xref: /openbmc/linux/drivers/infiniband/sw/rdmavt/qp.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  * Copyright(c) 2016 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
60 
61 static void rvt_rc_timeout(struct timer_list *t);
62 
63 /*
64  * Convert the AETH RNR timeout code into the number of microseconds.
65  */
66 static const u32 ib_rvt_rnr_table[32] = {
67 	655360, /* 00: 655.36 */
68 	10,     /* 01:    .01 */
69 	20,     /* 02     .02 */
70 	30,     /* 03:    .03 */
71 	40,     /* 04:    .04 */
72 	60,     /* 05:    .06 */
73 	80,     /* 06:    .08 */
74 	120,    /* 07:    .12 */
75 	160,    /* 08:    .16 */
76 	240,    /* 09:    .24 */
77 	320,    /* 0A:    .32 */
78 	480,    /* 0B:    .48 */
79 	640,    /* 0C:    .64 */
80 	960,    /* 0D:    .96 */
81 	1280,   /* 0E:   1.28 */
82 	1920,   /* 0F:   1.92 */
83 	2560,   /* 10:   2.56 */
84 	3840,   /* 11:   3.84 */
85 	5120,   /* 12:   5.12 */
86 	7680,   /* 13:   7.68 */
87 	10240,  /* 14:  10.24 */
88 	15360,  /* 15:  15.36 */
89 	20480,  /* 16:  20.48 */
90 	30720,  /* 17:  30.72 */
91 	40960,  /* 18:  40.96 */
92 	61440,  /* 19:  61.44 */
93 	81920,  /* 1A:  81.92 */
94 	122880, /* 1B: 122.88 */
95 	163840, /* 1C: 163.84 */
96 	245760, /* 1D: 245.76 */
97 	327680, /* 1E: 327.68 */
98 	491520  /* 1F: 491.52 */
99 };
100 
101 /*
102  * Note that it is OK to post send work requests in the SQE and ERR
103  * states; rvt_do_send() will process them and generate error
104  * completions as per IB 1.2 C10-96.
105  */
106 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
107 	[IB_QPS_RESET] = 0,
108 	[IB_QPS_INIT] = RVT_POST_RECV_OK,
109 	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
110 	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
111 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
112 	    RVT_PROCESS_NEXT_SEND_OK,
113 	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
114 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
115 	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
116 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
117 	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
118 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
119 };
120 EXPORT_SYMBOL(ib_rvt_state_ops);
121 
122 /* platform specific: return the last level cache (llc) size, in KiB */
123 static int rvt_wss_llc_size(void)
124 {
125 	/* assume that the boot CPU value is universal for all CPUs */
126 	return boot_cpu_data.x86_cache_size;
127 }
128 
129 /* platform specific: cacheless copy */
130 static void cacheless_memcpy(void *dst, void *src, size_t n)
131 {
132 	/*
133 	 * Use the only available X64 cacheless copy.  Add a __user cast
134 	 * to quiet sparse.  The src agument is already in the kernel so
135 	 * there are no security issues.  The extra fault recovery machinery
136 	 * is not invoked.
137 	 */
138 	__copy_user_nocache(dst, (void __user *)src, n, 0);
139 }
140 
141 void rvt_wss_exit(struct rvt_dev_info *rdi)
142 {
143 	struct rvt_wss *wss = rdi->wss;
144 
145 	if (!wss)
146 		return;
147 
148 	/* coded to handle partially initialized and repeat callers */
149 	kfree(wss->entries);
150 	wss->entries = NULL;
151 	kfree(rdi->wss);
152 	rdi->wss = NULL;
153 }
154 
155 /**
156  * rvt_wss_init - Init wss data structures
157  *
158  * Return: 0 on success
159  */
160 int rvt_wss_init(struct rvt_dev_info *rdi)
161 {
162 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
163 	unsigned int wss_threshold = rdi->dparms.wss_threshold;
164 	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
165 	long llc_size;
166 	long llc_bits;
167 	long table_size;
168 	long table_bits;
169 	struct rvt_wss *wss;
170 	int node = rdi->dparms.node;
171 
172 	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
173 		rdi->wss = NULL;
174 		return 0;
175 	}
176 
177 	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
178 	if (!rdi->wss)
179 		return -ENOMEM;
180 	wss = rdi->wss;
181 
182 	/* check for a valid percent range - default to 80 if none or invalid */
183 	if (wss_threshold < 1 || wss_threshold > 100)
184 		wss_threshold = 80;
185 
186 	/* reject a wildly large period */
187 	if (wss_clean_period > 1000000)
188 		wss_clean_period = 256;
189 
190 	/* reject a zero period */
191 	if (wss_clean_period == 0)
192 		wss_clean_period = 1;
193 
194 	/*
195 	 * Calculate the table size - the next power of 2 larger than the
196 	 * LLC size.  LLC size is in KiB.
197 	 */
198 	llc_size = rvt_wss_llc_size() * 1024;
199 	table_size = roundup_pow_of_two(llc_size);
200 
201 	/* one bit per page in rounded up table */
202 	llc_bits = llc_size / PAGE_SIZE;
203 	table_bits = table_size / PAGE_SIZE;
204 	wss->pages_mask = table_bits - 1;
205 	wss->num_entries = table_bits / BITS_PER_LONG;
206 
207 	wss->threshold = (llc_bits * wss_threshold) / 100;
208 	if (wss->threshold == 0)
209 		wss->threshold = 1;
210 
211 	wss->clean_period = wss_clean_period;
212 	atomic_set(&wss->clean_counter, wss_clean_period);
213 
214 	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
215 				    GFP_KERNEL, node);
216 	if (!wss->entries) {
217 		rvt_wss_exit(rdi);
218 		return -ENOMEM;
219 	}
220 
221 	return 0;
222 }
223 
224 /*
225  * Advance the clean counter.  When the clean period has expired,
226  * clean an entry.
227  *
228  * This is implemented in atomics to avoid locking.  Because multiple
229  * variables are involved, it can be racy which can lead to slightly
230  * inaccurate information.  Since this is only a heuristic, this is
231  * OK.  Any innaccuracies will clean themselves out as the counter
232  * advances.  That said, it is unlikely the entry clean operation will
233  * race - the next possible racer will not start until the next clean
234  * period.
235  *
236  * The clean counter is implemented as a decrement to zero.  When zero
237  * is reached an entry is cleaned.
238  */
239 static void wss_advance_clean_counter(struct rvt_wss *wss)
240 {
241 	int entry;
242 	int weight;
243 	unsigned long bits;
244 
245 	/* become the cleaner if we decrement the counter to zero */
246 	if (atomic_dec_and_test(&wss->clean_counter)) {
247 		/*
248 		 * Set, not add, the clean period.  This avoids an issue
249 		 * where the counter could decrement below the clean period.
250 		 * Doing a set can result in lost decrements, slowing the
251 		 * clean advance.  Since this a heuristic, this possible
252 		 * slowdown is OK.
253 		 *
254 		 * An alternative is to loop, advancing the counter by a
255 		 * clean period until the result is > 0. However, this could
256 		 * lead to several threads keeping another in the clean loop.
257 		 * This could be mitigated by limiting the number of times
258 		 * we stay in the loop.
259 		 */
260 		atomic_set(&wss->clean_counter, wss->clean_period);
261 
262 		/*
263 		 * Uniquely grab the entry to clean and move to next.
264 		 * The current entry is always the lower bits of
265 		 * wss.clean_entry.  The table size, wss.num_entries,
266 		 * is always a power-of-2.
267 		 */
268 		entry = (atomic_inc_return(&wss->clean_entry) - 1)
269 			& (wss->num_entries - 1);
270 
271 		/* clear the entry and count the bits */
272 		bits = xchg(&wss->entries[entry], 0);
273 		weight = hweight64((u64)bits);
274 		/* only adjust the contended total count if needed */
275 		if (weight)
276 			atomic_sub(weight, &wss->total_count);
277 	}
278 }
279 
280 /*
281  * Insert the given address into the working set array.
282  */
283 static void wss_insert(struct rvt_wss *wss, void *address)
284 {
285 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
286 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
287 	u32 nr = page & (BITS_PER_LONG - 1);
288 
289 	if (!test_and_set_bit(nr, &wss->entries[entry]))
290 		atomic_inc(&wss->total_count);
291 
292 	wss_advance_clean_counter(wss);
293 }
294 
295 /*
296  * Is the working set larger than the threshold?
297  */
298 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
299 {
300 	return atomic_read(&wss->total_count) >= wss->threshold;
301 }
302 
303 static void get_map_page(struct rvt_qpn_table *qpt,
304 			 struct rvt_qpn_map *map)
305 {
306 	unsigned long page = get_zeroed_page(GFP_KERNEL);
307 
308 	/*
309 	 * Free the page if someone raced with us installing it.
310 	 */
311 
312 	spin_lock(&qpt->lock);
313 	if (map->page)
314 		free_page(page);
315 	else
316 		map->page = (void *)page;
317 	spin_unlock(&qpt->lock);
318 }
319 
320 /**
321  * init_qpn_table - initialize the QP number table for a device
322  * @qpt: the QPN table
323  */
324 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
325 {
326 	u32 offset, i;
327 	struct rvt_qpn_map *map;
328 	int ret = 0;
329 
330 	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
331 		return -EINVAL;
332 
333 	spin_lock_init(&qpt->lock);
334 
335 	qpt->last = rdi->dparms.qpn_start;
336 	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
337 
338 	/*
339 	 * Drivers may want some QPs beyond what we need for verbs let them use
340 	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
341 	 * for those. The reserved range must be *after* the range which verbs
342 	 * will pick from.
343 	 */
344 
345 	/* Figure out number of bit maps needed before reserved range */
346 	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
347 
348 	/* This should always be zero */
349 	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
350 
351 	/* Starting with the first reserved bit map */
352 	map = &qpt->map[qpt->nmaps];
353 
354 	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
355 		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
356 	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
357 		if (!map->page) {
358 			get_map_page(qpt, map);
359 			if (!map->page) {
360 				ret = -ENOMEM;
361 				break;
362 			}
363 		}
364 		set_bit(offset, map->page);
365 		offset++;
366 		if (offset == RVT_BITS_PER_PAGE) {
367 			/* next page */
368 			qpt->nmaps++;
369 			map++;
370 			offset = 0;
371 		}
372 	}
373 	return ret;
374 }
375 
376 /**
377  * free_qpn_table - free the QP number table for a device
378  * @qpt: the QPN table
379  */
380 static void free_qpn_table(struct rvt_qpn_table *qpt)
381 {
382 	int i;
383 
384 	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
385 		free_page((unsigned long)qpt->map[i].page);
386 }
387 
388 /**
389  * rvt_driver_qp_init - Init driver qp resources
390  * @rdi: rvt dev strucutre
391  *
392  * Return: 0 on success
393  */
394 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
395 {
396 	int i;
397 	int ret = -ENOMEM;
398 
399 	if (!rdi->dparms.qp_table_size)
400 		return -EINVAL;
401 
402 	/*
403 	 * If driver is not doing any QP allocation then make sure it is
404 	 * providing the necessary QP functions.
405 	 */
406 	if (!rdi->driver_f.free_all_qps ||
407 	    !rdi->driver_f.qp_priv_alloc ||
408 	    !rdi->driver_f.qp_priv_free ||
409 	    !rdi->driver_f.notify_qp_reset ||
410 	    !rdi->driver_f.notify_restart_rc)
411 		return -EINVAL;
412 
413 	/* allocate parent object */
414 	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
415 				   rdi->dparms.node);
416 	if (!rdi->qp_dev)
417 		return -ENOMEM;
418 
419 	/* allocate hash table */
420 	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
421 	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
422 	rdi->qp_dev->qp_table =
423 		kmalloc_array_node(rdi->qp_dev->qp_table_size,
424 			     sizeof(*rdi->qp_dev->qp_table),
425 			     GFP_KERNEL, rdi->dparms.node);
426 	if (!rdi->qp_dev->qp_table)
427 		goto no_qp_table;
428 
429 	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
430 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
431 
432 	spin_lock_init(&rdi->qp_dev->qpt_lock);
433 
434 	/* initialize qpn map */
435 	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
436 		goto fail_table;
437 
438 	spin_lock_init(&rdi->n_qps_lock);
439 
440 	return 0;
441 
442 fail_table:
443 	kfree(rdi->qp_dev->qp_table);
444 	free_qpn_table(&rdi->qp_dev->qpn_table);
445 
446 no_qp_table:
447 	kfree(rdi->qp_dev);
448 
449 	return ret;
450 }
451 
452 /**
453  * free_all_qps - check for QPs still in use
454  * @rdi: rvt device info structure
455  *
456  * There should not be any QPs still in use.
