1898 * Make sure queue entry is written 1899 * before the head index. 1900 */ 1901 smp_store_release(&wq->head, next); 1902 } 1903 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1904 } 1905 return 0; 1906 } 1907 1908 /** 1909 * rvt_qp_valid_operation - validate post send wr request 1910 * @qp: the qp 1911 * @post_parms: the post send table for the driver 1912 * @wr: the work request 1913 * 1914 * The routine validates the operation based on the 1915 * validation table an returns the length of the operation 1916 * which can extend beyond the ib_send_bw. Operation 1917 * dependent flags key atomic operation validation. 1918 * 1919 * There is an exception for UD qps that validates the pd and 1920 * overrides the length to include the additional UD specific 1921 * length. 1922 * 1923 * Returns a negative error or the length of the work request 1924 * for building the swqe. 1925 */ 1926 static inline int rvt_qp_valid_operation( 1927 struct rvt_qp *qp, 1928 const struct rvt_operation_params *post_parms, 1929 const struct ib_send_wr *wr) 1930 { 1931 int len; 1932 1933 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1934 return -EINVAL; 1935 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1936 return -EINVAL; 1937 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1938 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1939 return -EINVAL; 1940 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1941 (wr->num_sge == 0 || 1942 wr->sg_list[0].length < sizeof(u64) || 1943 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1944 return -EINVAL; 1945 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1946 !qp->s_max_rd_atomic) 1947 return -EINVAL; 1948 len = post_parms[wr->opcode].length; 1949 /* UD specific */ 1950 if (qp->ibqp.qp_type != IB_QPT_UC && 1951 qp->ibqp.qp_type != IB_QPT_RC) { 1952 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1953 return -EINVAL; 1954 len = sizeof(struct ib_ud_wr); 1955 } 1956 return len; 1957 } 1958 1959 /** 1960 * rvt_qp_is_avail - determine queue capacity 1961 * @qp: the qp 1962 * @rdi: the rdmavt device 1963 * @reserved_op: is reserved operation 1964 * 1965 * This assumes the s_hlock is held but the s_last 1966 * qp variable is uncontrolled. 1967 * 1968 * For non reserved operations, the qp->s_avail 1969 * may be changed. 1970 * 1971 * The return value is zero or a -ENOMEM. 1972 */ 1973 static inline int rvt_qp_is_avail( 1974 struct rvt_qp *qp, 1975 struct rvt_dev_info *rdi, 1976 bool reserved_op) 1977 { 1978 u32 slast; 1979 u32 avail; 1980 u32 reserved_used; 1981 1982 /* see rvt_qp_wqe_unreserve() */ 1983 smp_mb__before_atomic(); 1984 if (unlikely(reserved_op)) { 1985 /* see rvt_qp_wqe_unreserve() */ 1986 reserved_used = atomic_read(&qp->s_reserved_used); 1987 if (reserved_used >= rdi->dparms.reserved_operations) 1988 return -ENOMEM; 1989 return 0; 1990 } 1991 /* non-reserved operations */ 1992 if (likely(qp->s_avail)) 1993 return 0; 1994 /* See rvt_qp_complete_swqe() */ 1995 slast = smp_load_acquire(&qp->s_last); 1996 if (qp->s_head >= slast) 1997 avail = qp->s_size - (qp->s_head - slast); 1998 else 1999 avail = slast - qp->s_head; 2000 2001 reserved_used = atomic_read(&qp->s_reserved_used); 2002 avail = avail - 1 - 2003 (rdi->dparms.reserved_operations - reserved_used); 2004 /* insure we don't assign a negative s_avail */ 2005 if ((s32)avail <= 0) 2006 return -ENOMEM; 2007 qp->s_avail = avail; 2008 if (WARN_ON(qp->s_avail > 2009 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 2010 rvt_pr_err(rdi, 2011 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 2012 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 2013 qp->s_head, qp->s_tail, qp->s_cur, 2014 qp->s_acked, qp->s_last); 2015 return 0; 2016 } 2017 2018 /** 2019 * rvt_post_one_wr - post one RC, UC, or UD send work request 2020 * @qp: the QP to post on 2021 * @wr: the work request to send 2022 * @call_send: kick the send engine into gear 2023 */ 2024 static int rvt_post_one_wr(struct rvt_qp *qp, 2025 const struct ib_send_wr *wr, 2026 bool *call_send) 2027 { 2028 struct rvt_swqe *wqe; 2029 u32 next; 2030 int i; 2031 int j; 2032 int acc; 2033 struct rvt_lkey_table *rkt; 2034 struct rvt_pd *pd; 2035 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2036 u8 log_pmtu; 2037 int ret; 2038 size_t cplen; 2039 bool reserved_op; 2040 int local_ops_delayed = 0; 2041 2042 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 2043 2044 /* IB spec says that num_sge == 0 is OK. */ 2045 if (unlikely(wr->num_sge > qp->s_max_sge)) 2046 return -EINVAL; 2047 2048 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 2049 if (ret < 0) 2050 return ret; 2051 cplen = ret; 2052 2053 /* 2054 * Local operations include fast register and local invalidate. 2055 * Fast register needs to be processed immediately because the 2056 * registered lkey may be used by following work requests and the 2057 * lkey needs to be valid at the time those requests are posted. 