1 /* 2 * Copyright(c) 2016, 2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include "qp.h" 56 #include "vt.h" 57 #include "trace.h" 58 59 static void rvt_rc_timeout(unsigned long arg); 60 61 /* 62 * Convert the AETH RNR timeout code into the number of microseconds. 63 */ 64 static const u32 ib_rvt_rnr_table[32] = { 65 655360, /* 00: 655.36 */ 66 10, /* 01: .01 */ 67 20, /* 02 .02 */ 68 30, /* 03: .03 */ 69 40, /* 04: .04 */ 70 60, /* 05: .06 */ 71 80, /* 06: .08 */ 72 120, /* 07: .12 */ 73 160, /* 08: .16 */ 74 240, /* 09: .24 */ 75 320, /* 0A: .32 */ 76 480, /* 0B: .48 */ 77 640, /* 0C: .64 */ 78 960, /* 0D: .96 */ 79 1280, /* 0E: 1.28 */ 80 1920, /* 0F: 1.92 */ 81 2560, /* 10: 2.56 */ 82 3840, /* 11: 3.84 */ 83 5120, /* 12: 5.12 */ 84 7680, /* 13: 7.68 */ 85 10240, /* 14: 10.24 */ 86 15360, /* 15: 15.36 */ 87 20480, /* 16: 20.48 */ 88 30720, /* 17: 30.72 */ 89 40960, /* 18: 40.96 */ 90 61440, /* 19: 61.44 */ 91 81920, /* 1A: 81.92 */ 92 122880, /* 1B: 122.88 */ 93 163840, /* 1C: 163.84 */ 94 245760, /* 1D: 245.76 */ 95 327680, /* 1E: 327.68 */ 96 491520 /* 1F: 491.52 */ 97 }; 98 99 /* 100 * Note that it is OK to post send work requests in the SQE and ERR 101 * states; rvt_do_send() will process them and generate error 102 * completions as per IB 1.2 C10-96. 103 */ 104 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 105 [IB_QPS_RESET] = 0, 106 [IB_QPS_INIT] = RVT_POST_RECV_OK, 107 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 108 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 109 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 110 RVT_PROCESS_NEXT_SEND_OK, 111 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 112 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 113 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 114 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 115 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 116 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 117 }; 118 EXPORT_SYMBOL(ib_rvt_state_ops); 119 120 static void get_map_page(struct rvt_qpn_table *qpt, 121 struct rvt_qpn_map *map, 122 gfp_t gfp) 123 { 124 unsigned long page = get_zeroed_page(gfp); 125 126 /* 127 * Free the page if someone raced with us installing it. 128 */ 129 130 spin_lock(&qpt->lock); 131 if (map->page) 132 free_page(page); 133 else 134 map->page = (void *)page; 135 spin_unlock(&qpt->lock); 136 } 137 138 /** 139 * init_qpn_table - initialize the QP number table for a device 140 * @qpt: the QPN table 141 */ 142 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 143 { 144 u32 offset, i; 145 struct rvt_qpn_map *map; 146 int ret = 0; 147 148 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 149 return -EINVAL; 150 151 spin_lock_init(&qpt->lock); 152 153 qpt->last = rdi->dparms.qpn_start; 154 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 155 156 /* 157 * Drivers may want some QPs beyond what we need for verbs let them use 158 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 159 * for those. The reserved range must be *after* the range which verbs 160 * will pick from. 161 */ 162 163 /* Figure out number of bit maps needed before reserved range */ 164 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 165 166 /* This should always be zero */ 167 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 168 169 /* Starting with the first reserved bit map */ 170 map = &qpt->map[qpt->nmaps]; 171 172 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 173 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 174 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 175 if (!map->page) { 176 get_map_page(qpt, map, GFP_KERNEL); 177 if (!map->page) { 178 ret = -ENOMEM; 179 break; 180 } 181 } 182 set_bit(offset, map->page); 183 offset++; 184 if (offset == RVT_BITS_PER_PAGE) { 185 /* next page */ 186 qpt->nmaps++; 187 map++; 188 offset = 0; 189 } 190 } 191 return ret; 192 } 193 194 /** 195 * free_qpn_table - free the QP number table for a device 196 * @qpt: the QPN table 197 */ 198 static void free_qpn_table(struct rvt_qpn_table *qpt) 199 { 200 int i; 201 202 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 203 free_page((unsigned long)qpt->map[i].page); 204 } 205 206 /** 207 * rvt_driver_qp_init - Init driver qp resources 208 * @rdi: rvt dev strucutre 209 * 210 * Return: 0 on success 211 */ 212 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 213 { 214 int i; 215 int ret = -ENOMEM; 216 217 if (!rdi->dparms.qp_table_size) 218 return -EINVAL; 219 220 /* 221 * If driver is not doing any QP allocation then make sure it is 222 * providing the necessary QP functions. 