1 /* 2 * Copyright(c) 2016 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include <rdma/opa_addr.h> 56 #include <rdma/uverbs_ioctl.h> 57 #include "qp.h" 58 #include "vt.h" 59 #include "trace.h" 60 61 static void rvt_rc_timeout(struct timer_list *t); 62 63 /* 64 * Convert the AETH RNR timeout code into the number of microseconds. 65 */ 66 static const u32 ib_rvt_rnr_table[32] = { 67 655360, /* 00: 655.36 */ 68 10, /* 01: .01 */ 69 20, /* 02 .02 */ 70 30, /* 03: .03 */ 71 40, /* 04: .04 */ 72 60, /* 05: .06 */ 73 80, /* 06: .08 */ 74 120, /* 07: .12 */ 75 160, /* 08: .16 */ 76 240, /* 09: .24 */ 77 320, /* 0A: .32 */ 78 480, /* 0B: .48 */ 79 640, /* 0C: .64 */ 80 960, /* 0D: .96 */ 81 1280, /* 0E: 1.28 */ 82 1920, /* 0F: 1.92 */ 83 2560, /* 10: 2.56 */ 84 3840, /* 11: 3.84 */ 85 5120, /* 12: 5.12 */ 86 7680, /* 13: 7.68 */ 87 10240, /* 14: 10.24 */ 88 15360, /* 15: 15.36 */ 89 20480, /* 16: 20.48 */ 90 30720, /* 17: 30.72 */ 91 40960, /* 18: 40.96 */ 92 61440, /* 19: 61.44 */ 93 81920, /* 1A: 81.92 */ 94 122880, /* 1B: 122.88 */ 95 163840, /* 1C: 163.84 */ 96 245760, /* 1D: 245.76 */ 97 327680, /* 1E: 327.68 */ 98 491520 /* 1F: 491.52 */ 99 }; 100 101 /* 102 * Note that it is OK to post send work requests in the SQE and ERR 103 * states; rvt_do_send() will process them and generate error 104 * completions as per IB 1.2 C10-96. 105 */ 106 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 107 [IB_QPS_RESET] = 0, 108 [IB_QPS_INIT] = RVT_POST_RECV_OK, 109 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 110 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 111 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 112 RVT_PROCESS_NEXT_SEND_OK, 113 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 114 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 115 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 116 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 117 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 118 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 119 }; 120 EXPORT_SYMBOL(ib_rvt_state_ops); 121 122 /* platform specific: return the last level cache (llc) size, in KiB */ 123 static int rvt_wss_llc_size(void) 124 { 125 /* assume that the boot CPU value is universal for all CPUs */ 126 return boot_cpu_data.x86_cache_size; 127 } 128 129 /* platform specific: cacheless copy */ 130 static void cacheless_memcpy(void *dst, void *src, size_t n) 131 { 132 /* 133 * Use the only available X64 cacheless copy. Add a __user cast 134 * to quiet sparse. The src agument is already in the kernel so 135 * there are no security issues. The extra fault recovery machinery 136 * is not invoked. 137 */ 138 __copy_user_nocache(dst, (void __user *)src, n, 0); 139 } 140 141 void rvt_wss_exit(struct rvt_dev_info *rdi) 142 { 143 struct rvt_wss *wss = rdi->wss; 144 145 if (!wss) 146 return; 147 148 /* coded to handle partially initialized and repeat callers */ 149 kfree(wss->entries); 150 wss->entries = NULL; 151 kfree(rdi->wss); 152 rdi->wss = NULL; 153 } 154 155 /** 156 * rvt_wss_init - Init wss data structures 157 * 158 * Return: 0 on success 159 */ 160 int rvt_wss_init(struct rvt_dev_info *rdi) 161 { 162 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 163 unsigned int wss_threshold = rdi->dparms.wss_threshold; 164 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 165 long llc_size; 166 long llc_bits; 167 long table_size; 168 long table_bits; 169 struct rvt_wss *wss; 170 int node = rdi->dparms.node; 171 172 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 173 rdi->wss = NULL; 174 return 0; 175 } 176 177 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 178 if (!rdi->wss) 179 return -ENOMEM; 180 wss = rdi->wss; 181 182 /* check for a valid percent range - default to 80 if none or invalid */ 183 if (wss_threshold < 1 || wss_threshold > 100) 184 wss_threshold = 80; 185 186 /* reject a wildly large period */ 187 if (wss_clean_period > 1000000) 188 wss_clean_period = 256; 189 190 /* reject a zero period */ 191 if (wss_clean_period == 0) 192 wss_clean_period = 1; 193 194 /* 195 * Calculate the table size - the next power of 2 larger than the 196 * LLC size. LLC size is in KiB. 197 */ 198 llc_size = rvt_wss_llc_size() * 1024; 199 table_size = roundup_pow_of_two(llc_size); 200 201 /* one bit per page in rounded up table */ 202 llc_bits = llc_size / PAGE_SIZE; 203 table_bits = table_size / PAGE_SIZE; 204 wss->pages_mask = table_bits - 1; 205 wss->num_entries = table_bits / BITS_PER_LONG; 206 207 wss->threshold = (llc_bits * wss_threshold) / 100; 208 if (wss->threshold == 0) 209 wss->threshold = 1; 210 211 wss->clean_period = wss_clean_period; 212 atomic_set(&wss->clean_counter, wss_clean_period); 213 214 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 215 GFP_KERNEL, node); 216 if (!wss->entries) { 217 rvt_wss_exit(rdi); 218 return -ENOMEM; 219 } 220 221 return 0; 222 } 223 224 /* 225 * Advance the clean counter. When the clean period has expired, 226 * clean an entry. 227 * 228 * This is implemented in atomics to avoid locking. Because multiple 229 * variables are involved, it can be racy which can lead to slightly 230 * inaccurate information. Since this is only a heuristic, this is 231 * OK. Any innaccuracies will clean themselves out as the counter 232 * advances. That said, it is unlikely the entry clean operation will 233 * race - the next possible racer will not start until the next clean 234 * period. 235 * 236 * The clean counter is implemented as a decrement to zero. When zero 237 * is reached an entry is cleaned. 238 */ 239 static void wss_advance_clean_counter(struct rvt_wss *wss) 240 { 241 int entry; 242 int weight; 243 unsigned long bits; 244 245 /* become the cleaner if we decrement the counter to zero */ 246 if (atomic_dec_and_test(&wss->clean_counter)) { 247 /* 248 * Set, not add, the clean period. This avoids an issue 249 * where the counter could decrement below the clean period. 250 * Doing a set can result in lost decrements, slowing the 251 * clean advance. Since this a heuristic, this possible 252 * slowdown is OK. 253 * 254 * An alternative is to loop, advancing the counter by a 255 * clean period until the result is > 0. However, this could 256 * lead to several threads keeping another in the clean loop. 257 * This could be mitigated by limiting the number of times 258 * we stay in the loop. 259 */ 260 atomic_set(&wss->clean_counter, wss->clean_period); 261 262 /* 263 * Uniquely grab the entry to clean and move to next. 264 * The current entry is always the lower bits of 265 * wss.clean_entry. The table size, wss.num_entries, 266 * is always a power-of-2. 267 */ 268 entry = (atomic_inc_return(&wss->clean_entry) - 1) 269 & (wss->num_entries - 1); 270 271 /* clear the entry and count the bits */ 272 bits = xchg(&wss->entries[entry], 0); 273 weight = hweight64((u64)bits); 274 /* only adjust the contended total count if needed */ 275 if (weight) 276 atomic_sub(weight, &wss->total_count); 277 } 278 } 279 280 /* 281 * Insert the given address into the working set array. 282 */ 283 static void wss_insert(struct rvt_wss *wss, void *address) 284 { 285 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 286 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 287 u32 nr = page & (BITS_PER_LONG - 1); 288 289 if (!test_and_set_bit(nr, &wss->entries[entry])) 290 atomic_inc(&wss->total_count); 291 292 wss_advance_clean_counter(wss); 293 } 294 295 /* 296 * Is the working set larger than the threshold? 297 */ 298 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 299 { 300 return atomic_read(&wss->total_count) >= wss->threshold; 301 } 302 303 static void get_map_page(struct rvt_qpn_table *qpt, 304 struct rvt_qpn_map *map) 305 { 306 unsigned long page = get_zeroed_page(GFP_KERNEL); 307 308 /* 309 * Free the page if someone raced with us installing it. 310 */ 311 312 spin_lock(&qpt->lock); 313 if (map->page) 314 free_page(page); 315 else 316 map->page = (void *)page; 317 spin_unlock(&qpt->lock); 318 } 319 320 /** 321 * init_qpn_table - initialize the QP number table for a device 322 * @qpt: the QPN table 323 */ 324 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 325 { 326 u32 offset, i; 327 struct rvt_qpn_map *map; 328 int ret = 0; 329 330 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 331 return -EINVAL; 332 333 spin_lock_init(&qpt->lock); 334 335 qpt->last = rdi->dparms.qpn_start; 336 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 337 338 /* 339 * Drivers may want some QPs beyond what we need for verbs let them use 340 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 341 * for those. The reserved range must be *after* the range which verbs 342 * will pick from. 343 */ 344 345 /* Figure out number of bit maps needed before reserved range */ 346 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 347 348 /* This should always be zero */ 349 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 350 351 /* Starting with the first reserved bit map */ 352 map = &qpt->map[qpt->nmaps]; 353 354 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 355 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 356 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 357 if (!map->page) { 358 get_map_page(qpt, map); 359 if (!map->page) { 360 ret = -ENOMEM; 361 break; 362 } 363 } 364 set_bit(offset, map->page); 365 offset++; 366 if (offset == RVT_BITS_PER_PAGE) { 367 /* next page */ 368 qpt->nmaps++; 369 map++; 370 offset = 0; 371 } 372 } 373 return ret; 374 } 375 376 /** 377 * free_qpn_table - free the QP number table for a device 378 * @qpt: the QPN table 379 */ 380 static void free_qpn_table(struct rvt_qpn_table *qpt) 381 { 382 int i; 383 384 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 385 free_page((unsigned long)qpt->map[i].page); 386 } 387 388 /** 389 * rvt_driver_qp_init - Init driver qp resources 390 * @rdi: rvt dev strucutre 391 * 392 * Return: 0 on success 393 */ 394 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 395 { 396 int i; 397 int ret = -ENOMEM; 398 399 if (!rdi->dparms.qp_table_size) 400 return -EINVAL; 401 402 /* 403 * If driver is not doing any QP allocation then make sure it is 404 * providing the necessary QP functions. 