2058 * Local invalidate can be processed immediately if fencing is 2059 * not required and no previous local invalidate ops are pending. 2060 * Signaled local operations that have been processed immediately 2061 * need to have requests with "completion only" flags set posted 2062 * to the send queue in order to generate completions. 2063 */ 2064 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 2065 switch (wr->opcode) { 2066 case IB_WR_REG_MR: 2067 ret = rvt_fast_reg_mr(qp, 2068 reg_wr(wr)->mr, 2069 reg_wr(wr)->key, 2070 reg_wr(wr)->access); 2071 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2072 return ret; 2073 break; 2074 case IB_WR_LOCAL_INV: 2075 if ((wr->send_flags & IB_SEND_FENCE) || 2076 atomic_read(&qp->local_ops_pending)) { 2077 local_ops_delayed = 1; 2078 } else { 2079 ret = rvt_invalidate_rkey( 2080 qp, wr->ex.invalidate_rkey); 2081 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2082 return ret; 2083 } 2084 break; 2085 default: 2086 return -EINVAL; 2087 } 2088 } 2089 2090 reserved_op = rdi->post_parms[wr->opcode].flags & 2091 RVT_OPERATION_USE_RESERVE; 2092 /* check for avail */ 2093 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 2094 if (ret) 2095 return ret; 2096 next = qp->s_head + 1; 2097 if (next >= qp->s_size) 2098 next = 0; 2099 2100 rkt = &rdi->lkey_table; 2101 pd = ibpd_to_rvtpd(qp->ibqp.pd); 2102 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 2103 2104 /* cplen has length from above */ 2105 memcpy(&wqe->wr, wr, cplen); 2106 2107 wqe->length = 0; 2108 j = 0; 2109 if (wr->num_sge) { 2110 struct rvt_sge *last_sge = NULL; 2111 2112 acc = wr->opcode >= IB_WR_RDMA_READ ? 2113 IB_ACCESS_LOCAL_WRITE : 0; 2114 for (i = 0; i < wr->num_sge; i++) { 2115 u32 length = wr->sg_list[i].length; 2116 2117 if (length == 0) 2118 continue; 2119 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 2120 &wr->sg_list[i], acc); 2121 if (unlikely(ret < 0)) 2122 goto bail_inval_free; 2123 wqe->length += length; 2124 if (ret) 2125 last_sge = &wqe->sg_list[j]; 2126 j += ret; 2127 } 2128 wqe->wr.num_sge = j; 2129 } 2130 2131 /* 2132 * Calculate and set SWQE PSN values prior to handing it off 2133 * to the driver's check routine. This give the driver the 2134 * opportunity to adjust PSN values based on internal checks. 2135 */ 2136 log_pmtu = qp->log_pmtu; 2137 if (qp->allowed_ops == IB_OPCODE_UD) { 2138 struct rvt_ah *ah = rvt_get_swqe_ah(wqe); 2139 2140 log_pmtu = ah->log_pmtu; 2141 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr); 2142 } 2143 2144 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2145 if (local_ops_delayed) 2146 atomic_inc(&qp->local_ops_pending); 2147 else 2148 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2149 wqe->ssn = 0; 2150 wqe->psn = 0; 2151 wqe->lpsn = 0; 2152 } else { 2153 wqe->ssn = qp->s_ssn++; 2154 wqe->psn = qp->s_next_psn; 2155 wqe->lpsn = wqe->psn + 2156 (wqe->length ? 2157 ((wqe->length - 1) >> log_pmtu) : 2158 0); 2159 } 2160 2161 /* general part of wqe valid - allow for driver checks */ 2162 if (rdi->driver_f.setup_wqe) { 2163 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2164 if (ret < 0) 2165 goto bail_inval_free_ref; 2166 } 2167 2168 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2169 qp->s_next_psn = wqe->lpsn + 1; 2170 2171 if (unlikely(reserved_op)) { 2172 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2173 rvt_qp_wqe_reserve(qp, wqe); 2174 } else { 2175 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2176 qp->s_avail--; 2177 } 2178 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2179 smp_wmb(); /* see request builders */ 2180 qp->s_head = next; 2181 2182 return 0; 2183 2184 bail_inval_free_ref: 2185 if (qp->allowed_ops == IB_OPCODE_UD) 2186 rdma_destroy_ah_attr(wqe->ud_wr.attr); 2187 bail_inval_free: 2188 /* release mr holds */ 2189 while (j) { 2190 struct rvt_sge *sge = &wqe->sg_list[--j]; 2191 2192 rvt_put_mr(sge->mr); 2193 } 2194 return ret; 2195 } 2196 2197 /** 2198 * rvt_post_send - post a send on a QP 2199 * @ibqp: the QP to post the send on 2200 * @wr: the list of work requests to post 2201 * @bad_wr: the first bad WR is put here 2202 * 2203 * This may be called from interrupt context. 2204 * 2205 * Return: 0 on success else errno 2206 */ 2207 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2208 const struct ib_send_wr **bad_wr) 2209 { 2210 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2211 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2212 unsigned long flags = 0; 2213 bool call_send; 2214 unsigned nreq = 0; 2215 int err = 0; 2216 2217 spin_lock_irqsave(&qp->s_hlock, flags); 2218 2219 /* 2220 * Ensure QP state is such that we can send. If not bail out early, 2221 * there is no need to do this every time we post a send. 2222 */ 2223 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2224 spin_unlock_irqrestore(&qp->s_hlock, flags); 2225 return -EINVAL; 2226 } 2227 2228 /* 2229 * If the send queue is empty, and we only have a single WR then just go 2230 * ahead and kick the send engine into gear. Otherwise we will always 2231 * just schedule the send to happen later. 