457  * Free memory for table.
458  */
459 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
460 {
461 	unsigned long flags;
462 	struct rvt_qp *qp;
463 	unsigned n, qp_inuse = 0;
464 	spinlock_t *ql; /* work around too long line below */
465 
466 	if (rdi->driver_f.free_all_qps)
467 		qp_inuse = rdi->driver_f.free_all_qps(rdi);
468 
469 	qp_inuse += rvt_mcast_tree_empty(rdi);
470 
471 	if (!rdi->qp_dev)
472 		return qp_inuse;
473 
474 	ql = &rdi->qp_dev->qpt_lock;
475 	spin_lock_irqsave(ql, flags);
476 	for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
477 		qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
478 					       lockdep_is_held(ql));
479 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
480 
481 		for (; qp; qp = rcu_dereference_protected(qp->next,
482 							  lockdep_is_held(ql)))
483 			qp_inuse++;
484 	}
485 	spin_unlock_irqrestore(ql, flags);
486 	synchronize_rcu();
487 	return qp_inuse;
488 }
489 
490 /**
491  * rvt_qp_exit - clean up qps on device exit
492  * @rdi: rvt dev structure
493  *
494  * Check for qp leaks and free resources.
495  */
496 void rvt_qp_exit(struct rvt_dev_info *rdi)
497 {
498 	u32 qps_inuse = rvt_free_all_qps(rdi);
499 
500 	if (qps_inuse)
501 		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
502 			   qps_inuse);
503 	if (!rdi->qp_dev)
504 		return;
505 
506 	kfree(rdi->qp_dev->qp_table);
507 	free_qpn_table(&rdi->qp_dev->qpn_table);
508 	kfree(rdi->qp_dev);
509 }
510 
511 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
512 			      struct rvt_qpn_map *map, unsigned off)
513 {
514 	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
515 }
516 
517 /**
518  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
519  *	       IB_QPT_SMI/IB_QPT_GSI
520  * @rdi: rvt device info structure
521  * @qpt: queue pair number table pointer
522  * @port_num: IB port number, 1 based, comes from core
523  *
524  * Return: The queue pair number
525  */
526 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
527 		     enum ib_qp_type type, u8 port_num)
528 {
529 	u32 i, offset, max_scan, qpn;
530 	struct rvt_qpn_map *map;
531 	u32 ret;
532 
533 	if (rdi->driver_f.alloc_qpn)
534 		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
535 
536 	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
537 		unsigned n;
538 
539 		ret = type == IB_QPT_GSI;
540 		n = 1 << (ret + 2 * (port_num - 1));
541 		spin_lock(&qpt->lock);
542 		if (qpt->flags & n)
543 			ret = -EINVAL;
544 		else
545 			qpt->flags |= n;
546 		spin_unlock(&qpt->lock);
547 		goto bail;
548 	}
549 
550 	qpn = qpt->last + qpt->incr;
551 	if (qpn >= RVT_QPN_MAX)
552 		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
553 	/* offset carries bit 0 */
554 	offset = qpn & RVT_BITS_PER_PAGE_MASK;
555 	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
556 	max_scan = qpt->nmaps - !offset;
557 	for (i = 0;;) {
558 		if (unlikely(!map->page)) {
559 			get_map_page(qpt, map);
560 			if (unlikely(!map->page))
561 				break;
562 		}
563 		do {
564 			if (!test_and_set_bit(offset, map->page)) {
565 				qpt->last = qpn;
566 				ret = qpn;
567 				goto bail;
568 			}
569 			offset += qpt->incr;
570 			/*
571 			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
572 			 * That is OK.   It gets re-assigned below
573 			 */
574 			qpn = mk_qpn(qpt, map, offset);
575 		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
576 		/*
577 		 * In order to keep the number of pages allocated to a
578 		 * minimum, we scan the all existing pages before increasing
579 		 * the size of the bitmap table.
580 		 */
581 		if (++i > max_scan) {
582 			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
583 				break;
584 			map = &qpt->map[qpt->nmaps++];
585 			/* start at incr with current bit 0 */
586 			offset = qpt->incr | (offset & 1);
587 		} else if (map < &qpt->map[qpt->nmaps]) {
588 			++map;
589 			/* start at incr with current bit 0 */
590 			offset = qpt->incr | (offset & 1);
591 		} else {
592 			map = &qpt->map[0];
593 			/* wrap to first map page, invert bit 0 */
594 			offset = qpt->incr | ((offset & 1) ^ 1);
595 		}
596 		/* there can be no set bits in low-order QoS bits */
597 		WARN_ON(rdi->dparms.qos_shift > 1 &&
598 			offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
599 		qpn = mk_qpn(qpt, map, offset);
600 	}
601 
602 	ret = -ENOMEM;
603 
604 bail:
605 	return ret;
606 }
607 
608 /**
609  * rvt_clear_mr_refs - Drop help mr refs
610  * @qp: rvt qp data structure
611  * @clr_sends: If shoudl clear send side or not
612  */
613 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
614 {
615 	unsigned n;
616 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
617 
618 	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
619 		rvt_put_ss(&qp->s_rdma_read_sge);
620 
621 	rvt_put_ss(&qp->r_sge);
622 
623 	if (clr_sends) {
624 		while (qp->s_last != qp->s_head) {
625 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
626 
627 			rvt_put_qp_swqe(qp, wqe);
628 			if (++qp->s_last >= qp->s_size)
629 				qp->s_last = 0;
630 			smp_wmb(); /* see qp_set_savail */
631 		}
632 		if (qp->s_rdma_mr) {
633 			rvt_put_mr(qp->s_rdma_mr);
634 			qp->s_rdma_mr = NULL;
635 		}
636 	}
637 
638 	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
639 		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
640 
641 		if (e->rdma_sge.mr) {
642 			rvt_put_mr(e->rdma_sge.mr);
643 			e->rdma_sge.mr = NULL;
644 		}
645 	}
646 }
647 
648 /**
649  * rvt_swqe_has_lkey - return true if lkey is used by swqe
650  * @wqe - the send wqe
651  * @lkey - the lkey
652  *
653  * Test the swqe for using lkey
654  */
655 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
656 {
657 	int i;
658 
659 	for (i = 0; i < wqe->wr.num_sge; i++) {
660 		struct rvt_sge *sge = &wqe->sg_list[i];
661 
662 		if (rvt_mr_has_lkey(sge->mr, lkey))
663 			return true;
664 	}
665 	return false;
666 }
667 
668 /**
669  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
670  * @qp - the rvt_qp
671  * @lkey - the lkey
672  */
673 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
674 {
675 	u32 s_last = qp->s_last;
676 
677 	while (s_last != qp->s_head) {
678 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
679 
680 		if (rvt_swqe_has_lkey(wqe, lkey))
681 			return true;
682 
683 		if (++s_last >= qp->s_size)
684 			s_last = 0;
685 	}
686 	if (qp->s_rdma_mr)
687 		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
688 			return true;
689 	return false;
690 }
691 
692 /**
693  * rvt_qp_acks_has_lkey - return true if acks have lkey
694  * @qp - the qp
695  * @lkey - the lkey
696  */
697 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
698 {
699 	int i;
700 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
701 
702 	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
703 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
704 
705 		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
706 			return true;
707 	}
708 	return false;
709 }
710 
711 /*
712  * rvt_qp_mr_clean - clean up remote ops for lkey
713  * @qp - the qp
714  * @lkey - the lkey that is being de-registered
715  *
716  * This routine checks if the lkey is being used by
717  * the qp.
718  *
719  * If so, the qp is put into an error state to elminate
720  * any references from the qp.
721  */
722 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
723 {
724 	bool lastwqe = false;
725 
726 	if (qp->ibqp.qp_type == IB_QPT_SMI ||
727 	    qp->ibqp.qp_type == IB_QPT_GSI)
728 		/* avoid special QPs */
729 		return;
730 	spin_lock_irq(&qp->r_lock);
731 	spin_lock(&qp->s_hlock);
732 	spin_lock(&qp->s_lock);
733 
734 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
735 		goto check_lwqe;
736 
737 	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
738 	    rvt_qp_sends_has_lkey(qp, lkey) ||
739 	    rvt_qp_acks_has_lkey(qp, lkey))
740 		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
741 check_lwqe:
742 	spin_unlock(&qp->s_lock);
743 	spin_unlock(&qp->s_hlock);
744 	spin_unlock_irq(&qp->r_lock);
745 	if (lastwqe) {
746 		struct ib_event ev;
747 
748 		ev.device = qp->ibqp.device;
749 		ev.element.qp = &qp->ibqp;
750 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
751 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
752 	}
753 }
754 
755 /**
756  * rvt_remove_qp - remove qp form table
757  * @rdi: rvt dev struct
758  * @qp: qp to remove
759  *
760  * Remove the QP from the table so it can't be found asynchronously by
761  * the receive routine.
762  */
763 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
764 {
765 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
766 	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
767 	unsigned long flags;
768 	int removed = 1;
769 
770 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
771 
772 	if (rcu_dereference_protected(rvp->qp[0],
773 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
774 		RCU_INIT_POINTER(rvp->qp[0], NULL);
775 	} else if (rcu_dereference_protected(rvp->qp[1],
776 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
777 		RCU_INIT_POINTER(rvp->qp[1], NULL);
778 	} else {
779 		struct rvt_qp *q;
780 		struct rvt_qp __rcu **qpp;
781 
782 		removed = 0;
783 		qpp = &rdi->qp_dev->qp_table[n];
784 		for (; (q = rcu_dereference_protected(*qpp,
785 			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
786 			qpp = &q->next) {
787 			if (q == qp) {
788 				RCU_INIT_POINTER(*qpp,
789 				     rcu_dereference_protected(qp->next,
790 				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
791 				removed = 1;
792 				trace_rvt_qpremove(qp, n);
793 				break;
794 			}
795 		}
796 	}
797 
798 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
799 	if (removed) {
800 		synchronize_rcu();
801 		rvt_put_qp(qp);
802 	}
803 }
804 
805 /**
806  * rvt_init_qp - initialize the QP state to the reset state
807  * @qp: the QP to init or reinit
808  * @type: the QP type
809  *
810  * This function is called from both rvt_create_qp() and
811  * rvt_reset_qp().   The difference is that the reset
812  * patch the necessary locks to protect against concurent
813  * access.
814  */
815 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
816 			enum ib_qp_type type)
817 {
818 	qp->remote_qpn = 0;
819 	qp->qkey = 0;
820 	qp->qp_access_flags = 0;
821 	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
822 	qp->s_hdrwords = 0;
823 	qp->s_wqe = NULL;
824 	qp->s_draining = 0;
825 	qp->s_next_psn = 0;
826 	qp->s_last_psn = 0;
827 	qp->s_sending_psn = 0;
828 	qp->s_sending_hpsn = 0;
829 	qp->s_psn = 0;
830 	qp->r_psn = 0;
831 	qp->r_msn = 0;
832 	if (type == IB_QPT_RC) {
833 		qp->s_state = IB_OPCODE_RC_SEND_LAST;
834 		qp->r_state = IB_OPCODE_RC_SEND_LAST;
835 	} else {
836 		qp->s_state = IB_OPCODE_UC_SEND_LAST;
837 		qp->r_state = IB_OPCODE_UC_SEND_LAST;
838 	}
839 	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
840 	qp->r_nak_state = 0;
841 	qp->r_aflags = 0;
842 	qp->r_flags = 0;
843 	qp->s_head = 0;
844 	qp->s_tail = 0;
845 	qp->s_cur = 0;
846 	qp->s_acked = 0;
847 	qp->s_last = 0;
848 	qp->s_ssn = 1;
849 	qp->s_lsn = 0;
850 	qp->s_mig_state = IB_MIG_MIGRATED;
851 	qp->r_head_ack_queue = 0;
852 	qp->s_tail_ack_queue = 0;
853 	qp->s_acked_ack_queue = 0;
854 	qp->s_num_rd_atomic = 0;
855 	if (qp->r_rq.wq) {
856 		qp->r_rq.wq->head = 0;
857 		qp->r_rq.wq->tail = 0;
858 	}
859 	qp->r_sge.num_sge = 0;
860 	atomic_set(&qp->s_reserved_used, 0);
861 }
862 
863 /**
864  * rvt_reset_qp - initialize the QP state to the reset state
865  * @qp: the QP to reset
866  * @type: the QP type
867  *
868  * r_lock, s_hlock, and s_lock are required to be held by the caller
869  */
870 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
871 			 enum ib_qp_type type)
872 	__must_hold(&qp->s_lock)
873 	__must_hold(&qp->s_hlock)
874 	__must_hold(&qp->r_lock)
875 {
876 	lockdep_assert_held(&qp->r_lock);
877 	lockdep_assert_held(&qp->s_hlock);
878 	lockdep_assert_held(&qp->s_lock);
879 	if (qp->state != IB_QPS_RESET) {
880 		qp->state = IB_QPS_RESET;
881 
882 		/* Let drivers flush their waitlist */
883 		rdi->driver_f.flush_qp_waiters(qp);
884 		rvt_stop_rc_timers(qp);
885 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
886 		spin_unlock(&qp->s_lock);
887 		spin_unlock(&qp->s_hlock);
888 		spin_unlock_irq(&qp->r_lock);
889 
890 		/* Stop the send queue and the retry timer */
891 		rdi->driver_f.stop_send_queue(qp);
892 		rvt_del_timers_sync(qp);
893 		/* Wait for things to stop */
894 		rdi->driver_f.quiesce_qp(qp);
895 
896 		/* take qp out the hash and wait for it to be unused */
897 		rvt_remove_qp(rdi, qp);
898 
899 		/* grab the lock b/c it was locked at call time */
900 		spin_lock_irq(&qp->r_lock);
901 		spin_lock(&qp->s_hlock);
902 		spin_lock(&qp->s_lock);
903 
904 		rvt_clear_mr_refs(qp, 1);
905 		/*
906 		 * Let the driver do any tear down or re-init it needs to for
907 		 * a qp that has been reset
908 		 */
909 		rdi->driver_f.notify_qp_reset(qp);
910 	}
911 	rvt_init_qp(rdi, qp, type);
912 	lockdep_assert_held(&qp->r_lock);
913 	lockdep_assert_held(&qp->s_hlock);
914 	lockdep_assert_held(&qp->s_lock);
915 }
916 
917 /** rvt_free_qpn - Free a qpn from the bit map
918  * @qpt: QP table
919  * @qpn: queue pair number to free
920  */
921 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
922 {
923 	struct rvt_qpn_map *map;
924 
925 	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
926 	if (map->page)
927 		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
928 }
929 
930 /**
931  * rvt_create_qp - create a queue pair for a device
932  * @ibpd: the protection domain who's device we create the queue pair for
933  * @init_attr: the attributes of the queue pair
934  * @udata: user data for libibverbs.so
935  *
936  * Queue pair creation is mostly an rvt issue. However, drivers have their own
937  * unique idea of what queue pair numbers mean. For instance there is a reserved
938  * range for PSM.
