1 /* 2 * Copyright(c) 2016, 2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include <rdma/opa_addr.h> 56 #include "qp.h" 57 #include "vt.h" 58 #include "trace.h" 59 60 static void rvt_rc_timeout(struct timer_list *t); 61 62 /* 63 * Convert the AETH RNR timeout code into the number of microseconds. 64 */ 65 static const u32 ib_rvt_rnr_table[32] = { 66 655360, /* 00: 655.36 */ 67 10, /* 01: .01 */ 68 20, /* 02 .02 */ 69 30, /* 03: .03 */ 70 40, /* 04: .04 */ 71 60, /* 05: .06 */ 72 80, /* 06: .08 */ 73 120, /* 07: .12 */ 74 160, /* 08: .16 */ 75 240, /* 09: .24 */ 76 320, /* 0A: .32 */ 77 480, /* 0B: .48 */ 78 640, /* 0C: .64 */ 79 960, /* 0D: .96 */ 80 1280, /* 0E: 1.28 */ 81 1920, /* 0F: 1.92 */ 82 2560, /* 10: 2.56 */ 83 3840, /* 11: 3.84 */ 84 5120, /* 12: 5.12 */ 85 7680, /* 13: 7.68 */ 86 10240, /* 14: 10.24 */ 87 15360, /* 15: 15.36 */ 88 20480, /* 16: 20.48 */ 89 30720, /* 17: 30.72 */ 90 40960, /* 18: 40.96 */ 91 61440, /* 19: 61.44 */ 92 81920, /* 1A: 81.92 */ 93 122880, /* 1B: 122.88 */ 94 163840, /* 1C: 163.84 */ 95 245760, /* 1D: 245.76 */ 96 327680, /* 1E: 327.68 */ 97 491520 /* 1F: 491.52 */ 98 }; 99 100 /* 101 * Note that it is OK to post send work requests in the SQE and ERR 102 * states; rvt_do_send() will process them and generate error 103 * completions as per IB 1.2 C10-96. 104 */ 105 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 106 [IB_QPS_RESET] = 0, 107 [IB_QPS_INIT] = RVT_POST_RECV_OK, 108 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 109 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 110 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 111 RVT_PROCESS_NEXT_SEND_OK, 112 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 113 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 114 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 115 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 116 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 117 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 118 }; 119 EXPORT_SYMBOL(ib_rvt_state_ops); 120 121 /* platform specific: return the last level cache (llc) size, in KiB */ 122 static int rvt_wss_llc_size(void) 123 { 124 /* assume that the boot CPU value is universal for all CPUs */ 125 return boot_cpu_data.x86_cache_size; 126 } 127 128 /* platform specific: cacheless copy */ 129 static void cacheless_memcpy(void *dst, void *src, size_t n) 130 { 131 /* 132 * Use the only available X64 cacheless copy. Add a __user cast 133 * to quiet sparse. The src agument is already in the kernel so 134 * there are no security issues. The extra fault recovery machinery 135 * is not invoked. 136 */ 137 __copy_user_nocache(dst, (void __user *)src, n, 0); 138 } 139 140 void rvt_wss_exit(struct rvt_dev_info *rdi) 141 { 142 struct rvt_wss *wss = rdi->wss; 143 144 if (!wss) 145 return; 146 147 /* coded to handle partially initialized and repeat callers */ 148 kfree(wss->entries); 149 wss->entries = NULL; 150 kfree(rdi->wss); 151 rdi->wss = NULL; 152 } 153 154 /** 155 * rvt_wss_init - Init wss data structures 156 * 157 * Return: 0 on success 158 */ 159 int rvt_wss_init(struct rvt_dev_info *rdi) 160 { 161 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 162 unsigned int wss_threshold = rdi->dparms.wss_threshold; 163 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 164 long llc_size; 165 long llc_bits; 166 long table_size; 167 long table_bits; 168 struct rvt_wss *wss; 169 int node = rdi->dparms.node; 170 171 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 172 rdi->wss = NULL; 173 return 0; 174 } 175 176 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 177 if (!rdi->wss) 178 return -ENOMEM; 179 wss = rdi->wss; 180 181 /* check for a valid percent range - default to 80 if none or invalid */ 182 if (wss_threshold < 1 || wss_threshold > 100) 183 wss_threshold = 80; 184 185 /* reject a wildly large period */ 186 if (wss_clean_period > 1000000) 187 wss_clean_period = 256; 188 189 /* reject a zero period */ 190 if (wss_clean_period == 0) 191 wss_clean_period = 1; 192 193 /* 194 * Calculate the table size - the next power of 2 larger than the 195 * LLC size. LLC size is in KiB. 196 */ 197 llc_size = rvt_wss_llc_size() * 1024; 198 table_size = roundup_pow_of_two(llc_size); 199 200 /* one bit per page in rounded up table */ 201 llc_bits = llc_size / PAGE_SIZE; 202 table_bits = table_size / PAGE_SIZE; 203 wss->pages_mask = table_bits - 1; 204 wss->num_entries = table_bits / BITS_PER_LONG; 205 206 wss->threshold = (llc_bits * wss_threshold) / 100; 207 if (wss->threshold == 0) 208 wss->threshold = 1; 209 210 wss->clean_period = wss_clean_period; 211 atomic_set(&wss->clean_counter, wss_clean_period); 212 213 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 214 GFP_KERNEL, node); 215 if (!wss->entries) { 216 rvt_wss_exit(rdi); 217 return -ENOMEM; 218 } 219 220 return 0; 221 } 222 223 /* 224 * Advance the clean counter. When the clean period has expired, 225 * clean an entry. 226 * 227 * This is implemented in atomics to avoid locking. Because multiple 228 * variables are involved, it can be racy which can lead to slightly 229 * inaccurate information. Since this is only a heuristic, this is 230 * OK. Any innaccuracies will clean themselves out as the counter 231 * advances. That said, it is unlikely the entry clean operation will 232 * race - the next possible racer will not start until the next clean 233 * period. 234 * 235 * The clean counter is implemented as a decrement to zero. When zero 236 * is reached an entry is cleaned. 237 */ 238 static void wss_advance_clean_counter(struct rvt_wss *wss) 239 { 240 int entry; 241 int weight; 242 unsigned long bits; 243 244 /* become the cleaner if we decrement the counter to zero */ 245 if (atomic_dec_and_test(&wss->clean_counter)) { 246 /* 247 * Set, not add, the clean period. This avoids an issue 248 * where the counter could decrement below the clean period. 249 * Doing a set can result in lost decrements, slowing the 250 * clean advance. Since this a heuristic, this possible 251 * slowdown is OK. 252 * 253 * An alternative is to loop, advancing the counter by a 254 * clean period until the result is > 0. However, this could 255 * lead to several threads keeping another in the clean loop. 256 * This could be mitigated by limiting the number of times 257 * we stay in the loop. 258 */ 259 atomic_set(&wss->clean_counter, wss->clean_period); 260 261 /* 262 * Uniquely grab the entry to clean and move to next. 263 * The current entry is always the lower bits of 264 * wss.clean_entry. The table size, wss.num_entries, 265 * is always a power-of-2. 266 */ 267 entry = (atomic_inc_return(&wss->clean_entry) - 1) 268 & (wss->num_entries - 1); 269 270 /* clear the entry and count the bits */ 271 bits = xchg(&wss->entries[entry], 0); 272 weight = hweight64((u64)bits); 273 /* only adjust the contended total count if needed */ 274 if (weight) 275 atomic_sub(weight, &wss->total_count); 276 } 277 } 278 279 /* 280 * Insert the given address into the working set array. 281 */ 282 static void wss_insert(struct rvt_wss *wss, void *address) 283 { 284 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 285 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 286 u32 nr = page & (BITS_PER_LONG - 1); 287 288 if (!test_and_set_bit(nr, &wss->entries[entry])) 289 atomic_inc(&wss->total_count); 290 291 wss_advance_clean_counter(wss); 292 } 293 294 /* 295 * Is the working set larger than the threshold? 296 */ 297 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 298 { 299 return atomic_read(&wss->total_count) >= wss->threshold; 300 } 301 302 static void get_map_page(struct rvt_qpn_table *qpt, 303 struct rvt_qpn_map *map) 304 { 305 unsigned long page = get_zeroed_page(GFP_KERNEL); 306 307 /* 308 * Free the page if someone raced with us installing it. 309 */ 310 311 spin_lock(&qpt->lock); 312 if (map->page) 313 free_page(page); 314 else 315 map->page = (void *)page; 316 spin_unlock(&qpt->lock); 317 } 318 319 /** 320 * init_qpn_table - initialize the QP number table for a device 321 * @qpt: the QPN table 322 */ 323 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 324 { 325 u32 offset, i; 326 struct rvt_qpn_map *map; 327 int ret = 0; 328 329 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 330 return -EINVAL; 331 332 spin_lock_init(&qpt->lock); 333 334 qpt->last = rdi->dparms.qpn_start; 335 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 336 337 /* 338 * Drivers may want some QPs beyond what we need for verbs let them use 339 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 340 * for those. The reserved range must be *after* the range which verbs 341 * will pick from. 342 */ 343 344 /* Figure out number of bit maps needed before reserved range */ 345 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 346 347 /* This should always be zero */ 348 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 349 350 /* Starting with the first reserved bit map */ 351 map = &qpt->map[qpt->nmaps]; 352 353 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 354 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 355 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 356 if (!map->page) { 357 get_map_page(qpt, map); 358 if (!map->page) { 359 ret = -ENOMEM; 360 break; 361 } 362 } 363 set_bit(offset, map->page); 364 offset++; 365 if (offset == RVT_BITS_PER_PAGE) { 366 /* next page */ 367 qpt->nmaps++; 368 map++; 369 offset = 0; 370 } 371 } 372 return ret; 373 } 374 375 /** 376 * free_qpn_table - free the QP number table for a device 377 * @qpt: the QPN table 378 */ 379 static void free_qpn_table(struct rvt_qpn_table *qpt) 380 { 381 int i; 382 383 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 384 free_page((unsigned long)qpt->map[i].page); 385 } 386 387 /** 388 * rvt_driver_qp_init - Init driver qp resources 389 * @rdi: rvt dev strucutre 390 * 391 * Return: 0 on success 392 */ 393 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 394 { 395 int i; 396 int ret = -ENOMEM; 397 398 if (!rdi->dparms.qp_table_size) 399 return -EINVAL; 400 401 /* 402 * If driver is not doing any QP allocation then make sure it is 403 * providing the necessary QP functions. 404 */ 405 if (!rdi->driver_f.free_all_qps || 406 !rdi->driver_f.qp_priv_alloc || 407 !rdi->driver_f.qp_priv_free || 408 !rdi->driver_f.notify_qp_reset || 409 !rdi->driver_f.notify_restart_rc) 410 return -EINVAL; 411 412 /* allocate parent object */ 413 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 414 rdi->dparms.node); 415 if (!rdi->qp_dev) 416 return -ENOMEM; 417 418 /* allocate hash table */ 419 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 420 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 421 rdi->qp_dev->qp_table = 422 kmalloc_array_node(rdi->qp_dev->qp_table_size, 423 sizeof(*rdi->qp_dev->qp_table), 424 GFP_KERNEL, rdi->dparms.node); 425 if (!rdi->qp_dev->qp_table) 426 goto no_qp_table; 427 428 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 429 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 430 431 spin_lock_init(&rdi->qp_dev->qpt_lock); 432 433 /* initialize qpn map */ 434 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 435 goto fail_table; 436 437 spin_lock_init(&rdi->n_qps_lock); 438 439 return 0; 440 441 fail_table: 442 kfree(rdi->qp_dev->qp_table); 443 free_qpn_table(&rdi->qp_dev->qpn_table); 444 445 no_qp_table: 446 kfree(rdi->qp_dev); 447 448 return ret; 449 } 450 451 /** 452 * free_all_qps - check for QPs still in use 453 * @rdi: rvt device info structure 454 * 455 * There should not be any QPs still in use. 456 * Free memory for table. 