405 */ 406 if (!rdi->driver_f.free_all_qps || 407 !rdi->driver_f.qp_priv_alloc || 408 !rdi->driver_f.qp_priv_free || 409 !rdi->driver_f.notify_qp_reset || 410 !rdi->driver_f.notify_restart_rc) 411 return -EINVAL; 412 413 /* allocate parent object */ 414 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 415 rdi->dparms.node); 416 if (!rdi->qp_dev) 417 return -ENOMEM; 418 419 /* allocate hash table */ 420 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 421 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 422 rdi->qp_dev->qp_table = 423 kmalloc_array_node(rdi->qp_dev->qp_table_size, 424 sizeof(*rdi->qp_dev->qp_table), 425 GFP_KERNEL, rdi->dparms.node); 426 if (!rdi->qp_dev->qp_table) 427 goto no_qp_table; 428 429 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 430 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 431 432 spin_lock_init(&rdi->qp_dev->qpt_lock); 433 434 /* initialize qpn map */ 435 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 436 goto fail_table; 437 438 spin_lock_init(&rdi->n_qps_lock); 439 440 return 0; 441 442 fail_table: 443 kfree(rdi->qp_dev->qp_table); 444 free_qpn_table(&rdi->qp_dev->qpn_table); 445 446 no_qp_table: 447 kfree(rdi->qp_dev); 448 449 return ret; 450 } 451 452 /** 453 * free_all_qps - check for QPs still in use 454 * @rdi: rvt device info structure 455 * 456 * There should not be any QPs still in use. 457 * Free memory for table. 458 */ 459 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 460 { 461 unsigned long flags; 462 struct rvt_qp *qp; 463 unsigned n, qp_inuse = 0; 464 spinlock_t *ql; /* work around too long line below */ 465 466 if (rdi->driver_f.free_all_qps) 467 qp_inuse = rdi->driver_f.free_all_qps(rdi); 468 469 qp_inuse += rvt_mcast_tree_empty(rdi); 470 471 if (!rdi->qp_dev) 472 return qp_inuse; 473 474 ql = &rdi->qp_dev->qpt_lock; 475 spin_lock_irqsave(ql, flags); 476 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) { 477 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n], 478 lockdep_is_held(ql)); 479 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL); 480 481 for (; qp; qp = rcu_dereference_protected(qp->next, 482 lockdep_is_held(ql))) 483 qp_inuse++; 484 } 485 spin_unlock_irqrestore(ql, flags); 486 synchronize_rcu(); 487 return qp_inuse; 488 } 489 490 /** 491 * rvt_qp_exit - clean up qps on device exit 492 * @rdi: rvt dev structure 493 * 494 * Check for qp leaks and free resources. 495 */ 496 void rvt_qp_exit(struct rvt_dev_info *rdi) 497 { 498 u32 qps_inuse = rvt_free_all_qps(rdi); 499 500 if (qps_inuse) 501 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 502 qps_inuse); 503 if (!rdi->qp_dev) 504 return; 505 506 kfree(rdi->qp_dev->qp_table); 507 free_qpn_table(&rdi->qp_dev->qpn_table); 508 kfree(rdi->qp_dev); 509 } 510 511 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 512 struct rvt_qpn_map *map, unsigned off) 513 { 514 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 515 } 516 517 /** 518 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 519 * IB_QPT_SMI/IB_QPT_GSI 520 * @rdi: rvt device info structure 521 * @qpt: queue pair number table pointer 522 * @port_num: IB port number, 1 based, comes from core 523 * 524 * Return: The queue pair number 525 */ 526 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 527 enum ib_qp_type type, u8 port_num) 528 { 529 u32 i, offset, max_scan, qpn; 530 struct rvt_qpn_map *map; 531 u32 ret; 532 533 if (rdi->driver_f.alloc_qpn) 534 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 535 536 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 537 unsigned n; 538 539 ret = type == IB_QPT_GSI; 540 n = 1 << (ret + 2 * (port_num - 1)); 541 spin_lock(&qpt->lock); 542 if (qpt->flags & n) 543 ret = -EINVAL; 544 else 545 qpt->flags |= n; 546 spin_unlock(&qpt->lock); 547 goto bail; 548 } 549 550 qpn = qpt->last + qpt->incr; 551 if (qpn >= RVT_QPN_MAX) 552 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 553 /* offset carries bit 0 */ 554 offset = qpn & RVT_BITS_PER_PAGE_MASK; 555 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 556 max_scan = qpt->nmaps - !offset; 557 for (i = 0;;) { 558 if (unlikely(!map->page)) { 559 get_map_page(qpt, map); 560 if (unlikely(!map->page)) 561 break; 562 } 563 do { 564 if (!test_and_set_bit(offset, map->page)) { 565 qpt->last = qpn; 566 ret = qpn; 567 goto bail; 568 } 569 offset += qpt->incr; 570 /* 571 * This qpn might be bogus if offset >= BITS_PER_PAGE. 572 * That is OK. It gets re-assigned below 573 */ 574 qpn = mk_qpn(qpt, map, offset); 575 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 576 /* 577 * In order to keep the number of pages allocated to a 578 * minimum, we scan the all existing pages before increasing 579 * the size of the bitmap table. 580 */ 581 if (++i > max_scan) { 582 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 583 break; 584 map = &qpt->map[qpt->nmaps++]; 585 /* start at incr with current bit 0 */ 586 offset = qpt->incr | (offset & 1); 587 } else if (map < &qpt->map[qpt->nmaps]) { 588 ++map; 589 /* start at incr with current bit 0 */ 590 offset = qpt->incr | (offset & 1); 591 } else { 592 map = &qpt->map[0]; 593 /* wrap to first map page, invert bit 0 */ 594 offset = qpt->incr | ((offset & 1) ^ 1); 595 } 596 /* there can be no set bits in low-order QoS bits */ 597 WARN_ON(rdi->dparms.qos_shift > 1 && 598 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1)); 599 qpn = mk_qpn(qpt, map, offset); 600 } 601 602 ret = -ENOMEM; 603 604 bail: 605 return ret; 606 } 607 608 /** 609 * rvt_clear_mr_refs - Drop help mr refs 610 * @qp: rvt qp data structure 611 * @clr_sends: If shoudl clear send side or not 612 */ 613 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 614 { 615 unsigned n; 616 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 617 618 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 619 rvt_put_ss(&qp->s_rdma_read_sge); 620 621 rvt_put_ss(&qp->r_sge); 622 623 if (clr_sends) { 624 while (qp->s_last != qp->s_head) { 625 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 626 627 rvt_put_qp_swqe(qp, wqe); 628 if (++qp->s_last >= qp->s_size) 629 qp->s_last = 0; 630 smp_wmb(); /* see qp_set_savail */ 631 } 632 if (qp->s_rdma_mr) { 633 rvt_put_mr(qp->s_rdma_mr); 634 qp->s_rdma_mr = NULL; 635 } 636 } 637 638 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 639 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 640 641 if (e->rdma_sge.mr) { 642 rvt_put_mr(e->rdma_sge.mr); 643 e->rdma_sge.mr = NULL; 644 } 645 } 646 } 647 648 /** 649 * rvt_swqe_has_lkey - return true if lkey is used by swqe 650 * @wqe - the send wqe 651 * @lkey - the lkey 652 * 653 * Test the swqe for using lkey 654 */ 655 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 656 { 657 int i; 658 659 for (i = 0; i < wqe->wr.num_sge; i++) { 660 struct rvt_sge *sge = &wqe->sg_list[i]; 661 662 if (rvt_mr_has_lkey(sge->mr, lkey)) 663 return true; 664 } 665 return false; 666 } 667 668 /** 669 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 670 * @qp - the rvt_qp 671 * @lkey - the lkey 672 */ 673 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 674 { 675 u32 s_last = qp->s_last; 676 677 while (s_last != qp->s_head) { 678 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 679 680 if (rvt_swqe_has_lkey(wqe, lkey)) 681 return true; 682 683 if (++s_last >= qp->s_size) 684 s_last = 0; 685 } 686 if (qp->s_rdma_mr) 687 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 688 return true; 689 return false; 690 } 691 692 /** 693 * rvt_qp_acks_has_lkey - return true if acks have lkey 694 * @qp - the qp 695 * @lkey - the lkey 696 */ 697 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 698 { 699 int i; 700 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 701 702 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 703 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 704 705 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 706 return true; 707 } 708 return false; 709 } 710 711 /* 712 * rvt_qp_mr_clean - clean up remote ops for lkey 713 * @qp - the qp 714 * @lkey - the lkey that is being de-registered 715 * 716 * This routine checks if the lkey is being used by 717 * the qp. 718 * 719 * If so, the qp is put into an error state to elminate 720 * any references from the qp. 721 */ 722 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 723 { 724 bool lastwqe = false; 725 726 if (qp->ibqp.qp_type == IB_QPT_SMI || 727 qp->ibqp.qp_type == IB_QPT_GSI) 728 /* avoid special QPs */ 729 return; 730 spin_lock_irq(&qp->r_lock); 731 spin_lock(&qp->s_hlock); 732 spin_lock(&qp->s_lock); 733 734 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 735 goto check_lwqe; 736 737 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 738 rvt_qp_sends_has_lkey(qp, lkey) || 739 rvt_qp_acks_has_lkey(qp, lkey)) 740 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 741 check_lwqe: 742 spin_unlock(&qp->s_lock); 743 spin_unlock(&qp->s_hlock); 744 spin_unlock_irq(&qp->r_lock); 745 if (lastwqe) { 746 struct ib_event ev; 747 748 ev.device = qp->ibqp.device; 749 ev.element.qp = &qp->ibqp; 750 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 751 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 752 } 753 } 754 755 /** 756 * rvt_remove_qp - remove qp form table 757 * @rdi: rvt dev struct 758 * @qp: qp to remove 759 * 760 * Remove the QP from the table so it can't be found asynchronously by 761 * the receive routine. 762 */ 763 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 764 { 765 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 766 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 767 unsigned long flags; 768 int removed = 1; 769 770 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 771 772 if (rcu_dereference_protected(rvp->qp[0], 773 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 774 RCU_INIT_POINTER(rvp->qp[0], NULL); 775 } else if (rcu_dereference_protected(rvp->qp[1], 776 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 777 RCU_INIT_POINTER(rvp->qp[1], NULL); 778 } else { 779 struct rvt_qp *q; 780 struct rvt_qp __rcu **qpp; 781 782 removed = 0; 783 qpp = &rdi->qp_dev->qp_table[n]; 784 for (; (q = rcu_dereference_protected(*qpp, 785 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 786 qpp = &q->next) { 787 if (q == qp) { 788 RCU_INIT_POINTER(*qpp, 789 rcu_dereference_protected(qp->next, 790 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 791 removed = 1; 792 trace_rvt_qpremove(qp, n); 793 break; 794 } 795 } 796 } 797 798 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 799 if (removed) { 800 synchronize_rcu(); 801 rvt_put_qp(qp); 802 } 803 } 804 805 /** 806 * rvt_init_qp - initialize the QP state to the reset state 807 * @qp: the QP to init or reinit 808 * @type: the QP type 809 * 810 * This function is called from both rvt_create_qp() and 811 * rvt_reset_qp(). The difference is that the reset 812 * patch the necessary locks to protect against concurent 813 * access. 