223 */ 224 if (!rdi->driver_f.free_all_qps || 225 !rdi->driver_f.qp_priv_alloc || 226 !rdi->driver_f.qp_priv_free || 227 !rdi->driver_f.notify_qp_reset || 228 !rdi->driver_f.notify_restart_rc) 229 return -EINVAL; 230 231 /* allocate parent object */ 232 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 233 rdi->dparms.node); 234 if (!rdi->qp_dev) 235 return -ENOMEM; 236 237 /* allocate hash table */ 238 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 239 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 240 rdi->qp_dev->qp_table = 241 kmalloc_node(rdi->qp_dev->qp_table_size * 242 sizeof(*rdi->qp_dev->qp_table), 243 GFP_KERNEL, rdi->dparms.node); 244 if (!rdi->qp_dev->qp_table) 245 goto no_qp_table; 246 247 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 248 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 249 250 spin_lock_init(&rdi->qp_dev->qpt_lock); 251 252 /* initialize qpn map */ 253 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 254 goto fail_table; 255 256 spin_lock_init(&rdi->n_qps_lock); 257 258 return 0; 259 260 fail_table: 261 kfree(rdi->qp_dev->qp_table); 262 free_qpn_table(&rdi->qp_dev->qpn_table); 263 264 no_qp_table: 265 kfree(rdi->qp_dev); 266 267 return ret; 268 } 269 270 /** 271 * free_all_qps - check for QPs still in use 272 * @qpt: the QP table to empty 273 * 274 * There should not be any QPs still in use. 275 * Free memory for table. 276 */ 277 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 278 { 279 unsigned long flags; 280 struct rvt_qp *qp; 281 unsigned n, qp_inuse = 0; 282 spinlock_t *ql; /* work around too long line below */ 283 284 if (rdi->driver_f.free_all_qps) 285 qp_inuse = rdi->driver_f.free_all_qps(rdi); 286 287 qp_inuse += rvt_mcast_tree_empty(rdi); 288 289 if (!rdi->qp_dev) 290 return qp_inuse; 291 292 ql = &rdi->qp_dev->qpt_lock; 293 spin_lock_irqsave(ql, flags); 294 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) { 295 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n], 296 lockdep_is_held(ql)); 297 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL); 298 299 for (; qp; qp = rcu_dereference_protected(qp->next, 300 lockdep_is_held(ql))) 301 qp_inuse++; 302 } 303 spin_unlock_irqrestore(ql, flags); 304 synchronize_rcu(); 305 return qp_inuse; 306 } 307 308 /** 309 * rvt_qp_exit - clean up qps on device exit 310 * @rdi: rvt dev structure 311 * 312 * Check for qp leaks and free resources. 313 */ 314 void rvt_qp_exit(struct rvt_dev_info *rdi) 315 { 316 u32 qps_inuse = rvt_free_all_qps(rdi); 317 318 if (qps_inuse) 319 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 320 qps_inuse); 321 if (!rdi->qp_dev) 322 return; 323 324 kfree(rdi->qp_dev->qp_table); 325 free_qpn_table(&rdi->qp_dev->qpn_table); 326 kfree(rdi->qp_dev); 327 } 328 329 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 330 struct rvt_qpn_map *map, unsigned off) 331 { 332 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 333 } 334 335 /** 336 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 337 * IB_QPT_SMI/IB_QPT_GSI 338 *@rdi: rvt device info structure 339 *@qpt: queue pair number table pointer 340 *@port_num: IB port number, 1 based, comes from core 341 * 342 * Return: The queue pair number 343 */ 344 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 345 enum ib_qp_type type, u8 port_num, gfp_t gfp) 346 { 347 u32 i, offset, max_scan, qpn; 348 struct rvt_qpn_map *map; 349 u32 ret; 350 351 if (rdi->driver_f.alloc_qpn) 352 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num, gfp); 353 354 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 355 unsigned n; 356 357 ret = type == IB_QPT_GSI; 358 n = 1 << (ret + 2 * (port_num - 1)); 359 spin_lock(&qpt->lock); 360 if (qpt->flags & n) 361 ret = -EINVAL; 362 else 363 qpt->flags |= n; 364 spin_unlock(&qpt->lock); 365 goto bail; 366 } 367 368 qpn = qpt->last + qpt->incr; 369 if (qpn >= RVT_QPN_MAX) 370 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 371 /* offset carries bit 0 */ 372 offset = qpn & RVT_BITS_PER_PAGE_MASK; 373 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 374 max_scan = qpt->nmaps - !offset; 375 for (i = 0;;) { 376 if (unlikely(!map->page)) { 377 get_map_page(qpt, map, gfp); 378 if (unlikely(!map->page)) 379 break; 380 } 381 do { 382 if (!test_and_set_bit(offset, map->page)) { 383 qpt->last = qpn; 384 ret = qpn; 385 goto bail; 386 } 387 offset += qpt->incr; 388 /* 389 * This qpn might be bogus if offset >= BITS_PER_PAGE. 390 * That is OK. It gets re-assigned below 391 */ 392 qpn = mk_qpn(qpt, map, offset); 393 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 394 /* 395 * In order to keep the number of pages allocated to a 396 * minimum, we scan the all existing pages before increasing 397 * the size of the bitmap table. 398 */ 399 if (++i > max_scan) { 400 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 401 break; 402 map = &qpt->map[qpt->nmaps++]; 403 /* start at incr with current bit 0 */ 404 offset = qpt->incr | (offset & 1); 405 } else if (map < &qpt->map[qpt->nmaps]) { 406 ++map; 407 /* start at incr with current bit 0 */ 408 offset = qpt->incr | (offset & 1); 409 } else { 410 map = &qpt->map[0]; 411 /* wrap to first map page, invert bit 0 */ 412 offset = qpt->incr | ((offset & 1) ^ 1); 413 } 414 /* there can be no set bits in low-order QoS bits */ 415 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1)); 416 qpn = mk_qpn(qpt, map, offset); 417 } 418 419 ret = -ENOMEM; 420 421 bail: 422 return ret; 423 } 424 425 static void free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 426 { 427 struct rvt_qpn_map *map; 428 429 map = qpt->map + qpn / RVT_BITS_PER_PAGE; 430 if (map->page) 431 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 432 } 433 434 /** 435 * rvt_clear_mr_refs - Drop help mr refs 436 * @qp: rvt qp data structure 437 * @clr_sends: If shoudl clear send side or not 438 */ 439 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 440 { 441 unsigned n; 442 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 443 444 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 445 rvt_put_ss(&qp->s_rdma_read_sge); 446 447 rvt_put_ss(&qp->r_sge); 448 449 if (clr_sends) { 450 while (qp->s_last != qp->s_head) { 451 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 452 unsigned i; 453 454 for (i = 0; i < wqe->wr.num_sge; i++) { 455 struct rvt_sge *sge = &wqe->sg_list[i]; 456 457 rvt_put_mr(sge->mr); 458 } 459 if (qp->ibqp.qp_type == IB_QPT_UD || 460 qp->ibqp.qp_type == IB_QPT_SMI || 461 qp->ibqp.qp_type == IB_QPT_GSI) 462 atomic_dec(&ibah_to_rvtah( 463 wqe->ud_wr.ah)->refcount); 464 if (++qp->s_last >= qp->s_size) 465 qp->s_last = 0; 466 smp_wmb(); /* see qp_set_savail */ 467 } 468 if (qp->s_rdma_mr) { 469 rvt_put_mr(qp->s_rdma_mr); 470 qp->s_rdma_mr = NULL; 471 } 472 } 473 474 if (qp->ibqp.qp_type != IB_QPT_RC) 475 return; 476 477 for (n = 0; n < rvt_max_atomic(rdi); n++) { 478 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 479 480 if (e->rdma_sge.mr) { 481 rvt_put_mr(e->rdma_sge.mr); 482 e->rdma_sge.mr = NULL; 483 } 484 } 485 } 486 487 /** 488 * rvt_remove_qp - remove qp form table 489 * @rdi: rvt dev struct 490 * @qp: qp to remove 491 * 492 * Remove the QP from the table so it can't be found asynchronously by 493 * the receive routine. 494 */ 495 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 496 { 497 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 498 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 499 unsigned long flags; 500 int removed = 1; 501 502 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 503 504 if (rcu_dereference_protected(rvp->qp[0], 505 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 506 RCU_INIT_POINTER(rvp->qp[0], NULL); 507 } else if (rcu_dereference_protected(rvp->qp[1], 508 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 509 RCU_INIT_POINTER(rvp->qp[1], NULL); 510 } else { 511 struct rvt_qp *q; 512 struct rvt_qp __rcu **qpp; 513 514 removed = 0; 515 qpp = &rdi->qp_dev->qp_table[n]; 516 for (; (q = rcu_dereference_protected(*qpp, 517 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 518 qpp = &q->next) { 519 if (q == qp) { 520 RCU_INIT_POINTER(*qpp, 521 rcu_dereference_protected(qp->next, 522 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 523 removed = 1; 524 trace_rvt_qpremove(qp, n); 525 break; 526 } 527 } 528 } 529 530 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 531 if (removed) { 532 synchronize_rcu(); 533 rvt_put_qp(qp); 534 } 535 } 536 537 /** 538 * rvt_init_qp - initialize the QP state to the reset state 539 * @qp: the QP to init or reinit 540 * @type: the QP type 541 * 542 * This function is called from both rvt_create_qp() and 543 * rvt_reset_qp(). The difference is that the reset 544 * patch the necessary locks to protect against concurent 545 * access. 546 */ 547 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 548 enum ib_qp_type type) 549 { 550 qp->remote_qpn = 0; 551 qp->qkey = 0; 552 qp->qp_access_flags = 0; 553 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 554 qp->s_hdrwords = 0; 555 qp->s_wqe = NULL; 556 qp->s_draining = 0; 557 qp->s_next_psn = 0; 558 qp->s_last_psn = 0; 559 qp->s_sending_psn = 0; 560 qp->s_sending_hpsn = 0; 561 qp->s_psn = 0; 562 qp->r_psn = 0; 563 qp->r_msn = 0; 564 if (type == IB_QPT_RC) { 565 qp->s_state = IB_OPCODE_RC_SEND_LAST; 566 qp->r_state = IB_OPCODE_RC_SEND_LAST; 567 } else { 568 qp->s_state = IB_OPCODE_UC_SEND_LAST; 569 qp->r_state = IB_OPCODE_UC_SEND_LAST; 570 } 571 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 572 qp->r_nak_state = 0; 573 qp->r_aflags = 0; 574 qp->r_flags = 0; 575 qp->s_head = 0; 576 qp->s_tail = 0; 577 qp->s_cur = 0; 578 qp->s_acked = 0; 579 qp->s_last = 0; 580 qp->s_ssn = 1; 581 qp->s_lsn = 0; 582 qp->s_mig_state = IB_MIG_MIGRATED; 583 qp->r_head_ack_queue = 0; 584 qp->s_tail_ack_queue = 0; 585 qp->s_num_rd_atomic = 0; 586 if (qp->r_rq.wq) { 587 qp->r_rq.wq->head = 0; 588 qp->r_rq.wq->tail = 0; 589 } 590 qp->r_sge.num_sge = 0; 591 atomic_set(&qp->s_reserved_used, 0); 592 } 593 594 /** 595 * rvt_reset_qp - initialize the QP state to the reset state 596 * @qp: the QP to reset 597 * @type: the QP type 598 * 599 * r_lock, s_hlock, and s_lock are required to be held by the caller 600 */ 601 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 602 enum ib_qp_type type) 603 __must_hold(&qp->s_lock) 604 __must_hold(&qp->s_hlock) 605 __must_hold(&qp->r_lock) 606 { 607 lockdep_assert_held(&qp->r_lock); 608 lockdep_assert_held(&qp->s_hlock); 609 lockdep_assert_held(&qp->s_lock); 610 if (qp->state != IB_QPS_RESET) { 611 qp->state = IB_QPS_RESET; 612 613 /* Let drivers flush their waitlist */ 614 rdi->driver_f.flush_qp_waiters(qp); 615 rvt_stop_rc_timers(qp); 616 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 617 spin_unlock(&qp->s_lock); 618 spin_unlock(&qp->s_hlock); 619 spin_unlock_irq(&qp->r_lock); 620 621 /* Stop the send queue and the retry timer */ 622 rdi->driver_f.stop_send_queue(qp); 623 rvt_del_timers_sync(qp); 624 /* Wait for things to stop */ 625 