457 */ 458 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 459 { 460 unsigned long flags; 461 struct rvt_qp *qp; 462 unsigned n, qp_inuse = 0; 463 spinlock_t *ql; /* work around too long line below */ 464 465 if (rdi->driver_f.free_all_qps) 466 qp_inuse = rdi->driver_f.free_all_qps(rdi); 467 468 qp_inuse += rvt_mcast_tree_empty(rdi); 469 470 if (!rdi->qp_dev) 471 return qp_inuse; 472 473 ql = &rdi->qp_dev->qpt_lock; 474 spin_lock_irqsave(ql, flags); 475 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) { 476 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n], 477 lockdep_is_held(ql)); 478 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL); 479 480 for (; qp; qp = rcu_dereference_protected(qp->next, 481 lockdep_is_held(ql))) 482 qp_inuse++; 483 } 484 spin_unlock_irqrestore(ql, flags); 485 synchronize_rcu(); 486 return qp_inuse; 487 } 488 489 /** 490 * rvt_qp_exit - clean up qps on device exit 491 * @rdi: rvt dev structure 492 * 493 * Check for qp leaks and free resources. 494 */ 495 void rvt_qp_exit(struct rvt_dev_info *rdi) 496 { 497 u32 qps_inuse = rvt_free_all_qps(rdi); 498 499 if (qps_inuse) 500 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 501 qps_inuse); 502 if (!rdi->qp_dev) 503 return; 504 505 kfree(rdi->qp_dev->qp_table); 506 free_qpn_table(&rdi->qp_dev->qpn_table); 507 kfree(rdi->qp_dev); 508 } 509 510 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 511 struct rvt_qpn_map *map, unsigned off) 512 { 513 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 514 } 515 516 /** 517 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 518 * IB_QPT_SMI/IB_QPT_GSI 519 * @rdi: rvt device info structure 520 * @qpt: queue pair number table pointer 521 * @port_num: IB port number, 1 based, comes from core 522 * 523 * Return: The queue pair number 524 */ 525 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 526 enum ib_qp_type type, u8 port_num) 527 { 528 u32 i, offset, max_scan, qpn; 529 struct rvt_qpn_map *map; 530 u32 ret; 531 532 if (rdi->driver_f.alloc_qpn) 533 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 534 535 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 536 unsigned n; 537 538 ret = type == IB_QPT_GSI; 539 n = 1 << (ret + 2 * (port_num - 1)); 540 spin_lock(&qpt->lock); 541 if (qpt->flags & n) 542 ret = -EINVAL; 543 else 544 qpt->flags |= n; 545 spin_unlock(&qpt->lock); 546 goto bail; 547 } 548 549 qpn = qpt->last + qpt->incr; 550 if (qpn >= RVT_QPN_MAX) 551 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 552 /* offset carries bit 0 */ 553 offset = qpn & RVT_BITS_PER_PAGE_MASK; 554 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 555 max_scan = qpt->nmaps - !offset; 556 for (i = 0;;) { 557 if (unlikely(!map->page)) { 558 get_map_page(qpt, map); 559 if (unlikely(!map->page)) 560 break; 561 } 562 do { 563 if (!test_and_set_bit(offset, map->page)) { 564 qpt->last = qpn; 565 ret = qpn; 566 goto bail; 567 } 568 offset += qpt->incr; 569 /* 570 * This qpn might be bogus if offset >= BITS_PER_PAGE. 571 * That is OK. It gets re-assigned below 572 */ 573 qpn = mk_qpn(qpt, map, offset); 574 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 575 /* 576 * In order to keep the number of pages allocated to a 577 * minimum, we scan the all existing pages before increasing 578 * the size of the bitmap table. 579 */ 580 if (++i > max_scan) { 581 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 582 break; 583 map = &qpt->map[qpt->nmaps++]; 584 /* start at incr with current bit 0 */ 585 offset = qpt->incr | (offset & 1); 586 } else if (map < &qpt->map[qpt->nmaps]) { 587 ++map; 588 /* start at incr with current bit 0 */ 589 offset = qpt->incr | (offset & 1); 590 } else { 591 map = &qpt->map[0]; 592 /* wrap to first map page, invert bit 0 */ 593 offset = qpt->incr | ((offset & 1) ^ 1); 594 } 595 /* there can be no set bits in low-order QoS bits */ 596 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1)); 597 qpn = mk_qpn(qpt, map, offset); 598 } 599 600 ret = -ENOMEM; 601 602 bail: 603 return ret; 604 } 605 606 /** 607 * rvt_clear_mr_refs - Drop help mr refs 608 * @qp: rvt qp data structure 609 * @clr_sends: If shoudl clear send side or not 610 */ 611 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 612 { 613 unsigned n; 614 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 615 616 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 617 rvt_put_ss(&qp->s_rdma_read_sge); 618 619 rvt_put_ss(&qp->r_sge); 620 621 if (clr_sends) { 622 while (qp->s_last != qp->s_head) { 623 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 624 625 rvt_put_swqe(wqe); 626 627 if (qp->ibqp.qp_type == IB_QPT_UD || 628 qp->ibqp.qp_type == IB_QPT_SMI || 629 qp->ibqp.qp_type == IB_QPT_GSI) 630 atomic_dec(&ibah_to_rvtah( 631 wqe->ud_wr.ah)->refcount); 632 if (++qp->s_last >= qp->s_size) 633 qp->s_last = 0; 634 smp_wmb(); /* see qp_set_savail */ 635 } 636 if (qp->s_rdma_mr) { 637 rvt_put_mr(qp->s_rdma_mr); 638 qp->s_rdma_mr = NULL; 639 } 640 } 641 642 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 643 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 644 645 if (e->rdma_sge.mr) { 646 rvt_put_mr(e->rdma_sge.mr); 647 e->rdma_sge.mr = NULL; 648 } 649 } 650 } 651 652 /** 653 * rvt_swqe_has_lkey - return true if lkey is used by swqe 654 * @wqe - the send wqe 655 * @lkey - the lkey 656 * 657 * Test the swqe for using lkey 658 */ 659 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 660 { 661 int i; 662 663 for (i = 0; i < wqe->wr.num_sge; i++) { 664 struct rvt_sge *sge = &wqe->sg_list[i]; 665 666 if (rvt_mr_has_lkey(sge->mr, lkey)) 667 return true; 668 } 669 return false; 670 } 671 672 /** 673 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 674 * @qp - the rvt_qp 675 * @lkey - the lkey 676 */ 677 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 678 { 679 u32 s_last = qp->s_last; 680 681 while (s_last != qp->s_head) { 682 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 683 684 if (rvt_swqe_has_lkey(wqe, lkey)) 685 return true; 686 687 if (++s_last >= qp->s_size) 688 s_last = 0; 689 } 690 if (qp->s_rdma_mr) 691 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 692 return true; 693 return false; 694 } 695 696 /** 697 * rvt_qp_acks_has_lkey - return true if acks have lkey 698 * @qp - the qp 699 * @lkey - the lkey 700 */ 701 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 702 { 703 int i; 704 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 705 706 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 707 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 708 709 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 710 return true; 711 } 712 return false; 713 } 714 715 /* 716 * rvt_qp_mr_clean - clean up remote ops for lkey 717 * @qp - the qp 718 * @lkey - the lkey that is being de-registered 719 * 720 * This routine checks if the lkey is being used by 721 * the qp. 722 * 723 * If so, the qp is put into an error state to elminate 724 * any references from the qp. 725 */ 726 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 727 { 728 bool lastwqe = false; 729 730 if (qp->ibqp.qp_type == IB_QPT_SMI || 731 qp->ibqp.qp_type == IB_QPT_GSI) 732 /* avoid special QPs */ 733 return; 734 spin_lock_irq(&qp->r_lock); 735 spin_lock(&qp->s_hlock); 736 spin_lock(&qp->s_lock); 737 738 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 739 goto check_lwqe; 740 741 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 742 rvt_qp_sends_has_lkey(qp, lkey) || 743 rvt_qp_acks_has_lkey(qp, lkey)) 744 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 745 check_lwqe: 746 spin_unlock(&qp->s_lock); 747 spin_unlock(&qp->s_hlock); 748 spin_unlock_irq(&qp->r_lock); 749 if (lastwqe) { 750 struct ib_event ev; 751 752 ev.device = qp->ibqp.device; 753 ev.element.qp = &qp->ibqp; 754 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 755 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 756 } 757 } 758 759 /** 760 * rvt_remove_qp - remove qp form table 761 * @rdi: rvt dev struct 762 * @qp: qp to remove 763 * 764 * Remove the QP from the table so it can't be found asynchronously by 765 * the receive routine. 766 */ 767 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 768 { 769 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 770 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 771 unsigned long flags; 772 int removed = 1; 773 774 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 775 776 if (rcu_dereference_protected(rvp->qp[0], 777 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 778 RCU_INIT_POINTER(rvp->qp[0], NULL); 779 } else if (rcu_dereference_protected(rvp->qp[1], 780 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 781 RCU_INIT_POINTER(rvp->qp[1], NULL); 782 } else { 783 struct rvt_qp *q; 784 struct rvt_qp __rcu **qpp; 785 786 removed = 0; 787 qpp = &rdi->qp_dev->qp_table[n]; 788 for (; (q = rcu_dereference_protected(*qpp, 789 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 790 qpp = &q->next) { 791 if (q == qp) { 792 RCU_INIT_POINTER(*qpp, 793 rcu_dereference_protected(qp->next, 794 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 795 removed = 1; 796 trace_rvt_qpremove(qp, n); 797 break; 798 } 799 } 800 } 801 802 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 803 if (removed) { 804 synchronize_rcu(); 805 rvt_put_qp(qp); 806 } 807 } 808 809 /** 810 * rvt_init_qp - initialize the QP state to the reset state 811 * @qp: the QP to init or reinit 812 * @type: the QP type 813 * 814 * This function is called from both rvt_create_qp() and 815 * rvt_reset_qp(). The difference is that the reset 816 * patch the necessary locks to protect against concurent 817 * access. 