814 */ 815 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 816 enum ib_qp_type type) 817 { 818 qp->remote_qpn = 0; 819 qp->qkey = 0; 820 qp->qp_access_flags = 0; 821 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 822 qp->s_hdrwords = 0; 823 qp->s_wqe = NULL; 824 qp->s_draining = 0; 825 qp->s_next_psn = 0; 826 qp->s_last_psn = 0; 827 qp->s_sending_psn = 0; 828 qp->s_sending_hpsn = 0; 829 qp->s_psn = 0; 830 qp->r_psn = 0; 831 qp->r_msn = 0; 832 if (type == IB_QPT_RC) { 833 qp->s_state = IB_OPCODE_RC_SEND_LAST; 834 qp->r_state = IB_OPCODE_RC_SEND_LAST; 835 } else { 836 qp->s_state = IB_OPCODE_UC_SEND_LAST; 837 qp->r_state = IB_OPCODE_UC_SEND_LAST; 838 } 839 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 840 qp->r_nak_state = 0; 841 qp->r_aflags = 0; 842 qp->r_flags = 0; 843 qp->s_head = 0; 844 qp->s_tail = 0; 845 qp->s_cur = 0; 846 qp->s_acked = 0; 847 qp->s_last = 0; 848 qp->s_ssn = 1; 849 qp->s_lsn = 0; 850 qp->s_mig_state = IB_MIG_MIGRATED; 851 qp->r_head_ack_queue = 0; 852 qp->s_tail_ack_queue = 0; 853 qp->s_acked_ack_queue = 0; 854 qp->s_num_rd_atomic = 0; 855 if (qp->r_rq.wq) { 856 qp->r_rq.wq->head = 0; 857 qp->r_rq.wq->tail = 0; 858 } 859 qp->r_sge.num_sge = 0; 860 atomic_set(&qp->s_reserved_used, 0); 861 } 862 863 /** 864 * rvt_reset_qp - initialize the QP state to the reset state 865 * @qp: the QP to reset 866 * @type: the QP type 867 * 868 * r_lock, s_hlock, and s_lock are required to be held by the caller 869 */ 870 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 871 enum ib_qp_type type) 872 __must_hold(&qp->s_lock) 873 __must_hold(&qp->s_hlock) 874 __must_hold(&qp->r_lock) 875 { 876 lockdep_assert_held(&qp->r_lock); 877 lockdep_assert_held(&qp->s_hlock); 878 lockdep_assert_held(&qp->s_lock); 879 if (qp->state != IB_QPS_RESET) { 880 qp->state = IB_QPS_RESET; 881 882 /* Let drivers flush their waitlist */ 883 rdi->driver_f.flush_qp_waiters(qp); 884 rvt_stop_rc_timers(qp); 885 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 886 spin_unlock(&qp->s_lock); 887 spin_unlock(&qp->s_hlock); 888 spin_unlock_irq(&qp->r_lock); 889 890 /* Stop the send queue and the retry timer */ 891 rdi->driver_f.stop_send_queue(qp); 892 rvt_del_timers_sync(qp); 893 /* Wait for things to stop */ 894 rdi->driver_f.quiesce_qp(qp); 895 896 /* take qp out the hash and wait for it to be unused */ 897 rvt_remove_qp(rdi, qp); 898 899 /* grab the lock b/c it was locked at call time */ 900 spin_lock_irq(&qp->r_lock); 901 spin_lock(&qp->s_hlock); 902 spin_lock(&qp->s_lock); 903 904 rvt_clear_mr_refs(qp, 1); 905 /* 906 * Let the driver do any tear down or re-init it needs to for 907 * a qp that has been reset 908 */ 909 rdi->driver_f.notify_qp_reset(qp); 910 } 911 rvt_init_qp(rdi, qp, type); 912 lockdep_assert_held(&qp->r_lock); 913 lockdep_assert_held(&qp->s_hlock); 914 lockdep_assert_held(&qp->s_lock); 915 } 916 917 /** rvt_free_qpn - Free a qpn from the bit map 918 * @qpt: QP table 919 * @qpn: queue pair number to free 920 */ 921 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 922 { 923 struct rvt_qpn_map *map; 924 925 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 926 if (map->page) 927 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 928 } 929 930 /** 931 * rvt_create_qp - create a queue pair for a device 932 * @ibpd: the protection domain who's device we create the queue pair for 933 * @init_attr: the attributes of the queue pair 934 * @udata: user data for libibverbs.so 935 * 936 * Queue pair creation is mostly an rvt issue. However, drivers have their own 937 * unique idea of what queue pair numbers mean. For instance there is a reserved 938 * range for PSM. 939 * 940 * Return: the queue pair on success, otherwise returns an errno. 941 * 942 * Called by the ib_create_qp() core verbs function. 943 */ 944 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 945 struct ib_qp_init_attr *init_attr, 946 struct ib_udata *udata) 947 { 948 struct rvt_qp *qp; 949 int err; 950 struct rvt_swqe *swq = NULL; 951 size_t sz; 952 size_t sg_list_sz; 953 struct ib_qp *ret = ERR_PTR(-ENOMEM); 954 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 955 void *priv = NULL; 956 size_t sqsize; 957 958 if (!rdi) 959 return ERR_PTR(-EINVAL); 960 961 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 962 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || 963 init_attr->create_flags) 964 return ERR_PTR(-EINVAL); 965 966 /* Check receive queue parameters if no SRQ is specified. */ 967 if (!init_attr->srq) { 968 if (init_attr->cap.max_recv_sge > 969 rdi->dparms.props.max_recv_sge || 970 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 971 return ERR_PTR(-EINVAL); 972 973 if (init_attr->cap.max_send_sge + 974 init_attr->cap.max_send_wr + 975 init_attr->cap.max_recv_sge + 976 init_attr->cap.max_recv_wr == 0) 977 return ERR_PTR(-EINVAL); 978 } 979 sqsize = 980 init_attr->cap.max_send_wr + 1 + 981 rdi->dparms.reserved_operations; 982 switch (init_attr->qp_type) { 983 case IB_QPT_SMI: 984 case IB_QPT_GSI: 985 if (init_attr->port_num == 0 || 986 init_attr->port_num > ibpd->device->phys_port_cnt) 987 return ERR_PTR(-EINVAL); 988 /* fall through */ 989 case IB_QPT_UC: 990 case IB_QPT_RC: 991 case IB_QPT_UD: 992 sz = sizeof(struct rvt_sge) * 993 init_attr->cap.max_send_sge + 994 sizeof(struct rvt_swqe); 995 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 996 if (!swq) 997 return ERR_PTR(-ENOMEM); 998 999 sz = sizeof(*qp); 1000 sg_list_sz = 0; 1001 if (init_attr->srq) { 1002 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1003 1004 if (srq->rq.max_sge > 1) 1005 sg_list_sz = sizeof(*qp->r_sg_list) * 1006 (srq->rq.max_sge - 1); 1007 } else if (init_attr->cap.max_recv_sge > 1) 1008 sg_list_sz = sizeof(*qp->r_sg_list) * 1009 (init_attr->cap.max_recv_sge - 1); 1010 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, 1011 rdi->dparms.node); 1012 if (!qp) 1013 goto bail_swq; 1014 1015 RCU_INIT_POINTER(qp->next, NULL); 1016 if (init_attr->qp_type == IB_QPT_RC) { 1017 qp->s_ack_queue = 1018 kcalloc_node(rvt_max_atomic(rdi), 1019 sizeof(*qp->s_ack_queue), 1020 GFP_KERNEL, 1021 rdi->dparms.node); 1022 if (!qp->s_ack_queue) 1023 goto bail_qp; 1024 } 1025 /* initialize timers needed for rc qp */ 1026 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1027 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 1028 HRTIMER_MODE_REL); 1029 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 1030 1031 /* 1032 * Driver needs to set up it's private QP structure and do any 1033 * initialization that is needed. 1034 */ 1035 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1036 if (IS_ERR(priv)) { 1037 ret = priv; 1038 goto bail_qp; 1039 } 1040 qp->priv = priv; 1041 qp->timeout_jiffies = 1042 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1043 1000UL); 1044 if (init_attr->srq) { 1045 sz = 0; 1046 } else { 1047 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1048 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1049 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1050 sizeof(struct rvt_rwqe); 1051 if (udata) 1052 qp->r_rq.wq = vmalloc_user( 1053 sizeof(struct rvt_rwq) + 1054 qp->r_rq.size * sz); 1055 else 1056 qp->r_rq.wq = vzalloc_node( 1057 sizeof(struct rvt_rwq) + 1058 qp->r_rq.size * sz, 1059 rdi->dparms.node); 1060 if (!qp->r_rq.wq) 1061 goto bail_driver_priv; 1062 } 1063 1064 /* 1065 * ib_create_qp() will initialize qp->ibqp 1066 * except for qp->ibqp.qp_num. 1067 */ 1068 spin_lock_init(&qp->r_lock); 1069 spin_lock_init(&qp->s_hlock); 1070 spin_lock_init(&qp->s_lock); 1071 spin_lock_init(&qp->r_rq.lock); 1072 atomic_set(&qp->refcount, 0); 1073 atomic_set(&qp->local_ops_pending, 0); 1074 init_waitqueue_head(&qp->wait); 1075 INIT_LIST_HEAD(&qp->rspwait); 1076 qp->state = IB_QPS_RESET; 1077 qp->s_wq = swq; 1078 qp->s_size = sqsize; 1079 qp->s_avail = init_attr->cap.max_send_wr; 1080 qp->s_max_sge = init_attr->cap.max_send_sge; 1081 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1082 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1083 1084 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1085 init_attr->qp_type, 1086 init_attr->port_num); 1087 if (err < 0) { 1088 ret = ERR_PTR(err); 1089 goto bail_rq_wq; 1090 } 1091 qp->ibqp.qp_num = err; 1092 qp->port_num = init_attr->port_num; 1093 rvt_init_qp(rdi, qp, init_attr->qp_type); 1094 if (rdi->driver_f.qp_priv_init) { 1095 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); 1096 if (err) { 1097 ret = ERR_PTR(err); 1098 goto bail_rq_wq; 1099 } 1100 } 1101 break; 1102 1103 default: 1104 /* Don't support raw QPs */ 1105 return ERR_PTR(-EINVAL); 1106 } 1107 1108 init_attr->cap.max_inline_data = 0; 1109 1110 /* 1111 * Return the address of the RWQ as the offset to mmap. 1112 * See rvt_mmap() for details. 1113 */ 1114 if (udata && udata->outlen >= sizeof(__u64)) { 1115 if (!qp->r_rq.wq) { 1116 __u64 offset = 0; 1117 1118 err = ib_copy_to_udata(udata, &offset, 1119 sizeof(offset)); 1120 if (err) { 1121 ret = ERR_PTR(err); 1122 goto bail_qpn; 1123 } 1124 } else { 1125 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1126 1127 qp->ip = rvt_create_mmap_info(rdi, s, udata, 1128 qp->r_rq.wq); 1129 if (!qp->ip) { 1130 ret = ERR_PTR(-ENOMEM); 1131 goto bail_qpn; 1132 } 1133 1134 err = ib_copy_to_udata(udata, &qp->ip->offset, 1135 sizeof(qp->ip->offset)); 1136 if (err) { 1137 ret = ERR_PTR(err); 1138 goto bail_ip; 1139 } 1140 } 1141 qp->pid = current->pid; 1142 } 1143 1144 spin_lock(&rdi->n_qps_lock); 1145 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1146 spin_unlock(&rdi->n_qps_lock); 1147 ret = ERR_PTR(-ENOMEM); 1148 goto bail_ip; 1149 } 1150 1151 rdi->n_qps_allocated++; 1152 /* 1153 * Maintain a busy_jiffies variable that will be added to the timeout 1154 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1155 * is scaled by the number of rc qps created for the device to reduce 1156 * the number of timeouts occurring when there is a large number of 1157 * qps. busy_jiffies is incremented every rc qp scaling interval. 1158 * The scaling interval is selected based on extensive performance 1159 * evaluation of targeted workloads. 1160 */ 1161 if (init_attr->qp_type == IB_QPT_RC) { 1162 rdi->n_rc_qps++; 1163 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1164 } 1165 spin_unlock(&rdi->n_qps_lock); 1166 1167 if (qp->ip) { 1168 spin_lock_irq(&rdi->pending_lock); 1169 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1170 spin_unlock_irq(&rdi->pending_lock); 1171 } 1172 1173 ret = &qp->ibqp; 1174 1175 /* 1176 * We have our QP and its good, now keep track of what types of opcodes 1177 * can be processed on this QP. We do this by keeping track of what the 1178 * 3 high order bits of the opcode are. 1179 */ 1180 switch (init_attr->qp_type) { 1181 case IB_QPT_SMI: 1182 case IB_QPT_GSI: 1183 case IB_QPT_UD: 1184 qp->allowed_ops = IB_OPCODE_UD; 1185 break; 1186 case IB_QPT_RC: 1187 qp->allowed_ops = IB_OPCODE_RC; 1188 break; 1189 case IB_QPT_UC: 1190 qp->allowed_ops = IB_OPCODE_UC; 1191 break; 1192 default: 1193 ret = ERR_PTR(-EINVAL); 1194 goto bail_ip; 1195 } 1196 1197 return ret; 1198 1199 bail_ip: 1200 if (qp->ip) 1201 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1202 1203 bail_qpn: 1204 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1205 1206 bail_rq_wq: 1207 if (!qp->ip) 1208 vfree(qp->r_rq.wq); 1209 1210 bail_driver_priv: 1211 rdi->driver_f.qp_priv_free(rdi, qp); 1212 1213 bail_qp: 1214 kfree(qp->s_ack_queue); 1215 kfree(qp); 1216 1217 bail_swq: 1218 vfree(swq); 1219 1220 return ret; 1221 } 1222 1223 /** 1224 * rvt_error_qp - put a QP into the error state 1225 * @qp: the QP to put into the error state 1226 * @err: the receive completion error to signal if a RWQE is active 1227 * 1228 * Flushes both send and receive work queues. 