rdi->driver_f.quiesce_qp(qp); 626 627 /* take qp out the hash and wait for it to be unused */ 628 rvt_remove_qp(rdi, qp); 629 wait_event(qp->wait, !atomic_read(&qp->refcount)); 630 631 /* grab the lock b/c it was locked at call time */ 632 spin_lock_irq(&qp->r_lock); 633 spin_lock(&qp->s_hlock); 634 spin_lock(&qp->s_lock); 635 636 rvt_clear_mr_refs(qp, 1); 637 /* 638 * Let the driver do any tear down or re-init it needs to for 639 * a qp that has been reset 640 */ 641 rdi->driver_f.notify_qp_reset(qp); 642 } 643 rvt_init_qp(rdi, qp, type); 644 lockdep_assert_held(&qp->r_lock); 645 lockdep_assert_held(&qp->s_hlock); 646 lockdep_assert_held(&qp->s_lock); 647 } 648 649 /** 650 * rvt_create_qp - create a queue pair for a device 651 * @ibpd: the protection domain who's device we create the queue pair for 652 * @init_attr: the attributes of the queue pair 653 * @udata: user data for libibverbs.so 654 * 655 * Queue pair creation is mostly an rvt issue. However, drivers have their own 656 * unique idea of what queue pair numbers mean. For instance there is a reserved 657 * range for PSM. 658 * 659 * Return: the queue pair on success, otherwise returns an errno. 660 * 661 * Called by the ib_create_qp() core verbs function. 662 */ 663 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 664 struct ib_qp_init_attr *init_attr, 665 struct ib_udata *udata) 666 { 667 struct rvt_qp *qp; 668 int err; 669 struct rvt_swqe *swq = NULL; 670 size_t sz; 671 size_t sg_list_sz; 672 struct ib_qp *ret = ERR_PTR(-ENOMEM); 673 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 674 void *priv = NULL; 675 gfp_t gfp; 676 size_t sqsize; 677 678 if (!rdi) 679 return ERR_PTR(-EINVAL); 680 681 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_sge || 682 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || 683 init_attr->create_flags & ~(IB_QP_CREATE_USE_GFP_NOIO)) 684 return ERR_PTR(-EINVAL); 685 686 /* GFP_NOIO is applicable to RC QP's only */ 687 688 if (init_attr->create_flags & IB_QP_CREATE_USE_GFP_NOIO && 689 init_attr->qp_type != IB_QPT_RC) 690 return ERR_PTR(-EINVAL); 691 692 gfp = init_attr->create_flags & IB_QP_CREATE_USE_GFP_NOIO ? 693 GFP_NOIO : GFP_KERNEL; 694 695 /* Check receive queue parameters if no SRQ is specified. */ 696 if (!init_attr->srq) { 697 if (init_attr->cap.max_recv_sge > rdi->dparms.props.max_sge || 698 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 699 return ERR_PTR(-EINVAL); 700 701 if (init_attr->cap.max_send_sge + 702 init_attr->cap.max_send_wr + 703 init_attr->cap.max_recv_sge + 704 init_attr->cap.max_recv_wr == 0) 705 return ERR_PTR(-EINVAL); 706 } 707 sqsize = 708 init_attr->cap.max_send_wr + 1 + 709 rdi->dparms.reserved_operations; 710 switch (init_attr->qp_type) { 711 case IB_QPT_SMI: 712 case IB_QPT_GSI: 713 if (init_attr->port_num == 0 || 714 init_attr->port_num > ibpd->device->phys_port_cnt) 715 return ERR_PTR(-EINVAL); 716 case IB_QPT_UC: 717 case IB_QPT_RC: 718 case IB_QPT_UD: 719 sz = sizeof(struct rvt_sge) * 720 init_attr->cap.max_send_sge + 721 sizeof(struct rvt_swqe); 722 if (gfp == GFP_NOIO) 723 swq = __vmalloc( 724 sqsize * sz, 725 gfp | __GFP_ZERO, PAGE_KERNEL); 726 else 727 swq = vzalloc_node( 728 sqsize * sz, 729 rdi->dparms.node); 730 if (!swq) 731 return ERR_PTR(-ENOMEM); 732 733 sz = sizeof(*qp); 734 sg_list_sz = 0; 735 if (init_attr->srq) { 736 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 737 738 if (srq->rq.max_sge > 1) 739 sg_list_sz = sizeof(*qp->r_sg_list) * 740 (srq->rq.max_sge - 1); 741 } else if (init_attr->cap.max_recv_sge > 1) 742 sg_list_sz = sizeof(*qp->r_sg_list) * 743 (init_attr->cap.max_recv_sge - 1); 744 qp = kzalloc_node(sz + sg_list_sz, gfp, rdi->dparms.node); 745 if (!qp) 746 goto bail_swq; 747 748 RCU_INIT_POINTER(qp->next, NULL); 749 if (init_attr->qp_type == IB_QPT_RC) { 750 qp->s_ack_queue = 751 kzalloc_node( 752 sizeof(*qp->s_ack_queue) * 753 rvt_max_atomic(rdi), 754 gfp, 755 rdi->dparms.node); 756 if (!qp->s_ack_queue) 757 goto bail_qp; 758 } 759 /* initialize timers needed for rc qp */ 760 setup_timer(&qp->s_timer, rvt_rc_timeout, (unsigned long)qp); 761 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 762 HRTIMER_MODE_REL); 763 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 764 765 /* 766 * Driver needs to set up it's private QP structure and do any 767 * initialization that is needed. 768 */ 769 priv = rdi->driver_f.qp_priv_alloc(rdi, qp, gfp); 770 if (IS_ERR(priv)) { 771 ret = priv; 772 goto bail_qp; 773 } 774 qp->priv = priv; 775 qp->timeout_jiffies = 776 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 777 1000UL); 778 if (init_attr->srq) { 779 sz = 0; 780 } else { 781 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 782 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 783 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 784 sizeof(struct rvt_rwqe); 785 if (udata) 786 qp->r_rq.wq = vmalloc_user( 787 sizeof(struct rvt_rwq) + 788 qp->r_rq.size * sz); 789 else if (gfp == GFP_NOIO) 790 qp->r_rq.wq = __vmalloc( 791 sizeof(struct rvt_rwq) + 792 qp->r_rq.size * sz, 793 gfp | __GFP_ZERO, PAGE_KERNEL); 794 else 795 qp->r_rq.wq = vzalloc_node( 796 sizeof(struct rvt_rwq) + 797 qp->r_rq.size * sz, 798 rdi->dparms.node); 799 if (!qp->r_rq.wq) 800 goto bail_driver_priv; 801 } 802 803 /* 804 * ib_create_qp() will initialize qp->ibqp 805 * except for qp->ibqp.qp_num. 806 */ 807 spin_lock_init(&qp->r_lock); 808 spin_lock_init(&qp->s_hlock); 809 spin_lock_init(&qp->s_lock); 810 spin_lock_init(&qp->r_rq.lock); 811 atomic_set(&qp->refcount, 0); 812 atomic_set(&qp->local_ops_pending, 0); 813 init_waitqueue_head(&qp->wait); 814 init_timer(&qp->s_timer); 815 qp->s_timer.data = (unsigned long)qp; 816 INIT_LIST_HEAD(&qp->rspwait); 817 qp->state = IB_QPS_RESET; 818 qp->s_wq = swq; 819 qp->s_size = sqsize; 820 qp->s_avail = init_attr->cap.max_send_wr; 821 qp->s_max_sge = init_attr->cap.max_send_sge; 822 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 823 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 824 825 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 826 init_attr->qp_type, 827 init_attr->port_num, gfp); 828 if (err < 0) { 829 ret = ERR_PTR(err); 830 goto bail_rq_wq; 831 } 832 qp->ibqp.qp_num = err; 833 qp->port_num = init_attr->port_num; 834 rvt_init_qp(rdi, qp, init_attr->qp_type); 835 break; 836 837 default: 838 /* Don't support raw QPs */ 839 return ERR_PTR(-EINVAL); 840 } 841 842 init_attr->cap.max_inline_data = 0; 843 844 /* 845 * Return the address of the RWQ as the offset to mmap. 846 * See rvt_mmap() for details. 847 */ 848 if (udata && udata->outlen >= sizeof(__u64)) { 849 if (!qp->r_rq.wq) { 850 __u64 offset = 0; 851 852 err = ib_copy_to_udata(udata, &offset, 853 sizeof(offset)); 854 if (err) { 855 ret = ERR_PTR(err); 856 goto bail_qpn; 857 } 858 } else { 859 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 860 861 qp->ip = rvt_create_mmap_info(rdi, s, 862 ibpd->uobject->context, 863 qp->r_rq.wq); 864 if (!qp->ip) { 865 ret = ERR_PTR(-ENOMEM); 866 goto bail_qpn; 867 } 868 869 err = ib_copy_to_udata(udata, &qp->ip->offset, 870 sizeof(qp->ip->offset)); 871 if (err) { 872 ret = ERR_PTR(err); 873 goto bail_ip; 874 } 875 } 876 qp->pid = current->pid; 877 } 878 879 spin_lock(&rdi->n_qps_lock); 880 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 881 spin_unlock(&rdi->n_qps_lock); 882 ret = ERR_PTR(-ENOMEM); 883 goto bail_ip; 884 } 885 886 rdi->n_qps_allocated++; 887 /* 888 * Maintain a busy_jiffies variable that will be added to the timeout 889 * period in mod_retry_timer and add_retry_timer. This busy jiffies 890 * is scaled by the number of rc qps created for the device to reduce 891 * the number of timeouts occurring when there is a large number of 892 * qps. busy_jiffies is incremented every rc qp scaling interval. 893 * The scaling interval is selected based on extensive performance 894 * evaluation of targeted workloads. 895 */ 896 if (init_attr->qp_type == IB_QPT_RC) { 897 rdi->n_rc_qps++; 898 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 899 } 900 spin_unlock(&rdi->n_qps_lock); 901 902 if (qp->ip) { 903 spin_lock_irq(&rdi->pending_lock); 904 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 905 spin_unlock_irq(&rdi->pending_lock); 906 } 907 908 ret = &qp->ibqp; 909 910 /* 911 * We have our QP and its good, now keep track of what types of opcodes 912 * can be processed on this QP. We do this by keeping track of what the 913 * 3 high order bits of the opcode are. 914 */ 915 switch (init_attr->qp_type) { 916 case IB_QPT_SMI: 917 case IB_QPT_GSI: 918 case IB_QPT_UD: 919 qp->allowed_ops = IB_OPCODE_UD; 920 break; 921 case IB_QPT_RC: 922 qp->allowed_ops = IB_OPCODE_RC; 923 break; 924 case IB_QPT_UC: 925 qp->allowed_ops = IB_OPCODE_UC; 926 break; 927 default: 928 ret = ERR_PTR(-EINVAL); 929 goto bail_ip; 930 } 931 932 return ret; 933 934 bail_ip: 935 if (qp->ip) 936 kref_put(&qp->ip->ref, rvt_release_mmap_info); 937 938 bail_qpn: 939 free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 940 941 bail_rq_wq: 942 if (!qp->ip) 943 vfree(qp->r_rq.wq); 944 945 bail_driver_priv: 946 rdi->driver_f.qp_priv_free(rdi, qp); 947 948 bail_qp: 949 kfree(qp->s_ack_queue); 950 kfree(qp); 951 952 bail_swq: 953 vfree(swq); 954 955 return ret; 956 } 957 958 /** 959 * rvt_error_qp - put a QP into the error state 960 * @qp: the QP to put into the error state 961 * @err: the receive completion error to signal if a RWQE is active 962 * 963 * Flushes both send and receive work queues. 964 * 965 * Return: true if last WQE event should be generated. 966 * The QP r_lock and s_lock should be held and interrupts disabled. 967 * If we are already in error state, just return. 