939  *
940  * Return: the queue pair on success, otherwise returns an errno.
941  *
942  * Called by the ib_create_qp() core verbs function.
943  */
944 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
945 			    struct ib_qp_init_attr *init_attr,
946 			    struct ib_udata *udata)
947 {
948 	struct rvt_qp *qp;
949 	int err;
950 	struct rvt_swqe *swq = NULL;
951 	size_t sz;
952 	size_t sg_list_sz;
953 	struct ib_qp *ret = ERR_PTR(-ENOMEM);
954 	struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
955 	void *priv = NULL;
956 	size_t sqsize;
957 
958 	if (!rdi)
959 		return ERR_PTR(-EINVAL);
960 
961 	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
962 	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
963 	    init_attr->create_flags)
964 		return ERR_PTR(-EINVAL);
965 
966 	/* Check receive queue parameters if no SRQ is specified. */
967 	if (!init_attr->srq) {
968 		if (init_attr->cap.max_recv_sge >
969 		    rdi->dparms.props.max_recv_sge ||
970 		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
971 			return ERR_PTR(-EINVAL);
972 
973 		if (init_attr->cap.max_send_sge +
974 		    init_attr->cap.max_send_wr +
975 		    init_attr->cap.max_recv_sge +
976 		    init_attr->cap.max_recv_wr == 0)
977 			return ERR_PTR(-EINVAL);
978 	}
979 	sqsize =
980 		init_attr->cap.max_send_wr + 1 +
981 		rdi->dparms.reserved_operations;
982 	switch (init_attr->qp_type) {
983 	case IB_QPT_SMI:
984 	case IB_QPT_GSI:
985 		if (init_attr->port_num == 0 ||
986 		    init_attr->port_num > ibpd->device->phys_port_cnt)
987 			return ERR_PTR(-EINVAL);
988 		/* fall through */
989 	case IB_QPT_UC:
990 	case IB_QPT_RC:
991 	case IB_QPT_UD:
992 		sz = sizeof(struct rvt_sge) *
993 			init_attr->cap.max_send_sge +
994 			sizeof(struct rvt_swqe);
995 		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
996 		if (!swq)
997 			return ERR_PTR(-ENOMEM);
998 
999 		sz = sizeof(*qp);
1000 		sg_list_sz = 0;
1001 		if (init_attr->srq) {
1002 			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1003 
1004 			if (srq->rq.max_sge > 1)
1005 				sg_list_sz = sizeof(*qp->r_sg_list) *
1006 					(srq->rq.max_sge - 1);
1007 		} else if (init_attr->cap.max_recv_sge > 1)
1008 			sg_list_sz = sizeof(*qp->r_sg_list) *
1009 				(init_attr->cap.max_recv_sge - 1);
1010 		qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1011 				  rdi->dparms.node);
1012 		if (!qp)
1013 			goto bail_swq;
1014 
1015 		RCU_INIT_POINTER(qp->next, NULL);
1016 		if (init_attr->qp_type == IB_QPT_RC) {
1017 			qp->s_ack_queue =
1018 				kcalloc_node(rvt_max_atomic(rdi),
1019 					     sizeof(*qp->s_ack_queue),
1020 					     GFP_KERNEL,
1021 					     rdi->dparms.node);
1022 			if (!qp->s_ack_queue)
1023 				goto bail_qp;
1024 		}
1025 		/* initialize timers needed for rc qp */
1026 		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1027 		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1028 			     HRTIMER_MODE_REL);
1029 		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1030 
1031 		/*
1032 		 * Driver needs to set up it's private QP structure and do any
1033 		 * initialization that is needed.
1034 		 */
1035 		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1036 		if (IS_ERR(priv)) {
1037 			ret = priv;
1038 			goto bail_qp;
1039 		}
1040 		qp->priv = priv;
1041 		qp->timeout_jiffies =
1042 			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1043 				1000UL);
1044 		if (init_attr->srq) {
1045 			sz = 0;
1046 		} else {
1047 			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1048 			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1049 			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1050 				sizeof(struct rvt_rwqe);
1051 			if (udata)
1052 				qp->r_rq.wq = vmalloc_user(
1053 						sizeof(struct rvt_rwq) +
1054 						qp->r_rq.size * sz);
1055 			else
1056 				qp->r_rq.wq = vzalloc_node(
1057 						sizeof(struct rvt_rwq) +
1058 						qp->r_rq.size * sz,
1059 						rdi->dparms.node);
1060 			if (!qp->r_rq.wq)
1061 				goto bail_driver_priv;
1062 		}
1063 
1064 		/*
1065 		 * ib_create_qp() will initialize qp->ibqp
1066 		 * except for qp->ibqp.qp_num.
1067 		 */
1068 		spin_lock_init(&qp->r_lock);
1069 		spin_lock_init(&qp->s_hlock);
1070 		spin_lock_init(&qp->s_lock);
1071 		spin_lock_init(&qp->r_rq.lock);
1072 		atomic_set(&qp->refcount, 0);
1073 		atomic_set(&qp->local_ops_pending, 0);
1074 		init_waitqueue_head(&qp->wait);
1075 		INIT_LIST_HEAD(&qp->rspwait);
1076 		qp->state = IB_QPS_RESET;
1077 		qp->s_wq = swq;
1078 		qp->s_size = sqsize;
1079 		qp->s_avail = init_attr->cap.max_send_wr;
1080 		qp->s_max_sge = init_attr->cap.max_send_sge;
1081 		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1082 			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1083 
1084 		err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1085 				init_attr->qp_type,
1086 				init_attr->port_num);
1087 		if (err < 0) {
1088 			ret = ERR_PTR(err);
1089 			goto bail_rq_wq;
1090 		}
1091 		qp->ibqp.qp_num = err;
1092 		qp->port_num = init_attr->port_num;
1093 		rvt_init_qp(rdi, qp, init_attr->qp_type);
1094 		if (rdi->driver_f.qp_priv_init) {
1095 			err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1096 			if (err) {
1097 				ret = ERR_PTR(err);
1098 				goto bail_rq_wq;
1099 			}
1100 		}
1101 		break;
1102 
1103 	default:
1104 		/* Don't support raw QPs */
1105 		return ERR_PTR(-EINVAL);
1106 	}
1107 
1108 	init_attr->cap.max_inline_data = 0;
1109 
1110 	/*
1111 	 * Return the address of the RWQ as the offset to mmap.
1112 	 * See rvt_mmap() for details.
1113 	 */
1114 	if (udata && udata->outlen >= sizeof(__u64)) {
1115 		if (!qp->r_rq.wq) {
1116 			__u64 offset = 0;
1117 
1118 			err = ib_copy_to_udata(udata, &offset,
1119 					       sizeof(offset));
1120 			if (err) {
1121 				ret = ERR_PTR(err);
1122 				goto bail_qpn;
1123 			}
1124 		} else {
1125 			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1126 
1127 			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1128 						      qp->r_rq.wq);
1129 			if (!qp->ip) {
1130 				ret = ERR_PTR(-ENOMEM);
1131 				goto bail_qpn;
1132 			}
1133 
1134 			err = ib_copy_to_udata(udata, &qp->ip->offset,
1135 					       sizeof(qp->ip->offset));
1136 			if (err) {
1137 				ret = ERR_PTR(err);
1138 				goto bail_ip;
1139 			}
1140 		}
1141 		qp->pid = current->pid;
1142 	}
1143 
1144 	spin_lock(&rdi->n_qps_lock);
1145 	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1146 		spin_unlock(&rdi->n_qps_lock);
1147 		ret = ERR_PTR(-ENOMEM);
1148 		goto bail_ip;
1149 	}
1150 
1151 	rdi->n_qps_allocated++;
1152 	/*
1153 	 * Maintain a busy_jiffies variable that will be added to the timeout
1154 	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1155 	 * is scaled by the number of rc qps created for the device to reduce
1156 	 * the number of timeouts occurring when there is a large number of
1157 	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1158 	 * The scaling interval is selected based on extensive performance
1159 	 * evaluation of targeted workloads.
1160 	 */
1161 	if (init_attr->qp_type == IB_QPT_RC) {
1162 		rdi->n_rc_qps++;
1163 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1164 	}
1165 	spin_unlock(&rdi->n_qps_lock);
1166 
1167 	if (qp->ip) {
1168 		spin_lock_irq(&rdi->pending_lock);
1169 		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1170 		spin_unlock_irq(&rdi->pending_lock);
1171 	}
1172 
1173 	ret = &qp->ibqp;
1174 
1175 	/*
1176 	 * We have our QP and its good, now keep track of what types of opcodes
1177 	 * can be processed on this QP. We do this by keeping track of what the
1178 	 * 3 high order bits of the opcode are.
1179 	 */
1180 	switch (init_attr->qp_type) {
1181 	case IB_QPT_SMI:
1182 	case IB_QPT_GSI:
1183 	case IB_QPT_UD:
1184 		qp->allowed_ops = IB_OPCODE_UD;
1185 		break;
1186 	case IB_QPT_RC:
1187 		qp->allowed_ops = IB_OPCODE_RC;
1188 		break;
1189 	case IB_QPT_UC:
1190 		qp->allowed_ops = IB_OPCODE_UC;
1191 		break;
1192 	default:
1193 		ret = ERR_PTR(-EINVAL);
1194 		goto bail_ip;
1195 	}
1196 
1197 	return ret;
1198 
1199 bail_ip:
1200 	if (qp->ip)
1201 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1202 
1203 bail_qpn:
1204 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1205 
1206 bail_rq_wq:
1207 	if (!qp->ip)
1208 		vfree(qp->r_rq.wq);
1209 
1210 bail_driver_priv:
1211 	rdi->driver_f.qp_priv_free(rdi, qp);
1212 
1213 bail_qp:
1214 	kfree(qp->s_ack_queue);
1215 	kfree(qp);
1216 
1217 bail_swq:
1218 	vfree(swq);
1219 
1220 	return ret;
1221 }
1222 
1223 /**
1224  * rvt_error_qp - put a QP into the error state
1225  * @qp: the QP to put into the error state
1226  * @err: the receive completion error to signal if a RWQE is active
1227  *
1228  * Flushes both send and receive work queues.
1229  *
1230  * Return: true if last WQE event should be generated.
1231  * The QP r_lock and s_lock should be held and interrupts disabled.
1232  * If we are already in error state, just return.