818 */ 819 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 820 enum ib_qp_type type) 821 { 822 qp->remote_qpn = 0; 823 qp->qkey = 0; 824 qp->qp_access_flags = 0; 825 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 826 qp->s_hdrwords = 0; 827 qp->s_wqe = NULL; 828 qp->s_draining = 0; 829 qp->s_next_psn = 0; 830 qp->s_last_psn = 0; 831 qp->s_sending_psn = 0; 832 qp->s_sending_hpsn = 0; 833 qp->s_psn = 0; 834 qp->r_psn = 0; 835 qp->r_msn = 0; 836 if (type == IB_QPT_RC) { 837 qp->s_state = IB_OPCODE_RC_SEND_LAST; 838 qp->r_state = IB_OPCODE_RC_SEND_LAST; 839 } else { 840 qp->s_state = IB_OPCODE_UC_SEND_LAST; 841 qp->r_state = IB_OPCODE_UC_SEND_LAST; 842 } 843 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 844 qp->r_nak_state = 0; 845 qp->r_aflags = 0; 846 qp->r_flags = 0; 847 qp->s_head = 0; 848 qp->s_tail = 0; 849 qp->s_cur = 0; 850 qp->s_acked = 0; 851 qp->s_last = 0; 852 qp->s_ssn = 1; 853 qp->s_lsn = 0; 854 qp->s_mig_state = IB_MIG_MIGRATED; 855 qp->r_head_ack_queue = 0; 856 qp->s_tail_ack_queue = 0; 857 qp->s_num_rd_atomic = 0; 858 if (qp->r_rq.wq) { 859 qp->r_rq.wq->head = 0; 860 qp->r_rq.wq->tail = 0; 861 } 862 qp->r_sge.num_sge = 0; 863 atomic_set(&qp->s_reserved_used, 0); 864 } 865 866 /** 867 * rvt_reset_qp - initialize the QP state to the reset state 868 * @qp: the QP to reset 869 * @type: the QP type 870 * 871 * r_lock, s_hlock, and s_lock are required to be held by the caller 872 */ 873 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 874 enum ib_qp_type type) 875 __must_hold(&qp->s_lock) 876 __must_hold(&qp->s_hlock) 877 __must_hold(&qp->r_lock) 878 { 879 lockdep_assert_held(&qp->r_lock); 880 lockdep_assert_held(&qp->s_hlock); 881 lockdep_assert_held(&qp->s_lock); 882 if (qp->state != IB_QPS_RESET) { 883 qp->state = IB_QPS_RESET; 884 885 /* Let drivers flush their waitlist */ 886 rdi->driver_f.flush_qp_waiters(qp); 887 rvt_stop_rc_timers(qp); 888 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 889 spin_unlock(&qp->s_lock); 890 spin_unlock(&qp->s_hlock); 891 spin_unlock_irq(&qp->r_lock); 892 893 /* Stop the send queue and the retry timer */ 894 rdi->driver_f.stop_send_queue(qp); 895 rvt_del_timers_sync(qp); 896 /* Wait for things to stop */ 897 rdi->driver_f.quiesce_qp(qp); 898 899 /* take qp out the hash and wait for it to be unused */ 900 rvt_remove_qp(rdi, qp); 901 902 /* grab the lock b/c it was locked at call time */ 903 spin_lock_irq(&qp->r_lock); 904 spin_lock(&qp->s_hlock); 905 spin_lock(&qp->s_lock); 906 907 rvt_clear_mr_refs(qp, 1); 908 /* 909 * Let the driver do any tear down or re-init it needs to for 910 * a qp that has been reset 911 */ 912 rdi->driver_f.notify_qp_reset(qp); 913 } 914 rvt_init_qp(rdi, qp, type); 915 lockdep_assert_held(&qp->r_lock); 916 lockdep_assert_held(&qp->s_hlock); 917 lockdep_assert_held(&qp->s_lock); 918 } 919 920 /** rvt_free_qpn - Free a qpn from the bit map 921 * @qpt: QP table 922 * @qpn: queue pair number to free 923 */ 924 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 925 { 926 struct rvt_qpn_map *map; 927 928 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 929 if (map->page) 930 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 931 } 932 933 /** 934 * rvt_create_qp - create a queue pair for a device 935 * @ibpd: the protection domain who's device we create the queue pair for 936 * @init_attr: the attributes of the queue pair 937 * @udata: user data for libibverbs.so 938 * 939 * Queue pair creation is mostly an rvt issue. However, drivers have their own 940 * unique idea of what queue pair numbers mean. For instance there is a reserved 941 * range for PSM. 942 * 943 * Return: the queue pair on success, otherwise returns an errno. 944 * 945 * Called by the ib_create_qp() core verbs function. 946 */ 947 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 948 struct ib_qp_init_attr *init_attr, 949 struct ib_udata *udata) 950 { 951 struct rvt_qp *qp; 952 int err; 953 struct rvt_swqe *swq = NULL; 954 size_t sz; 955 size_t sg_list_sz; 956 struct ib_qp *ret = ERR_PTR(-ENOMEM); 957 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 958 void *priv = NULL; 959 size_t sqsize; 960 961 if (!rdi) 962 return ERR_PTR(-EINVAL); 963 964 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 965 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || 966 init_attr->create_flags) 967 return ERR_PTR(-EINVAL); 968 969 /* Check receive queue parameters if no SRQ is specified. */ 970 if (!init_attr->srq) { 971 if (init_attr->cap.max_recv_sge > 972 rdi->dparms.props.max_recv_sge || 973 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 974 return ERR_PTR(-EINVAL); 975 976 if (init_attr->cap.max_send_sge + 977 init_attr->cap.max_send_wr + 978 init_attr->cap.max_recv_sge + 979 init_attr->cap.max_recv_wr == 0) 980 return ERR_PTR(-EINVAL); 981 } 982 sqsize = 983 init_attr->cap.max_send_wr + 1 + 984 rdi->dparms.reserved_operations; 985 switch (init_attr->qp_type) { 986 case IB_QPT_SMI: 987 case IB_QPT_GSI: 988 if (init_attr->port_num == 0 || 989 init_attr->port_num > ibpd->device->phys_port_cnt) 990 return ERR_PTR(-EINVAL); 991 /* fall through */ 992 case IB_QPT_UC: 993 case IB_QPT_RC: 994 case IB_QPT_UD: 995 sz = sizeof(struct rvt_sge) * 996 init_attr->cap.max_send_sge + 997 sizeof(struct rvt_swqe); 998 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 999 if (!swq) 1000 return ERR_PTR(-ENOMEM); 1001 1002 sz = sizeof(*qp); 1003 sg_list_sz = 0; 1004 if (init_attr->srq) { 1005 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1006 1007 if (srq->rq.max_sge > 1) 1008 sg_list_sz = sizeof(*qp->r_sg_list) * 1009 (srq->rq.max_sge - 1); 1010 } else if (init_attr->cap.max_recv_sge > 1) 1011 sg_list_sz = sizeof(*qp->r_sg_list) * 1012 (init_attr->cap.max_recv_sge - 1); 1013 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, 1014 rdi->dparms.node); 1015 if (!qp) 1016 goto bail_swq; 1017 1018 RCU_INIT_POINTER(qp->next, NULL); 1019 if (init_attr->qp_type == IB_QPT_RC) { 1020 qp->s_ack_queue = 1021 kcalloc_node(rvt_max_atomic(rdi), 1022 sizeof(*qp->s_ack_queue), 1023 GFP_KERNEL, 1024 rdi->dparms.node); 1025 if (!qp->s_ack_queue) 1026 goto bail_qp; 1027 } 1028 /* initialize timers needed for rc qp */ 1029 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1030 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 1031 HRTIMER_MODE_REL); 1032 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 1033 1034 /* 1035 * Driver needs to set up it's private QP structure and do any 1036 * initialization that is needed. 1037 */ 1038 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1039 if (IS_ERR(priv)) { 1040 ret = priv; 1041 goto bail_qp; 1042 } 1043 qp->priv = priv; 1044 qp->timeout_jiffies = 1045 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1046 1000UL); 1047 if (init_attr->srq) { 1048 sz = 0; 1049 } else { 1050 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1051 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1052 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1053 sizeof(struct rvt_rwqe); 1054 if (udata) 1055 qp->r_rq.wq = vmalloc_user( 1056 sizeof(struct rvt_rwq) + 1057 qp->r_rq.size * sz); 1058 else 1059 qp->r_rq.wq = vzalloc_node( 1060 sizeof(struct rvt_rwq) + 1061 qp->r_rq.size * sz, 1062 rdi->dparms.node); 1063 if (!qp->r_rq.wq) 1064 goto bail_driver_priv; 1065 } 1066 1067 /* 1068 * ib_create_qp() will initialize qp->ibqp 1069 * except for qp->ibqp.qp_num. 1070 */ 1071 spin_lock_init(&qp->r_lock); 1072 spin_lock_init(&qp->s_hlock); 1073 spin_lock_init(&qp->s_lock); 1074 spin_lock_init(&qp->r_rq.lock); 1075 atomic_set(&qp->refcount, 0); 1076 atomic_set(&qp->local_ops_pending, 0); 1077 init_waitqueue_head(&qp->wait); 1078 INIT_LIST_HEAD(&qp->rspwait); 1079 qp->state = IB_QPS_RESET; 1080 qp->s_wq = swq; 1081 qp->s_size = sqsize; 1082 qp->s_avail = init_attr->cap.max_send_wr; 1083 qp->s_max_sge = init_attr->cap.max_send_sge; 1084 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1085 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1086 1087 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1088 init_attr->qp_type, 1089 init_attr->port_num); 1090 if (err < 0) { 1091 ret = ERR_PTR(err); 1092 goto bail_rq_wq; 1093 } 1094 qp->ibqp.qp_num = err; 1095 qp->port_num = init_attr->port_num; 1096 rvt_init_qp(rdi, qp, init_attr->qp_type); 1097 break; 1098 1099 default: 1100 /* Don't support raw QPs */ 1101 return ERR_PTR(-EINVAL); 1102 } 1103 1104 init_attr->cap.max_inline_data = 0; 1105 1106 /* 1107 * Return the address of the RWQ as the offset to mmap. 1108 * See rvt_mmap() for details. 1109 */ 1110 if (udata && udata->outlen >= sizeof(__u64)) { 1111 if (!qp->r_rq.wq) { 1112 __u64 offset = 0; 1113 1114 err = ib_copy_to_udata(udata, &offset, 1115 sizeof(offset)); 1116 if (err) { 1117 ret = ERR_PTR(err); 1118 goto bail_qpn; 1119 } 1120 } else { 1121 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1122 1123 qp->ip = rvt_create_mmap_info(rdi, s, 1124 ibpd->uobject->context, 1125 qp->r_rq.wq); 1126 if (!qp->ip) { 1127 ret = ERR_PTR(-ENOMEM); 1128 goto bail_qpn; 1129 } 1130 1131 err = ib_copy_to_udata(udata, &qp->ip->offset, 1132 sizeof(qp->ip->offset)); 1133 if (err) { 1134 ret = ERR_PTR(err); 1135 goto bail_ip; 1136 } 1137 } 1138 qp->pid = current->pid; 1139 } 1140 1141 spin_lock(&rdi->n_qps_lock); 1142 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1143 spin_unlock(&rdi->n_qps_lock); 1144 ret = ERR_PTR(-ENOMEM); 1145 goto bail_ip; 1146 } 1147 1148 rdi->n_qps_allocated++; 1149 /* 1150 * Maintain a busy_jiffies variable that will be added to the timeout 1151 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1152 * is scaled by the number of rc qps created for the device to reduce 1153 * the number of timeouts occurring when there is a large number of 1154 * qps. busy_jiffies is incremented every rc qp scaling interval. 1155 * The scaling interval is selected based on extensive performance 1156 * evaluation of targeted workloads. 1157 */ 1158 if (init_attr->qp_type == IB_QPT_RC) { 1159 rdi->n_rc_qps++; 1160 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1161 } 1162 spin_unlock(&rdi->n_qps_lock); 1163 1164 if (qp->ip) { 1165 spin_lock_irq(&rdi->pending_lock); 1166 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1167 spin_unlock_irq(&rdi->pending_lock); 1168 } 1169 1170 ret = &qp->ibqp; 1171 1172 /* 1173 * We have our QP and its good, now keep track of what types of opcodes 1174 * can be processed on this QP. We do this by keeping track of what the 1175 * 3 high order bits of the opcode are. 1176 */ 1177 switch (init_attr->qp_type) { 1178 case IB_QPT_SMI: 1179 case IB_QPT_GSI: 1180 case IB_QPT_UD: 1181 qp->allowed_ops = IB_OPCODE_UD; 1182 break; 1183 case IB_QPT_RC: 1184 qp->allowed_ops = IB_OPCODE_RC; 1185 break; 1186 case IB_QPT_UC: 1187 qp->allowed_ops = IB_OPCODE_UC; 1188 break; 1189 default: 1190 ret = ERR_PTR(-EINVAL); 1191 goto bail_ip; 1192 } 1193 1194 return ret; 1195 1196 bail_ip: 1197 if (qp->ip) 1198 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1199 1200 bail_qpn: 1201 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1202 1203 bail_rq_wq: 1204 if (!qp->ip) 1205 vfree(qp->r_rq.wq); 1206 1207 bail_driver_priv: 1208 rdi->driver_f.qp_priv_free(rdi, qp); 1209 1210 bail_qp: 1211 kfree(qp->s_ack_queue); 1212 kfree(qp); 1213 1214 bail_swq: 1215 vfree(swq); 1216 1217 return ret; 1218 } 1219 1220 /** 1221 * rvt_error_qp - put a QP into the error state 1222 * @qp: the QP to put into the error state 1223 * @err: the receive completion error to signal if a RWQE is active 1224 * 1225 * Flushes both send and receive work queues. 