968 */ 969 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 970 { 971 struct ib_wc wc; 972 int ret = 0; 973 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 974 975 lockdep_assert_held(&qp->r_lock); 976 lockdep_assert_held(&qp->s_lock); 977 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 978 goto bail; 979 980 qp->state = IB_QPS_ERR; 981 982 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 983 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 984 del_timer(&qp->s_timer); 985 } 986 987 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 988 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 989 990 rdi->driver_f.notify_error_qp(qp); 991 992 /* Schedule the sending tasklet to drain the send work queue. */ 993 if (ACCESS_ONCE(qp->s_last) != qp->s_head) 994 rdi->driver_f.schedule_send(qp); 995 996 rvt_clear_mr_refs(qp, 0); 997 998 memset(&wc, 0, sizeof(wc)); 999 wc.qp = &qp->ibqp; 1000 wc.opcode = IB_WC_RECV; 1001 1002 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1003 wc.wr_id = qp->r_wr_id; 1004 wc.status = err; 1005 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1006 } 1007 wc.status = IB_WC_WR_FLUSH_ERR; 1008 1009 if (qp->r_rq.wq) { 1010 struct rvt_rwq *wq; 1011 u32 head; 1012 u32 tail; 1013 1014 spin_lock(&qp->r_rq.lock); 1015 1016 /* sanity check pointers before trusting them */ 1017 wq = qp->r_rq.wq; 1018 head = wq->head; 1019 if (head >= qp->r_rq.size) 1020 head = 0; 1021 tail = wq->tail; 1022 if (tail >= qp->r_rq.size) 1023 tail = 0; 1024 while (tail != head) { 1025 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1026 if (++tail >= qp->r_rq.size) 1027 tail = 0; 1028 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1029 } 1030 wq->tail = tail; 1031 1032 spin_unlock(&qp->r_rq.lock); 1033 } else if (qp->ibqp.event_handler) { 1034 ret = 1; 1035 } 1036 1037 bail: 1038 return ret; 1039 } 1040 EXPORT_SYMBOL(rvt_error_qp); 1041 1042 /* 1043 * Put the QP into the hash table. 1044 * The hash table holds a reference to the QP. 1045 */ 1046 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1047 { 1048 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1049 unsigned long flags; 1050 1051 rvt_get_qp(qp); 1052 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1053 1054 if (qp->ibqp.qp_num <= 1) { 1055 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1056 } else { 1057 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1058 1059 qp->next = rdi->qp_dev->qp_table[n]; 1060 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1061 trace_rvt_qpinsert(qp, n); 1062 } 1063 1064 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1065 } 1066 1067 /** 1068 * rvt_modify_qp - modify the attributes of a queue pair 1069 * @ibqp: the queue pair who's attributes we're modifying 1070 * @attr: the new attributes 1071 * @attr_mask: the mask of attributes to modify 1072 * @udata: user data for libibverbs.so 1073 * 1074 * Return: 0 on success, otherwise returns an errno. 1075 */ 1076 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1077 int attr_mask, struct ib_udata *udata) 1078 { 1079 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1080 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1081 enum ib_qp_state cur_state, new_state; 1082 struct ib_event ev; 1083 int lastwqe = 0; 1084 int mig = 0; 1085 int pmtu = 0; /* for gcc warning only */ 1086 enum rdma_link_layer link; 1087 1088 link = rdma_port_get_link_layer(ibqp->device, qp->port_num); 1089 1090 spin_lock_irq(&qp->r_lock); 1091 spin_lock(&qp->s_hlock); 1092 spin_lock(&qp->s_lock); 1093 1094 cur_state = attr_mask & IB_QP_CUR_STATE ? 1095 attr->cur_qp_state : qp->state; 1096 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1097 1098 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1099 attr_mask, link)) 1100 goto inval; 1101 1102 if (rdi->driver_f.check_modify_qp && 1103 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1104 goto inval; 1105 1106 if (attr_mask & IB_QP_AV) { 1107 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1108 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1109 goto inval; 1110 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1111 goto inval; 1112 } 1113 1114 if (attr_mask & IB_QP_ALT_PATH) { 1115 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1116 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1117 goto inval; 1118 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1119 goto inval; 1120 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1121 goto inval; 1122 } 1123 1124 if (attr_mask & IB_QP_PKEY_INDEX) 1125 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1126 goto inval; 1127 1128 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1129 if (attr->min_rnr_timer > 31) 1130 goto inval; 1131 1132 if (attr_mask & IB_QP_PORT) 1133 if (qp->ibqp.qp_type == IB_QPT_SMI || 1134 qp->ibqp.qp_type == IB_QPT_GSI || 1135 attr->port_num == 0 || 1136 attr->port_num > ibqp->device->phys_port_cnt) 1137 goto inval; 1138 1139 if (attr_mask & IB_QP_DEST_QPN) 1140 if (attr->dest_qp_num > RVT_QPN_MASK) 1141 goto inval; 1142 1143 if (attr_mask & IB_QP_RETRY_CNT) 1144 if (attr->retry_cnt > 7) 1145 goto inval; 1146 1147 if (attr_mask & IB_QP_RNR_RETRY) 1148 if (attr->rnr_retry > 7) 1149 goto inval; 1150 1151 /* 1152 * Don't allow invalid path_mtu values. OK to set greater 1153 * than the active mtu (or even the max_cap, if we have tuned 1154 * that to a small mtu. We'll set qp->path_mtu 1155 * to the lesser of requested attribute mtu and active, 1156 * for packetizing messages. 