1233  */
1234 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1235 {
1236 	struct ib_wc wc;
1237 	int ret = 0;
1238 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1239 
1240 	lockdep_assert_held(&qp->r_lock);
1241 	lockdep_assert_held(&qp->s_lock);
1242 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1243 		goto bail;
1244 
1245 	qp->state = IB_QPS_ERR;
1246 
1247 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1248 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1249 		del_timer(&qp->s_timer);
1250 	}
1251 
1252 	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1253 		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1254 
1255 	rdi->driver_f.notify_error_qp(qp);
1256 
1257 	/* Schedule the sending tasklet to drain the send work queue. */
1258 	if (READ_ONCE(qp->s_last) != qp->s_head)
1259 		rdi->driver_f.schedule_send(qp);
1260 
1261 	rvt_clear_mr_refs(qp, 0);
1262 
1263 	memset(&wc, 0, sizeof(wc));
1264 	wc.qp = &qp->ibqp;
1265 	wc.opcode = IB_WC_RECV;
1266 
1267 	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1268 		wc.wr_id = qp->r_wr_id;
1269 		wc.status = err;
1270 		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1271 	}
1272 	wc.status = IB_WC_WR_FLUSH_ERR;
1273 
1274 	if (qp->r_rq.wq) {
1275 		struct rvt_rwq *wq;
1276 		u32 head;
1277 		u32 tail;
1278 
1279 		spin_lock(&qp->r_rq.lock);
1280 
1281 		/* sanity check pointers before trusting them */
1282 		wq = qp->r_rq.wq;
1283 		head = wq->head;
1284 		if (head >= qp->r_rq.size)
1285 			head = 0;
1286 		tail = wq->tail;
1287 		if (tail >= qp->r_rq.size)
1288 			tail = 0;
1289 		while (tail != head) {
1290 			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1291 			if (++tail >= qp->r_rq.size)
1292 				tail = 0;
1293 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1294 		}
1295 		wq->tail = tail;
1296 
1297 		spin_unlock(&qp->r_rq.lock);
1298 	} else if (qp->ibqp.event_handler) {
1299 		ret = 1;
1300 	}
1301 
1302 bail:
1303 	return ret;
1304 }
1305 EXPORT_SYMBOL(rvt_error_qp);
1306 
1307 /*
1308  * Put the QP into the hash table.
1309  * The hash table holds a reference to the QP.
1310  */
1311 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1312 {
1313 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1314 	unsigned long flags;
1315 
1316 	rvt_get_qp(qp);
1317 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1318 
1319 	if (qp->ibqp.qp_num <= 1) {
1320 		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1321 	} else {
1322 		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1323 
1324 		qp->next = rdi->qp_dev->qp_table[n];
1325 		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1326 		trace_rvt_qpinsert(qp, n);
1327 	}
1328 
1329 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1330 }
1331 
1332 /**
1333  * rvt_modify_qp - modify the attributes of a queue pair
1334  * @ibqp: the queue pair who's attributes we're modifying
1335  * @attr: the new attributes
1336  * @attr_mask: the mask of attributes to modify
1337  * @udata: user data for libibverbs.so
1338  *
1339  * Return: 0 on success, otherwise returns an errno.
1340  */
1341 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1342 		  int attr_mask, struct ib_udata *udata)
1343 {
1344 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1345 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1346 	enum ib_qp_state cur_state, new_state;
1347 	struct ib_event ev;
1348 	int lastwqe = 0;
1349 	int mig = 0;
1350 	int pmtu = 0; /* for gcc warning only */
1351 	int opa_ah;
1352 
1353 	spin_lock_irq(&qp->r_lock);
1354 	spin_lock(&qp->s_hlock);
1355 	spin_lock(&qp->s_lock);
1356 
1357 	cur_state = attr_mask & IB_QP_CUR_STATE ?
1358 		attr->cur_qp_state : qp->state;
1359 	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1360 	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1361 
1362 	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1363 				attr_mask))
1364 		goto inval;
1365 
1366 	if (rdi->driver_f.check_modify_qp &&
1367 	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1368 		goto inval;
1369 
1370 	if (attr_mask & IB_QP_AV) {
1371 		if (opa_ah) {
1372 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1373 				opa_get_mcast_base(OPA_MCAST_NR))
1374 				goto inval;
1375 		} else {
1376 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1377 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1378 				goto inval;
1379 		}
1380 
1381 		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1382 			goto inval;
1383 	}
1384 
1385 	if (attr_mask & IB_QP_ALT_PATH) {
1386 		if (opa_ah) {
1387 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1388 				opa_get_mcast_base(OPA_MCAST_NR))
1389 				goto inval;
1390 		} else {
1391 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1392 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1393 				goto inval;
1394 		}
1395 
1396 		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1397 			goto inval;
1398 		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1399 			goto inval;
1400 	}
1401 
1402 	if (attr_mask & IB_QP_PKEY_INDEX)
1403 		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1404 			goto inval;
1405 
1406 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1407 		if (attr->min_rnr_timer > 31)
1408 			goto inval;
1409 
1410 	if (attr_mask & IB_QP_PORT)
1411 		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1412 		    qp->ibqp.qp_type == IB_QPT_GSI ||
1413 		    attr->port_num == 0 ||
1414 		    attr->port_num > ibqp->device->phys_port_cnt)
1415 			goto inval;
1416 
1417 	if (attr_mask & IB_QP_DEST_QPN)
1418 		if (attr->dest_qp_num > RVT_QPN_MASK)
1419 			goto inval;
1420 
1421 	if (attr_mask & IB_QP_RETRY_CNT)
1422 		if (attr->retry_cnt > 7)
1423 			goto inval;
1424 
1425 	if (attr_mask & IB_QP_RNR_RETRY)
1426 		if (attr->rnr_retry > 7)
1427 			goto inval;
1428 
1429 	/*
1430 	 * Don't allow invalid path_mtu values.  OK to set greater
1431 	 * than the active mtu (or even the max_cap, if we have tuned
1432 	 * that to a small mtu.  We'll set qp->path_mtu
1433 	 * to the lesser of requested attribute mtu and active,
1434 	 * for packetizing messages.
1435 	 * Note that the QP port has to be set in INIT and MTU in RTR.
1436 	 */
1437 	if (attr_mask & IB_QP_PATH_MTU) {
1438 		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1439 		if (pmtu < 0)
1440 			goto inval;
1441 	}
1442 
1443 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1444 		if (attr->path_mig_state == IB_MIG_REARM) {
1445 			if (qp->s_mig_state == IB_MIG_ARMED)
1446 				goto inval;
1447 			if (new_state != IB_QPS_RTS)
1448 				goto inval;
1449 		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1450 			if (qp->s_mig_state == IB_MIG_REARM)
1451 				goto inval;
1452 			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1453 				goto inval;
1454 			if (qp->s_mig_state == IB_MIG_ARMED)
1455 				mig = 1;
1456 		} else {
1457 			goto inval;
1458 		}
1459 	}
1460 
1461 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1462 		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1463 			goto inval;
1464 
1465 	switch (new_state) {
1466 	case IB_QPS_RESET:
1467 		if (qp->state != IB_QPS_RESET)
1468 			rvt_reset_qp(rdi, qp, ibqp->qp_type);
1469 		break;
1470 
1471 	case IB_QPS_RTR:
1472 		/* Allow event to re-trigger if QP set to RTR more than once */
1473 		qp->r_flags &= ~RVT_R_COMM_EST;
1474 		qp->state = new_state;
1475 		break;
1476 
1477 	case IB_QPS_SQD:
1478 		qp->s_draining = qp->s_last != qp->s_cur;
1479 		qp->state = new_state;
1480 		break;
1481 
1482 	case IB_QPS_SQE:
1483 		if (qp->ibqp.qp_type == IB_QPT_RC)
1484 			goto inval;
1485 		qp->state = new_state;
1486 		break;
1487 
1488 	case IB_QPS_ERR:
1489 		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1490 		break;
1491 
1492 	default:
1493 		qp->state = new_state;
1494 		break;
1495 	}
1496 
1497 	if (attr_mask & IB_QP_PKEY_INDEX)
1498 		qp->s_pkey_index = attr->pkey_index;
1499 
1500 	if (attr_mask & IB_QP_PORT)
1501 		qp->port_num = attr->port_num;
1502 
1503 	if (attr_mask & IB_QP_DEST_QPN)
1504 		qp->remote_qpn = attr->dest_qp_num;
1505 
1506 	if (attr_mask & IB_QP_SQ_PSN) {
1507 		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1508 		qp->s_psn = qp->s_next_psn;
1509 		qp->s_sending_psn = qp->s_next_psn;
1510 		qp->s_last_psn = qp->s_next_psn - 1;
1511 		qp->s_sending_hpsn = qp->s_last_psn;
1512 	}
1513 
1514 	if (attr_mask & IB_QP_RQ_PSN)
1515 		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1516 
1517 	if (attr_mask & IB_QP_ACCESS_FLAGS)
1518 		qp->qp_access_flags = attr->qp_access_flags;
1519 
1520 	if (attr_mask & IB_QP_AV) {
1521 		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1522 		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1523 		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1524 	}
1525 
1526 	if (attr_mask & IB_QP_ALT_PATH) {
1527 		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1528 		qp->s_alt_pkey_index = attr->alt_pkey_index;
1529 	}
1530 
1531 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1532 		qp->s_mig_state = attr->path_mig_state;
1533 		if (mig) {
1534 			qp->remote_ah_attr = qp->alt_ah_attr;
1535 			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1536 			qp->s_pkey_index = qp->s_alt_pkey_index;
1537 		}
1538 	}
1539 
1540 	if (attr_mask & IB_QP_PATH_MTU) {
1541 		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1542 		qp->log_pmtu = ilog2(qp->pmtu);
1543 	}
1544 
1545 	if (attr_mask & IB_QP_RETRY_CNT) {
1546 		qp->s_retry_cnt = attr->retry_cnt;
1547 		qp->s_retry = attr->retry_cnt;
1548 	}
1549 
1550 	if (attr_mask & IB_QP_RNR_RETRY) {
1551 		qp->s_rnr_retry_cnt = attr->rnr_retry;
1552 		qp->s_rnr_retry = attr->rnr_retry;
1553 	}
1554 
1555 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1556 		qp->r_min_rnr_timer = attr->min_rnr_timer;
1557 
1558 	if (attr_mask & IB_QP_TIMEOUT) {
1559 		qp->timeout = attr->timeout;
1560 		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1561 	}
1562 
1563 	if (attr_mask & IB_QP_QKEY)
1564 		qp->qkey = attr->qkey;
1565 
1566 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1567 		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1568 
1569 	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1570 		qp->s_max_rd_atomic = attr->max_rd_atomic;
1571 
1572 	if (rdi->driver_f.modify_qp)
1573 		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1574 
1575 	spin_unlock(&qp->s_lock);
1576 	spin_unlock(&qp->s_hlock);
1577 	spin_unlock_irq(&qp->r_lock);
1578 
1579 	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1580 		rvt_insert_qp(rdi, qp);
1581 
1582 	if (lastwqe) {
1583 		ev.device = qp->ibqp.device;
1584 		ev.element.qp = &qp->ibqp;
1585 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1586 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1587 	}
1588 	if (mig) {
1589 		ev.device = qp->ibqp.device;
1590 		ev.element.qp = &qp->ibqp;
1591 		ev.event = IB_EVENT_PATH_MIG;
1592 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1593 	}
1594 	return 0;
1595 
1596 inval:
1597 	spin_unlock(&qp->s_lock);
1598 	spin_unlock(&qp->s_hlock);
1599 	spin_unlock_irq(&qp->r_lock);
1600 	return -EINVAL;
1601 }
1602 
1603 /**
1604  * rvt_destroy_qp - destroy a queue pair
1605  * @ibqp: the queue pair to destroy
1606  *
1607  * Note that this can be called while the QP is actively sending or
1608  * receiving!
1609  *
1610  * Return: 0 on success.