2232 */ 2233 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2234 2235 for (; wr; wr = wr->next) { 2236 err = rvt_post_one_wr(qp, wr, &call_send); 2237 if (unlikely(err)) { 2238 *bad_wr = wr; 2239 goto bail; 2240 } 2241 nreq++; 2242 } 2243 bail: 2244 spin_unlock_irqrestore(&qp->s_hlock, flags); 2245 if (nreq) { 2246 /* 2247 * Only call do_send if there is exactly one packet, and the 2248 * driver said it was ok. 2249 */ 2250 if (nreq == 1 && call_send) 2251 rdi->driver_f.do_send(qp); 2252 else 2253 rdi->driver_f.schedule_send_no_lock(qp); 2254 } 2255 return err; 2256 } 2257 2258 /** 2259 * rvt_post_srq_recv - post a receive on a shared receive queue 2260 * @ibsrq: the SRQ to post the receive on 2261 * @wr: the list of work requests to post 2262 * @bad_wr: A pointer to the first WR to cause a problem is put here 2263 * 2264 * This may be called from interrupt context. 2265 * 2266 * Return: 0 on success else errno 2267 */ 2268 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2269 const struct ib_recv_wr **bad_wr) 2270 { 2271 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2272 struct rvt_krwq *wq; 2273 unsigned long flags; 2274 2275 for (; wr; wr = wr->next) { 2276 struct rvt_rwqe *wqe; 2277 u32 next; 2278 int i; 2279 2280 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2281 *bad_wr = wr; 2282 return -EINVAL; 2283 } 2284 2285 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags); 2286 wq = srq->rq.kwq; 2287 next = wq->head + 1; 2288 if (next >= srq->rq.size) 2289 next = 0; 2290 if (next == READ_ONCE(wq->tail)) { 2291 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2292 *bad_wr = wr; 2293 return -ENOMEM; 2294 } 2295 2296 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2297 wqe->wr_id = wr->wr_id; 2298 wqe->num_sge = wr->num_sge; 2299 for (i = 0; i < wr->num_sge; i++) { 2300 wqe->sg_list[i].addr = wr->sg_list[i].addr; 2301 wqe->sg_list[i].length = wr->sg_list[i].length; 2302 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 2303 } 2304 /* Make sure queue entry is written before the head index. */ 2305 smp_store_release(&wq->head, next); 2306 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2307 } 2308 return 0; 2309 } 2310 2311 /* 2312 * rvt used the internal kernel struct as part of its ABI, for now make sure 2313 * the kernel struct does not change layout. FIXME: rvt should never cast the 2314 * user struct to a kernel struct. 2315 */ 2316 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge) 2317 { 2318 BUILD_BUG_ON(offsetof(struct ib_sge, addr) != 2319 offsetof(struct rvt_wqe_sge, addr)); 2320 BUILD_BUG_ON(offsetof(struct ib_sge, length) != 2321 offsetof(struct rvt_wqe_sge, length)); 2322 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) != 2323 offsetof(struct rvt_wqe_sge, lkey)); 2324 return (struct ib_sge *)sge; 2325 } 2326 2327 /* 2328 * Validate a RWQE and fill in the SGE state. 2329 * Return 1 if OK. 2330 */ 2331 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2332 { 2333 int i, j, ret; 2334 struct ib_wc wc; 2335 struct rvt_lkey_table *rkt; 2336 struct rvt_pd *pd; 2337 struct rvt_sge_state *ss; 2338 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2339 2340 rkt = &rdi->lkey_table; 2341 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2342 ss = &qp->r_sge; 2343 ss->sg_list = qp->r_sg_list; 2344 qp->r_len = 0; 2345 for (i = j = 0; i < wqe->num_sge; i++) { 2346 if (wqe->sg_list[i].length == 0) 2347 continue; 2348 /* Check LKEY */ 2349 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2350 NULL, rvt_cast_sge(&wqe->sg_list[i]), 2351 IB_ACCESS_LOCAL_WRITE); 2352 if (unlikely(ret <= 0)) 2353 goto bad_lkey; 2354 qp->r_len += wqe->sg_list[i].length; 2355 j++; 2356 } 2357 ss->num_sge = j; 2358 ss->total_len = qp->r_len; 2359 return 1; 2360 2361 bad_lkey: 2362 while (j) { 2363 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2364 2365 rvt_put_mr(sge->mr); 2366 } 2367 ss->num_sge = 0; 2368 memset(&wc, 0, sizeof(wc)); 2369 wc.wr_id = wqe->wr_id; 2370 wc.status = IB_WC_LOC_PROT_ERR; 2371 wc.opcode = IB_WC_RECV; 2372 wc.qp = &qp->ibqp; 2373 /* Signal solicited completion event. */ 2374 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2375 return 0; 2376 } 2377 2378 /** 2379 * get_rvt_head - get head indices of the circular buffer 2380 * @rq: data structure for request queue entry 2381 * @ip: the QP 2382 * 2383 * Return - head index value 2384 */ 2385 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip) 2386 { 2387 u32 head; 2388 2389 if (ip) 2390 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head); 2391 else 2392 head = rq->kwq->head; 2393 2394 return head; 2395 } 2396 2397 /** 2398 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2399 * @qp: the QP 2400 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2401 * 2402 * Return -1 if there is a local error, 0 if no RWQE is available, 2403 * otherwise return 1. 