1226 * 1227 * Return: true if last WQE event should be generated. 1228 * The QP r_lock and s_lock should be held and interrupts disabled. 1229 * If we are already in error state, just return. 1230 */ 1231 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1232 { 1233 struct ib_wc wc; 1234 int ret = 0; 1235 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1236 1237 lockdep_assert_held(&qp->r_lock); 1238 lockdep_assert_held(&qp->s_lock); 1239 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1240 goto bail; 1241 1242 qp->state = IB_QPS_ERR; 1243 1244 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1245 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1246 del_timer(&qp->s_timer); 1247 } 1248 1249 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1250 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1251 1252 rdi->driver_f.notify_error_qp(qp); 1253 1254 /* Schedule the sending tasklet to drain the send work queue. */ 1255 if (READ_ONCE(qp->s_last) != qp->s_head) 1256 rdi->driver_f.schedule_send(qp); 1257 1258 rvt_clear_mr_refs(qp, 0); 1259 1260 memset(&wc, 0, sizeof(wc)); 1261 wc.qp = &qp->ibqp; 1262 wc.opcode = IB_WC_RECV; 1263 1264 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1265 wc.wr_id = qp->r_wr_id; 1266 wc.status = err; 1267 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1268 } 1269 wc.status = IB_WC_WR_FLUSH_ERR; 1270 1271 if (qp->r_rq.wq) { 1272 struct rvt_rwq *wq; 1273 u32 head; 1274 u32 tail; 1275 1276 spin_lock(&qp->r_rq.lock); 1277 1278 /* sanity check pointers before trusting them */ 1279 wq = qp->r_rq.wq; 1280 head = wq->head; 1281 if (head >= qp->r_rq.size) 1282 head = 0; 1283 tail = wq->tail; 1284 if (tail >= qp->r_rq.size) 1285 tail = 0; 1286 while (tail != head) { 1287 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1288 if (++tail >= qp->r_rq.size) 1289 tail = 0; 1290 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1291 } 1292 wq->tail = tail; 1293 1294 spin_unlock(&qp->r_rq.lock); 1295 } else if (qp->ibqp.event_handler) { 1296 ret = 1; 1297 } 1298 1299 bail: 1300 return ret; 1301 } 1302 EXPORT_SYMBOL(rvt_error_qp); 1303 1304 /* 1305 * Put the QP into the hash table. 1306 * The hash table holds a reference to the QP. 1307 */ 1308 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1309 { 1310 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1311 unsigned long flags; 1312 1313 rvt_get_qp(qp); 1314 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1315 1316 if (qp->ibqp.qp_num <= 1) { 1317 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1318 } else { 1319 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1320 1321 qp->next = rdi->qp_dev->qp_table[n]; 1322 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1323 trace_rvt_qpinsert(qp, n); 1324 } 1325 1326 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1327 } 1328 1329 /** 1330 * rvt_modify_qp - modify the attributes of a queue pair 1331 * @ibqp: the queue pair who's attributes we're modifying 1332 * @attr: the new attributes 1333 * @attr_mask: the mask of attributes to modify 1334 * @udata: user data for libibverbs.so 1335 * 1336 * Return: 0 on success, otherwise returns an errno. 1337 */ 1338 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1339 int attr_mask, struct ib_udata *udata) 1340 { 1341 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1342 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1343 enum ib_qp_state cur_state, new_state; 1344 struct ib_event ev; 1345 int lastwqe = 0; 1346 int mig = 0; 1347 int pmtu = 0; /* for gcc warning only */ 1348 int opa_ah; 1349 1350 spin_lock_irq(&qp->r_lock); 1351 spin_lock(&qp->s_hlock); 1352 spin_lock(&qp->s_lock); 1353 1354 cur_state = attr_mask & IB_QP_CUR_STATE ? 1355 attr->cur_qp_state : qp->state; 1356 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1357 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1358 1359 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1360 attr_mask)) 1361 goto inval; 1362 1363 if (rdi->driver_f.check_modify_qp && 1364 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1365 goto inval; 1366 1367 if (attr_mask & IB_QP_AV) { 1368 if (opa_ah) { 1369 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1370 opa_get_mcast_base(OPA_MCAST_NR)) 1371 goto inval; 1372 } else { 1373 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1374 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1375 goto inval; 1376 } 1377 1378 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1379 goto inval; 1380 } 1381 1382 if (attr_mask & IB_QP_ALT_PATH) { 1383 if (opa_ah) { 1384 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1385 opa_get_mcast_base(OPA_MCAST_NR)) 1386 goto inval; 1387 } else { 1388 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1389 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1390 goto inval; 1391 } 1392 1393 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1394 goto inval; 1395 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1396 goto inval; 1397 } 1398 1399 if (attr_mask & IB_QP_PKEY_INDEX) 1400 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1401 goto inval; 1402 1403 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1404 if (attr->min_rnr_timer > 31) 1405 goto inval; 1406 1407 if (attr_mask & IB_QP_PORT) 1408 if (qp->ibqp.qp_type == IB_QPT_SMI || 1409 qp->ibqp.qp_type == IB_QPT_GSI || 1410 attr->port_num == 0 || 1411 attr->port_num > ibqp->device->phys_port_cnt) 1412 goto inval; 1413 1414 if (attr_mask & IB_QP_DEST_QPN) 1415 if (attr->dest_qp_num > RVT_QPN_MASK) 1416 goto inval; 1417 1418 if (attr_mask & IB_QP_RETRY_CNT) 1419 if (attr->retry_cnt > 7) 1420 goto inval; 1421 1422 if (attr_mask & IB_QP_RNR_RETRY) 1423 if (attr->rnr_retry > 7) 1424 goto inval; 1425 1426 /* 1427 * Don't allow invalid path_mtu values. OK to set greater 1428 * than the active mtu (or even the max_cap, if we have tuned 1429 * that to a small mtu. We'll set qp->path_mtu 1430 * to the lesser of requested attribute mtu and active, 1431 * for packetizing messages. 1432 * Note that the QP port has to be set in INIT and MTU in RTR. 1433 */ 1434 if (attr_mask & IB_QP_PATH_MTU) { 1435 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1436 if (pmtu < 0) 1437 goto inval; 1438 } 1439 1440 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1441 if (attr->path_mig_state == IB_MIG_REARM) { 1442 if (qp->s_mig_state == IB_MIG_ARMED) 1443 goto inval; 1444 if (new_state != IB_QPS_RTS) 1445 goto inval; 1446 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1447 if (qp->s_mig_state == IB_MIG_REARM) 1448 goto inval; 1449 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1450 goto inval; 1451 if (qp->s_mig_state == IB_MIG_ARMED) 1452 mig = 1; 1453 } else { 1454 goto inval; 1455 } 1456 } 1457 1458 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1459 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1460 goto inval; 1461 1462 switch (new_state) { 1463 case IB_QPS_RESET: 1464 if (qp->state != IB_QPS_RESET) 1465 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1466 break; 1467 1468 case IB_QPS_RTR: 1469 /* Allow event to re-trigger if QP set to RTR more than once */ 1470 qp->r_flags &= ~RVT_R_COMM_EST; 1471 qp->state = new_state; 1472 break; 1473 1474 case IB_QPS_SQD: 1475 qp->s_draining = qp->s_last != qp->s_cur; 1476 qp->state = new_state; 1477 break; 1478 1479 case IB_QPS_SQE: 1480 if (qp->ibqp.qp_type == IB_QPT_RC) 1481 goto inval; 1482 qp->state = new_state; 1483 break; 1484 1485 case IB_QPS_ERR: 1486 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1487 break; 1488 1489 default: 1490 qp->state = new_state; 1491 break; 1492 } 1493 1494 if (attr_mask & IB_QP_PKEY_INDEX) 1495 qp->s_pkey_index = attr->pkey_index; 1496 1497 if (attr_mask & IB_QP_PORT) 1498 qp->port_num = attr->port_num; 1499 1500 if (attr_mask & IB_QP_DEST_QPN) 1501 qp->remote_qpn = attr->dest_qp_num; 1502 1503 if (attr_mask & IB_QP_SQ_PSN) { 1504 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1505 qp->s_psn = qp->s_next_psn; 1506 qp->s_sending_psn = qp->s_next_psn; 1507 qp->s_last_psn = qp->s_next_psn - 1; 1508 qp->s_sending_hpsn = qp->s_last_psn; 1509 } 1510 1511 if (attr_mask & IB_QP_RQ_PSN) 1512 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1513 1514 if (attr_mask & IB_QP_ACCESS_FLAGS) 1515 qp->qp_access_flags = attr->qp_access_flags; 1516 1517 if (attr_mask & IB_QP_AV) { 1518 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1519 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1520 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1521 } 1522 1523 if (attr_mask & IB_QP_ALT_PATH) { 1524 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1525 qp->s_alt_pkey_index = attr->alt_pkey_index; 1526 } 1527 1528 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1529 qp->s_mig_state = attr->path_mig_state; 1530 if (mig) { 1531 qp->remote_ah_attr = qp->alt_ah_attr; 1532 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1533 qp->s_pkey_index = qp->s_alt_pkey_index; 1534 } 1535 } 1536 1537 if (attr_mask & IB_QP_PATH_MTU) { 1538 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1539 qp->log_pmtu = ilog2(qp->pmtu); 1540 } 1541 1542 if (attr_mask & IB_QP_RETRY_CNT) { 1543 qp->s_retry_cnt = attr->retry_cnt; 1544 qp->s_retry = attr->retry_cnt; 1545 } 1546 1547 if (attr_mask & IB_QP_RNR_RETRY) { 1548 qp->s_rnr_retry_cnt = attr->rnr_retry; 1549 qp->s_rnr_retry = attr->rnr_retry; 1550 } 1551 1552 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1553 qp->r_min_rnr_timer = attr->min_rnr_timer; 1554 1555 if (attr_mask & IB_QP_TIMEOUT) { 1556 qp->timeout = attr->timeout; 1557 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1558 } 1559 1560 if (attr_mask & IB_QP_QKEY) 1561 qp->qkey = attr->qkey; 1562 1563 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1564 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1565 1566 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1567 qp->s_max_rd_atomic = attr->max_rd_atomic; 1568 1569 if (rdi->driver_f.modify_qp) 1570 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1571 1572 spin_unlock(&qp->s_lock); 1573 spin_unlock(&qp->s_hlock); 1574 spin_unlock_irq(&qp->r_lock); 1575 1576 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1577 rvt_insert_qp(rdi, qp); 1578 1579 if (lastwqe) { 1580 ev.device = qp->ibqp.device; 1581 ev.element.qp = &qp->ibqp; 1582 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1583 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1584 } 1585 if (mig) { 1586 ev.device = qp->ibqp.device; 1587 ev.element.qp = &qp->ibqp; 1588 ev.event = IB_EVENT_PATH_MIG; 1589 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1590 } 1591 return 0; 1592 1593 inval: 1594 spin_unlock(&qp->s_lock); 1595 spin_unlock(&qp->s_hlock); 1596 spin_unlock_irq(&qp->r_lock); 1597 return -EINVAL; 1598 } 1599 1600 /** 1601 * rvt_destroy_qp - destroy a queue pair 1602 * @ibqp: the queue pair to destroy 1603 * 1604 * Note that this can be called while the QP is actively sending or 1605 * receiving! 