1611  */
1612 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1613 {
1614 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1615 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1616 
1617 	spin_lock_irq(&qp->r_lock);
1618 	spin_lock(&qp->s_hlock);
1619 	spin_lock(&qp->s_lock);
1620 	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1621 	spin_unlock(&qp->s_lock);
1622 	spin_unlock(&qp->s_hlock);
1623 	spin_unlock_irq(&qp->r_lock);
1624 
1625 	wait_event(qp->wait, !atomic_read(&qp->refcount));
1626 	/* qpn is now available for use again */
1627 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1628 
1629 	spin_lock(&rdi->n_qps_lock);
1630 	rdi->n_qps_allocated--;
1631 	if (qp->ibqp.qp_type == IB_QPT_RC) {
1632 		rdi->n_rc_qps--;
1633 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1634 	}
1635 	spin_unlock(&rdi->n_qps_lock);
1636 
1637 	if (qp->ip)
1638 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1639 	else
1640 		vfree(qp->r_rq.wq);
1641 	rdi->driver_f.qp_priv_free(rdi, qp);
1642 	kfree(qp->s_ack_queue);
1643 	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1644 	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1645 	vfree(qp->s_wq);
1646 	kfree(qp);
1647 	return 0;
1648 }
1649 
1650 /**
1651  * rvt_query_qp - query an ipbq
1652  * @ibqp: IB qp to query
1653  * @attr: attr struct to fill in
1654  * @attr_mask: attr mask ignored
1655  * @init_attr: struct to fill in
1656  *
1657  * Return: always 0
1658  */
1659 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1660 		 int attr_mask, struct ib_qp_init_attr *init_attr)
1661 {
1662 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1663 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1664 
1665 	attr->qp_state = qp->state;
1666 	attr->cur_qp_state = attr->qp_state;
1667 	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1668 	attr->path_mig_state = qp->s_mig_state;
1669 	attr->qkey = qp->qkey;
1670 	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1671 	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1672 	attr->dest_qp_num = qp->remote_qpn;
1673 	attr->qp_access_flags = qp->qp_access_flags;
1674 	attr->cap.max_send_wr = qp->s_size - 1 -
1675 		rdi->dparms.reserved_operations;
1676 	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1677 	attr->cap.max_send_sge = qp->s_max_sge;
1678 	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1679 	attr->cap.max_inline_data = 0;
1680 	attr->ah_attr = qp->remote_ah_attr;
1681 	attr->alt_ah_attr = qp->alt_ah_attr;
1682 	attr->pkey_index = qp->s_pkey_index;
1683 	attr->alt_pkey_index = qp->s_alt_pkey_index;
1684 	attr->en_sqd_async_notify = 0;
1685 	attr->sq_draining = qp->s_draining;
1686 	attr->max_rd_atomic = qp->s_max_rd_atomic;
1687 	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1688 	attr->min_rnr_timer = qp->r_min_rnr_timer;
1689 	attr->port_num = qp->port_num;
1690 	attr->timeout = qp->timeout;
1691 	attr->retry_cnt = qp->s_retry_cnt;
1692 	attr->rnr_retry = qp->s_rnr_retry_cnt;
1693 	attr->alt_port_num =
1694 		rdma_ah_get_port_num(&qp->alt_ah_attr);
1695 	attr->alt_timeout = qp->alt_timeout;
1696 
1697 	init_attr->event_handler = qp->ibqp.event_handler;
1698 	init_attr->qp_context = qp->ibqp.qp_context;
1699 	init_attr->send_cq = qp->ibqp.send_cq;
1700 	init_attr->recv_cq = qp->ibqp.recv_cq;
1701 	init_attr->srq = qp->ibqp.srq;
1702 	init_attr->cap = attr->cap;
1703 	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1704 		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1705 	else
1706 		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1707 	init_attr->qp_type = qp->ibqp.qp_type;
1708 	init_attr->port_num = qp->port_num;
1709 	return 0;
1710 }
1711 
1712 /**
1713  * rvt_post_receive - post a receive on a QP
1714  * @ibqp: the QP to post the receive on
1715  * @wr: the WR to post
1716  * @bad_wr: the first bad WR is put here
1717  *
1718  * This may be called from interrupt context.
1719  *
1720  * Return: 0 on success otherwise errno
1721  */
1722 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1723 		  const struct ib_recv_wr **bad_wr)
1724 {
1725 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1726 	struct rvt_rwq *wq = qp->r_rq.wq;
1727 	unsigned long flags;
1728 	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1729 				!qp->ibqp.srq;
1730 
1731 	/* Check that state is OK to post receive. */
1732 	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1733 		*bad_wr = wr;
1734 		return -EINVAL;
1735 	}
1736 
1737 	for (; wr; wr = wr->next) {
1738 		struct rvt_rwqe *wqe;
1739 		u32 next;
1740 		int i;
1741 
1742 		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1743 			*bad_wr = wr;
1744 			return -EINVAL;
1745 		}
1746 
1747 		spin_lock_irqsave(&qp->r_rq.lock, flags);
1748 		next = wq->head + 1;
1749 		if (next >= qp->r_rq.size)
1750 			next = 0;
1751 		if (next == wq->tail) {
1752 			spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1753 			*bad_wr = wr;
1754 			return -ENOMEM;
1755 		}
1756 		if (unlikely(qp_err_flush)) {
1757 			struct ib_wc wc;
1758 
1759 			memset(&wc, 0, sizeof(wc));
1760 			wc.qp = &qp->ibqp;
1761 			wc.opcode = IB_WC_RECV;
1762 			wc.wr_id = wr->wr_id;
1763 			wc.status = IB_WC_WR_FLUSH_ERR;
1764 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1765 		} else {
1766 			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1767 			wqe->wr_id = wr->wr_id;
1768 			wqe->num_sge = wr->num_sge;
1769 			for (i = 0; i < wr->num_sge; i++)
1770 				wqe->sg_list[i] = wr->sg_list[i];
1771 			/*
1772 			 * Make sure queue entry is written
1773 			 * before the head index.
1774 			 */
1775 			smp_wmb();
1776 			wq->head = next;
1777 		}
1778 		spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1779 	}
1780 	return 0;
1781 }
1782 
1783 /**
1784  * rvt_qp_valid_operation - validate post send wr request
1785  * @qp - the qp
1786  * @post-parms - the post send table for the driver
1787  * @wr - the work request
1788  *
1789  * The routine validates the operation based on the
1790  * validation table an returns the length of the operation
1791  * which can extend beyond the ib_send_bw.  Operation
1792  * dependent flags key atomic operation validation.
1793  *
1794  * There is an exception for UD qps that validates the pd and
1795  * overrides the length to include the additional UD specific
1796  * length.
1797  *
1798  * Returns a negative error or the length of the work request
1799  * for building the swqe.
1800  */
1801 static inline int rvt_qp_valid_operation(
1802 	struct rvt_qp *qp,
1803 	const struct rvt_operation_params *post_parms,
1804 	const struct ib_send_wr *wr)
1805 {
1806 	int len;
1807 
1808 	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1809 		return -EINVAL;
1810 	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1811 		return -EINVAL;
1812 	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1813 	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1814 		return -EINVAL;
1815 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1816 	    (wr->num_sge == 0 ||
1817 	     wr->sg_list[0].length < sizeof(u64) ||
1818 	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1819 		return -EINVAL;
1820 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1821 	    !qp->s_max_rd_atomic)
1822 		return -EINVAL;
1823 	len = post_parms[wr->opcode].length;
1824 	/* UD specific */
1825 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1826 	    qp->ibqp.qp_type != IB_QPT_RC) {
1827 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1828 			return -EINVAL;
1829 		len = sizeof(struct ib_ud_wr);
1830 	}
1831 	return len;
1832 }
1833 
1834 /**
1835  * rvt_qp_is_avail - determine queue capacity
1836  * @qp: the qp
1837  * @rdi: the rdmavt device
1838  * @reserved_op: is reserved operation
1839  *
1840  * This assumes the s_hlock is held but the s_last
1841  * qp variable is uncontrolled.
1842  *
1843  * For non reserved operations, the qp->s_avail
1844  * may be changed.
1845  *
1846  * The return value is zero or a -ENOMEM.
1847  */
1848 static inline int rvt_qp_is_avail(
1849 	struct rvt_qp *qp,
1850 	struct rvt_dev_info *rdi,
1851 	bool reserved_op)
1852 {
1853 	u32 slast;
1854 	u32 avail;
1855 	u32 reserved_used;
1856 
1857 	/* see rvt_qp_wqe_unreserve() */
1858 	smp_mb__before_atomic();
1859 	reserved_used = atomic_read(&qp->s_reserved_used);
1860 	if (unlikely(reserved_op)) {
1861 		/* see rvt_qp_wqe_unreserve() */
1862 		smp_mb__before_atomic();
1863 		if (reserved_used >= rdi->dparms.reserved_operations)
1864 			return -ENOMEM;
1865 		return 0;
1866 	}
1867 	/* non-reserved operations */
1868 	if (likely(qp->s_avail))
1869 		return 0;
1870 	slast = READ_ONCE(qp->s_last);
1871 	if (qp->s_head >= slast)
1872 		avail = qp->s_size - (qp->s_head - slast);
1873 	else
1874 		avail = slast - qp->s_head;
1875 
1876 	/* see rvt_qp_wqe_unreserve() */
1877 	smp_mb__before_atomic();
1878 	reserved_used = atomic_read(&qp->s_reserved_used);
1879 	avail =  avail - 1 -
1880 		(rdi->dparms.reserved_operations - reserved_used);
1881 	/* insure we don't assign a negative s_avail */
1882 	if ((s32)avail <= 0)
1883 		return -ENOMEM;
1884 	qp->s_avail = avail;
1885 	if (WARN_ON(qp->s_avail >
1886 		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1887 		rvt_pr_err(rdi,
1888 			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1889 			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1890 			   qp->s_head, qp->s_tail, qp->s_cur,
1891 			   qp->s_acked, qp->s_last);
1892 	return 0;
1893 }
1894 
1895 /**
1896  * rvt_post_one_wr - post one RC, UC, or UD send work request
1897  * @qp: the QP to post on
1898  * @wr: the work request to send
1899  */
1900 static int rvt_post_one_wr(struct rvt_qp *qp,
1901 			   const struct ib_send_wr *wr,
1902 			   bool *call_send)
1903 {
1904 	struct rvt_swqe *wqe;
1905 	u32 next;
1906 	int i;
1907 	int j;
1908 	int acc;
1909 	struct rvt_lkey_table *rkt;
1910 	struct rvt_pd *pd;
1911 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1912 	u8 log_pmtu;
1913 	int ret;
1914 	size_t cplen;
1915 	bool reserved_op;
1916 	int local_ops_delayed = 0;
1917 
1918 	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1919 
1920 	/* IB spec says that num_sge == 0 is OK. */
1921 	if (unlikely(wr->num_sge > qp->s_max_sge))
1922 		return -EINVAL;
1923 
1924 	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1925 	if (ret < 0)
1926 		return ret;
1927 	cplen = ret;
1928 
1929 	/*
1930 	 * Local operations include fast register and local invalidate.
1931 	 * Fast register needs to be processed immediately because the
1932 	 * registered lkey may be used by following work requests and the
1933 	 * lkey needs to be valid at the time those requests are posted.
1934 	 * Local invalidate can be processed immediately if fencing is
1935 	 * not required and no previous local invalidate ops are pending.
1936 	 * Signaled local operations that have been processed immediately
1937 	 * need to have requests with "completion only" flags set posted
1938 	 * to the send queue in order to generate completions.
1939 	 */
1940 	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1941 		switch (wr->opcode) {
1942 		case IB_WR_REG_MR:
1943 			ret = rvt_fast_reg_mr(qp,
1944 					      reg_wr(wr)->mr,
1945 					      reg_wr(wr)->key,
1946 					      reg_wr(wr)->access);
1947 			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1948 				return ret;
1949 			break;
1950 		case IB_WR_LOCAL_INV:
1951 			if ((wr->send_flags & IB_SEND_FENCE) ||
1952 			    atomic_read(&qp->local_ops_pending)) {
1953 				local_ops_delayed = 1;
1954 			} else {
1955 				ret = rvt_invalidate_rkey(
1956 					qp, wr->ex.invalidate_rkey);
1957 				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1958 					return ret;
1959 			}
1960 			break;
1961 		default:
1962 			return -EINVAL;
1963 		}
1964 	}
1965 
1966 	reserved_op = rdi->post_parms[wr->opcode].flags &
1967 			RVT_OPERATION_USE_RESERVE;
1968 	/* check for avail */
1969 	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
1970 	if (ret)
1971 		return ret;
1972 	next = qp->s_head + 1;
1973 	if (next >= qp->s_size)
1974 		next = 0;
1975 
1976 	rkt = &rdi->lkey_table;
1977 	pd = ibpd_to_rvtpd(qp->ibqp.pd);
1978 	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
1979 
1980 	/* cplen has length from above */
1981 	memcpy(&wqe->wr, wr, cplen);
1982 
1983 	wqe->length = 0;
1984 	j = 0;
1985 	if (wr->num_sge) {
1986 		struct rvt_sge *last_sge = NULL;
1987 
1988 		acc = wr->opcode >= IB_WR_RDMA_READ ?