2404 * 2405 * Can be called from interrupt level. 2406 */ 2407 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2408 { 2409 unsigned long flags; 2410 struct rvt_rq *rq; 2411 struct rvt_krwq *kwq = NULL; 2412 struct rvt_rwq *wq; 2413 struct rvt_srq *srq; 2414 struct rvt_rwqe *wqe; 2415 void (*handler)(struct ib_event *, void *); 2416 u32 tail; 2417 u32 head; 2418 int ret; 2419 void *ip = NULL; 2420 2421 if (qp->ibqp.srq) { 2422 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2423 handler = srq->ibsrq.event_handler; 2424 rq = &srq->rq; 2425 ip = srq->ip; 2426 } else { 2427 srq = NULL; 2428 handler = NULL; 2429 rq = &qp->r_rq; 2430 ip = qp->ip; 2431 } 2432 2433 spin_lock_irqsave(&rq->kwq->c_lock, flags); 2434 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2435 ret = 0; 2436 goto unlock; 2437 } 2438 kwq = rq->kwq; 2439 if (ip) { 2440 wq = rq->wq; 2441 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 2442 } else { 2443 tail = kwq->tail; 2444 } 2445 2446 /* Validate tail before using it since it is user writable. */ 2447 if (tail >= rq->size) 2448 tail = 0; 2449 2450 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) { 2451 head = get_rvt_head(rq, ip); 2452 kwq->count = rvt_get_rq_count(rq, head, tail); 2453 } 2454 if (unlikely(kwq->count == 0)) { 2455 ret = 0; 2456 goto unlock; 2457 } 2458 /* Make sure entry is read after the count is read. */ 2459 smp_rmb(); 2460 wqe = rvt_get_rwqe_ptr(rq, tail); 2461 /* 2462 * Even though we update the tail index in memory, the verbs 2463 * consumer is not supposed to post more entries until a 2464 * completion is generated. 2465 */ 2466 if (++tail >= rq->size) 2467 tail = 0; 2468 if (ip) 2469 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 2470 else 2471 kwq->tail = tail; 2472 if (!wr_id_only && !init_sge(qp, wqe)) { 2473 ret = -1; 2474 goto unlock; 2475 } 2476 qp->r_wr_id = wqe->wr_id; 2477 2478 kwq->count--; 2479 ret = 1; 2480 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2481 if (handler) { 2482 /* 2483 * Validate head pointer value and compute 2484 * the number of remaining WQEs. 2485 */ 2486 if (kwq->count < srq->limit) { 2487 kwq->count = 2488 rvt_get_rq_count(rq, 2489 get_rvt_head(rq, ip), tail); 2490 if (kwq->count < srq->limit) { 2491 struct ib_event ev; 2492 2493 srq->limit = 0; 2494 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2495 ev.device = qp->ibqp.device; 2496 ev.element.srq = qp->ibqp.srq; 2497 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2498 handler(&ev, srq->ibsrq.srq_context); 2499 goto bail; 2500 } 2501 } 2502 } 2503 unlock: 2504 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2505 bail: 2506 return ret; 2507 } 2508 EXPORT_SYMBOL(rvt_get_rwqe); 2509 2510 /** 2511 * rvt_comm_est - handle trap with QP established 2512 * @qp: the QP 2513 */ 2514 void rvt_comm_est(struct rvt_qp *qp) 2515 { 2516 qp->r_flags |= RVT_R_COMM_EST; 2517 if (qp->ibqp.event_handler) { 2518 struct ib_event ev; 2519 2520 ev.device = qp->ibqp.device; 2521 ev.element.qp = &qp->ibqp; 2522 ev.event = IB_EVENT_COMM_EST; 2523 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2524 } 2525 } 2526 EXPORT_SYMBOL(rvt_comm_est); 2527 2528 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2529 { 2530 unsigned long flags; 2531 int lastwqe; 2532 2533 spin_lock_irqsave(&qp->s_lock, flags); 2534 lastwqe = rvt_error_qp(qp, err); 2535 spin_unlock_irqrestore(&qp->s_lock, flags); 2536 2537 if (lastwqe) { 2538 struct ib_event ev; 2539 2540 ev.device = qp->ibqp.device; 2541 ev.element.qp = &qp->ibqp; 2542 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2543 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2544 } 2545 } 2546 EXPORT_SYMBOL(rvt_rc_error); 2547 2548 /* 2549 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2550 * @index - the index 2551 * return usec from an index into ib_rvt_rnr_table 2552 */ 2553 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2554 { 2555 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2556 } 2557 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2558 2559 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2560 { 2561 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2562 IB_AETH_CREDIT_MASK]; 2563 } 2564 2565 /* 2566 * rvt_add_retry_timer_ext - add/start a retry timer 2567 * @qp - the QP 2568 * @shift - timeout shift to wait for multiple packets 2569 * add a retry timer on the QP 2570 */ 2571 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) 2572 { 2573 struct ib_qp *ibqp = &qp->ibqp; 2574 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2575 2576 lockdep_assert_held(&qp->s_lock); 2577 qp->s_flags |= RVT_S_TIMER; 2578 /* 4.096 usec. * (1 << qp->timeout) */ 2579 qp->s_timer.expires = jiffies + rdi->busy_jiffies + 2580 (qp->timeout_jiffies << shift); 2581 add_timer(&qp->s_timer); 2582 } 2583 