1606 * 1607 * Return: 0 on success. 1608 */ 1609 int rvt_destroy_qp(struct ib_qp *ibqp) 1610 { 1611 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1612 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1613 1614 spin_lock_irq(&qp->r_lock); 1615 spin_lock(&qp->s_hlock); 1616 spin_lock(&qp->s_lock); 1617 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1618 spin_unlock(&qp->s_lock); 1619 spin_unlock(&qp->s_hlock); 1620 spin_unlock_irq(&qp->r_lock); 1621 1622 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1623 /* qpn is now available for use again */ 1624 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1625 1626 spin_lock(&rdi->n_qps_lock); 1627 rdi->n_qps_allocated--; 1628 if (qp->ibqp.qp_type == IB_QPT_RC) { 1629 rdi->n_rc_qps--; 1630 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1631 } 1632 spin_unlock(&rdi->n_qps_lock); 1633 1634 if (qp->ip) 1635 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1636 else 1637 vfree(qp->r_rq.wq); 1638 vfree(qp->s_wq); 1639 rdi->driver_f.qp_priv_free(rdi, qp); 1640 kfree(qp->s_ack_queue); 1641 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1642 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1643 kfree(qp); 1644 return 0; 1645 } 1646 1647 /** 1648 * rvt_query_qp - query an ipbq 1649 * @ibqp: IB qp to query 1650 * @attr: attr struct to fill in 1651 * @attr_mask: attr mask ignored 1652 * @init_attr: struct to fill in 1653 * 1654 * Return: always 0 1655 */ 1656 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1657 int attr_mask, struct ib_qp_init_attr *init_attr) 1658 { 1659 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1660 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1661 1662 attr->qp_state = qp->state; 1663 attr->cur_qp_state = attr->qp_state; 1664 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1665 attr->path_mig_state = qp->s_mig_state; 1666 attr->qkey = qp->qkey; 1667 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1668 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1669 attr->dest_qp_num = qp->remote_qpn; 1670 attr->qp_access_flags = qp->qp_access_flags; 1671 attr->cap.max_send_wr = qp->s_size - 1 - 1672 rdi->dparms.reserved_operations; 1673 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1674 attr->cap.max_send_sge = qp->s_max_sge; 1675 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1676 attr->cap.max_inline_data = 0; 1677 attr->ah_attr = qp->remote_ah_attr; 1678 attr->alt_ah_attr = qp->alt_ah_attr; 1679 attr->pkey_index = qp->s_pkey_index; 1680 attr->alt_pkey_index = qp->s_alt_pkey_index; 1681 attr->en_sqd_async_notify = 0; 1682 attr->sq_draining = qp->s_draining; 1683 attr->max_rd_atomic = qp->s_max_rd_atomic; 1684 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1685 attr->min_rnr_timer = qp->r_min_rnr_timer; 1686 attr->port_num = qp->port_num; 1687 attr->timeout = qp->timeout; 1688 attr->retry_cnt = qp->s_retry_cnt; 1689 attr->rnr_retry = qp->s_rnr_retry_cnt; 1690 attr->alt_port_num = 1691 rdma_ah_get_port_num(&qp->alt_ah_attr); 1692 attr->alt_timeout = qp->alt_timeout; 1693 1694 init_attr->event_handler = qp->ibqp.event_handler; 1695 init_attr->qp_context = qp->ibqp.qp_context; 1696 init_attr->send_cq = qp->ibqp.send_cq; 1697 init_attr->recv_cq = qp->ibqp.recv_cq; 1698 init_attr->srq = qp->ibqp.srq; 1699 init_attr->cap = attr->cap; 1700 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1701 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1702 else 1703 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1704 init_attr->qp_type = qp->ibqp.qp_type; 1705 init_attr->port_num = qp->port_num; 1706 return 0; 1707 } 1708 1709 /** 1710 * rvt_post_receive - post a receive on a QP 1711 * @ibqp: the QP to post the receive on 1712 * @wr: the WR to post 1713 * @bad_wr: the first bad WR is put here 1714 * 1715 * This may be called from interrupt context. 1716 * 1717 * Return: 0 on success otherwise errno 1718 */ 1719 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1720 const struct ib_recv_wr **bad_wr) 1721 { 1722 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1723 struct rvt_rwq *wq = qp->r_rq.wq; 1724 unsigned long flags; 1725 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1726 !qp->ibqp.srq; 1727 1728 /* Check that state is OK to post receive. */ 1729 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1730 *bad_wr = wr; 1731 return -EINVAL; 1732 } 1733 1734 for (; wr; wr = wr->next) { 1735 struct rvt_rwqe *wqe; 1736 u32 next; 1737 int i; 1738 1739 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1740 *bad_wr = wr; 1741 return -EINVAL; 1742 } 1743 1744 spin_lock_irqsave(&qp->r_rq.lock, flags); 1745 next = wq->head + 1; 1746 if (next >= qp->r_rq.size) 1747 next = 0; 1748 if (next == wq->tail) { 1749 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1750 *bad_wr = wr; 1751 return -ENOMEM; 1752 } 1753 if (unlikely(qp_err_flush)) { 1754 struct ib_wc wc; 1755 1756 memset(&wc, 0, sizeof(wc)); 1757 wc.qp = &qp->ibqp; 1758 wc.opcode = IB_WC_RECV; 1759 wc.wr_id = wr->wr_id; 1760 wc.status = IB_WC_WR_FLUSH_ERR; 1761 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1762 } else { 1763 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1764 wqe->wr_id = wr->wr_id; 1765 wqe->num_sge = wr->num_sge; 1766 for (i = 0; i < wr->num_sge; i++) 1767 wqe->sg_list[i] = wr->sg_list[i]; 1768 /* 1769 * Make sure queue entry is written 1770 * before the head index. 1771 */ 1772 smp_wmb(); 1773 wq->head = next; 1774 } 1775 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1776 } 1777 return 0; 1778 } 1779 1780 /** 1781 * rvt_qp_valid_operation - validate post send wr request 1782 * @qp - the qp 1783 * @post-parms - the post send table for the driver 1784 * @wr - the work request 1785 * 1786 * The routine validates the operation based on the 1787 * validation table an returns the length of the operation 1788 * which can extend beyond the ib_send_bw. Operation 1789 * dependent flags key atomic operation validation. 1790 * 1791 * There is an exception for UD qps that validates the pd and 1792 * overrides the length to include the additional UD specific 1793 * length. 1794 * 1795 * Returns a negative error or the length of the work request 1796 * for building the swqe. 1797 */ 1798 static inline int rvt_qp_valid_operation( 1799 struct rvt_qp *qp, 1800 const struct rvt_operation_params *post_parms, 1801 const struct ib_send_wr *wr) 1802 { 1803 int len; 1804 1805 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1806 return -EINVAL; 1807 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1808 return -EINVAL; 1809 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1810 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1811 return -EINVAL; 1812 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1813 (wr->num_sge == 0 || 1814 wr->sg_list[0].length < sizeof(u64) || 1815 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1816 return -EINVAL; 1817 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1818 !qp->s_max_rd_atomic) 1819 return -EINVAL; 1820 len = post_parms[wr->opcode].length; 1821 /* UD specific */ 1822 if (qp->ibqp.qp_type != IB_QPT_UC && 1823 qp->ibqp.qp_type != IB_QPT_RC) { 1824 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1825 return -EINVAL; 1826 len = sizeof(struct ib_ud_wr); 1827 } 1828 return len; 1829 } 1830 1831 /** 1832 * rvt_qp_is_avail - determine queue capacity 1833 * @qp: the qp 1834 * @rdi: the rdmavt device 1835 * @reserved_op: is reserved operation 1836 * 1837 * This assumes the s_hlock is held but the s_last 1838 * qp variable is uncontrolled. 1839 * 1840 * For non reserved operations, the qp->s_avail 1841 * may be changed. 1842 * 1843 * The return value is zero or a -ENOMEM. 1844 */ 1845 static inline int rvt_qp_is_avail( 1846 struct rvt_qp *qp, 1847 struct rvt_dev_info *rdi, 1848 bool reserved_op) 1849 { 1850 u32 slast; 1851 u32 avail; 1852 u32 reserved_used; 1853 1854 /* see rvt_qp_wqe_unreserve() */ 1855 smp_mb__before_atomic(); 1856 reserved_used = atomic_read(&qp->s_reserved_used); 1857 if (unlikely(reserved_op)) { 1858 /* see rvt_qp_wqe_unreserve() */ 1859 smp_mb__before_atomic(); 1860 if (reserved_used >= rdi->dparms.reserved_operations) 1861 return -ENOMEM; 1862 return 0; 1863 } 1864 /* non-reserved operations */ 1865 if (likely(qp->s_avail)) 1866 return 0; 1867 slast = READ_ONCE(qp->s_last); 1868 if (qp->s_head >= slast) 1869 avail = qp->s_size - (qp->s_head - slast); 1870 else 1871 avail = slast - qp->s_head; 1872 1873 /* see rvt_qp_wqe_unreserve() */ 1874 smp_mb__before_atomic(); 1875 reserved_used = atomic_read(&qp->s_reserved_used); 1876 avail = avail - 1 - 1877 (rdi->dparms.reserved_operations - reserved_used); 1878 /* insure we don't assign a negative s_avail */ 1879 if ((s32)avail <= 0) 1880 return -ENOMEM; 1881 qp->s_avail = avail; 1882 if (WARN_ON(qp->s_avail > 1883 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1884 rvt_pr_err(rdi, 1885 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1886 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1887 qp->s_head, qp->s_tail, qp->s_cur, 1888 qp->s_acked, qp->s_last); 1889 return 0; 1890 } 1891 1892 /** 1893 * rvt_post_one_wr - post one RC, UC, or UD send work request 1894 * @qp: the QP to post on 1895 * @wr: the work request to send 1896 */ 1897 static int rvt_post_one_wr(struct rvt_qp *qp, 1898 const struct ib_send_wr *wr, 1899 bool *call_send) 1900 { 1901 struct rvt_swqe *wqe; 1902 u32 next; 1903 int i; 1904 int j; 1905 int acc; 1906 struct rvt_lkey_table *rkt; 1907 struct rvt_pd *pd; 1908 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1909 u8 log_pmtu; 1910 int ret; 1911 size_t cplen; 1912 bool reserved_op; 1913 int local_ops_delayed = 0; 1914 1915 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1916 1917 /* IB spec says that num_sge == 0 is OK. */ 1918 if (unlikely(wr->num_sge > qp->s_max_sge)) 1919 return -EINVAL; 1920 1921 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1922 if (ret < 0) 1923 return ret; 1924 cplen = ret; 1925 1926 /* 1927 * Local operations include fast register and local invalidate. 1928 * Fast register needs to be processed immediately because the 1929 * registered lkey may be used by following work requests and the 1930 * lkey needs to be valid at the time those requests are posted. 1931 * Local invalidate can be processed immediately if fencing is 1932 * not required and no previous local invalidate ops are pending. 1933 * Signaled local operations that have been processed immediately 1934 * need to have requests with "completion only" flags set posted 1935 * to the send queue in order to generate completions. 