1989 			IB_ACCESS_LOCAL_WRITE : 0;
1990 		for (i = 0; i < wr->num_sge; i++) {
1991 			u32 length = wr->sg_list[i].length;
1992 
1993 			if (length == 0)
1994 				continue;
1995 			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
1996 					  &wr->sg_list[i], acc);
1997 			if (unlikely(ret < 0))
1998 				goto bail_inval_free;
1999 			wqe->length += length;
2000 			if (ret)
2001 				last_sge = &wqe->sg_list[j];
2002 			j += ret;
2003 		}
2004 		wqe->wr.num_sge = j;
2005 	}
2006 
2007 	/*
2008 	 * Calculate and set SWQE PSN values prior to handing it off
2009 	 * to the driver's check routine. This give the driver the
2010 	 * opportunity to adjust PSN values based on internal checks.
2011 	 */
2012 	log_pmtu = qp->log_pmtu;
2013 	if (qp->allowed_ops == IB_OPCODE_UD) {
2014 		struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
2015 
2016 		log_pmtu = ah->log_pmtu;
2017 		atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
2018 	}
2019 
2020 	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2021 		if (local_ops_delayed)
2022 			atomic_inc(&qp->local_ops_pending);
2023 		else
2024 			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2025 		wqe->ssn = 0;
2026 		wqe->psn = 0;
2027 		wqe->lpsn = 0;
2028 	} else {
2029 		wqe->ssn = qp->s_ssn++;
2030 		wqe->psn = qp->s_next_psn;
2031 		wqe->lpsn = wqe->psn +
2032 				(wqe->length ?
2033 					((wqe->length - 1) >> log_pmtu) :
2034 					0);
2035 	}
2036 
2037 	/* general part of wqe valid - allow for driver checks */
2038 	if (rdi->driver_f.setup_wqe) {
2039 		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2040 		if (ret < 0)
2041 			goto bail_inval_free_ref;
2042 	}
2043 
2044 	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2045 		qp->s_next_psn = wqe->lpsn + 1;
2046 
2047 	if (unlikely(reserved_op)) {
2048 		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2049 		rvt_qp_wqe_reserve(qp, wqe);
2050 	} else {
2051 		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2052 		qp->s_avail--;
2053 	}
2054 	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2055 	smp_wmb(); /* see request builders */
2056 	qp->s_head = next;
2057 
2058 	return 0;
2059 
2060 bail_inval_free_ref:
2061 	if (qp->allowed_ops == IB_OPCODE_UD)
2062 		atomic_dec(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
2063 bail_inval_free:
2064 	/* release mr holds */
2065 	while (j) {
2066 		struct rvt_sge *sge = &wqe->sg_list[--j];
2067 
2068 		rvt_put_mr(sge->mr);
2069 	}
2070 	return ret;
2071 }
2072 
2073 /**
2074  * rvt_post_send - post a send on a QP
2075  * @ibqp: the QP to post the send on
2076  * @wr: the list of work requests to post
2077  * @bad_wr: the first bad WR is put here
2078  *
2079  * This may be called from interrupt context.
2080  *
2081  * Return: 0 on success else errno
2082  */
2083 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2084 		  const struct ib_send_wr **bad_wr)
2085 {
2086 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2087 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2088 	unsigned long flags = 0;
2089 	bool call_send;
2090 	unsigned nreq = 0;
2091 	int err = 0;
2092 
2093 	spin_lock_irqsave(&qp->s_hlock, flags);
2094 
2095 	/*
2096 	 * Ensure QP state is such that we can send. If not bail out early,
2097 	 * there is no need to do this every time we post a send.
2098 	 */
2099 	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2100 		spin_unlock_irqrestore(&qp->s_hlock, flags);
2101 		return -EINVAL;
2102 	}
2103 
2104 	/*
2105 	 * If the send queue is empty, and we only have a single WR then just go
2106 	 * ahead and kick the send engine into gear. Otherwise we will always
2107 	 * just schedule the send to happen later.
2108 	 */
2109 	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2110 
2111 	for (; wr; wr = wr->next) {
2112 		err = rvt_post_one_wr(qp, wr, &call_send);
2113 		if (unlikely(err)) {
2114 			*bad_wr = wr;
2115 			goto bail;
2116 		}
2117 		nreq++;
2118 	}
2119 bail:
2120 	spin_unlock_irqrestore(&qp->s_hlock, flags);
2121 	if (nreq) {
2122 		/*
2123 		 * Only call do_send if there is exactly one packet, and the
2124 		 * driver said it was ok.
2125 		 */
2126 		if (nreq == 1 && call_send)
2127 			rdi->driver_f.do_send(qp);
2128 		else
2129 			rdi->driver_f.schedule_send_no_lock(qp);
2130 	}
2131 	return err;
2132 }
2133 
2134 /**
2135  * rvt_post_srq_receive - post a receive on a shared receive queue
2136  * @ibsrq: the SRQ to post the receive on
2137  * @wr: the list of work requests to post
2138  * @bad_wr: A pointer to the first WR to cause a problem is put here
2139  *
2140  * This may be called from interrupt context.
2141  *
2142  * Return: 0 on success else errno
2143  */
2144 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2145 		      const struct ib_recv_wr **bad_wr)
2146 {
2147 	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2148 	struct rvt_rwq *wq;
2149 	unsigned long flags;
2150 
2151 	for (; wr; wr = wr->next) {
2152 		struct rvt_rwqe *wqe;
2153 		u32 next;
2154 		int i;
2155 
2156 		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2157 			*bad_wr = wr;
2158 			return -EINVAL;
2159 		}
2160 
2161 		spin_lock_irqsave(&srq->rq.lock, flags);
2162 		wq = srq->rq.wq;
2163 		next = wq->head + 1;
2164 		if (next >= srq->rq.size)
2165 			next = 0;
2166 		if (next == wq->tail) {
2167 			spin_unlock_irqrestore(&srq->rq.lock, flags);
2168 			*bad_wr = wr;
2169 			return -ENOMEM;
2170 		}
2171 
2172 		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2173 		wqe->wr_id = wr->wr_id;
2174 		wqe->num_sge = wr->num_sge;
2175 		for (i = 0; i < wr->num_sge; i++)
2176 			wqe->sg_list[i] = wr->sg_list[i];
2177 		/* Make sure queue entry is written before the head index. */
2178 		smp_wmb();
2179 		wq->head = next;
2180 		spin_unlock_irqrestore(&srq->rq.lock, flags);
2181 	}
2182 	return 0;
2183 }
2184 
2185 /*
2186  * Validate a RWQE and fill in the SGE state.
2187  * Return 1 if OK.
2188  */
2189 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2190 {
2191 	int i, j, ret;
2192 	struct ib_wc wc;
2193 	struct rvt_lkey_table *rkt;
2194 	struct rvt_pd *pd;
2195 	struct rvt_sge_state *ss;
2196 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2197 
2198 	rkt = &rdi->lkey_table;
2199 	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2200 	ss = &qp->r_sge;
2201 	ss->sg_list = qp->r_sg_list;
2202 	qp->r_len = 0;
2203 	for (i = j = 0; i < wqe->num_sge; i++) {
2204 		if (wqe->sg_list[i].length == 0)
2205 			continue;
2206 		/* Check LKEY */
2207 		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2208 				  NULL, &wqe->sg_list[i],
2209 				  IB_ACCESS_LOCAL_WRITE);
2210 		if (unlikely(ret <= 0))
2211 			goto bad_lkey;
2212 		qp->r_len += wqe->sg_list[i].length;
2213 		j++;
2214 	}
2215 	ss->num_sge = j;
2216 	ss->total_len = qp->r_len;
2217 	return 1;
2218 
2219 bad_lkey:
2220 	while (j) {
2221 		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2222 
2223 		rvt_put_mr(sge->mr);
2224 	}
2225 	ss->num_sge = 0;
2226 	memset(&wc, 0, sizeof(wc));
2227 	wc.wr_id = wqe->wr_id;
2228 	wc.status = IB_WC_LOC_PROT_ERR;
2229 	wc.opcode = IB_WC_RECV;
2230 	wc.qp = &qp->ibqp;
2231 	/* Signal solicited completion event. */
2232 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2233 	return 0;
2234 }
2235 
2236 /**
2237  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2238  * @qp: the QP
2239  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2240  *
2241  * Return -1 if there is a local error, 0 if no RWQE is available,
2242  * otherwise return 1.
2243  *
2244  * Can be called from interrupt level.
2245  */
2246 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2247 {
2248 	unsigned long flags;
2249 	struct rvt_rq *rq;
2250 	struct rvt_rwq *wq;
2251 	struct rvt_srq *srq;
2252 	struct rvt_rwqe *wqe;
2253 	void (*handler)(struct ib_event *, void *);
2254 	u32 tail;
2255 	int ret;
2256 
2257 	if (qp->ibqp.srq) {
2258 		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2259 		handler = srq->ibsrq.event_handler;
2260 		rq = &srq->rq;
2261 	} else {
2262 		srq = NULL;
2263 		handler = NULL;
2264 		rq = &qp->r_rq;
2265 	}
2266 
2267 	spin_lock_irqsave(&rq->lock, flags);
2268 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2269 		ret = 0;
2270 		goto unlock;
2271 	}
2272 
2273 	wq = rq->wq;
2274 	tail = wq->tail;
2275 	/* Validate tail before using it since it is user writable. */
2276 	if (tail >= rq->size)
2277 		tail = 0;
2278 	if (unlikely(tail == wq->head)) {
2279 		ret = 0;
2280 		goto unlock;
2281 	}
2282 	/* Make sure entry is read after head index is read. */
2283 	smp_rmb();
2284 	wqe = rvt_get_rwqe_ptr(rq, tail);
2285 	/*
2286 	 * Even though we update the tail index in memory, the verbs
2287 	 * consumer is not supposed to post more entries until a
2288 	 * completion is generated.
2289 	 */
2290 	if (++tail >= rq->size)
2291 		tail = 0;
2292 	wq->tail = tail;
2293 	if (!wr_id_only && !init_sge(qp, wqe)) {
2294 		ret = -1;
2295 		goto unlock;
2296 	}
2297 	qp->r_wr_id = wqe->wr_id;
2298 
2299 	ret = 1;
2300 	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2301 	if (handler) {
2302 		u32 n;
2303 
2304 		/*
2305 		 * Validate head pointer value and compute
2306 		 * the number of remaining WQEs.
2307 		 */
2308 		n = wq->head;
2309 		if (n >= rq->size)
2310 			n = 0;
2311 		if (n < tail)
2312 			n += rq->size - tail;
2313 		else
2314 			n -= tail;
2315 		if (n < srq->limit) {
2316 			struct ib_event ev;
2317 
2318 			srq->limit = 0;
2319 			spin_unlock_irqrestore(&rq->lock, flags);
2320 			ev.device = qp->ibqp.device;
2321 			ev.element.srq = qp->ibqp.srq;
2322 			ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2323 			handler(&ev, srq->ibsrq.srq_context);
2324 			goto bail;
2325 		}
2326 	}
2327 unlock:
2328 	spin_unlock_irqrestore(&rq->lock, flags);
2329 bail:
2330 	return ret;
2331 }
2332 EXPORT_SYMBOL(rvt_get_rwqe);
2333 
2334 /**
2335  * qp_comm_est - handle trap with QP established
2336  * @qp: the QP
2337  */
2338 void rvt_comm_est(struct rvt_qp *qp)
2339 {
2340 	qp->r_flags |= RVT_R_COMM_EST;
2341 	if (qp->ibqp.event_handler) {
2342 		struct ib_event ev;
2343 
2344 		ev.device = qp->ibqp.device;
2345 		ev.element.qp = &qp->ibqp;
2346 		ev.event = IB_EVENT_COMM_EST;
2347 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2348 	}
2349 }
2350 EXPORT_SYMBOL(rvt_comm_est);
2351 
2352 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2353 {
2354 	unsigned long flags;
2355 	int lastwqe;
2356 
2357 	spin_lock_irqsave(&qp->s_lock, flags);
2358 	lastwqe = rvt_error_qp(qp, err);
2359 	spin_unlock_irqrestore(&qp->s_lock, flags);
2360 
2361 	if (lastwqe) {
2362 		struct ib_event ev;
2363 
2364 		ev.device = qp->ibqp.device;
2365 		ev.element.qp = &qp->ibqp;
2366 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2367 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2368 	}
2369 }
2370 EXPORT_SYMBOL(rvt_rc_error);
2371 
2372 /*
2373  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2374  *  @index - the index
2375  *  return usec from an index into ib_rvt_rnr_table
2376  */
2377 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2378 {
2379 	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2380 }
2381 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2382 
2383 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2384 {
2385 	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2386 				  IB_AETH_CREDIT_MASK];
2387 }
2388 
2389 /*
2390  *  rvt_add_retry_timer_ext - add/start a retry timer
2391  *  @qp - the QP
2392  *  @shift - timeout shift to wait for multiple packets
2393  *  add a retry timer on the QP
2394  */
2395 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2396 {
2397 	struct ib_qp *ibqp = &qp->ibqp;
2398 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2399 
2400 	lockdep_assert_held(&qp->s_lock);
2401 	qp->s_flags |= RVT_S_TIMER;
2402        /* 4.096 usec. * (1 << qp->timeout) */
2403 	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2404 			      (qp->timeout_jiffies << shift);
2405 	add_timer(&qp->s_timer);
2406 }
2407 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2408 
2409 /**
2410  * rvt_add_rnr_timer - add/start an rnr timer
2411  * @qp - the QP
2412  * @aeth - aeth of RNR timeout, simulated aeth for loopback
2413  * add an rnr timer on the QP
2414  */
2415 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2416 {
2417 	u32 to;
2418 
2419 	lockdep_assert_held(&qp->s_lock);
2420 	qp->s_flags |= RVT_S_WAIT_RNR;
2421 	to = rvt_aeth_to_usec(aeth);
2422 	trace_rvt_rnrnak_add(qp, to);
2423 	hrtimer_start(&qp->s_rnr_timer,
2424 		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2425 }
2426 EXPORT_SYMBOL(rvt_add_rnr_timer);
2427 
2428 /**
2429  * rvt_stop_rc_timers - stop all timers
2430  * @qp - the QP
2431  * stop any pending timers
2432  */
2433 void rvt_stop_rc_timers(struct rvt_qp *qp)
2434 {
2435 	lockdep_assert_held(&qp->s_lock);
2436 	/* Remove QP from all timers */
2437 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2438 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2439 		del_timer(&qp->s_timer);
2440 		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2441 	}
2442 }
2443 EXPORT_SYMBOL(rvt_stop_rc_timers);
2444 
2445 /**
2446  * rvt_stop_rnr_timer - stop an rnr timer
2447  * @qp - the QP
2448  *
2449  * stop an rnr timer and return if the timer
2450  * had been pending.