EXPORT_SYMBOL(rvt_add_retry_timer_ext); 2584 2585 /** 2586 * rvt_add_rnr_timer - add/start an rnr timer on the QP 2587 * @qp: the QP 2588 * @aeth: aeth of RNR timeout, simulated aeth for loopback 2589 */ 2590 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2591 { 2592 u32 to; 2593 2594 lockdep_assert_held(&qp->s_lock); 2595 qp->s_flags |= RVT_S_WAIT_RNR; 2596 to = rvt_aeth_to_usec(aeth); 2597 trace_rvt_rnrnak_add(qp, to); 2598 hrtimer_start(&qp->s_rnr_timer, 2599 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2600 } 2601 EXPORT_SYMBOL(rvt_add_rnr_timer); 2602 2603 /** 2604 * rvt_stop_rc_timers - stop all timers 2605 * @qp: the QP 2606 * stop any pending timers 2607 */ 2608 void rvt_stop_rc_timers(struct rvt_qp *qp) 2609 { 2610 lockdep_assert_held(&qp->s_lock); 2611 /* Remove QP from all timers */ 2612 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2613 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2614 del_timer(&qp->s_timer); 2615 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2616 } 2617 } 2618 EXPORT_SYMBOL(rvt_stop_rc_timers); 2619 2620 /** 2621 * rvt_stop_rnr_timer - stop an rnr timer 2622 * @qp: the QP 2623 * 2624 * stop an rnr timer and return if the timer 2625 * had been pending. 2626 */ 2627 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2628 { 2629 lockdep_assert_held(&qp->s_lock); 2630 /* Remove QP from rnr timer */ 2631 if (qp->s_flags & RVT_S_WAIT_RNR) { 2632 qp->s_flags &= ~RVT_S_WAIT_RNR; 2633 trace_rvt_rnrnak_stop(qp, 0); 2634 } 2635 } 2636 2637 /** 2638 * rvt_del_timers_sync - wait for any timeout routines to exit 2639 * @qp: the QP 2640 */ 2641 void rvt_del_timers_sync(struct rvt_qp *qp) 2642 { 2643 del_timer_sync(&qp->s_timer); 2644 hrtimer_cancel(&qp->s_rnr_timer); 2645 } 2646 EXPORT_SYMBOL(rvt_del_timers_sync); 2647 2648 /* 2649 * This is called from s_timer for missing responses. 2650 */ 2651 static void rvt_rc_timeout(struct timer_list *t) 2652 { 2653 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2654 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2655 unsigned long flags; 2656 2657 spin_lock_irqsave(&qp->r_lock, flags); 2658 spin_lock(&qp->s_lock); 2659 if (qp->s_flags & RVT_S_TIMER) { 2660 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2661 2662 qp->s_flags &= ~RVT_S_TIMER; 2663 rvp->n_rc_timeouts++; 2664 del_timer(&qp->s_timer); 2665 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2666 if (rdi->driver_f.notify_restart_rc) 2667 rdi->driver_f.notify_restart_rc(qp, 2668 qp->s_last_psn + 1, 2669 1); 2670 rdi->driver_f.schedule_send(qp); 2671 } 2672 spin_unlock(&qp->s_lock); 2673 spin_unlock_irqrestore(&qp->r_lock, flags); 2674 } 2675 2676 /* 2677 * This is called from s_timer for RNR timeouts. 2678 */ 2679 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2680 { 2681 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2682 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2683 unsigned long flags; 2684 2685 spin_lock_irqsave(&qp->s_lock, flags); 2686 rvt_stop_rnr_timer(qp); 2687 trace_rvt_rnrnak_timeout(qp, 0); 2688 rdi->driver_f.schedule_send(qp); 2689 spin_unlock_irqrestore(&qp->s_lock, flags); 2690 return HRTIMER_NORESTART; 2691 } 2692 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2693 2694 /** 2695 * rvt_qp_iter_init - initial for QP iteration 2696 * @rdi: rvt devinfo 2697 * @v: u64 value 2698 * @cb: user-defined callback 2699 * 2700 * This returns an iterator suitable for iterating QPs 2701 * in the system. 2702 * 2703 * The @cb is a user-defined callback and @v is a 64-bit 2704 * value passed to and relevant for processing in the 2705 * @cb. An example use case would be to alter QP processing 2706 * based on criteria not part of the rvt_qp. 2707 * 2708 * Use cases that require memory allocation to succeed 2709 * must preallocate appropriately. 2710 * 2711 * Return: a pointer to an rvt_qp_iter or NULL 2712 */ 2713 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2714 u64 v, 2715 void (*cb)(struct rvt_qp *qp, u64 v)) 2716 { 2717 struct rvt_qp_iter *i; 2718 2719 i = kzalloc(sizeof(*i), GFP_KERNEL); 2720 if (!i) 2721 return NULL; 2722 2723 i->rdi = rdi; 2724 /* number of special QPs (SMI/GSI) for device */ 2725 i->specials = rdi->ibdev.phys_port_cnt * 2; 2726 i->v = v; 2727 i->cb = cb; 2728 2729 return i; 2730 } 2731 EXPORT_SYMBOL(rvt_qp_iter_init); 2732 2733 /** 2734 * rvt_qp_iter_next - return the next QP in iter 2735 * @iter: the iterator 2736 * 2737 * Fine grained QP iterator suitable for use 2738 * with debugfs seq_file mechanisms. 2739 * 2740 * Updates iter->qp with the current QP when the return 2741 * value is 0. 