1229 * 1230 * Return: true if last WQE event should be generated. 1231 * The QP r_lock and s_lock should be held and interrupts disabled. 1232 * If we are already in error state, just return. 1233 */ 1234 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1235 { 1236 struct ib_wc wc; 1237 int ret = 0; 1238 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1239 1240 lockdep_assert_held(&qp->r_lock); 1241 lockdep_assert_held(&qp->s_lock); 1242 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1243 goto bail; 1244 1245 qp->state = IB_QPS_ERR; 1246 1247 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1248 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1249 del_timer(&qp->s_timer); 1250 } 1251 1252 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1253 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1254 1255 rdi->driver_f.notify_error_qp(qp); 1256 1257 /* Schedule the sending tasklet to drain the send work queue. */ 1258 if (READ_ONCE(qp->s_last) != qp->s_head) 1259 rdi->driver_f.schedule_send(qp); 1260 1261 rvt_clear_mr_refs(qp, 0); 1262 1263 memset(&wc, 0, sizeof(wc)); 1264 wc.qp = &qp->ibqp; 1265 wc.opcode = IB_WC_RECV; 1266 1267 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1268 wc.wr_id = qp->r_wr_id; 1269 wc.status = err; 1270 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1271 } 1272 wc.status = IB_WC_WR_FLUSH_ERR; 1273 1274 if (qp->r_rq.wq) { 1275 struct rvt_rwq *wq; 1276 u32 head; 1277 u32 tail; 1278 1279 spin_lock(&qp->r_rq.lock); 1280 1281 /* sanity check pointers before trusting them */ 1282 wq = qp->r_rq.wq; 1283 head = wq->head; 1284 if (head >= qp->r_rq.size) 1285 head = 0; 1286 tail = wq->tail; 1287 if (tail >= qp->r_rq.size) 1288 tail = 0; 1289 while (tail != head) { 1290 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1291 if (++tail >= qp->r_rq.size) 1292 tail = 0; 1293 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1294 } 1295 wq->tail = tail; 1296 1297 spin_unlock(&qp->r_rq.lock); 1298 } else if (qp->ibqp.event_handler) { 1299 ret = 1; 1300 } 1301 1302 bail: 1303 return ret; 1304 } 1305 EXPORT_SYMBOL(rvt_error_qp); 1306 1307 /* 1308 * Put the QP into the hash table. 1309 * The hash table holds a reference to the QP. 1310 */ 1311 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1312 { 1313 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1314 unsigned long flags; 1315 1316 rvt_get_qp(qp); 1317 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1318 1319 if (qp->ibqp.qp_num <= 1) { 1320 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1321 } else { 1322 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1323 1324 qp->next = rdi->qp_dev->qp_table[n]; 1325 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1326 trace_rvt_qpinsert(qp, n); 1327 } 1328 1329 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1330 } 1331 1332 /** 1333 * rvt_modify_qp - modify the attributes of a queue pair 1334 * @ibqp: the queue pair who's attributes we're modifying 1335 * @attr: the new attributes 1336 * @attr_mask: the mask of attributes to modify 1337 * @udata: user data for libibverbs.so 1338 * 1339 * Return: 0 on success, otherwise returns an errno. 1340 */ 1341 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1342 int attr_mask, struct ib_udata *udata) 1343 { 1344 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1345 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1346 enum ib_qp_state cur_state, new_state; 1347 struct ib_event ev; 1348 int lastwqe = 0; 1349 int mig = 0; 1350 int pmtu = 0; /* for gcc warning only */ 1351 int opa_ah; 1352 1353 spin_lock_irq(&qp->r_lock); 1354 spin_lock(&qp->s_hlock); 1355 spin_lock(&qp->s_lock); 1356 1357 cur_state = attr_mask & IB_QP_CUR_STATE ? 1358 attr->cur_qp_state : qp->state; 1359 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1360 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1361 1362 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1363 attr_mask)) 1364 goto inval; 1365 1366 if (rdi->driver_f.check_modify_qp && 1367 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1368 goto inval; 1369 1370 if (attr_mask & IB_QP_AV) { 1371 if (opa_ah) { 1372 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1373 opa_get_mcast_base(OPA_MCAST_NR)) 1374 goto inval; 1375 } else { 1376 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1377 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1378 goto inval; 1379 } 1380 1381 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1382 goto inval; 1383 } 1384 1385 if (attr_mask & IB_QP_ALT_PATH) { 1386 if (opa_ah) { 1387 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1388 opa_get_mcast_base(OPA_MCAST_NR)) 1389 goto inval; 1390 } else { 1391 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1392 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1393 goto inval; 1394 } 1395 1396 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1397 goto inval; 1398 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1399 goto inval; 1400 } 1401 1402 if (attr_mask & IB_QP_PKEY_INDEX) 1403 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1404 goto inval; 1405 1406 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1407 if (attr->min_rnr_timer > 31) 1408 goto inval; 1409 1410 if (attr_mask & IB_QP_PORT) 1411 if (qp->ibqp.qp_type == IB_QPT_SMI || 1412 qp->ibqp.qp_type == IB_QPT_GSI || 1413 attr->port_num == 0 || 1414 attr->port_num > ibqp->device->phys_port_cnt) 1415 goto inval; 1416 1417 if (attr_mask & IB_QP_DEST_QPN) 1418 if (attr->dest_qp_num > RVT_QPN_MASK) 1419 goto inval; 1420 1421 if (attr_mask & IB_QP_RETRY_CNT) 1422 if (attr->retry_cnt > 7) 1423 goto inval; 1424 1425 if (attr_mask & IB_QP_RNR_RETRY) 1426 if (attr->rnr_retry > 7) 1427 goto inval; 1428 1429 /* 1430 * Don't allow invalid path_mtu values. OK to set greater 1431 * than the active mtu (or even the max_cap, if we have tuned 1432 * that to a small mtu. We'll set qp->path_mtu 1433 * to the lesser of requested attribute mtu and active, 1434 * for packetizing messages. 1435 * Note that the QP port has to be set in INIT and MTU in RTR. 1436 */ 1437 if (attr_mask & IB_QP_PATH_MTU) { 1438 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1439 if (pmtu < 0) 1440 goto inval; 1441 } 1442 1443 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1444 if (attr->path_mig_state == IB_MIG_REARM) { 1445 if (qp->s_mig_state == IB_MIG_ARMED) 1446 goto inval; 1447 if (new_state != IB_QPS_RTS) 1448 goto inval; 1449 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1450 if (qp->s_mig_state == IB_MIG_REARM) 1451 goto inval; 1452 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1453 goto inval; 1454 if (qp->s_mig_state == IB_MIG_ARMED) 1455 mig = 1; 1456 } else { 1457 goto inval; 1458 } 1459 } 1460 1461 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1462 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1463 goto inval; 1464 1465 switch (new_state) { 1466 case IB_QPS_RESET: 1467 if (qp->state != IB_QPS_RESET) 1468 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1469 break; 1470 1471 case IB_QPS_RTR: 1472 /* Allow event to re-trigger if QP set to RTR more than once */ 1473 qp->r_flags &= ~RVT_R_COMM_EST; 1474 qp->state = new_state; 1475 break; 1476 1477 case IB_QPS_SQD: 1478 qp->s_draining = qp->s_last != qp->s_cur; 1479 qp->state = new_state; 1480 break; 1481 1482 case IB_QPS_SQE: 1483 if (qp->ibqp.qp_type == IB_QPT_RC) 1484 goto inval; 1485 qp->state = new_state; 1486 break; 1487 1488 case IB_QPS_ERR: 1489 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1490 break; 1491 1492 default: 1493 qp->state = new_state; 1494 break; 1495 } 1496 1497 if (attr_mask & IB_QP_PKEY_INDEX) 1498 qp->s_pkey_index = attr->pkey_index; 1499 1500 if (attr_mask & IB_QP_PORT) 1501 qp->port_num = attr->port_num; 1502 1503 if (attr_mask & IB_QP_DEST_QPN) 1504 qp->remote_qpn = attr->dest_qp_num; 1505 1506 if (attr_mask & IB_QP_SQ_PSN) { 1507 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1508 qp->s_psn = qp->s_next_psn; 1509 qp->s_sending_psn = qp->s_next_psn; 1510 qp->s_last_psn = qp->s_next_psn - 1; 1511 qp->s_sending_hpsn = qp->s_last_psn; 1512 } 1513 1514 if (attr_mask & IB_QP_RQ_PSN) 1515 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1516 1517 if (attr_mask & IB_QP_ACCESS_FLAGS) 1518 qp->qp_access_flags = attr->qp_access_flags; 1519 1520 if (attr_mask & IB_QP_AV) { 1521 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1522 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1523 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1524 } 1525 1526 if (attr_mask & IB_QP_ALT_PATH) { 1527 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1528 qp->s_alt_pkey_index = attr->alt_pkey_index; 1529 } 1530 1531 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1532 qp->s_mig_state = attr->path_mig_state; 1533 if (mig) { 1534 qp->remote_ah_attr = qp->alt_ah_attr; 1535 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1536 qp->s_pkey_index = qp->s_alt_pkey_index; 1537 } 1538 } 1539 1540 if (attr_mask & IB_QP_PATH_MTU) { 1541 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1542 qp->log_pmtu = ilog2(qp->pmtu); 1543 } 1544 1545 if (attr_mask & IB_QP_RETRY_CNT) { 1546 qp->s_retry_cnt = attr->retry_cnt; 1547 qp->s_retry = attr->retry_cnt; 1548 } 1549 1550 if (attr_mask & IB_QP_RNR_RETRY) { 1551 qp->s_rnr_retry_cnt = attr->rnr_retry; 1552 qp->s_rnr_retry = attr->rnr_retry; 1553 } 1554 1555 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1556 qp->r_min_rnr_timer = attr->min_rnr_timer; 1557 1558 if (attr_mask & IB_QP_TIMEOUT) { 1559 qp->timeout = attr->timeout; 1560 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1561 } 1562 1563 if (attr_mask & IB_QP_QKEY) 1564 qp->qkey = attr->qkey; 1565 1566 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1567 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1568 1569 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1570 qp->s_max_rd_atomic = attr->max_rd_atomic; 1571 1572 if (rdi->driver_f.modify_qp) 1573 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1574 1575 spin_unlock(&qp->s_lock); 1576 spin_unlock(&qp->s_hlock); 1577 spin_unlock_irq(&qp->r_lock); 1578 1579 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1580 rvt_insert_qp(rdi, qp); 1581 1582 if (lastwqe) { 1583 ev.device = qp->ibqp.device; 1584 ev.element.qp = &qp->ibqp; 1585 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1586 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1587 } 1588 if (mig) { 1589 ev.device = qp->ibqp.device; 1590 ev.element.qp = &qp->ibqp; 1591 ev.event = IB_EVENT_PATH_MIG; 1592 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1593 } 1594 return 0; 1595 1596 inval: 1597 spin_unlock(&qp->s_lock); 1598 spin_unlock(&qp->s_hlock); 1599 spin_unlock_irq(&qp->r_lock); 1600 return -EINVAL; 1601 } 1602 1603 /** 1604 * rvt_destroy_qp - destroy a queue pair 1605 * @ibqp: the queue pair to destroy 1606 * 1607 * Note that this can be called while the QP is actively sending or 1608 * receiving! 