2451  */
2452 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2453 {
2454 	lockdep_assert_held(&qp->s_lock);
2455 	/* Remove QP from rnr timer */
2456 	if (qp->s_flags & RVT_S_WAIT_RNR) {
2457 		qp->s_flags &= ~RVT_S_WAIT_RNR;
2458 		trace_rvt_rnrnak_stop(qp, 0);
2459 	}
2460 }
2461 
2462 /**
2463  * rvt_del_timers_sync - wait for any timeout routines to exit
2464  * @qp - the QP
2465  */
2466 void rvt_del_timers_sync(struct rvt_qp *qp)
2467 {
2468 	del_timer_sync(&qp->s_timer);
2469 	hrtimer_cancel(&qp->s_rnr_timer);
2470 }
2471 EXPORT_SYMBOL(rvt_del_timers_sync);
2472 
2473 /**
2474  * This is called from s_timer for missing responses.
2475  */
2476 static void rvt_rc_timeout(struct timer_list *t)
2477 {
2478 	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2479 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2480 	unsigned long flags;
2481 
2482 	spin_lock_irqsave(&qp->r_lock, flags);
2483 	spin_lock(&qp->s_lock);
2484 	if (qp->s_flags & RVT_S_TIMER) {
2485 		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2486 
2487 		qp->s_flags &= ~RVT_S_TIMER;
2488 		rvp->n_rc_timeouts++;
2489 		del_timer(&qp->s_timer);
2490 		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2491 		if (rdi->driver_f.notify_restart_rc)
2492 			rdi->driver_f.notify_restart_rc(qp,
2493 							qp->s_last_psn + 1,
2494 							1);
2495 		rdi->driver_f.schedule_send(qp);
2496 	}
2497 	spin_unlock(&qp->s_lock);
2498 	spin_unlock_irqrestore(&qp->r_lock, flags);
2499 }
2500 
2501 /*
2502  * This is called from s_timer for RNR timeouts.
2503  */
2504 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2505 {
2506 	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2507 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2508 	unsigned long flags;
2509 
2510 	spin_lock_irqsave(&qp->s_lock, flags);
2511 	rvt_stop_rnr_timer(qp);
2512 	trace_rvt_rnrnak_timeout(qp, 0);
2513 	rdi->driver_f.schedule_send(qp);
2514 	spin_unlock_irqrestore(&qp->s_lock, flags);
2515 	return HRTIMER_NORESTART;
2516 }
2517 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2518 
2519 /**
2520  * rvt_qp_iter_init - initial for QP iteration
2521  * @rdi: rvt devinfo
2522  * @v: u64 value
2523  *
2524  * This returns an iterator suitable for iterating QPs
2525  * in the system.
2526  *
2527  * The @cb is a user defined callback and @v is a 64
2528  * bit value passed to and relevant for processing in the
2529  * @cb.  An example use case would be to alter QP processing
2530  * based on criteria not part of the rvt_qp.
2531  *
2532  * Use cases that require memory allocation to succeed
2533  * must preallocate appropriately.
2534  *
2535  * Return: a pointer to an rvt_qp_iter or NULL
2536  */
2537 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2538 				     u64 v,
2539 				     void (*cb)(struct rvt_qp *qp, u64 v))
2540 {
2541 	struct rvt_qp_iter *i;
2542 
2543 	i = kzalloc(sizeof(*i), GFP_KERNEL);
2544 	if (!i)
2545 		return NULL;
2546 
2547 	i->rdi = rdi;
2548 	/* number of special QPs (SMI/GSI) for device */
2549 	i->specials = rdi->ibdev.phys_port_cnt * 2;
2550 	i->v = v;
2551 	i->cb = cb;
2552 
2553 	return i;
2554 }
2555 EXPORT_SYMBOL(rvt_qp_iter_init);
2556 
2557 /**
2558  * rvt_qp_iter_next - return the next QP in iter
2559  * @iter - the iterator
2560  *
2561  * Fine grained QP iterator suitable for use
2562  * with debugfs seq_file mechanisms.
2563  *
2564  * Updates iter->qp with the current QP when the return
2565  * value is 0.
2566  *
2567  * Return: 0 - iter->qp is valid 1 - no more QPs
2568  */
2569 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2570 	__must_hold(RCU)
2571 {
2572 	int n = iter->n;
2573 	int ret = 1;
2574 	struct rvt_qp *pqp = iter->qp;
2575 	struct rvt_qp *qp;
2576 	struct rvt_dev_info *rdi = iter->rdi;
2577 
2578 	/*
2579 	 * The approach is to consider the special qps
2580 	 * as additional table entries before the
2581 	 * real hash table.  Since the qp code sets
2582 	 * the qp->next hash link to NULL, this works just fine.
2583 	 *
2584 	 * iter->specials is 2 * # ports
2585 	 *
2586 	 * n = 0..iter->specials is the special qp indices
2587 	 *
2588 	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2589 	 * the potential hash bucket entries
2590 	 *
2591 	 */
2592 	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2593 		if (pqp) {
2594 			qp = rcu_dereference(pqp->next);
2595 		} else {
2596 			if (n < iter->specials) {
2597 				struct rvt_ibport *rvp;
2598 				int pidx;
2599 
2600 				pidx = n % rdi->ibdev.phys_port_cnt;
2601 				rvp = rdi->ports[pidx];
2602 				qp = rcu_dereference(rvp->qp[n & 1]);
2603 			} else {
2604 				qp = rcu_dereference(
2605 					rdi->qp_dev->qp_table[
2606 						(n - iter->specials)]);
2607 			}
2608 		}
2609 		pqp = qp;
2610 		if (qp) {
2611 			iter->qp = qp;
2612 			iter->n = n;
2613 			return 0;
2614 		}
2615 	}
2616 	return ret;
2617 }
2618 EXPORT_SYMBOL(rvt_qp_iter_next);
2619 
2620 /**
2621  * rvt_qp_iter - iterate all QPs
2622  * @rdi - rvt devinfo
2623  * @v - a 64 bit value
2624  * @cb - a callback
2625  *
2626  * This provides a way for iterating all QPs.
2627  *
2628  * The @cb is a user defined callback and @v is a 64
2629  * bit value passed to and relevant for processing in the
2630  * cb.  An example use case would be to alter QP processing
2631  * based on criteria not part of the rvt_qp.
2632  *
2633  * The code has an internal iterator to simplify
2634  * non seq_file use cases.
2635  */
2636 void rvt_qp_iter(struct rvt_dev_info *rdi,
2637 		 u64 v,
2638 		 void (*cb)(struct rvt_qp *qp, u64 v))
2639 {
2640 	int ret;
2641 	struct rvt_qp_iter i = {
2642 		.rdi = rdi,
2643 		.specials = rdi->ibdev.phys_port_cnt * 2,
2644 		.v = v,
2645 		.cb = cb
2646 	};
2647 
2648 	rcu_read_lock();
2649 	do {
2650 		ret = rvt_qp_iter_next(&i);
2651 		if (!ret) {
2652 			rvt_get_qp(i.qp);
2653 			rcu_read_unlock();
2654 			i.cb(i.qp, i.v);
2655 			rcu_read_lock();
2656 			rvt_put_qp(i.qp);
2657 		}
2658 	} while (!ret);
2659 	rcu_read_unlock();
2660 }
2661 EXPORT_SYMBOL(rvt_qp_iter);
2662 
2663 /*
2664  * This should be called with s_lock held.
2665  */
2666 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2667 		       enum ib_wc_status status)
2668 {
2669 	u32 old_last, last;
2670 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2671 
2672 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2673 		return;
2674 
2675 	last = qp->s_last;
2676 	old_last = last;
2677 	trace_rvt_qp_send_completion(qp, wqe, last);
2678 	if (++last >= qp->s_size)
2679 		last = 0;
2680 	trace_rvt_qp_send_completion(qp, wqe, last);
2681 	qp->s_last = last;
2682 	/* See post_send() */
2683 	barrier();
2684 	rvt_put_qp_swqe(qp, wqe);
2685 
2686 	rvt_qp_swqe_complete(qp,
2687 			     wqe,
2688 			     rdi->wc_opcode[wqe->wr.opcode],
2689 			     status);
2690 
2691 	if (qp->s_acked == old_last)
2692 		qp->s_acked = last;
2693 	if (qp->s_cur == old_last)
2694 		qp->s_cur = last;
2695 	if (qp->s_tail == old_last)
2696 		qp->s_tail = last;
2697 	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2698 		qp->s_draining = 0;
2699 }
2700 EXPORT_SYMBOL(rvt_send_complete);
2701 
2702 /**
2703  * rvt_copy_sge - copy data to SGE memory
2704  * @qp: associated QP
2705  * @ss: the SGE state
2706  * @data: the data to copy
2707  * @length: the length of the data
2708  * @release: boolean to release MR
2709  * @copy_last: do a separate copy of the last 8 bytes
2710  */
2711 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2712 		  void *data, u32 length,
2713 		  bool release, bool copy_last)
2714 {
2715 	struct rvt_sge *sge = &ss->sge;
2716 	int i;
2717 	bool in_last = false;
2718 	bool cacheless_copy = false;
2719 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2720 	struct rvt_wss *wss = rdi->wss;
2721 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2722 
2723 	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2724 		cacheless_copy = length >= PAGE_SIZE;
2725 	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2726 		if (length >= PAGE_SIZE) {
2727 			/*
2728 			 * NOTE: this *assumes*:
2729 			 * o The first vaddr is the dest.
2730 			 * o If multiple pages, then vaddr is sequential.
2731 			 */
2732 			wss_insert(wss, sge->vaddr);
2733 			if (length >= (2 * PAGE_SIZE))
2734 				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2735 
2736 			cacheless_copy = wss_exceeds_threshold(wss);
2737 		} else {
2738 			wss_advance_clean_counter(wss);
2739 		}
2740 	}
2741 
2742 	if (copy_last) {
2743 		if (length > 8) {
2744 			length -= 8;
2745 		} else {
2746 			copy_last = false;
2747 			in_last = true;
2748 		}
2749 	}
2750 
2751 again:
2752 	while (length) {
2753 		u32 len = rvt_get_sge_length(sge, length);
2754 
2755 		WARN_ON_ONCE(len == 0);
2756 		if (unlikely(in_last)) {
2757 			/* enforce byte transfer ordering */
2758 			for (i = 0; i < len; i++)
2759 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2760 		} else if (cacheless_copy) {
2761 			cacheless_memcpy(sge->vaddr, data, len);
2762 		} else {
2763 			memcpy(sge->vaddr, data, len);
2764 		}
2765 		rvt_update_sge(ss, len, release);
2766 		data += len;
2767 		length -= len;
2768 	}
2769 
2770 	if (copy_last) {
2771 		copy_last = false;
2772 		in_last = true;
2773 		length = 8;
2774 		goto again;
2775 	}
2776 }
2777 EXPORT_SYMBOL(rvt_copy_sge);
2778 
2779 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2780 					  struct rvt_qp *sqp)
2781 {
2782 	rvp->n_pkt_drops++;
2783 	/*
2784 	 * For RC, the requester would timeout and retry so
2785 	 * shortcut the timeouts and just signal too many retries.