2742 * 2743 * Return: 0 - iter->qp is valid 1 - no more QPs 2744 */ 2745 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2746 __must_hold(RCU) 2747 { 2748 int n = iter->n; 2749 int ret = 1; 2750 struct rvt_qp *pqp = iter->qp; 2751 struct rvt_qp *qp; 2752 struct rvt_dev_info *rdi = iter->rdi; 2753 2754 /* 2755 * The approach is to consider the special qps 2756 * as additional table entries before the 2757 * real hash table. Since the qp code sets 2758 * the qp->next hash link to NULL, this works just fine. 2759 * 2760 * iter->specials is 2 * # ports 2761 * 2762 * n = 0..iter->specials is the special qp indices 2763 * 2764 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2765 * the potential hash bucket entries 2766 * 2767 */ 2768 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2769 if (pqp) { 2770 qp = rcu_dereference(pqp->next); 2771 } else { 2772 if (n < iter->specials) { 2773 struct rvt_ibport *rvp; 2774 int pidx; 2775 2776 pidx = n % rdi->ibdev.phys_port_cnt; 2777 rvp = rdi->ports[pidx]; 2778 qp = rcu_dereference(rvp->qp[n & 1]); 2779 } else { 2780 qp = rcu_dereference( 2781 rdi->qp_dev->qp_table[ 2782 (n - iter->specials)]); 2783 } 2784 } 2785 pqp = qp; 2786 if (qp) { 2787 iter->qp = qp; 2788 iter->n = n; 2789 return 0; 2790 } 2791 } 2792 return ret; 2793 } 2794 EXPORT_SYMBOL(rvt_qp_iter_next); 2795 2796 /** 2797 * rvt_qp_iter - iterate all QPs 2798 * @rdi: rvt devinfo 2799 * @v: a 64-bit value 2800 * @cb: a callback 2801 * 2802 * This provides a way for iterating all QPs. 2803 * 2804 * The @cb is a user-defined callback and @v is a 64-bit 2805 * value passed to and relevant for processing in the 2806 * cb. An example use case would be to alter QP processing 2807 * based on criteria not part of the rvt_qp. 2808 * 2809 * The code has an internal iterator to simplify 2810 * non seq_file use cases. 2811 */ 2812 void rvt_qp_iter(struct rvt_dev_info *rdi, 2813 u64 v, 2814 void (*cb)(struct rvt_qp *qp, u64 v)) 2815 { 2816 int ret; 2817 struct rvt_qp_iter i = { 2818 .rdi = rdi, 2819 .specials = rdi->ibdev.phys_port_cnt * 2, 2820 .v = v, 2821 .cb = cb 2822 }; 2823 2824 rcu_read_lock(); 2825 do { 2826 ret = rvt_qp_iter_next(&i); 2827 if (!ret) { 2828 rvt_get_qp(i.qp); 2829 rcu_read_unlock(); 2830 i.cb(i.qp, i.v); 2831 rcu_read_lock(); 2832 rvt_put_qp(i.qp); 2833 } 2834 } while (!ret); 2835 rcu_read_unlock(); 2836 } 2837 EXPORT_SYMBOL(rvt_qp_iter); 2838 2839 /* 2840 * This should be called with s_lock held. 2841 */ 2842 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2843 enum ib_wc_status status) 2844 { 2845 u32 old_last, last; 2846 struct rvt_dev_info *rdi; 2847 2848 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2849 return; 2850 rdi = ib_to_rvt(qp->ibqp.device); 2851 2852 old_last = qp->s_last; 2853 trace_rvt_qp_send_completion(qp, wqe, old_last); 2854 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode], 2855 status); 2856 if (qp->s_acked == old_last) 2857 qp->s_acked = last; 2858 if (qp->s_cur == old_last) 2859 qp->s_cur = last; 2860 if (qp->s_tail == old_last) 2861 qp->s_tail = last; 2862 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2863 qp->s_draining = 0; 2864 } 2865 EXPORT_SYMBOL(rvt_send_complete); 2866 2867 /** 2868 * rvt_copy_sge - copy data to SGE memory 2869 * @qp: associated QP 2870 * @ss: the SGE state 2871 * @data: the data to copy 2872 * @length: the length of the data 2873 * @release: boolean to release MR 2874 * @copy_last: do a separate copy of the last 8 bytes 2875 */ 2876 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2877 void *data, u32 length, 2878 bool release, bool copy_last) 2879 { 2880 struct rvt_sge *sge = &ss->sge; 2881 int i; 2882 bool in_last = false; 2883 bool cacheless_copy = false; 2884 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2885 struct rvt_wss *wss = rdi->wss; 2886 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2887 2888 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2889 cacheless_copy = length >= PAGE_SIZE; 2890 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2891 if (length >= PAGE_SIZE) { 2892 /* 2893 * NOTE: this *assumes*: 2894 * o The first vaddr is the dest. 2895 * o If multiple pages, then vaddr is sequential. 2896 */ 2897 wss_insert(wss, sge->vaddr); 2898 if (length >= (2 * PAGE_SIZE)) 2899 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2900 2901 cacheless_copy = wss_exceeds_threshold(wss); 2902 } else { 2903 wss_advance_clean_counter(wss); 2904 } 2905 } 2906 2907 if (copy_last) { 2908 if (length > 8) { 2909 length -= 8; 2910 } else { 2911 copy_last = false; 2912 in_last = true; 2913 } 2914 } 2915 2916 again: 2917 while (length) { 2918 u32 len = rvt_get_sge_length(sge, length); 2919 2920 WARN_ON_ONCE(len == 0); 2921 if (unlikely(in_last)) { 2922 /* enforce byte transfer ordering */ 2923 for (i = 0; i < len; i++) 2924 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2925 } else if (cacheless_copy) { 2926 cacheless_memcpy(sge->vaddr, data, len); 2927 } else { 2928 memcpy(sge->vaddr, data, len); 2929 } 2930 rvt_update_sge(ss, len, release); 2931 data += len; 2932 length -= len; 2933 } 2934 2935 if (copy_last) { 2936 copy_last = false; 2937 in_last = true; 2938 length = 8; 2939 goto again; 2940 } 2941 } 2942 EXPORT_SYMBOL(rvt_copy_sge); 2943 2944 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, 2945 struct rvt_qp *sqp) 2946 { 2947 rvp->n_pkt_drops++; 2948 /* 2949 * For RC, the requester would timeout and retry so 2950 * shortcut the timeouts and just signal too many retries. 