1936 */ 1937 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 1938 switch (wr->opcode) { 1939 case IB_WR_REG_MR: 1940 ret = rvt_fast_reg_mr(qp, 1941 reg_wr(wr)->mr, 1942 reg_wr(wr)->key, 1943 reg_wr(wr)->access); 1944 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1945 return ret; 1946 break; 1947 case IB_WR_LOCAL_INV: 1948 if ((wr->send_flags & IB_SEND_FENCE) || 1949 atomic_read(&qp->local_ops_pending)) { 1950 local_ops_delayed = 1; 1951 } else { 1952 ret = rvt_invalidate_rkey( 1953 qp, wr->ex.invalidate_rkey); 1954 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1955 return ret; 1956 } 1957 break; 1958 default: 1959 return -EINVAL; 1960 } 1961 } 1962 1963 reserved_op = rdi->post_parms[wr->opcode].flags & 1964 RVT_OPERATION_USE_RESERVE; 1965 /* check for avail */ 1966 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 1967 if (ret) 1968 return ret; 1969 next = qp->s_head + 1; 1970 if (next >= qp->s_size) 1971 next = 0; 1972 1973 rkt = &rdi->lkey_table; 1974 pd = ibpd_to_rvtpd(qp->ibqp.pd); 1975 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 1976 1977 /* cplen has length from above */ 1978 memcpy(&wqe->wr, wr, cplen); 1979 1980 wqe->length = 0; 1981 j = 0; 1982 if (wr->num_sge) { 1983 struct rvt_sge *last_sge = NULL; 1984 1985 acc = wr->opcode >= IB_WR_RDMA_READ ? 1986 IB_ACCESS_LOCAL_WRITE : 0; 1987 for (i = 0; i < wr->num_sge; i++) { 1988 u32 length = wr->sg_list[i].length; 1989 1990 if (length == 0) 1991 continue; 1992 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 1993 &wr->sg_list[i], acc); 1994 if (unlikely(ret < 0)) 1995 goto bail_inval_free; 1996 wqe->length += length; 1997 if (ret) 1998 last_sge = &wqe->sg_list[j]; 1999 j += ret; 2000 } 2001 wqe->wr.num_sge = j; 2002 } 2003 2004 /* 2005 * Calculate and set SWQE PSN values prior to handing it off 2006 * to the driver's check routine. This give the driver the 2007 * opportunity to adjust PSN values based on internal checks. 2008 */ 2009 log_pmtu = qp->log_pmtu; 2010 if (qp->ibqp.qp_type != IB_QPT_UC && 2011 qp->ibqp.qp_type != IB_QPT_RC) { 2012 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah); 2013 2014 log_pmtu = ah->log_pmtu; 2015 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 2016 } 2017 2018 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2019 if (local_ops_delayed) 2020 atomic_inc(&qp->local_ops_pending); 2021 else 2022 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2023 wqe->ssn = 0; 2024 wqe->psn = 0; 2025 wqe->lpsn = 0; 2026 } else { 2027 wqe->ssn = qp->s_ssn++; 2028 wqe->psn = qp->s_next_psn; 2029 wqe->lpsn = wqe->psn + 2030 (wqe->length ? 2031 ((wqe->length - 1) >> log_pmtu) : 2032 0); 2033 } 2034 2035 /* general part of wqe valid - allow for driver checks */ 2036 if (rdi->driver_f.setup_wqe) { 2037 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2038 if (ret < 0) 2039 goto bail_inval_free_ref; 2040 } 2041 2042 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2043 qp->s_next_psn = wqe->lpsn + 1; 2044 2045 if (unlikely(reserved_op)) { 2046 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2047 rvt_qp_wqe_reserve(qp, wqe); 2048 } else { 2049 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2050 qp->s_avail--; 2051 } 2052 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2053 smp_wmb(); /* see request builders */ 2054 qp->s_head = next; 2055 2056 return 0; 2057 2058 bail_inval_free_ref: 2059 if (qp->ibqp.qp_type != IB_QPT_UC && 2060 qp->ibqp.qp_type != IB_QPT_RC) 2061 atomic_dec(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 2062 bail_inval_free: 2063 /* release mr holds */ 2064 while (j) { 2065 struct rvt_sge *sge = &wqe->sg_list[--j]; 2066 2067 rvt_put_mr(sge->mr); 2068 } 2069 return ret; 2070 } 2071 2072 /** 2073 * rvt_post_send - post a send on a QP 2074 * @ibqp: the QP to post the send on 2075 * @wr: the list of work requests to post 2076 * @bad_wr: the first bad WR is put here 2077 * 2078 * This may be called from interrupt context. 2079 * 2080 * Return: 0 on success else errno 2081 */ 2082 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2083 const struct ib_send_wr **bad_wr) 2084 { 2085 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2086 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2087 unsigned long flags = 0; 2088 bool call_send; 2089 unsigned nreq = 0; 2090 int err = 0; 2091 2092 spin_lock_irqsave(&qp->s_hlock, flags); 2093 2094 /* 2095 * Ensure QP state is such that we can send. If not bail out early, 2096 * there is no need to do this every time we post a send. 2097 */ 2098 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2099 spin_unlock_irqrestore(&qp->s_hlock, flags); 2100 return -EINVAL; 2101 } 2102 2103 /* 2104 * If the send queue is empty, and we only have a single WR then just go 2105 * ahead and kick the send engine into gear. Otherwise we will always 2106 * just schedule the send to happen later. 2107 */ 2108 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2109 2110 for (; wr; wr = wr->next) { 2111 err = rvt_post_one_wr(qp, wr, &call_send); 2112 if (unlikely(err)) { 2113 *bad_wr = wr; 2114 goto bail; 2115 } 2116 nreq++; 2117 } 2118 bail: 2119 spin_unlock_irqrestore(&qp->s_hlock, flags); 2120 if (nreq) { 2121 /* 2122 * Only call do_send if there is exactly one packet, and the 2123 * driver said it was ok. 2124 */ 2125 if (nreq == 1 && call_send) 2126 rdi->driver_f.do_send(qp); 2127 else 2128 rdi->driver_f.schedule_send_no_lock(qp); 2129 } 2130 return err; 2131 } 2132 2133 /** 2134 * rvt_post_srq_receive - post a receive on a shared receive queue 2135 * @ibsrq: the SRQ to post the receive on 2136 * @wr: the list of work requests to post 2137 * @bad_wr: A pointer to the first WR to cause a problem is put here 2138 * 2139 * This may be called from interrupt context. 2140 * 2141 * Return: 0 on success else errno 2142 */ 2143 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2144 const struct ib_recv_wr **bad_wr) 2145 { 2146 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2147 struct rvt_rwq *wq; 2148 unsigned long flags; 2149 2150 for (; wr; wr = wr->next) { 2151 struct rvt_rwqe *wqe; 2152 u32 next; 2153 int i; 2154 2155 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2156 *bad_wr = wr; 2157 return -EINVAL; 2158 } 2159 2160 spin_lock_irqsave(&srq->rq.lock, flags); 2161 wq = srq->rq.wq; 2162 next = wq->head + 1; 2163 if (next >= srq->rq.size) 2164 next = 0; 2165 if (next == wq->tail) { 2166 spin_unlock_irqrestore(&srq->rq.lock, flags); 2167 *bad_wr = wr; 2168 return -ENOMEM; 2169 } 2170 2171 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2172 wqe->wr_id = wr->wr_id; 2173 wqe->num_sge = wr->num_sge; 2174 for (i = 0; i < wr->num_sge; i++) 2175 wqe->sg_list[i] = wr->sg_list[i]; 2176 /* Make sure queue entry is written before the head index. */ 2177 smp_wmb(); 2178 wq->head = next; 2179 spin_unlock_irqrestore(&srq->rq.lock, flags); 2180 } 2181 return 0; 2182 } 2183 2184 /* 2185 * Validate a RWQE and fill in the SGE state. 2186 * Return 1 if OK. 2187 */ 2188 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2189 { 2190 int i, j, ret; 2191 struct ib_wc wc; 2192 struct rvt_lkey_table *rkt; 2193 struct rvt_pd *pd; 2194 struct rvt_sge_state *ss; 2195 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2196 2197 rkt = &rdi->lkey_table; 2198 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2199 ss = &qp->r_sge; 2200 ss->sg_list = qp->r_sg_list; 2201 qp->r_len = 0; 2202 for (i = j = 0; i < wqe->num_sge; i++) { 2203 if (wqe->sg_list[i].length == 0) 2204 continue; 2205 /* Check LKEY */ 2206 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2207 NULL, &wqe->sg_list[i], 2208 IB_ACCESS_LOCAL_WRITE); 2209 if (unlikely(ret <= 0)) 2210 goto bad_lkey; 2211 qp->r_len += wqe->sg_list[i].length; 2212 j++; 2213 } 2214 ss->num_sge = j; 2215 ss->total_len = qp->r_len; 2216 return 1; 2217 2218 bad_lkey: 2219 while (j) { 2220 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2221 2222 rvt_put_mr(sge->mr); 2223 } 2224 ss->num_sge = 0; 2225 memset(&wc, 0, sizeof(wc)); 2226 wc.wr_id = wqe->wr_id; 2227 wc.status = IB_WC_LOC_PROT_ERR; 2228 wc.opcode = IB_WC_RECV; 2229 wc.qp = &qp->ibqp; 2230 /* Signal solicited completion event. */ 2231 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2232 return 0; 2233 } 2234 2235 /** 2236 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2237 * @qp: the QP 2238 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2239 * 2240 * Return -1 if there is a local error, 0 if no RWQE is available, 2241 * otherwise return 1. 2242 * 2243 * Can be called from interrupt level. 2244 */ 2245 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2246 { 2247 unsigned long flags; 2248 struct rvt_rq *rq; 2249 struct rvt_rwq *wq; 2250 struct rvt_srq *srq; 2251 struct rvt_rwqe *wqe; 2252 void (*handler)(struct ib_event *, void *); 2253 u32 tail; 2254 int ret; 2255 2256 if (qp->ibqp.srq) { 2257 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2258 handler = srq->ibsrq.event_handler; 2259 rq = &srq->rq; 2260 } else { 2261 srq = NULL; 2262 handler = NULL; 2263 rq = &qp->r_rq; 2264 } 2265 2266 spin_lock_irqsave(&rq->lock, flags); 2267 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2268 ret = 0; 2269 goto unlock; 2270 } 2271 2272 wq = rq->wq; 2273 tail = wq->tail; 2274 /* Validate tail before using it since it is user writable. */ 2275 if (tail >= rq->size) 2276 tail = 0; 2277 if (unlikely(tail == wq->head)) { 2278 ret = 0; 2279 goto unlock; 2280 } 2281 /* Make sure entry is read after head index is read. */ 2282 smp_rmb(); 2283 wqe = rvt_get_rwqe_ptr(rq, tail); 2284 /* 2285 * Even though we update the tail index in memory, the verbs 2286 * consumer is not supposed to post more entries until a 2287 * completion is generated. 