1609 * 1610 * Return: 0 on success. 1611 */ 1612 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) 1613 { 1614 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1615 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1616 1617 spin_lock_irq(&qp->r_lock); 1618 spin_lock(&qp->s_hlock); 1619 spin_lock(&qp->s_lock); 1620 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1621 spin_unlock(&qp->s_lock); 1622 spin_unlock(&qp->s_hlock); 1623 spin_unlock_irq(&qp->r_lock); 1624 1625 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1626 /* qpn is now available for use again */ 1627 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1628 1629 spin_lock(&rdi->n_qps_lock); 1630 rdi->n_qps_allocated--; 1631 if (qp->ibqp.qp_type == IB_QPT_RC) { 1632 rdi->n_rc_qps--; 1633 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1634 } 1635 spin_unlock(&rdi->n_qps_lock); 1636 1637 if (qp->ip) 1638 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1639 else 1640 vfree(qp->r_rq.wq); 1641 rdi->driver_f.qp_priv_free(rdi, qp); 1642 kfree(qp->s_ack_queue); 1643 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1644 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1645 vfree(qp->s_wq); 1646 kfree(qp); 1647 return 0; 1648 } 1649 1650 /** 1651 * rvt_query_qp - query an ipbq 1652 * @ibqp: IB qp to query 1653 * @attr: attr struct to fill in 1654 * @attr_mask: attr mask ignored 1655 * @init_attr: struct to fill in 1656 * 1657 * Return: always 0 1658 */ 1659 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1660 int attr_mask, struct ib_qp_init_attr *init_attr) 1661 { 1662 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1663 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1664 1665 attr->qp_state = qp->state; 1666 attr->cur_qp_state = attr->qp_state; 1667 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1668 attr->path_mig_state = qp->s_mig_state; 1669 attr->qkey = qp->qkey; 1670 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1671 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1672 attr->dest_qp_num = qp->remote_qpn; 1673 attr->qp_access_flags = qp->qp_access_flags; 1674 attr->cap.max_send_wr = qp->s_size - 1 - 1675 rdi->dparms.reserved_operations; 1676 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1677 attr->cap.max_send_sge = qp->s_max_sge; 1678 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1679 attr->cap.max_inline_data = 0; 1680 attr->ah_attr = qp->remote_ah_attr; 1681 attr->alt_ah_attr = qp->alt_ah_attr; 1682 attr->pkey_index = qp->s_pkey_index; 1683 attr->alt_pkey_index = qp->s_alt_pkey_index; 1684 attr->en_sqd_async_notify = 0; 1685 attr->sq_draining = qp->s_draining; 1686 attr->max_rd_atomic = qp->s_max_rd_atomic; 1687 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1688 attr->min_rnr_timer = qp->r_min_rnr_timer; 1689 attr->port_num = qp->port_num; 1690 attr->timeout = qp->timeout; 1691 attr->retry_cnt = qp->s_retry_cnt; 1692 attr->rnr_retry = qp->s_rnr_retry_cnt; 1693 attr->alt_port_num = 1694 rdma_ah_get_port_num(&qp->alt_ah_attr); 1695 attr->alt_timeout = qp->alt_timeout; 1696 1697 init_attr->event_handler = qp->ibqp.event_handler; 1698 init_attr->qp_context = qp->ibqp.qp_context; 1699 init_attr->send_cq = qp->ibqp.send_cq; 1700 init_attr->recv_cq = qp->ibqp.recv_cq; 1701 init_attr->srq = qp->ibqp.srq; 1702 init_attr->cap = attr->cap; 1703 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1704 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1705 else 1706 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1707 init_attr->qp_type = qp->ibqp.qp_type; 1708 init_attr->port_num = qp->port_num; 1709 return 0; 1710 } 1711 1712 /** 1713 * rvt_post_receive - post a receive on a QP 1714 * @ibqp: the QP to post the receive on 1715 * @wr: the WR to post 1716 * @bad_wr: the first bad WR is put here 1717 * 1718 * This may be called from interrupt context. 1719 * 1720 * Return: 0 on success otherwise errno 1721 */ 1722 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1723 const struct ib_recv_wr **bad_wr) 1724 { 1725 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1726 struct rvt_rwq *wq = qp->r_rq.wq; 1727 unsigned long flags; 1728 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1729 !qp->ibqp.srq; 1730 1731 /* Check that state is OK to post receive. */ 1732 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1733 *bad_wr = wr; 1734 return -EINVAL; 1735 } 1736 1737 for (; wr; wr = wr->next) { 1738 struct rvt_rwqe *wqe; 1739 u32 next; 1740 int i; 1741 1742 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1743 *bad_wr = wr; 1744 return -EINVAL; 1745 } 1746 1747 spin_lock_irqsave(&qp->r_rq.lock, flags); 1748 next = wq->head + 1; 1749 if (next >= qp->r_rq.size) 1750 next = 0; 1751 if (next == wq->tail) { 1752 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1753 *bad_wr = wr; 1754 return -ENOMEM; 1755 } 1756 if (unlikely(qp_err_flush)) { 1757 struct ib_wc wc; 1758 1759 memset(&wc, 0, sizeof(wc)); 1760 wc.qp = &qp->ibqp; 1761 wc.opcode = IB_WC_RECV; 1762 wc.wr_id = wr->wr_id; 1763 wc.status = IB_WC_WR_FLUSH_ERR; 1764 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1765 } else { 1766 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1767 wqe->wr_id = wr->wr_id; 1768 wqe->num_sge = wr->num_sge; 1769 for (i = 0; i < wr->num_sge; i++) 1770 wqe->sg_list[i] = wr->sg_list[i]; 1771 /* 1772 * Make sure queue entry is written 1773 * before the head index. 1774 */ 1775 smp_wmb(); 1776 wq->head = next; 1777 } 1778 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1779 } 1780 return 0; 1781 } 1782 1783 /** 1784 * rvt_qp_valid_operation - validate post send wr request 1785 * @qp - the qp 1786 * @post-parms - the post send table for the driver 1787 * @wr - the work request 1788 * 1789 * The routine validates the operation based on the 1790 * validation table an returns the length of the operation 1791 * which can extend beyond the ib_send_bw. Operation 1792 * dependent flags key atomic operation validation. 1793 * 1794 * There is an exception for UD qps that validates the pd and 1795 * overrides the length to include the additional UD specific 1796 * length. 1797 * 1798 * Returns a negative error or the length of the work request 1799 * for building the swqe. 1800 */ 1801 static inline int rvt_qp_valid_operation( 1802 struct rvt_qp *qp, 1803 const struct rvt_operation_params *post_parms, 1804 const struct ib_send_wr *wr) 1805 { 1806 int len; 1807 1808 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1809 return -EINVAL; 1810 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1811 return -EINVAL; 1812 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1813 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1814 return -EINVAL; 1815 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1816 (wr->num_sge == 0 || 1817 wr->sg_list[0].length < sizeof(u64) || 1818 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1819 return -EINVAL; 1820 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1821 !qp->s_max_rd_atomic) 1822 return -EINVAL; 1823 len = post_parms[wr->opcode].length; 1824 /* UD specific */ 1825 if (qp->ibqp.qp_type != IB_QPT_UC && 1826 qp->ibqp.qp_type != IB_QPT_RC) { 1827 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1828 return -EINVAL; 1829 len = sizeof(struct ib_ud_wr); 1830 } 1831 return len; 1832 } 1833 1834 /** 1835 * rvt_qp_is_avail - determine queue capacity 1836 * @qp: the qp 1837 * @rdi: the rdmavt device 1838 * @reserved_op: is reserved operation 1839 * 1840 * This assumes the s_hlock is held but the s_last 1841 * qp variable is uncontrolled. 1842 * 1843 * For non reserved operations, the qp->s_avail 1844 * may be changed. 1845 * 1846 * The return value is zero or a -ENOMEM. 1847 */ 1848 static inline int rvt_qp_is_avail( 1849 struct rvt_qp *qp, 1850 struct rvt_dev_info *rdi, 1851 bool reserved_op) 1852 { 1853 u32 slast; 1854 u32 avail; 1855 u32 reserved_used; 1856 1857 /* see rvt_qp_wqe_unreserve() */ 1858 smp_mb__before_atomic(); 1859 reserved_used = atomic_read(&qp->s_reserved_used); 1860 if (unlikely(reserved_op)) { 1861 /* see rvt_qp_wqe_unreserve() */ 1862 smp_mb__before_atomic(); 1863 if (reserved_used >= rdi->dparms.reserved_operations) 1864 return -ENOMEM; 1865 return 0; 1866 } 1867 /* non-reserved operations */ 1868 if (likely(qp->s_avail)) 1869 return 0; 1870 slast = READ_ONCE(qp->s_last); 1871 if (qp->s_head >= slast) 1872 avail = qp->s_size - (qp->s_head - slast); 1873 else 1874 avail = slast - qp->s_head; 1875 1876 /* see rvt_qp_wqe_unreserve() */ 1877 smp_mb__before_atomic(); 1878 reserved_used = atomic_read(&qp->s_reserved_used); 1879 avail = avail - 1 - 1880 (rdi->dparms.reserved_operations - reserved_used); 1881 /* insure we don't assign a negative s_avail */ 1882 if ((s32)avail <= 0) 1883 return -ENOMEM; 1884 qp->s_avail = avail; 1885 if (WARN_ON(qp->s_avail > 1886 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1887 rvt_pr_err(rdi, 1888 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1889 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1890 qp->s_head, qp->s_tail, qp->s_cur, 1891 qp->s_acked, qp->s_last); 1892 return 0; 1893 } 1894 1895 /** 1896 * rvt_post_one_wr - post one RC, UC, or UD send work request 1897 * @qp: the QP to post on 1898 * @wr: the work request to send 1899 */ 1900 static int rvt_post_one_wr(struct rvt_qp *qp, 1901 const struct ib_send_wr *wr, 1902 bool *call_send) 1903 { 1904 struct rvt_swqe *wqe; 1905 u32 next; 1906 int i; 1907 int j; 1908 int acc; 1909 struct rvt_lkey_table *rkt; 1910 struct rvt_pd *pd; 1911 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1912 u8 log_pmtu; 1913 int ret; 1914 size_t cplen; 1915 bool reserved_op; 1916 int local_ops_delayed = 0; 1917 1918 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1919 1920 /* IB spec says that num_sge == 0 is OK. */ 1921 if (unlikely(wr->num_sge > qp->s_max_sge)) 1922 return -EINVAL; 1923 1924 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1925 if (ret < 0) 1926 return ret; 1927 cplen = ret; 1928 1929 /* 1930 * Local operations include fast register and local invalidate. 1931 * Fast register needs to be processed immediately because the 1932 * registered lkey may be used by following work requests and the 1933 * lkey needs to be valid at the time those requests are posted. 1934 * Local invalidate can be processed immediately if fencing is 1935 * not required and no previous local invalidate ops are pending. 1936 * Signaled local operations that have been processed immediately 1937 * need to have requests with "completion only" flags set posted 1938 * to the send queue in order to generate completions. 