2951 */ 2952 return sqp->ibqp.qp_type == IB_QPT_RC ? 2953 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; 2954 } 2955 2956 /** 2957 * rvt_ruc_loopback - handle UC and RC loopback requests 2958 * @sqp: the sending QP 2959 * 2960 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2961 * Note that although we are single threaded due to the send engine, we still 2962 * have to protect against post_send(). We don't have to worry about 2963 * receive interrupts since this is a connected protocol and all packets 2964 * will pass through here. 2965 */ 2966 void rvt_ruc_loopback(struct rvt_qp *sqp) 2967 { 2968 struct rvt_ibport *rvp = NULL; 2969 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2970 struct rvt_qp *qp; 2971 struct rvt_swqe *wqe; 2972 struct rvt_sge *sge; 2973 unsigned long flags; 2974 struct ib_wc wc; 2975 u64 sdata; 2976 atomic64_t *maddr; 2977 enum ib_wc_status send_status; 2978 bool release; 2979 int ret; 2980 bool copy_last = false; 2981 int local_ops = 0; 2982 2983 rcu_read_lock(); 2984 rvp = rdi->ports[sqp->port_num - 1]; 2985 2986 /* 2987 * Note that we check the responder QP state after 2988 * checking the requester's state. 2989 */ 2990 2991 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2992 sqp->remote_qpn); 2993 2994 spin_lock_irqsave(&sqp->s_lock, flags); 2995 2996 /* Return if we are already busy processing a work request. */ 2997 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2998 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2999 goto unlock; 3000 3001 sqp->s_flags |= RVT_S_BUSY; 3002 3003 again: 3004 if (sqp->s_last == READ_ONCE(sqp->s_head)) 3005 goto clr_busy; 3006 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 3007 3008 /* Return if it is not OK to start a new work request. */ 3009 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 3010 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 3011 goto clr_busy; 3012 /* We are in the error state, flush the work request. */ 3013 send_status = IB_WC_WR_FLUSH_ERR; 3014 goto flush_send; 3015 } 3016 3017 /* 3018 * We can rely on the entry not changing without the s_lock 3019 * being held until we update s_last. 3020 * We increment s_cur to indicate s_last is in progress. 3021 */ 3022 if (sqp->s_last == sqp->s_cur) { 3023 if (++sqp->s_cur >= sqp->s_size) 3024 sqp->s_cur = 0; 3025 } 3026 spin_unlock_irqrestore(&sqp->s_lock, flags); 3027 3028 if (!qp) { 3029 send_status = loopback_qp_drop(rvp, sqp); 3030 goto serr_no_r_lock; 3031 } 3032 spin_lock_irqsave(&qp->r_lock, flags); 3033 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 3034 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 3035 send_status = loopback_qp_drop(rvp, sqp); 3036 goto serr; 3037 } 3038 3039 memset(&wc, 0, sizeof(wc)); 3040 send_status = IB_WC_SUCCESS; 3041 3042 release = true; 3043 sqp->s_sge.sge = wqe->sg_list[0]; 3044 sqp->s_sge.sg_list = wqe->sg_list + 1; 3045 sqp->s_sge.num_sge = wqe->wr.num_sge; 3046 sqp->s_len = wqe->length; 3047 switch (wqe->wr.opcode) { 3048 case IB_WR_REG_MR: 3049 goto send_comp; 3050 3051 case IB_WR_LOCAL_INV: 3052 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 3053 if (rvt_invalidate_rkey(sqp, 3054 wqe->wr.ex.invalidate_rkey)) 3055 send_status = IB_WC_LOC_PROT_ERR; 3056 local_ops = 1; 3057 } 3058 goto send_comp; 3059 3060 case IB_WR_SEND_WITH_INV: 3061 case IB_WR_SEND_WITH_IMM: 3062 case IB_WR_SEND: 3063 ret = rvt_get_rwqe(qp, false); 3064 if (ret < 0) 3065 goto op_err; 3066 if (!ret) 3067 goto rnr_nak; 3068 if (wqe->length > qp->r_len) 3069 goto inv_err; 3070 switch (wqe->wr.opcode) { 3071 case IB_WR_SEND_WITH_INV: 3072 if (!rvt_invalidate_rkey(qp, 3073 wqe->wr.ex.invalidate_rkey)) { 3074 wc.wc_flags = IB_WC_WITH_INVALIDATE; 3075 wc.ex.invalidate_rkey = 3076 wqe->wr.ex.invalidate_rkey; 3077 } 3078 break; 3079 case IB_WR_SEND_WITH_IMM: 3080 wc.wc_flags = IB_WC_WITH_IMM; 3081 wc.ex.imm_data = wqe->wr.ex.imm_data; 3082 break; 3083 default: 3084 break; 3085 } 3086 break; 3087 3088 case IB_WR_RDMA_WRITE_WITH_IMM: 3089 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3090 goto inv_err; 3091 wc.wc_flags = IB_WC_WITH_IMM; 3092 wc.ex.imm_data = wqe->wr.ex.imm_data; 3093 ret = rvt_get_rwqe(qp, true); 3094 if (ret < 0) 3095 goto op_err; 3096 if (!ret) 3097 goto rnr_nak; 3098 /* skip copy_last set and qp_access_flags recheck */ 3099 goto do_write; 3100 case IB_WR_RDMA_WRITE: 3101 copy_last = rvt_is_user_qp(qp); 3102 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3103 goto inv_err; 3104 do_write: 3105 if (wqe->length == 0) 3106 break; 3107 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 3108 wqe->rdma_wr.remote_addr, 3109 wqe->rdma_wr.rkey, 3110 IB_ACCESS_REMOTE_WRITE))) 3111 