1157 * Note that the QP port has to be set in INIT and MTU in RTR. 1158 */ 1159 if (attr_mask & IB_QP_PATH_MTU) { 1160 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1161 if (pmtu < 0) 1162 goto inval; 1163 } 1164 1165 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1166 if (attr->path_mig_state == IB_MIG_REARM) { 1167 if (qp->s_mig_state == IB_MIG_ARMED) 1168 goto inval; 1169 if (new_state != IB_QPS_RTS) 1170 goto inval; 1171 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1172 if (qp->s_mig_state == IB_MIG_REARM) 1173 goto inval; 1174 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1175 goto inval; 1176 if (qp->s_mig_state == IB_MIG_ARMED) 1177 mig = 1; 1178 } else { 1179 goto inval; 1180 } 1181 } 1182 1183 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1184 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1185 goto inval; 1186 1187 switch (new_state) { 1188 case IB_QPS_RESET: 1189 if (qp->state != IB_QPS_RESET) 1190 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1191 break; 1192 1193 case IB_QPS_RTR: 1194 /* Allow event to re-trigger if QP set to RTR more than once */ 1195 qp->r_flags &= ~RVT_R_COMM_EST; 1196 qp->state = new_state; 1197 break; 1198 1199 case IB_QPS_SQD: 1200 qp->s_draining = qp->s_last != qp->s_cur; 1201 qp->state = new_state; 1202 break; 1203 1204 case IB_QPS_SQE: 1205 if (qp->ibqp.qp_type == IB_QPT_RC) 1206 goto inval; 1207 qp->state = new_state; 1208 break; 1209 1210 case IB_QPS_ERR: 1211 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1212 break; 1213 1214 default: 1215 qp->state = new_state; 1216 break; 1217 } 1218 1219 if (attr_mask & IB_QP_PKEY_INDEX) 1220 qp->s_pkey_index = attr->pkey_index; 1221 1222 if (attr_mask & IB_QP_PORT) 1223 qp->port_num = attr->port_num; 1224 1225 if (attr_mask & IB_QP_DEST_QPN) 1226 qp->remote_qpn = attr->dest_qp_num; 1227 1228 if (attr_mask & IB_QP_SQ_PSN) { 1229 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1230 qp->s_psn = qp->s_next_psn; 1231 qp->s_sending_psn = qp->s_next_psn; 1232 qp->s_last_psn = qp->s_next_psn - 1; 1233 qp->s_sending_hpsn = qp->s_last_psn; 1234 } 1235 1236 if (attr_mask & IB_QP_RQ_PSN) 1237 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1238 1239 if (attr_mask & IB_QP_ACCESS_FLAGS) 1240 qp->qp_access_flags = attr->qp_access_flags; 1241 1242 if (attr_mask & IB_QP_AV) { 1243 qp->remote_ah_attr = attr->ah_attr; 1244 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1245 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1246 } 1247 1248 if (attr_mask & IB_QP_ALT_PATH) { 1249 qp->alt_ah_attr = attr->alt_ah_attr; 1250 qp->s_alt_pkey_index = attr->alt_pkey_index; 1251 } 1252 1253 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1254 qp->s_mig_state = attr->path_mig_state; 1255 if (mig) { 1256 qp->remote_ah_attr = qp->alt_ah_attr; 1257 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1258 qp->s_pkey_index = qp->s_alt_pkey_index; 1259 } 1260 } 1261 1262 if (attr_mask & IB_QP_PATH_MTU) { 1263 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1264 qp->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1265 qp->log_pmtu = ilog2(qp->pmtu); 1266 } 1267 1268 if (attr_mask & IB_QP_RETRY_CNT) { 1269 qp->s_retry_cnt = attr->retry_cnt; 1270 qp->s_retry = attr->retry_cnt; 1271 } 1272 1273 if (attr_mask & IB_QP_RNR_RETRY) { 1274 qp->s_rnr_retry_cnt = attr->rnr_retry; 1275 qp->s_rnr_retry = attr->rnr_retry; 1276 } 1277 1278 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1279 qp->r_min_rnr_timer = attr->min_rnr_timer; 1280 1281 if (attr_mask & IB_QP_TIMEOUT) { 1282 qp->timeout = attr->timeout; 1283 qp->timeout_jiffies = 1284 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1285 1000UL); 1286 } 1287 1288 if (attr_mask & IB_QP_QKEY) 1289 qp->qkey = attr->qkey; 1290 1291 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1292 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1293 1294 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1295 qp->s_max_rd_atomic = attr->max_rd_atomic; 1296 1297 if (rdi->driver_f.modify_qp) 1298 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1299 1300 spin_unlock(&qp->s_lock); 1301 spin_unlock(&qp->s_hlock); 1302 spin_unlock_irq(&qp->r_lock); 1303 1304 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1305 rvt_insert_qp(rdi, qp); 1306 1307 if (lastwqe) { 1308 ev.device = qp->ibqp.device; 1309 ev.element.qp = &qp->ibqp; 1310 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1311 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1312 } 1313 if (mig) { 1314 ev.device = qp->ibqp.device; 1315 ev.element.qp = &qp->ibqp; 1316 ev.event = IB_EVENT_PATH_MIG; 1317 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1318 } 1319 return 0; 1320 1321 inval: 1322 spin_unlock(&qp->s_lock); 1323 spin_unlock(&qp->s_hlock); 1324 spin_unlock_irq(&qp->r_lock); 1325 return -EINVAL; 1326 } 1327 1328 /** rvt_free_qpn - Free a qpn from the bit map 1329 * @qpt: QP table 1330 * @qpn: queue pair number to free 1331 */ 1332 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 1333 { 1334 struct rvt_qpn_map *map; 1335 1336 map = qpt->map + qpn / RVT_BITS_PER_PAGE; 1337 if (map->page) 1338 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 1339 } 1340 1341 /** 1342 * rvt_destroy_qp - destroy a queue pair 1343 * @ibqp: the queue pair to destroy 1344 * 1345 * Note that this can be called while the QP is actively sending or 1346 * receiving! 1347 * 1348 * Return: 0 on success. 