1939 */ 1940 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 1941 switch (wr->opcode) { 1942 case IB_WR_REG_MR: 1943 ret = rvt_fast_reg_mr(qp, 1944 reg_wr(wr)->mr, 1945 reg_wr(wr)->key, 1946 reg_wr(wr)->access); 1947 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1948 return ret; 1949 break; 1950 case IB_WR_LOCAL_INV: 1951 if ((wr->send_flags & IB_SEND_FENCE) || 1952 atomic_read(&qp->local_ops_pending)) { 1953 local_ops_delayed = 1; 1954 } else { 1955 ret = rvt_invalidate_rkey( 1956 qp, wr->ex.invalidate_rkey); 1957 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1958 return ret; 1959 } 1960 break; 1961 default: 1962 return -EINVAL; 1963 } 1964 } 1965 1966 reserved_op = rdi->post_parms[wr->opcode].flags & 1967 RVT_OPERATION_USE_RESERVE; 1968 /* check for avail */ 1969 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 1970 if (ret) 1971 return ret; 1972 next = qp->s_head + 1; 1973 if (next >= qp->s_size) 1974 next = 0; 1975 1976 rkt = &rdi->lkey_table; 1977 pd = ibpd_to_rvtpd(qp->ibqp.pd); 1978 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 1979 1980 /* cplen has length from above */ 1981 memcpy(&wqe->wr, wr, cplen); 1982 1983 wqe->length = 0; 1984 j = 0; 1985 if (wr->num_sge) { 1986 struct rvt_sge *last_sge = NULL; 1987 1988 acc = wr->opcode >= IB_WR_RDMA_READ ? 1989 IB_ACCESS_LOCAL_WRITE : 0; 1990 for (i = 0; i < wr->num_sge; i++) { 1991 u32 length = wr->sg_list[i].length; 1992 1993 if (length == 0) 1994 continue; 1995 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 1996 &wr->sg_list[i], acc); 1997 if (unlikely(ret < 0)) 1998 goto bail_inval_free; 1999 wqe->length += length; 2000 if (ret) 2001 last_sge = &wqe->sg_list[j]; 2002 j += ret; 2003 } 2004 wqe->wr.num_sge = j; 2005 } 2006 2007 /* 2008 * Calculate and set SWQE PSN values prior to handing it off 2009 * to the driver's check routine. This give the driver the 2010 * opportunity to adjust PSN values based on internal checks. 2011 */ 2012 log_pmtu = qp->log_pmtu; 2013 if (qp->allowed_ops == IB_OPCODE_UD) { 2014 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah); 2015 2016 log_pmtu = ah->log_pmtu; 2017 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 2018 } 2019 2020 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2021 if (local_ops_delayed) 2022 atomic_inc(&qp->local_ops_pending); 2023 else 2024 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2025 wqe->ssn = 0; 2026 wqe->psn = 0; 2027 wqe->lpsn = 0; 2028 } else { 2029 wqe->ssn = qp->s_ssn++; 2030 wqe->psn = qp->s_next_psn; 2031 wqe->lpsn = wqe->psn + 2032 (wqe->length ? 2033 ((wqe->length - 1) >> log_pmtu) : 2034 0); 2035 } 2036 2037 /* general part of wqe valid - allow for driver checks */ 2038 if (rdi->driver_f.setup_wqe) { 2039 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2040 if (ret < 0) 2041 goto bail_inval_free_ref; 2042 } 2043 2044 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2045 qp->s_next_psn = wqe->lpsn + 1; 2046 2047 if (unlikely(reserved_op)) { 2048 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2049 rvt_qp_wqe_reserve(qp, wqe); 2050 } else { 2051 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2052 qp->s_avail--; 2053 } 2054 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2055 smp_wmb(); /* see request builders */ 2056 qp->s_head = next; 2057 2058 return 0; 2059 2060 bail_inval_free_ref: 2061 if (qp->allowed_ops == IB_OPCODE_UD) 2062 atomic_dec(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 2063 bail_inval_free: 2064 /* release mr holds */ 2065 while (j) { 2066 struct rvt_sge *sge = &wqe->sg_list[--j]; 2067 2068 rvt_put_mr(sge->mr); 2069 } 2070 return ret; 2071 } 2072 2073 /** 2074 * rvt_post_send - post a send on a QP 2075 * @ibqp: the QP to post the send on 2076 * @wr: the list of work requests to post 2077 * @bad_wr: the first bad WR is put here 2078 * 2079 * This may be called from interrupt context. 2080 * 2081 * Return: 0 on success else errno 2082 */ 2083 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2084 const struct ib_send_wr **bad_wr) 2085 { 2086 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2087 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2088 unsigned long flags = 0; 2089 bool call_send; 2090 unsigned nreq = 0; 2091 int err = 0; 2092 2093 spin_lock_irqsave(&qp->s_hlock, flags); 2094 2095 /* 2096 * Ensure QP state is such that we can send. If not bail out early, 2097 * there is no need to do this every time we post a send. 2098 */ 2099 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2100 spin_unlock_irqrestore(&qp->s_hlock, flags); 2101 return -EINVAL; 2102 } 2103 2104 /* 2105 * If the send queue is empty, and we only have a single WR then just go 2106 * ahead and kick the send engine into gear. Otherwise we will always 2107 * just schedule the send to happen later. 2108 */ 2109 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2110 2111 for (; wr; wr = wr->next) { 2112 err = rvt_post_one_wr(qp, wr, &call_send); 2113 if (unlikely(err)) { 2114 *bad_wr = wr; 2115 goto bail; 2116 } 2117 nreq++; 2118 } 2119 bail: 2120 spin_unlock_irqrestore(&qp->s_hlock, flags); 2121 if (nreq) { 2122 /* 2123 * Only call do_send if there is exactly one packet, and the 2124 * driver said it was ok. 2125 */ 2126 if (nreq == 1 && call_send) 2127 rdi->driver_f.do_send(qp); 2128 else 2129 rdi->driver_f.schedule_send_no_lock(qp); 2130 } 2131 return err; 2132 } 2133 2134 /** 2135 * rvt_post_srq_receive - post a receive on a shared receive queue 2136 * @ibsrq: the SRQ to post the receive on 2137 * @wr: the list of work requests to post 2138 * @bad_wr: A pointer to the first WR to cause a problem is put here 2139 * 2140 * This may be called from interrupt context. 2141 * 2142 * Return: 0 on success else errno 2143 */ 2144 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2145 const struct ib_recv_wr **bad_wr) 2146 { 2147 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2148 struct rvt_rwq *wq; 2149 unsigned long flags; 2150 2151 for (; wr; wr = wr->next) { 2152 struct rvt_rwqe *wqe; 2153 u32 next; 2154 int i; 2155 2156 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2157 *bad_wr = wr; 2158 return -EINVAL; 2159 } 2160 2161 spin_lock_irqsave(&srq->rq.lock, flags); 2162 wq = srq->rq.wq; 2163 next = wq->head + 1; 2164 if (next >= srq->rq.size) 2165 next = 0; 2166 if (next == wq->tail) { 2167 spin_unlock_irqrestore(&srq->rq.lock, flags); 2168 *bad_wr = wr; 2169 return -ENOMEM; 2170 } 2171 2172 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2173 wqe->wr_id = wr->wr_id; 2174 wqe->num_sge = wr->num_sge; 2175 for (i = 0; i < wr->num_sge; i++) 2176 wqe->sg_list[i] = wr->sg_list[i]; 2177 /* Make sure queue entry is written before the head index. */ 2178 smp_wmb(); 2179 wq->head = next; 2180 spin_unlock_irqrestore(&srq->rq.lock, flags); 2181 } 2182 return 0; 2183 } 2184 2185 /* 2186 * Validate a RWQE and fill in the SGE state. 2187 * Return 1 if OK. 2188 */ 2189 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2190 { 2191 int i, j, ret; 2192 struct ib_wc wc; 2193 struct rvt_lkey_table *rkt; 2194 struct rvt_pd *pd; 2195 struct rvt_sge_state *ss; 2196 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2197 2198 rkt = &rdi->lkey_table; 2199 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2200 ss = &qp->r_sge; 2201 ss->sg_list = qp->r_sg_list; 2202 qp->r_len = 0; 2203 for (i = j = 0; i < wqe->num_sge; i++) { 2204 if (wqe->sg_list[i].length == 0) 2205 continue; 2206 /* Check LKEY */ 2207 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2208 NULL, &wqe->sg_list[i], 2209 IB_ACCESS_LOCAL_WRITE); 2210 if (unlikely(ret <= 0)) 2211 goto bad_lkey; 2212 qp->r_len += wqe->sg_list[i].length; 2213 j++; 2214 } 2215 ss->num_sge = j; 2216 ss->total_len = qp->r_len; 2217 return 1; 2218 2219 bad_lkey: 2220 while (j) { 2221 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2222 2223 rvt_put_mr(sge->mr); 2224 } 2225 ss->num_sge = 0; 2226 memset(&wc, 0, sizeof(wc)); 2227 wc.wr_id = wqe->wr_id; 2228 wc.status = IB_WC_LOC_PROT_ERR; 2229 wc.opcode = IB_WC_RECV; 2230 wc.qp = &qp->ibqp; 2231 /* Signal solicited completion event. */ 2232 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2233 return 0; 2234 } 2235 2236 /** 2237 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2238 * @qp: the QP 2239 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2240 * 2241 * Return -1 if there is a local error, 0 if no RWQE is available, 2242 * otherwise return 1. 2243 * 2244 * Can be called from interrupt level. 2245 */ 2246 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2247 { 2248 unsigned long flags; 2249 struct rvt_rq *rq; 2250 struct rvt_rwq *wq; 2251 struct rvt_srq *srq; 2252 struct rvt_rwqe *wqe; 2253 void (*handler)(struct ib_event *, void *); 2254 u32 tail; 2255 int ret; 2256 2257 if (qp->ibqp.srq) { 2258 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2259 handler = srq->ibsrq.event_handler; 2260 rq = &srq->rq; 2261 } else { 2262 srq = NULL; 2263 handler = NULL; 2264 rq = &qp->r_rq; 2265 } 2266 2267 spin_lock_irqsave(&rq->lock, flags); 2268 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2269 ret = 0; 2270 goto unlock; 2271 } 2272 2273 wq = rq->wq; 2274 tail = wq->tail; 2275 /* Validate tail before using it since it is user writable. */ 2276 if (tail >= rq->size) 2277 tail = 0; 2278 if (unlikely(tail == wq->head)) { 2279 ret = 0; 2280 goto unlock; 2281 } 2282 /* Make sure entry is read after head index is read. */ 2283 smp_rmb(); 2284 wqe = rvt_get_rwqe_ptr(rq, tail); 2285 /* 2286 * Even though we update the tail index in memory, the verbs 2287 * consumer is not supposed to post more entries until a 2288 * completion is generated. 