goto acc_err; 3112 qp->r_sge.sg_list = NULL; 3113 qp->r_sge.num_sge = 1; 3114 qp->r_sge.total_len = wqe->length; 3115 break; 3116 3117 case IB_WR_RDMA_READ: 3118 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 3119 goto inv_err; 3120 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 3121 wqe->rdma_wr.remote_addr, 3122 wqe->rdma_wr.rkey, 3123 IB_ACCESS_REMOTE_READ))) 3124 goto acc_err; 3125 release = false; 3126 sqp->s_sge.sg_list = NULL; 3127 sqp->s_sge.num_sge = 1; 3128 qp->r_sge.sge = wqe->sg_list[0]; 3129 qp->r_sge.sg_list = wqe->sg_list + 1; 3130 qp->r_sge.num_sge = wqe->wr.num_sge; 3131 qp->r_sge.total_len = wqe->length; 3132 break; 3133 3134 case IB_WR_ATOMIC_CMP_AND_SWP: 3135 case IB_WR_ATOMIC_FETCH_AND_ADD: 3136 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 3137 goto inv_err; 3138 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 3139 wqe->atomic_wr.remote_addr, 3140 wqe->atomic_wr.rkey, 3141 IB_ACCESS_REMOTE_ATOMIC))) 3142 goto acc_err; 3143 /* Perform atomic OP and save result. */ 3144 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 3145 sdata = wqe->atomic_wr.compare_add; 3146 *(u64 *)sqp->s_sge.sge.vaddr = 3147 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 3148 (u64)atomic64_add_return(sdata, maddr) - sdata : 3149 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 3150 sdata, wqe->atomic_wr.swap); 3151 rvt_put_mr(qp->r_sge.sge.mr); 3152 qp->r_sge.num_sge = 0; 3153 goto send_comp; 3154 3155 default: 3156 send_status = IB_WC_LOC_QP_OP_ERR; 3157 goto serr; 3158 } 3159 3160 sge = &sqp->s_sge.sge; 3161 while (sqp->s_len) { 3162 u32 len = rvt_get_sge_length(sge, sqp->s_len); 3163 3164 WARN_ON_ONCE(len == 0); 3165 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 3166 len, release, copy_last); 3167 rvt_update_sge(&sqp->s_sge, len, !release); 3168 sqp->s_len -= len; 3169 } 3170 if (release) 3171 rvt_put_ss(&qp->r_sge); 3172 3173 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3174 goto send_comp; 3175 3176 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3177 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3178 else 3179 wc.opcode = IB_WC_RECV; 3180 wc.wr_id = qp->r_wr_id; 3181 wc.status = IB_WC_SUCCESS; 3182 wc.byte_len = wqe->length; 3183 wc.qp = &qp->ibqp; 3184 wc.src_qp = qp->remote_qpn; 3185 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3186 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3187 wc.port_num = 1; 3188 /* Signal completion event if the solicited bit is set. */ 3189 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED); 3190 3191 send_comp: 3192 spin_unlock_irqrestore(&qp->r_lock, flags); 3193 spin_lock_irqsave(&sqp->s_lock, flags); 3194 rvp->n_loop_pkts++; 3195 flush_send: 3196 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3197 rvt_send_complete(sqp, wqe, send_status); 3198 if (local_ops) { 3199 atomic_dec(&sqp->local_ops_pending); 3200 local_ops = 0; 3201 } 3202 goto again; 3203 3204 rnr_nak: 3205 /* Handle RNR NAK */ 3206 if (qp->ibqp.qp_type == IB_QPT_UC) 3207 goto send_comp; 3208 rvp->n_rnr_naks++; 3209 /* 3210 * Note: we don't need the s_lock held since the BUSY flag 3211 * makes this single threaded. 3212 */ 3213 if (sqp->s_rnr_retry == 0) { 3214 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3215 goto serr; 3216 } 3217 if (sqp->s_rnr_retry_cnt < 7) 3218 sqp->s_rnr_retry--; 3219 spin_unlock_irqrestore(&qp->r_lock, flags); 3220 spin_lock_irqsave(&sqp->s_lock, flags); 3221 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3222 goto clr_busy; 3223 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3224 IB_AETH_CREDIT_SHIFT); 3225 goto clr_busy; 3226 3227 op_err: 3228 send_status = IB_WC_REM_OP_ERR; 3229 wc.status = IB_WC_LOC_QP_OP_ERR; 3230 goto err; 3231 3232 inv_err: 3233 send_status = 3234 sqp->ibqp.qp_type == IB_QPT_RC ? 3235 IB_WC_REM_INV_REQ_ERR : 3236 IB_WC_SUCCESS; 3237 wc.status = IB_WC_LOC_QP_OP_ERR; 3238 goto err; 3239 3240 acc_err: 3241 send_status = IB_WC_REM_ACCESS_ERR; 3242 wc.status = IB_WC_LOC_PROT_ERR; 3243 err: 3244 /* responder goes to error state */ 3245 rvt_rc_error(qp, wc.status); 3246 3247 serr: 3248 spin_unlock_irqrestore(&qp->r_lock, flags); 3249 serr_no_r_lock: 3250 spin_lock_irqsave(&sqp->s_lock, flags); 3251 rvt_send_complete(sqp, wqe, send_status); 3252 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3253 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3254 3255 sqp->s_flags &= ~RVT_S_BUSY; 3256 spin_unlock_irqrestore(&sqp->s_lock, flags); 3257 if (lastwqe) { 3258 struct ib_event ev; 3259 3260 ev.device = sqp->ibqp.device; 3261 ev.element.qp = &sqp->ibqp; 3262 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3263 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3264 } 3265 goto done; 3266 } 3267 clr_busy: 3268 sqp->s_flags &= ~RVT_S_BUSY; 3269 unlock: 3270 spin_unlock_irqrestore(&sqp->s_lock, flags); 3271 done: 3272 rcu_read_unlock(); 3273 } 3274 EXPORT_SYMBOL(rvt_ruc_loopback); 3275