2288 */ 2289 if (++tail >= rq->size) 2290 tail = 0; 2291 wq->tail = tail; 2292 if (!wr_id_only && !init_sge(qp, wqe)) { 2293 ret = -1; 2294 goto unlock; 2295 } 2296 qp->r_wr_id = wqe->wr_id; 2297 2298 ret = 1; 2299 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2300 if (handler) { 2301 u32 n; 2302 2303 /* 2304 * Validate head pointer value and compute 2305 * the number of remaining WQEs. 2306 */ 2307 n = wq->head; 2308 if (n >= rq->size) 2309 n = 0; 2310 if (n < tail) 2311 n += rq->size - tail; 2312 else 2313 n -= tail; 2314 if (n < srq->limit) { 2315 struct ib_event ev; 2316 2317 srq->limit = 0; 2318 spin_unlock_irqrestore(&rq->lock, flags); 2319 ev.device = qp->ibqp.device; 2320 ev.element.srq = qp->ibqp.srq; 2321 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2322 handler(&ev, srq->ibsrq.srq_context); 2323 goto bail; 2324 } 2325 } 2326 unlock: 2327 spin_unlock_irqrestore(&rq->lock, flags); 2328 bail: 2329 return ret; 2330 } 2331 EXPORT_SYMBOL(rvt_get_rwqe); 2332 2333 /** 2334 * qp_comm_est - handle trap with QP established 2335 * @qp: the QP 2336 */ 2337 void rvt_comm_est(struct rvt_qp *qp) 2338 { 2339 qp->r_flags |= RVT_R_COMM_EST; 2340 if (qp->ibqp.event_handler) { 2341 struct ib_event ev; 2342 2343 ev.device = qp->ibqp.device; 2344 ev.element.qp = &qp->ibqp; 2345 ev.event = IB_EVENT_COMM_EST; 2346 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2347 } 2348 } 2349 EXPORT_SYMBOL(rvt_comm_est); 2350 2351 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2352 { 2353 unsigned long flags; 2354 int lastwqe; 2355 2356 spin_lock_irqsave(&qp->s_lock, flags); 2357 lastwqe = rvt_error_qp(qp, err); 2358 spin_unlock_irqrestore(&qp->s_lock, flags); 2359 2360 if (lastwqe) { 2361 struct ib_event ev; 2362 2363 ev.device = qp->ibqp.device; 2364 ev.element.qp = &qp->ibqp; 2365 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2366 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2367 } 2368 } 2369 EXPORT_SYMBOL(rvt_rc_error); 2370 2371 /* 2372 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2373 * @index - the index 2374 * return usec from an index into ib_rvt_rnr_table 2375 */ 2376 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2377 { 2378 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2379 } 2380 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2381 2382 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2383 { 2384 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2385 IB_AETH_CREDIT_MASK]; 2386 } 2387 2388 /* 2389 * rvt_add_retry_timer - add/start a retry timer 2390 * @qp - the QP 2391 * add a retry timer on the QP 2392 */ 2393 void rvt_add_retry_timer(struct rvt_qp *qp) 2394 { 2395 struct ib_qp *ibqp = &qp->ibqp; 2396 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2397 2398 lockdep_assert_held(&qp->s_lock); 2399 qp->s_flags |= RVT_S_TIMER; 2400 /* 4.096 usec. * (1 << qp->timeout) */ 2401 qp->s_timer.expires = jiffies + qp->timeout_jiffies + 2402 rdi->busy_jiffies; 2403 add_timer(&qp->s_timer); 2404 } 2405 EXPORT_SYMBOL(rvt_add_retry_timer); 2406 2407 /** 2408 * rvt_add_rnr_timer - add/start an rnr timer 2409 * @qp - the QP 2410 * @aeth - aeth of RNR timeout, simulated aeth for loopback 2411 * add an rnr timer on the QP 2412 */ 2413 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2414 { 2415 u32 to; 2416 2417 lockdep_assert_held(&qp->s_lock); 2418 qp->s_flags |= RVT_S_WAIT_RNR; 2419 to = rvt_aeth_to_usec(aeth); 2420 trace_rvt_rnrnak_add(qp, to); 2421 hrtimer_start(&qp->s_rnr_timer, 2422 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2423 } 2424 EXPORT_SYMBOL(rvt_add_rnr_timer); 2425 2426 /** 2427 * rvt_stop_rc_timers - stop all timers 2428 * @qp - the QP 2429 * stop any pending timers 2430 */ 2431 void rvt_stop_rc_timers(struct rvt_qp *qp) 2432 { 2433 lockdep_assert_held(&qp->s_lock); 2434 /* Remove QP from all timers */ 2435 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2436 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2437 del_timer(&qp->s_timer); 2438 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2439 } 2440 } 2441 EXPORT_SYMBOL(rvt_stop_rc_timers); 2442 2443 /** 2444 * rvt_stop_rnr_timer - stop an rnr timer 2445 * @qp - the QP 2446 * 2447 * stop an rnr timer and return if the timer 2448 * had been pending. 2449 */ 2450 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2451 { 2452 lockdep_assert_held(&qp->s_lock); 2453 /* Remove QP from rnr timer */ 2454 if (qp->s_flags & RVT_S_WAIT_RNR) { 2455 qp->s_flags &= ~RVT_S_WAIT_RNR; 2456 trace_rvt_rnrnak_stop(qp, 0); 2457 } 2458 } 2459 2460 /** 2461 * rvt_del_timers_sync - wait for any timeout routines to exit 2462 * @qp - the QP 2463 */ 2464 void rvt_del_timers_sync(struct rvt_qp *qp) 2465 { 2466 del_timer_sync(&qp->s_timer); 2467 hrtimer_cancel(&qp->s_rnr_timer); 2468 } 2469 EXPORT_SYMBOL(rvt_del_timers_sync); 2470 2471 /** 2472 * This is called from s_timer for missing responses. 2473 */ 2474 static void rvt_rc_timeout(struct timer_list *t) 2475 { 2476 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2477 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2478 unsigned long flags; 2479 2480 spin_lock_irqsave(&qp->r_lock, flags); 2481 spin_lock(&qp->s_lock); 2482 if (qp->s_flags & RVT_S_TIMER) { 2483 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2484 2485 qp->s_flags &= ~RVT_S_TIMER; 2486 rvp->n_rc_timeouts++; 2487 del_timer(&qp->s_timer); 2488 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2489 if (rdi->driver_f.notify_restart_rc) 2490 rdi->driver_f.notify_restart_rc(qp, 2491 qp->s_last_psn + 1, 2492 1); 2493 rdi->driver_f.schedule_send(qp); 2494 } 2495 spin_unlock(&qp->s_lock); 2496 spin_unlock_irqrestore(&qp->r_lock, flags); 2497 } 2498 2499 /* 2500 * This is called from s_timer for RNR timeouts. 2501 */ 2502 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2503 { 2504 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2505 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2506 unsigned long flags; 2507 2508 spin_lock_irqsave(&qp->s_lock, flags); 2509 rvt_stop_rnr_timer(qp); 2510 trace_rvt_rnrnak_timeout(qp, 0); 2511 rdi->driver_f.schedule_send(qp); 2512 spin_unlock_irqrestore(&qp->s_lock, flags); 2513 return HRTIMER_NORESTART; 2514 } 2515 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2516 2517 /** 2518 * rvt_qp_iter_init - initial for QP iteration 2519 * @rdi: rvt devinfo 2520 * @v: u64 value 2521 * 2522 * This returns an iterator suitable for iterating QPs 2523 * in the system. 2524 * 2525 * The @cb is a user defined callback and @v is a 64 2526 * bit value passed to and relevant for processing in the 2527 * @cb. An example use case would be to alter QP processing 2528 * based on criteria not part of the rvt_qp. 2529 * 2530 * Use cases that require memory allocation to succeed 2531 * must preallocate appropriately. 2532 * 2533 * Return: a pointer to an rvt_qp_iter or NULL 2534 */ 2535 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2536 u64 v, 2537 void (*cb)(struct rvt_qp *qp, u64 v)) 2538 { 2539 struct rvt_qp_iter *i; 2540 2541 i = kzalloc(sizeof(*i), GFP_KERNEL); 2542 if (!i) 2543 return NULL; 2544 2545 i->rdi = rdi; 2546 /* number of special QPs (SMI/GSI) for device */ 2547 i->specials = rdi->ibdev.phys_port_cnt * 2; 2548 i->v = v; 2549 i->cb = cb; 2550 2551 return i; 2552 } 2553 EXPORT_SYMBOL(rvt_qp_iter_init); 2554 2555 /** 2556 * rvt_qp_iter_next - return the next QP in iter 2557 * @iter - the iterator 2558 * 2559 * Fine grained QP iterator suitable for use 2560 * with debugfs seq_file mechanisms. 2561 * 2562 * Updates iter->qp with the current QP when the return 2563 * value is 0. 2564 * 2565 * Return: 0 - iter->qp is valid 1 - no more QPs 2566 */ 2567 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2568 __must_hold(RCU) 2569 { 2570 int n = iter->n; 2571 int ret = 1; 2572 struct rvt_qp *pqp = iter->qp; 2573 struct rvt_qp *qp; 2574 struct rvt_dev_info *rdi = iter->rdi; 2575 2576 /* 2577 * The approach is to consider the special qps 2578 * as additional table entries before the 2579 * real hash table. Since the qp code sets 2580 * the qp->next hash link to NULL, this works just fine. 2581 * 2582 * iter->specials is 2 * # ports 2583 * 2584 * n = 0..iter->specials is the special qp indices 2585 * 2586 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2587 * the potential hash bucket entries 2588 * 2589 */ 2590 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2591 if (pqp) { 2592 qp = rcu_dereference(pqp->next); 2593 } else { 2594 if (n < iter->specials) { 2595 struct rvt_ibport *rvp; 2596 int pidx; 2597 2598 pidx = n % rdi->ibdev.phys_port_cnt; 2599 rvp = rdi->ports[pidx]; 2600 qp = rcu_dereference(rvp->qp[n & 1]); 2601 } else { 2602 qp = rcu_dereference( 2603 rdi->qp_dev->qp_table[ 2604 (n - iter->specials)]); 2605 } 2606 } 2607 pqp = qp; 2608 if (qp) { 2609 iter->qp = qp; 2610 iter->n = n; 2611 return 0; 2612 } 2613 } 2614 return ret; 2615 } 2616 EXPORT_SYMBOL(rvt_qp_iter_next); 2617 2618 /** 2619 * rvt_qp_iter - iterate all QPs 2620 * @rdi - rvt devinfo 2621 * @v - a 64 bit value 2622 * @cb - a callback 2623 * 2624 * This provides a way for iterating all QPs. 2625 * 2626 * The @cb is a user defined callback and @v is a 64 2627 * bit value passed to and relevant for processing in the 2628 * cb. An example use case would be to alter QP processing 2629 * based on criteria not part of the rvt_qp. 2630 * 2631 * The code has an internal iterator to simplify 2632 * non seq_file use cases. 2633 */ 2634 void rvt_qp_iter(struct rvt_dev_info *rdi, 2635 u64 v, 2636 void (*cb)(struct rvt_qp *qp, u64 v)) 2637 { 2638 int ret; 2639 struct rvt_qp_iter i = { 2640 .rdi = rdi, 2641 .specials = rdi->ibdev.phys_port_cnt * 2, 2642 .v = v, 2643 .cb = cb 2644 }; 2645 2646 rcu_read_lock(); 2647 do { 2648 ret = rvt_qp_iter_next(&i); 2649 if (!ret) { 2650 rvt_get_qp(i.qp); 2651 rcu_read_unlock(); 2652 i.cb(i.qp, i.v); 2653 rcu_read_lock(); 2654 rvt_put_qp(i.qp); 2655 } 2656 } while (!ret); 2657 rcu_read_unlock(); 2658 } 2659 EXPORT_SYMBOL(rvt_qp_iter); 2660 2661 /* 2662 * This should be called with s_lock held. 2663 */ 2664 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2665 enum ib_wc_status status) 2666 { 2667 u32 old_last, last; 2668 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2669 2670 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2671 return; 2672 2673 last = qp->s_last; 2674 old_last = last; 2675 trace_rvt_qp_send_completion(qp, wqe, last); 2676 if (++last >= qp->s_size) 2677 last = 0; 2678 trace_rvt_qp_send_completion(qp, wqe, last); 2679 qp->s_last = last; 2680 /* See post_send() */ 2681 barrier(); 2682 rvt_put_swqe(wqe); 2683 if (qp->ibqp.qp_type == IB_QPT_UD || 2684 qp->ibqp.qp_type == IB_QPT_SMI || 2685 qp->ibqp.qp_type == IB_QPT_GSI) 2686 atomic_dec(&ibah_to_rvtah(wqe->ud_wr.ah)->refcount); 2687 2688 rvt_qp_swqe_complete(qp, 2689 wqe, 2690 rdi->wc_opcode[wqe->wr.opcode], 2691 status); 2692 2693 if (qp->s_acked == old_last) 2694 qp->s_acked = last; 2695 if (qp->s_cur == old_last) 2696 qp->s_cur = last; 2697 if (qp->s_tail == old_last) 2698 qp->s_tail = last; 2699 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2700 qp->s_draining = 0; 2701 } 2702 EXPORT_SYMBOL(rvt_send_complete); 2703 2704 /** 2705 * rvt_copy_sge - copy data to SGE memory 2706 * @qp: associated QP 2707 * @ss: the SGE state 2708 * @data: the data to copy 2709 * @length: the length of the data 2710 * @release: boolean to release MR 2711 * @copy_last: do a separate copy of the last 8 bytes 2712 */ 2713 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2714 void *data, u32 length, 2715 bool release, bool copy_last) 2716 { 2717 struct rvt_sge *sge = &ss->sge; 2718 int i; 2719 bool in_last = false; 2720 bool cacheless_copy = false; 2721 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2722 struct rvt_wss *wss = rdi->wss; 2723 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2724 2725 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2726 cacheless_copy = length >= PAGE_SIZE; 2727 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2728 if (length >= PAGE_SIZE) { 2729 /* 2730 * NOTE: this *assumes*: 2731 * o The first vaddr is the dest. 2732 * o If multiple pages, then vaddr is sequential. 