2289 */ 2290 if (++tail >= rq->size) 2291 tail = 0; 2292 wq->tail = tail; 2293 if (!wr_id_only && !init_sge(qp, wqe)) { 2294 ret = -1; 2295 goto unlock; 2296 } 2297 qp->r_wr_id = wqe->wr_id; 2298 2299 ret = 1; 2300 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2301 if (handler) { 2302 u32 n; 2303 2304 /* 2305 * Validate head pointer value and compute 2306 * the number of remaining WQEs. 2307 */ 2308 n = wq->head; 2309 if (n >= rq->size) 2310 n = 0; 2311 if (n < tail) 2312 n += rq->size - tail; 2313 else 2314 n -= tail; 2315 if (n < srq->limit) { 2316 struct ib_event ev; 2317 2318 srq->limit = 0; 2319 spin_unlock_irqrestore(&rq->lock, flags); 2320 ev.device = qp->ibqp.device; 2321 ev.element.srq = qp->ibqp.srq; 2322 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2323 handler(&ev, srq->ibsrq.srq_context); 2324 goto bail; 2325 } 2326 } 2327 unlock: 2328 spin_unlock_irqrestore(&rq->lock, flags); 2329 bail: 2330 return ret; 2331 } 2332 EXPORT_SYMBOL(rvt_get_rwqe); 2333 2334 /** 2335 * qp_comm_est - handle trap with QP established 2336 * @qp: the QP 2337 */ 2338 void rvt_comm_est(struct rvt_qp *qp) 2339 { 2340 qp->r_flags |= RVT_R_COMM_EST; 2341 if (qp->ibqp.event_handler) { 2342 struct ib_event ev; 2343 2344 ev.device = qp->ibqp.device; 2345 ev.element.qp = &qp->ibqp; 2346 ev.event = IB_EVENT_COMM_EST; 2347 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2348 } 2349 } 2350 EXPORT_SYMBOL(rvt_comm_est); 2351 2352 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2353 { 2354 unsigned long flags; 2355 int lastwqe; 2356 2357 spin_lock_irqsave(&qp->s_lock, flags); 2358 lastwqe = rvt_error_qp(qp, err); 2359 spin_unlock_irqrestore(&qp->s_lock, flags); 2360 2361 if (lastwqe) { 2362 struct ib_event ev; 2363 2364 ev.device = qp->ibqp.device; 2365 ev.element.qp = &qp->ibqp; 2366 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2367 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2368 } 2369 } 2370 EXPORT_SYMBOL(rvt_rc_error); 2371 2372 /* 2373 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2374 * @index - the index 2375 * return usec from an index into ib_rvt_rnr_table 2376 */ 2377 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2378 { 2379 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2380 } 2381 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2382 2383 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2384 { 2385 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2386 IB_AETH_CREDIT_MASK]; 2387 } 2388 2389 /* 2390 * rvt_add_retry_timer_ext - add/start a retry timer 2391 * @qp - the QP 2392 * @shift - timeout shift to wait for multiple packets 2393 * add a retry timer on the QP 2394 */ 2395 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) 2396 { 2397 struct ib_qp *ibqp = &qp->ibqp; 2398 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2399 2400 lockdep_assert_held(&qp->s_lock); 2401 qp->s_flags |= RVT_S_TIMER; 2402 /* 4.096 usec. * (1 << qp->timeout) */ 2403 qp->s_timer.expires = jiffies + rdi->busy_jiffies + 2404 (qp->timeout_jiffies << shift); 2405 add_timer(&qp->s_timer); 2406 } 2407 EXPORT_SYMBOL(rvt_add_retry_timer_ext); 2408 2409 /** 2410 * rvt_add_rnr_timer - add/start an rnr timer 2411 * @qp - the QP 2412 * @aeth - aeth of RNR timeout, simulated aeth for loopback 2413 * add an rnr timer on the QP 2414 */ 2415 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2416 { 2417 u32 to; 2418 2419 lockdep_assert_held(&qp->s_lock); 2420 qp->s_flags |= RVT_S_WAIT_RNR; 2421 to = rvt_aeth_to_usec(aeth); 2422 trace_rvt_rnrnak_add(qp, to); 2423 hrtimer_start(&qp->s_rnr_timer, 2424 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2425 } 2426 EXPORT_SYMBOL(rvt_add_rnr_timer); 2427 2428 /** 2429 * rvt_stop_rc_timers - stop all timers 2430 * @qp - the QP 2431 * stop any pending timers 2432 */ 2433 void rvt_stop_rc_timers(struct rvt_qp *qp) 2434 { 2435 lockdep_assert_held(&qp->s_lock); 2436 /* Remove QP from all timers */ 2437 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2438 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2439 del_timer(&qp->s_timer); 2440 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2441 } 2442 } 2443 EXPORT_SYMBOL(rvt_stop_rc_timers); 2444 2445 /** 2446 * rvt_stop_rnr_timer - stop an rnr timer 2447 * @qp - the QP 2448 * 2449 * stop an rnr timer and return if the timer 2450 * had been pending. 2451 */ 2452 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2453 { 2454 lockdep_assert_held(&qp->s_lock); 2455 /* Remove QP from rnr timer */ 2456 if (qp->s_flags & RVT_S_WAIT_RNR) { 2457 qp->s_flags &= ~RVT_S_WAIT_RNR; 2458 trace_rvt_rnrnak_stop(qp, 0); 2459 } 2460 } 2461 2462 /** 2463 * rvt_del_timers_sync - wait for any timeout routines to exit 2464 * @qp - the QP 2465 */ 2466 void rvt_del_timers_sync(struct rvt_qp *qp) 2467 { 2468 del_timer_sync(&qp->s_timer); 2469 hrtimer_cancel(&qp->s_rnr_timer); 2470 } 2471 EXPORT_SYMBOL(rvt_del_timers_sync); 2472 2473 /** 2474 * This is called from s_timer for missing responses. 2475 */ 2476 static void rvt_rc_timeout(struct timer_list *t) 2477 { 2478 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2479 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2480 unsigned long flags; 2481 2482 spin_lock_irqsave(&qp->r_lock, flags); 2483 spin_lock(&qp->s_lock); 2484 if (qp->s_flags & RVT_S_TIMER) { 2485 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2486 2487 qp->s_flags &= ~RVT_S_TIMER; 2488 rvp->n_rc_timeouts++; 2489 del_timer(&qp->s_timer); 2490 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2491 if (rdi->driver_f.notify_restart_rc) 2492 rdi->driver_f.notify_restart_rc(qp, 2493 qp->s_last_psn + 1, 2494 1); 2495 rdi->driver_f.schedule_send(qp); 2496 } 2497 spin_unlock(&qp->s_lock); 2498 spin_unlock_irqrestore(&qp->r_lock, flags); 2499 } 2500 2501 /* 2502 * This is called from s_timer for RNR timeouts. 2503 */ 2504 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2505 { 2506 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2507 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2508 unsigned long flags; 2509 2510 spin_lock_irqsave(&qp->s_lock, flags); 2511 rvt_stop_rnr_timer(qp); 2512 trace_rvt_rnrnak_timeout(qp, 0); 2513 rdi->driver_f.schedule_send(qp); 2514 spin_unlock_irqrestore(&qp->s_lock, flags); 2515 return HRTIMER_NORESTART; 2516 } 2517 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2518 2519 /** 2520 * rvt_qp_iter_init - initial for QP iteration 2521 * @rdi: rvt devinfo 2522 * @v: u64 value 2523 * 2524 * This returns an iterator suitable for iterating QPs 2525 * in the system. 2526 * 2527 * The @cb is a user defined callback and @v is a 64 2528 * bit value passed to and relevant for processing in the 2529 * @cb. An example use case would be to alter QP processing 2530 * based on criteria not part of the rvt_qp. 2531 * 2532 * Use cases that require memory allocation to succeed 2533 * must preallocate appropriately. 2534 * 2535 * Return: a pointer to an rvt_qp_iter or NULL 2536 */ 2537 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2538 u64 v, 2539 void (*cb)(struct rvt_qp *qp, u64 v)) 2540 { 2541 struct rvt_qp_iter *i; 2542 2543 i = kzalloc(sizeof(*i), GFP_KERNEL); 2544 if (!i) 2545 return NULL; 2546 2547 i->rdi = rdi; 2548 /* number of special QPs (SMI/GSI) for device */ 2549 i->specials = rdi->ibdev.phys_port_cnt * 2; 2550 i->v = v; 2551 i->cb = cb; 2552 2553 return i; 2554 } 2555 EXPORT_SYMBOL(rvt_qp_iter_init); 2556 2557 /** 2558 * rvt_qp_iter_next - return the next QP in iter 2559 * @iter - the iterator 2560 * 2561 * Fine grained QP iterator suitable for use 2562 * with debugfs seq_file mechanisms. 2563 * 2564 * Updates iter->qp with the current QP when the return 2565 * value is 0. 2566 * 2567 * Return: 0 - iter->qp is valid 1 - no more QPs 2568 */ 2569 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2570 __must_hold(RCU) 2571 { 2572 int n = iter->n; 2573 int ret = 1; 2574 struct rvt_qp *pqp = iter->qp; 2575 struct rvt_qp *qp; 2576 struct rvt_dev_info *rdi = iter->rdi; 2577 2578 /* 2579 * The approach is to consider the special qps 2580 * as additional table entries before the 2581 * real hash table. Since the qp code sets 2582 * the qp->next hash link to NULL, this works just fine. 2583 * 2584 * iter->specials is 2 * # ports 2585 * 2586 * n = 0..iter->specials is the special qp indices 2587 * 2588 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2589 * the potential hash bucket entries 2590 * 2591 */ 2592 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2593 if (pqp) { 2594 qp = rcu_dereference(pqp->next); 2595 } else { 2596 if (n < iter->specials) { 2597 struct rvt_ibport *rvp; 2598 int pidx; 2599 2600 pidx = n % rdi->ibdev.phys_port_cnt; 2601 rvp = rdi->ports[pidx]; 2602 qp = rcu_dereference(rvp->qp[n & 1]); 2603 } else { 2604 qp = rcu_dereference( 2605 rdi->qp_dev->qp_table[ 2606 (n - iter->specials)]); 2607 } 2608 } 2609 pqp = qp; 2610 if (qp) { 2611 iter->qp = qp; 2612 iter->n = n; 2613 return 0; 2614 } 2615 } 2616 return ret; 2617 } 2618 EXPORT_SYMBOL(rvt_qp_iter_next); 2619 2620 /** 2621 * rvt_qp_iter - iterate all QPs 2622 * @rdi - rvt devinfo 2623 * @v - a 64 bit value 2624 * @cb - a callback 2625 * 2626 * This provides a way for iterating all QPs. 2627 * 2628 * The @cb is a user defined callback and @v is a 64 2629 * bit value passed to and relevant for processing in the 2630 * cb. An example use case would be to alter QP processing 2631 * based on criteria not part of the rvt_qp. 2632 * 2633 * The code has an internal iterator to simplify 2634 * non seq_file use cases. 2635 */ 2636 void rvt_qp_iter(struct rvt_dev_info *rdi, 2637 u64 v, 2638 void (*cb)(struct rvt_qp *qp, u64 v)) 2639 { 2640 int ret; 2641 struct rvt_qp_iter i = { 2642 .rdi = rdi, 2643 .specials = rdi->ibdev.phys_port_cnt * 2, 2644 .v = v, 2645 .cb = cb 2646 }; 2647 2648 rcu_read_lock(); 2649 do { 2650 ret = rvt_qp_iter_next(&i); 2651 if (!ret) { 2652 rvt_get_qp(i.qp); 2653 rcu_read_unlock(); 2654 i.cb(i.qp, i.v); 2655 rcu_read_lock(); 2656 rvt_put_qp(i.qp); 2657 } 2658 } while (!ret); 2659 rcu_read_unlock(); 2660 } 2661 EXPORT_SYMBOL(rvt_qp_iter); 2662 2663 /* 2664 * This should be called with s_lock held. 2665 */ 2666 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2667 enum ib_wc_status status) 2668 { 2669 u32 old_last, last; 2670 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2671 2672 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2673 return; 2674 2675 last = qp->s_last; 2676 old_last = last; 2677 trace_rvt_qp_send_completion(qp, wqe, last); 2678 if (++last >= qp->s_size) 2679 last = 0; 2680 trace_rvt_qp_send_completion(qp, wqe, last); 2681 qp->s_last = last; 2682 /* See post_send() */ 2683 barrier(); 2684 rvt_put_qp_swqe(qp, wqe); 2685 2686 rvt_qp_swqe_complete(qp, 2687 wqe, 2688 rdi->wc_opcode[wqe->wr.opcode], 2689 status); 2690 2691 if (qp->s_acked == old_last) 2692 qp->s_acked = last; 2693 if (qp->s_cur == old_last) 2694 qp->s_cur = last; 2695 if (qp->s_tail == old_last) 2696 qp->s_tail = last; 2697 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2698 qp->s_draining = 0; 2699 } 2700 EXPORT_SYMBOL(rvt_send_complete); 2701 2702 /** 2703 * rvt_copy_sge - copy data to SGE memory 2704 * @qp: associated QP 2705 * @ss: the SGE state 2706 * @data: the data to copy 2707 * @length: the length of the data 2708 * @release: boolean to release MR 2709 * @copy_last: do a separate copy of the last 8 bytes 2710 */ 2711 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2712 void *data, u32 length, 2713 bool release, bool copy_last) 2714 { 2715 struct rvt_sge *sge = &ss->sge; 2716 int i; 2717 bool in_last = false; 2718 bool cacheless_copy = false; 2719 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2720 struct rvt_wss *wss = rdi->wss; 2721 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2722 2723 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2724 cacheless_copy = length >= PAGE_SIZE; 2725 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2726 if (length >= PAGE_SIZE) { 2727 /* 2728 * NOTE: this *assumes*: 2729 * o The first vaddr is the dest. 2730 * o If multiple pages, then vaddr is sequential. 