2786 	 */
2787 	return sqp->ibqp.qp_type == IB_QPT_RC ?
2788 		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2789 }
2790 
2791 /**
2792  * ruc_loopback - handle UC and RC loopback requests
2793  * @sqp: the sending QP
2794  *
2795  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2796  * Note that although we are single threaded due to the send engine, we still
2797  * have to protect against post_send().  We don't have to worry about
2798  * receive interrupts since this is a connected protocol and all packets
2799  * will pass through here.
2800  */
2801 void rvt_ruc_loopback(struct rvt_qp *sqp)
2802 {
2803 	struct rvt_ibport *rvp =  NULL;
2804 	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2805 	struct rvt_qp *qp;
2806 	struct rvt_swqe *wqe;
2807 	struct rvt_sge *sge;
2808 	unsigned long flags;
2809 	struct ib_wc wc;
2810 	u64 sdata;
2811 	atomic64_t *maddr;
2812 	enum ib_wc_status send_status;
2813 	bool release;
2814 	int ret;
2815 	bool copy_last = false;
2816 	int local_ops = 0;
2817 
2818 	rcu_read_lock();
2819 	rvp = rdi->ports[sqp->port_num - 1];
2820 
2821 	/*
2822 	 * Note that we check the responder QP state after
2823 	 * checking the requester's state.
2824 	 */
2825 
2826 	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2827 			    sqp->remote_qpn);
2828 
2829 	spin_lock_irqsave(&sqp->s_lock, flags);
2830 
2831 	/* Return if we are already busy processing a work request. */
2832 	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2833 	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2834 		goto unlock;
2835 
2836 	sqp->s_flags |= RVT_S_BUSY;
2837 
2838 again:
2839 	if (sqp->s_last == READ_ONCE(sqp->s_head))
2840 		goto clr_busy;
2841 	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2842 
2843 	/* Return if it is not OK to start a new work request. */
2844 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2845 		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2846 			goto clr_busy;
2847 		/* We are in the error state, flush the work request. */
2848 		send_status = IB_WC_WR_FLUSH_ERR;
2849 		goto flush_send;
2850 	}
2851 
2852 	/*
2853 	 * We can rely on the entry not changing without the s_lock
2854 	 * being held until we update s_last.
2855 	 * We increment s_cur to indicate s_last is in progress.
2856 	 */
2857 	if (sqp->s_last == sqp->s_cur) {
2858 		if (++sqp->s_cur >= sqp->s_size)
2859 			sqp->s_cur = 0;
2860 	}
2861 	spin_unlock_irqrestore(&sqp->s_lock, flags);
2862 
2863 	if (!qp) {
2864 		send_status = loopback_qp_drop(rvp, sqp);
2865 		goto serr_no_r_lock;
2866 	}
2867 	spin_lock_irqsave(&qp->r_lock, flags);
2868 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2869 	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2870 		send_status = loopback_qp_drop(rvp, sqp);
2871 		goto serr;
2872 	}
2873 
2874 	memset(&wc, 0, sizeof(wc));
2875 	send_status = IB_WC_SUCCESS;
2876 
2877 	release = true;
2878 	sqp->s_sge.sge = wqe->sg_list[0];
2879 	sqp->s_sge.sg_list = wqe->sg_list + 1;
2880 	sqp->s_sge.num_sge = wqe->wr.num_sge;
2881 	sqp->s_len = wqe->length;
2882 	switch (wqe->wr.opcode) {
2883 	case IB_WR_REG_MR:
2884 		goto send_comp;
2885 
2886 	case IB_WR_LOCAL_INV:
2887 		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2888 			if (rvt_invalidate_rkey(sqp,
2889 						wqe->wr.ex.invalidate_rkey))
2890 				send_status = IB_WC_LOC_PROT_ERR;
2891 			local_ops = 1;
2892 		}
2893 		goto send_comp;
2894 
2895 	case IB_WR_SEND_WITH_INV:
2896 	case IB_WR_SEND_WITH_IMM:
2897 	case IB_WR_SEND:
2898 		ret = rvt_get_rwqe(qp, false);
2899 		if (ret < 0)
2900 			goto op_err;
2901 		if (!ret)
2902 			goto rnr_nak;
2903 		if (wqe->length > qp->r_len)
2904 			goto inv_err;
2905 		switch (wqe->wr.opcode) {
2906 		case IB_WR_SEND_WITH_INV:
2907 			if (!rvt_invalidate_rkey(qp,
2908 						 wqe->wr.ex.invalidate_rkey)) {
2909 				wc.wc_flags = IB_WC_WITH_INVALIDATE;
2910 				wc.ex.invalidate_rkey =
2911 					wqe->wr.ex.invalidate_rkey;
2912 			}
2913 			break;
2914 		case IB_WR_SEND_WITH_IMM:
2915 			wc.wc_flags = IB_WC_WITH_IMM;
2916 			wc.ex.imm_data = wqe->wr.ex.imm_data;
2917 			break;
2918 		default:
2919 			break;
2920 		}
2921 		break;
2922 
2923 	case IB_WR_RDMA_WRITE_WITH_IMM:
2924 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
2925 			goto inv_err;
2926 		wc.wc_flags = IB_WC_WITH_IMM;
2927 		wc.ex.imm_data = wqe->wr.ex.imm_data;
2928 		ret = rvt_get_rwqe(qp, true);
2929 		if (ret < 0)
2930 			goto op_err;
2931 		if (!ret)
2932 			goto rnr_nak;
2933 		/* skip copy_last set and qp_access_flags recheck */
2934 		goto do_write;
2935 	case IB_WR_RDMA_WRITE:
2936 		copy_last = rvt_is_user_qp(qp);
2937 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
2938 			goto inv_err;
2939 do_write:
2940 		if (wqe->length == 0)
2941 			break;
2942 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
2943 					  wqe->rdma_wr.remote_addr,
2944 					  wqe->rdma_wr.rkey,
2945 					  IB_ACCESS_REMOTE_WRITE)))
2946 			goto acc_err;
2947 		qp->r_sge.sg_list = NULL;
2948 		qp->r_sge.num_sge = 1;
2949 		qp->r_sge.total_len = wqe->length;
2950 		break;
2951 
2952 	case IB_WR_RDMA_READ:
2953 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2954 			goto inv_err;
2955 		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
2956 					  wqe->rdma_wr.remote_addr,
2957 					  wqe->rdma_wr.rkey,
2958 					  IB_ACCESS_REMOTE_READ)))
2959 			goto acc_err;
2960 		release = false;
2961 		sqp->s_sge.sg_list = NULL;
2962 		sqp->s_sge.num_sge = 1;
2963 		qp->r_sge.sge = wqe->sg_list[0];
2964 		qp->r_sge.sg_list = wqe->sg_list + 1;
2965 		qp->r_sge.num_sge = wqe->wr.num_sge;
2966 		qp->r_sge.total_len = wqe->length;
2967 		break;
2968 
2969 	case IB_WR_ATOMIC_CMP_AND_SWP:
2970 	case IB_WR_ATOMIC_FETCH_AND_ADD:
2971 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
2972 			goto inv_err;
2973 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
2974 					  wqe->atomic_wr.remote_addr,
2975 					  wqe->atomic_wr.rkey,
2976 					  IB_ACCESS_REMOTE_ATOMIC)))
2977 			goto acc_err;
2978 		/* Perform atomic OP and save result. */
2979 		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
2980 		sdata = wqe->atomic_wr.compare_add;
2981 		*(u64 *)sqp->s_sge.sge.vaddr =
2982 			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
2983 			(u64)atomic64_add_return(sdata, maddr) - sdata :
2984 			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
2985 				      sdata, wqe->atomic_wr.swap);
2986 		rvt_put_mr(qp->r_sge.sge.mr);
2987 		qp->r_sge.num_sge = 0;
2988 		goto send_comp;
2989 
2990 	default:
2991 		send_status = IB_WC_LOC_QP_OP_ERR;
2992 		goto serr;
2993 	}
2994 
2995 	sge = &sqp->s_sge.sge;
2996 	while (sqp->s_len) {
2997 		u32 len = rvt_get_sge_length(sge, sqp->s_len);
2998 
2999 		WARN_ON_ONCE(len == 0);
3000 		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3001 			     len, release, copy_last);
3002 		rvt_update_sge(&sqp->s_sge, len, !release);
3003 		sqp->s_len -= len;
3004 	}
3005 	if (release)
3006 		rvt_put_ss(&qp->r_sge);
3007 
3008 	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3009 		goto send_comp;
3010 
3011 	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3012 		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3013 	else
3014 		wc.opcode = IB_WC_RECV;
3015 	wc.wr_id = qp->r_wr_id;
3016 	wc.status = IB_WC_SUCCESS;
3017 	wc.byte_len = wqe->length;
3018 	wc.qp = &qp->ibqp;
3019 	wc.src_qp = qp->remote_qpn;
3020 	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3021 	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3022 	wc.port_num = 1;
3023 	/* Signal completion event if the solicited bit is set. */
3024 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc,
3025 		     wqe->wr.send_flags & IB_SEND_SOLICITED);
3026 
3027 send_comp:
3028 	spin_unlock_irqrestore(&qp->r_lock, flags);
3029 	spin_lock_irqsave(&sqp->s_lock, flags);
3030 	rvp->n_loop_pkts++;
3031 flush_send:
3032 	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3033 	rvt_send_complete(sqp, wqe, send_status);
3034 	if (local_ops) {
3035 		atomic_dec(&sqp->local_ops_pending);
3036 		local_ops = 0;
3037 	}
3038 	goto again;
3039 
3040 rnr_nak:
3041 	/* Handle RNR NAK */
3042 	if (qp->ibqp.qp_type == IB_QPT_UC)
3043 		goto send_comp;
3044 	rvp->n_rnr_naks++;
3045 	/*
3046 	 * Note: we don't need the s_lock held since the BUSY flag
3047 	 * makes this single threaded.
3048 	 */
3049 	if (sqp->s_rnr_retry == 0) {
3050 		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3051 		goto serr;
3052 	}
3053 	if (sqp->s_rnr_retry_cnt < 7)
3054 		sqp->s_rnr_retry--;
3055 	spin_unlock_irqrestore(&qp->r_lock, flags);
3056 	spin_lock_irqsave(&sqp->s_lock, flags);
3057 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3058 		goto clr_busy;
3059 	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3060 				IB_AETH_CREDIT_SHIFT);
3061 	goto clr_busy;
3062 
3063 op_err:
3064 	send_status = IB_WC_REM_OP_ERR;
3065 	wc.status = IB_WC_LOC_QP_OP_ERR;
3066 	goto err;
3067 
3068 inv_err:
3069 	send_status =
3070 		sqp->ibqp.qp_type == IB_QPT_RC ?
3071 			IB_WC_REM_INV_REQ_ERR :
3072 			IB_WC_SUCCESS;
3073 	wc.status = IB_WC_LOC_QP_OP_ERR;
3074 	goto err;
3075 
3076 acc_err:
3077 	send_status = IB_WC_REM_ACCESS_ERR;
3078 	wc.status = IB_WC_LOC_PROT_ERR;
3079 err:
3080 	/* responder goes to error state */
3081 	rvt_rc_error(qp, wc.status);
3082 
3083 serr:
3084 	spin_unlock_irqrestore(&qp->r_lock, flags);
3085 serr_no_r_lock:
3086 	spin_lock_irqsave(&sqp->s_lock, flags);
3087 	rvt_send_complete(sqp, wqe, send_status);
3088 	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3089 		int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3090 
3091 		sqp->s_flags &= ~RVT_S_BUSY;
3092 		spin_unlock_irqrestore(&sqp->s_lock, flags);
3093 		if (lastwqe) {
3094 			struct ib_event ev;
3095 
3096 			ev.device = sqp->ibqp.device;
3097 			ev.element.qp = &sqp->ibqp;
3098 			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3099 			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3100 		}
3101 		goto done;
3102 	}
3103 clr_busy:
3104 	sqp->s_flags &= ~RVT_S_BUSY;
3105 unlock:
3106 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3107 done:
3108 	rcu_read_unlock();
3109 }
3110 EXPORT_SYMBOL(rvt_ruc_loopback);
3111