2733 */ 2734 wss_insert(wss, sge->vaddr); 2735 if (length >= (2 * PAGE_SIZE)) 2736 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2737 2738 cacheless_copy = wss_exceeds_threshold(wss); 2739 } else { 2740 wss_advance_clean_counter(wss); 2741 } 2742 } 2743 2744 if (copy_last) { 2745 if (length > 8) { 2746 length -= 8; 2747 } else { 2748 copy_last = false; 2749 in_last = true; 2750 } 2751 } 2752 2753 again: 2754 while (length) { 2755 u32 len = rvt_get_sge_length(sge, length); 2756 2757 WARN_ON_ONCE(len == 0); 2758 if (unlikely(in_last)) { 2759 /* enforce byte transfer ordering */ 2760 for (i = 0; i < len; i++) 2761 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2762 } else if (cacheless_copy) { 2763 cacheless_memcpy(sge->vaddr, data, len); 2764 } else { 2765 memcpy(sge->vaddr, data, len); 2766 } 2767 rvt_update_sge(ss, len, release); 2768 data += len; 2769 length -= len; 2770 } 2771 2772 if (copy_last) { 2773 copy_last = false; 2774 in_last = true; 2775 length = 8; 2776 goto again; 2777 } 2778 } 2779 EXPORT_SYMBOL(rvt_copy_sge); 2780 2781 /** 2782 * ruc_loopback - handle UC and RC loopback requests 2783 * @sqp: the sending QP 2784 * 2785 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2786 * Note that although we are single threaded due to the send engine, we still 2787 * have to protect against post_send(). We don't have to worry about 2788 * receive interrupts since this is a connected protocol and all packets 2789 * will pass through here. 2790 */ 2791 void rvt_ruc_loopback(struct rvt_qp *sqp) 2792 { 2793 struct rvt_ibport *rvp = NULL; 2794 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2795 struct rvt_qp *qp; 2796 struct rvt_swqe *wqe; 2797 struct rvt_sge *sge; 2798 unsigned long flags; 2799 struct ib_wc wc; 2800 u64 sdata; 2801 atomic64_t *maddr; 2802 enum ib_wc_status send_status; 2803 bool release; 2804 int ret; 2805 bool copy_last = false; 2806 int local_ops = 0; 2807 2808 rcu_read_lock(); 2809 rvp = rdi->ports[sqp->port_num - 1]; 2810 2811 /* 2812 * Note that we check the responder QP state after 2813 * checking the requester's state. 2814 */ 2815 2816 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2817 sqp->remote_qpn); 2818 2819 spin_lock_irqsave(&sqp->s_lock, flags); 2820 2821 /* Return if we are already busy processing a work request. */ 2822 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2823 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2824 goto unlock; 2825 2826 sqp->s_flags |= RVT_S_BUSY; 2827 2828 again: 2829 if (sqp->s_last == READ_ONCE(sqp->s_head)) 2830 goto clr_busy; 2831 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 2832 2833 /* Return if it is not OK to start a new work request. */ 2834 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 2835 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 2836 goto clr_busy; 2837 /* We are in the error state, flush the work request. */ 2838 send_status = IB_WC_WR_FLUSH_ERR; 2839 goto flush_send; 2840 } 2841 2842 /* 2843 * We can rely on the entry not changing without the s_lock 2844 * being held until we update s_last. 2845 * We increment s_cur to indicate s_last is in progress. 2846 */ 2847 if (sqp->s_last == sqp->s_cur) { 2848 if (++sqp->s_cur >= sqp->s_size) 2849 sqp->s_cur = 0; 2850 } 2851 spin_unlock_irqrestore(&sqp->s_lock, flags); 2852 2853 if (!qp || !(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 2854 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 2855 rvp->n_pkt_drops++; 2856 /* 2857 * For RC, the requester would timeout and retry so 2858 * shortcut the timeouts and just signal too many retries. 2859 */ 2860 if (sqp->ibqp.qp_type == IB_QPT_RC) 2861 send_status = IB_WC_RETRY_EXC_ERR; 2862 else 2863 send_status = IB_WC_SUCCESS; 2864 goto serr; 2865 } 2866 2867 memset(&wc, 0, sizeof(wc)); 2868 send_status = IB_WC_SUCCESS; 2869 2870 release = true; 2871 sqp->s_sge.sge = wqe->sg_list[0]; 2872 sqp->s_sge.sg_list = wqe->sg_list + 1; 2873 sqp->s_sge.num_sge = wqe->wr.num_sge; 2874 sqp->s_len = wqe->length; 2875 switch (wqe->wr.opcode) { 2876 case IB_WR_REG_MR: 2877 goto send_comp; 2878 2879 case IB_WR_LOCAL_INV: 2880 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 2881 if (rvt_invalidate_rkey(sqp, 2882 wqe->wr.ex.invalidate_rkey)) 2883 send_status = IB_WC_LOC_PROT_ERR; 2884 local_ops = 1; 2885 } 2886 goto send_comp; 2887 2888 case IB_WR_SEND_WITH_INV: 2889 if (!rvt_invalidate_rkey(qp, wqe->wr.ex.invalidate_rkey)) { 2890 wc.wc_flags = IB_WC_WITH_INVALIDATE; 2891 wc.ex.invalidate_rkey = wqe->wr.ex.invalidate_rkey; 2892 } 2893 goto send; 2894 2895 case IB_WR_SEND_WITH_IMM: 2896 wc.wc_flags = IB_WC_WITH_IMM; 2897 wc.ex.imm_data = wqe->wr.ex.imm_data; 2898 /* FALLTHROUGH */ 2899 case IB_WR_SEND: 2900 send: 2901 ret = rvt_get_rwqe(qp, false); 2902 if (ret < 0) 2903 goto op_err; 2904 if (!ret) 2905 goto rnr_nak; 2906 break; 2907 2908 case IB_WR_RDMA_WRITE_WITH_IMM: 2909 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 2910 goto inv_err; 2911 wc.wc_flags = IB_WC_WITH_IMM; 2912 wc.ex.imm_data = wqe->wr.ex.imm_data; 2913 ret = rvt_get_rwqe(qp, true); 2914 if (ret < 0) 2915 goto op_err; 2916 if (!ret) 2917 goto rnr_nak; 2918 /* skip copy_last set and qp_access_flags recheck */ 2919 goto do_write; 2920 case IB_WR_RDMA_WRITE: 2921 copy_last = rvt_is_user_qp(qp); 2922 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 2923 goto inv_err; 2924 do_write: 2925 if (wqe->length == 0) 2926 break; 2927 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 2928 wqe->rdma_wr.remote_addr, 2929 wqe->rdma_wr.rkey, 2930 IB_ACCESS_REMOTE_WRITE))) 2931 goto acc_err; 2932 qp->r_sge.sg_list = NULL; 2933 qp->r_sge.num_sge = 1; 2934 qp->r_sge.total_len = wqe->length; 2935 break; 2936 2937 case IB_WR_RDMA_READ: 2938 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 2939 goto inv_err; 2940 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 2941 wqe->rdma_wr.remote_addr, 2942 wqe->rdma_wr.rkey, 2943 IB_ACCESS_REMOTE_READ))) 2944 goto acc_err; 2945 release = false; 2946 sqp->s_sge.sg_list = NULL; 2947 sqp->s_sge.num_sge = 1; 2948 qp->r_sge.sge = wqe->sg_list[0]; 2949 qp->r_sge.sg_list = wqe->sg_list + 1; 2950 qp->r_sge.num_sge = wqe->wr.num_sge; 2951 qp->r_sge.total_len = wqe->length; 2952 break; 2953 2954 case IB_WR_ATOMIC_CMP_AND_SWP: 2955 case IB_WR_ATOMIC_FETCH_AND_ADD: 2956 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 2957 goto inv_err; 2958 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 2959 wqe->atomic_wr.remote_addr, 2960 wqe->atomic_wr.rkey, 2961 IB_ACCESS_REMOTE_ATOMIC))) 2962 goto acc_err; 2963 /* Perform atomic OP and save result. */ 2964 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 2965 sdata = wqe->atomic_wr.compare_add; 2966 *(u64 *)sqp->s_sge.sge.vaddr = 2967 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 2968 (u64)atomic64_add_return(sdata, maddr) - sdata : 2969 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 2970 sdata, wqe->atomic_wr.swap); 2971 rvt_put_mr(qp->r_sge.sge.mr); 2972 qp->r_sge.num_sge = 0; 2973 goto send_comp; 2974 2975 default: 2976 send_status = IB_WC_LOC_QP_OP_ERR; 2977 goto serr; 2978 } 2979 2980 sge = &sqp->s_sge.sge; 2981 while (sqp->s_len) { 2982 u32 len = sqp->s_len; 2983 2984 if (len > sge->length) 2985 len = sge->length; 2986 if (len > sge->sge_length) 2987 len = sge->sge_length; 2988 WARN_ON_ONCE(len == 0); 2989 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 2990 len, release, copy_last); 2991 sge->vaddr += len; 2992 sge->length -= len; 2993 sge->sge_length -= len; 2994 if (sge->sge_length == 0) { 2995 if (!release) 2996 rvt_put_mr(sge->mr); 2997 if (--sqp->s_sge.num_sge) 2998 *sge = *sqp->s_sge.sg_list++; 2999 } else if (sge->length == 0 && sge->mr->lkey) { 3000 if (++sge->n >= RVT_SEGSZ) { 3001 if (++sge->m >= sge->mr->mapsz) 3002 break; 3003 sge->n = 0; 3004 } 3005 sge->vaddr = 3006 sge->mr->map[sge->m]->segs[sge->n].vaddr; 3007 sge->length = 3008 sge->mr->map[sge->m]->segs[sge->n].length; 3009 } 3010 sqp->s_len -= len; 3011 } 3012 if (release) 3013 rvt_put_ss(&qp->r_sge); 3014 3015 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3016 goto send_comp; 3017 3018 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3019 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3020 else 3021 wc.opcode = IB_WC_RECV; 3022 wc.wr_id = qp->r_wr_id; 3023 wc.status = IB_WC_SUCCESS; 3024 wc.byte_len = wqe->length; 3025 wc.qp = &qp->ibqp; 3026 wc.src_qp = qp->remote_qpn; 3027 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3028 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3029 wc.port_num = 1; 3030 /* Signal completion event if the solicited bit is set. */ 3031 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 3032 wqe->wr.send_flags & IB_SEND_SOLICITED); 3033 3034 send_comp: 3035 spin_lock_irqsave(&sqp->s_lock, flags); 3036 rvp->n_loop_pkts++; 3037 flush_send: 3038 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3039 rvt_send_complete(sqp, wqe, send_status); 3040 if (local_ops) { 3041 atomic_dec(&sqp->local_ops_pending); 3042 local_ops = 0; 3043 } 3044 goto again; 3045 3046 rnr_nak: 3047 /* Handle RNR NAK */ 3048 if (qp->ibqp.qp_type == IB_QPT_UC) 3049 goto send_comp; 3050 rvp->n_rnr_naks++; 3051 /* 3052 * Note: we don't need the s_lock held since the BUSY flag 3053 * makes this single threaded. 3054 */ 3055 if (sqp->s_rnr_retry == 0) { 3056 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3057 goto serr; 3058 } 3059 if (sqp->s_rnr_retry_cnt < 7) 3060 sqp->s_rnr_retry--; 3061 spin_lock_irqsave(&sqp->s_lock, flags); 3062 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3063 goto clr_busy; 3064 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3065 IB_AETH_CREDIT_SHIFT); 3066 goto clr_busy; 3067 3068 op_err: 3069 send_status = IB_WC_REM_OP_ERR; 3070 wc.status = IB_WC_LOC_QP_OP_ERR; 3071 goto err; 3072 3073 inv_err: 3074 send_status = IB_WC_REM_INV_REQ_ERR; 3075 wc.status = IB_WC_LOC_QP_OP_ERR; 3076 goto err; 3077 3078 acc_err: 3079 send_status = IB_WC_REM_ACCESS_ERR; 3080 wc.status = IB_WC_LOC_PROT_ERR; 3081 err: 3082 /* responder goes to error state */ 3083 rvt_rc_error(qp, wc.status); 3084 3085 serr: 3086 spin_lock_irqsave(&sqp->s_lock, flags); 3087 rvt_send_complete(sqp, wqe, send_status); 3088 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3089 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3090 3091 sqp->s_flags &= ~RVT_S_BUSY; 3092 spin_unlock_irqrestore(&sqp->s_lock, flags); 3093 if (lastwqe) { 3094 struct ib_event ev; 3095 3096 ev.device = sqp->ibqp.device; 3097 ev.element.qp = &sqp->ibqp; 3098 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3099 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3100 } 3101 goto done; 3102 } 3103 clr_busy: 3104 sqp->s_flags &= ~RVT_S_BUSY; 3105 unlock: 3106 spin_unlock_irqrestore(&sqp->s_lock, flags); 3107 done: 3108 rcu_read_unlock(); 3109 } 3110 EXPORT_SYMBOL(rvt_ruc_loopback); 3111