2731 */ 2732 wss_insert(wss, sge->vaddr); 2733 if (length >= (2 * PAGE_SIZE)) 2734 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2735 2736 cacheless_copy = wss_exceeds_threshold(wss); 2737 } else { 2738 wss_advance_clean_counter(wss); 2739 } 2740 } 2741 2742 if (copy_last) { 2743 if (length > 8) { 2744 length -= 8; 2745 } else { 2746 copy_last = false; 2747 in_last = true; 2748 } 2749 } 2750 2751 again: 2752 while (length) { 2753 u32 len = rvt_get_sge_length(sge, length); 2754 2755 WARN_ON_ONCE(len == 0); 2756 if (unlikely(in_last)) { 2757 /* enforce byte transfer ordering */ 2758 for (i = 0; i < len; i++) 2759 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2760 } else if (cacheless_copy) { 2761 cacheless_memcpy(sge->vaddr, data, len); 2762 } else { 2763 memcpy(sge->vaddr, data, len); 2764 } 2765 rvt_update_sge(ss, len, release); 2766 data += len; 2767 length -= len; 2768 } 2769 2770 if (copy_last) { 2771 copy_last = false; 2772 in_last = true; 2773 length = 8; 2774 goto again; 2775 } 2776 } 2777 EXPORT_SYMBOL(rvt_copy_sge); 2778 2779 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, 2780 struct rvt_qp *sqp) 2781 { 2782 rvp->n_pkt_drops++; 2783 /* 2784 * For RC, the requester would timeout and retry so 2785 * shortcut the timeouts and just signal too many retries. 2786 */ 2787 return sqp->ibqp.qp_type == IB_QPT_RC ? 2788 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; 2789 } 2790 2791 /** 2792 * ruc_loopback - handle UC and RC loopback requests 2793 * @sqp: the sending QP 2794 * 2795 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2796 * Note that although we are single threaded due to the send engine, we still 2797 * have to protect against post_send(). We don't have to worry about 2798 * receive interrupts since this is a connected protocol and all packets 2799 * will pass through here. 2800 */ 2801 void rvt_ruc_loopback(struct rvt_qp *sqp) 2802 { 2803 struct rvt_ibport *rvp = NULL; 2804 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2805 struct rvt_qp *qp; 2806 struct rvt_swqe *wqe; 2807 struct rvt_sge *sge; 2808 unsigned long flags; 2809 struct ib_wc wc; 2810 u64 sdata; 2811 atomic64_t *maddr; 2812 enum ib_wc_status send_status; 2813 bool release; 2814 int ret; 2815 bool copy_last = false; 2816 int local_ops = 0; 2817 2818 rcu_read_lock(); 2819 rvp = rdi->ports[sqp->port_num - 1]; 2820 2821 /* 2822 * Note that we check the responder QP state after 2823 * checking the requester's state. 2824 */ 2825 2826 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2827 sqp->remote_qpn); 2828 2829 spin_lock_irqsave(&sqp->s_lock, flags); 2830 2831 /* Return if we are already busy processing a work request. */ 2832 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2833 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2834 goto unlock; 2835 2836 sqp->s_flags |= RVT_S_BUSY; 2837 2838 again: 2839 if (sqp->s_last == READ_ONCE(sqp->s_head)) 2840 goto clr_busy; 2841 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 2842 2843 /* Return if it is not OK to start a new work request. */ 2844 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 2845 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 2846 goto clr_busy; 2847 /* We are in the error state, flush the work request. */ 2848 send_status = IB_WC_WR_FLUSH_ERR; 2849 goto flush_send; 2850 } 2851 2852 /* 2853 * We can rely on the entry not changing without the s_lock 2854 * being held until we update s_last. 2855 * We increment s_cur to indicate s_last is in progress. 2856 */ 2857 if (sqp->s_last == sqp->s_cur) { 2858 if (++sqp->s_cur >= sqp->s_size) 2859 sqp->s_cur = 0; 2860 } 2861 spin_unlock_irqrestore(&sqp->s_lock, flags); 2862 2863 if (!qp) { 2864 send_status = loopback_qp_drop(rvp, sqp); 2865 goto serr_no_r_lock; 2866 } 2867 spin_lock_irqsave(&qp->r_lock, flags); 2868 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 2869 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 2870 send_status = loopback_qp_drop(rvp, sqp); 2871 goto serr; 2872 } 2873 2874 memset(&wc, 0, sizeof(wc)); 2875 send_status = IB_WC_SUCCESS; 2876 2877 release = true; 2878 sqp->s_sge.sge = wqe->sg_list[0]; 2879 sqp->s_sge.sg_list = wqe->sg_list + 1; 2880 sqp->s_sge.num_sge = wqe->wr.num_sge; 2881 sqp->s_len = wqe->length; 2882 switch (wqe->wr.opcode) { 2883 case IB_WR_REG_MR: 2884 goto send_comp; 2885 2886 case IB_WR_LOCAL_INV: 2887 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 2888 if (rvt_invalidate_rkey(sqp, 2889 wqe->wr.ex.invalidate_rkey)) 2890 send_status = IB_WC_LOC_PROT_ERR; 2891 local_ops = 1; 2892 } 2893 goto send_comp; 2894 2895 case IB_WR_SEND_WITH_INV: 2896 case IB_WR_SEND_WITH_IMM: 2897 case IB_WR_SEND: 2898 ret = rvt_get_rwqe(qp, false); 2899 if (ret < 0) 2900 goto op_err; 2901 if (!ret) 2902 goto rnr_nak; 2903 if (wqe->length > qp->r_len) 2904 goto inv_err; 2905 switch (wqe->wr.opcode) { 2906 case IB_WR_SEND_WITH_INV: 2907 if (!rvt_invalidate_rkey(qp, 2908 wqe->wr.ex.invalidate_rkey)) { 2909 wc.wc_flags = IB_WC_WITH_INVALIDATE; 2910 wc.ex.invalidate_rkey = 2911 wqe->wr.ex.invalidate_rkey; 2912 } 2913 break; 2914 case IB_WR_SEND_WITH_IMM: 2915 wc.wc_flags = IB_WC_WITH_IMM; 2916 wc.ex.imm_data = wqe->wr.ex.imm_data; 2917 break; 2918 default: 2919 break; 2920 } 2921 break; 2922 2923 case IB_WR_RDMA_WRITE_WITH_IMM: 2924 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 2925 goto inv_err; 2926 wc.wc_flags = IB_WC_WITH_IMM; 2927 wc.ex.imm_data = wqe->wr.ex.imm_data; 2928 ret = rvt_get_rwqe(qp, true); 2929 if (ret < 0) 2930 goto op_err; 2931 if (!ret) 2932 goto rnr_nak; 2933 /* skip copy_last set and qp_access_flags recheck */ 2934 goto do_write; 2935 case IB_WR_RDMA_WRITE: 2936 copy_last = rvt_is_user_qp(qp); 2937 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 2938 goto inv_err; 2939 do_write: 2940 if (wqe->length == 0) 2941 break; 2942 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 2943 wqe->rdma_wr.remote_addr, 2944 wqe->rdma_wr.rkey, 2945 IB_ACCESS_REMOTE_WRITE))) 2946 goto acc_err; 2947 qp->r_sge.sg_list = NULL; 2948 qp->r_sge.num_sge = 1; 2949 qp->r_sge.total_len = wqe->length; 2950 break; 2951 2952 case IB_WR_RDMA_READ: 2953 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 2954 goto inv_err; 2955 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 2956 wqe->rdma_wr.remote_addr, 2957 wqe->rdma_wr.rkey, 2958 IB_ACCESS_REMOTE_READ))) 2959 goto acc_err; 2960 release = false; 2961 sqp->s_sge.sg_list = NULL; 2962 sqp->s_sge.num_sge = 1; 2963 qp->r_sge.sge = wqe->sg_list[0]; 2964 qp->r_sge.sg_list = wqe->sg_list + 1; 2965 qp->r_sge.num_sge = wqe->wr.num_sge; 2966 qp->r_sge.total_len = wqe->length; 2967 break; 2968 2969 case IB_WR_ATOMIC_CMP_AND_SWP: 2970 case IB_WR_ATOMIC_FETCH_AND_ADD: 2971 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 2972 goto inv_err; 2973 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 2974 wqe->atomic_wr.remote_addr, 2975 wqe->atomic_wr.rkey, 2976 IB_ACCESS_REMOTE_ATOMIC))) 2977 goto acc_err; 2978 /* Perform atomic OP and save result. */ 2979 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 2980 sdata = wqe->atomic_wr.compare_add; 2981 *(u64 *)sqp->s_sge.sge.vaddr = 2982 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 2983 (u64)atomic64_add_return(sdata, maddr) - sdata : 2984 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 2985 sdata, wqe->atomic_wr.swap); 2986 rvt_put_mr(qp->r_sge.sge.mr); 2987 qp->r_sge.num_sge = 0; 2988 goto send_comp; 2989 2990 default: 2991 send_status = IB_WC_LOC_QP_OP_ERR; 2992 goto serr; 2993 } 2994 2995 sge = &sqp->s_sge.sge; 2996 while (sqp->s_len) { 2997 u32 len = rvt_get_sge_length(sge, sqp->s_len); 2998 2999 WARN_ON_ONCE(len == 0); 3000 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 3001 len, release, copy_last); 3002 rvt_update_sge(&sqp->s_sge, len, !release); 3003 sqp->s_len -= len; 3004 } 3005 if (release) 3006 rvt_put_ss(&qp->r_sge); 3007 3008 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3009 goto send_comp; 3010 3011 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3012 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3013 else 3014 wc.opcode = IB_WC_RECV; 3015 wc.wr_id = qp->r_wr_id; 3016 wc.status = IB_WC_SUCCESS; 3017 wc.byte_len = wqe->length; 3018 wc.qp = &qp->ibqp; 3019 wc.src_qp = qp->remote_qpn; 3020 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3021 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3022 wc.port_num = 1; 3023 /* Signal completion event if the solicited bit is set. */ 3024 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 3025 wqe->wr.send_flags & IB_SEND_SOLICITED); 3026 3027 send_comp: 3028 spin_unlock_irqrestore(&qp->r_lock, flags); 3029 spin_lock_irqsave(&sqp->s_lock, flags); 3030 rvp->n_loop_pkts++; 3031 flush_send: 3032 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3033 rvt_send_complete(sqp, wqe, send_status); 3034 if (local_ops) { 3035 atomic_dec(&sqp->local_ops_pending); 3036 local_ops = 0; 3037 } 3038 goto again; 3039 3040 rnr_nak: 3041 /* Handle RNR NAK */ 3042 if (qp->ibqp.qp_type == IB_QPT_UC) 3043 goto send_comp; 3044 rvp->n_rnr_naks++; 3045 /* 3046 * Note: we don't need the s_lock held since the BUSY flag 3047 * makes this single threaded. 3048 */ 3049 if (sqp->s_rnr_retry == 0) { 3050 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3051 goto serr; 3052 } 3053 if (sqp->s_rnr_retry_cnt < 7) 3054 sqp->s_rnr_retry--; 3055 spin_unlock_irqrestore(&qp->r_lock, flags); 3056 spin_lock_irqsave(&sqp->s_lock, flags); 3057 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3058 goto clr_busy; 3059 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3060 IB_AETH_CREDIT_SHIFT); 3061 goto clr_busy; 3062 3063 op_err: 3064 send_status = IB_WC_REM_OP_ERR; 3065 wc.status = IB_WC_LOC_QP_OP_ERR; 3066 goto err; 3067 3068 inv_err: 3069 send_status = 3070 sqp->ibqp.qp_type == IB_QPT_RC ? 3071 IB_WC_REM_INV_REQ_ERR : 3072 IB_WC_SUCCESS; 3073 wc.status = IB_WC_LOC_QP_OP_ERR; 3074 goto err; 3075 3076 acc_err: 3077 send_status = IB_WC_REM_ACCESS_ERR; 3078 wc.status = IB_WC_LOC_PROT_ERR; 3079 err: 3080 /* responder goes to error state */ 3081 rvt_rc_error(qp, wc.status); 3082 3083 serr: 3084 spin_unlock_irqrestore(&qp->r_lock, flags); 3085 serr_no_r_lock: 3086 spin_lock_irqsave(&sqp->s_lock, flags); 3087 rvt_send_complete(sqp, wqe, send_status); 3088 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3089 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3090 3091 sqp->s_flags &= ~RVT_S_BUSY; 3092 spin_unlock_irqrestore(&sqp->s_lock, flags); 3093 if (lastwqe) { 3094 struct ib_event ev; 3095 3096 ev.device = sqp->ibqp.device; 3097 ev.element.qp = &sqp->ibqp; 3098 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3099 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3100 } 3101 goto done; 3102 } 3103 clr_busy: 3104 sqp->s_flags &= ~RVT_S_BUSY; 3105 unlock: 3106 spin_unlock_irqrestore(&sqp->s_lock, flags); 3107 done: 3108 rcu_read_unlock(); 3109 } 3110 EXPORT_SYMBOL(rvt_ruc_loopback); 3111