1349 */ 1350 int rvt_destroy_qp(struct ib_qp *ibqp) 1351 { 1352 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1353 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1354 1355 spin_lock_irq(&qp->r_lock); 1356 spin_lock(&qp->s_hlock); 1357 spin_lock(&qp->s_lock); 1358 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1359 spin_unlock(&qp->s_lock); 1360 spin_unlock(&qp->s_hlock); 1361 spin_unlock_irq(&qp->r_lock); 1362 1363 /* qpn is now available for use again */ 1364 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1365 1366 spin_lock(&rdi->n_qps_lock); 1367 rdi->n_qps_allocated--; 1368 if (qp->ibqp.qp_type == IB_QPT_RC) { 1369 rdi->n_rc_qps--; 1370 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1371 } 1372 spin_unlock(&rdi->n_qps_lock); 1373 1374 if (qp->ip) 1375 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1376 else 1377 vfree(qp->r_rq.wq); 1378 vfree(qp->s_wq); 1379 rdi->driver_f.qp_priv_free(rdi, qp); 1380 kfree(qp->s_ack_queue); 1381 kfree(qp); 1382 return 0; 1383 } 1384 1385 /** 1386 * rvt_query_qp - query an ipbq 1387 * @ibqp: IB qp to query 1388 * @attr: attr struct to fill in 1389 * @attr_mask: attr mask ignored 1390 * @init_attr: struct to fill in 1391 * 1392 * Return: always 0 1393 */ 1394 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1395 int attr_mask, struct ib_qp_init_attr *init_attr) 1396 { 1397 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1398 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1399 1400 attr->qp_state = qp->state; 1401 attr->cur_qp_state = attr->qp_state; 1402 attr->path_mtu = qp->path_mtu; 1403 attr->path_mig_state = qp->s_mig_state; 1404 attr->qkey = qp->qkey; 1405 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1406 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1407 attr->dest_qp_num = qp->remote_qpn; 1408 attr->qp_access_flags = qp->qp_access_flags; 1409 attr->cap.max_send_wr = qp->s_size - 1 - 1410 rdi->dparms.reserved_operations; 1411 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1412 attr->cap.max_send_sge = qp->s_max_sge; 1413 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1414 attr->cap.max_inline_data = 0; 1415 attr->ah_attr = qp->remote_ah_attr; 1416 attr->alt_ah_attr = qp->alt_ah_attr; 1417 attr->pkey_index = qp->s_pkey_index; 1418 attr->alt_pkey_index = qp->s_alt_pkey_index; 1419 attr->en_sqd_async_notify = 0; 1420 attr->sq_draining = qp->s_draining; 1421 attr->max_rd_atomic = qp->s_max_rd_atomic; 1422 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1423 attr->min_rnr_timer = qp->r_min_rnr_timer; 1424 attr->port_num = qp->port_num; 1425 attr->timeout = qp->timeout; 1426 attr->retry_cnt = qp->s_retry_cnt; 1427 attr->rnr_retry = qp->s_rnr_retry_cnt; 1428 attr->alt_port_num = 1429 rdma_ah_get_port_num(&qp->alt_ah_attr); 1430 attr->alt_timeout = qp->alt_timeout; 1431 1432 init_attr->event_handler = qp->ibqp.event_handler; 1433 init_attr->qp_context = qp->ibqp.qp_context; 1434 init_attr->send_cq = qp->ibqp.send_cq; 1435 init_attr->recv_cq = qp->ibqp.recv_cq; 1436 init_attr->srq = qp->ibqp.srq; 1437 init_attr->cap = attr->cap; 1438 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1439 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1440 else 1441 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1442 init_attr->qp_type = qp->ibqp.qp_type; 1443 init_attr->port_num = qp->port_num; 1444 return 0; 1445 } 1446 1447 /** 1448 * rvt_post_receive - post a receive on a QP 1449 * @ibqp: the QP to post the receive on 1450 * @wr: the WR to post 1451 * @bad_wr: the first bad WR is put here 1452 * 1453 * This may be called from interrupt context. 1454 * 1455 * Return: 0 on success otherwise errno 1456 */ 1457 int rvt_post_recv(struct ib_qp *ibqp, struct ib_recv_wr *wr, 1458 struct ib_recv_wr **bad_wr) 1459 { 1460 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1461 struct rvt_rwq *wq = qp->r_rq.wq; 1462 unsigned long flags; 1463 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1464 !qp->ibqp.srq; 1465 1466 /* Check that state is OK to post receive. */ 1467 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1468 *bad_wr = wr; 1469 return -EINVAL; 1470 } 1471 1472 for (; wr; wr = wr->next) { 1473 struct rvt_rwqe *wqe; 1474 u32 next; 1475 int i; 1476 1477 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1478 *bad_wr = wr; 1479 return -EINVAL; 1480 } 1481 1482 spin_lock_irqsave(&qp->r_rq.lock, flags); 1483 next = wq->head + 1; 1484 if (next >= qp->r_rq.size) 1485 next = 0; 1486 if (next == wq->tail) { 1487 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1488 *bad_wr = wr; 1489 return -ENOMEM; 1490 } 1491 if (unlikely(qp_err_flush)) { 1492 struct ib_wc wc; 1493 1494 memset(&wc, 0, sizeof(wc)); 1495 wc.qp = &qp->ibqp; 1496 wc.opcode = IB_WC_RECV; 1497 wc.wr_id = wr->wr_id; 1498 wc.status = IB_WC_WR_FLUSH_ERR; 1499 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1500 } else { 1501 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1502 wqe->wr_id = wr->wr_id; 1503 wqe->num_sge = wr->num_sge; 1504 for (i = 0; i < wr->num_sge; i++) 1505 wqe->sg_list[i] = wr->sg_list[i]; 1506 /* 1507 * Make sure queue entry is written 1508 * before the head index. 1509 */ 1510 smp_wmb(); 1511 wq->head = next; 1512 } 1513 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1514 } 1515 return 0; 1516 } 1517 1518 /** 1519 * rvt_qp_valid_operation - validate post send wr request 1520 * @qp - the qp 1521 * @post-parms - the post send table for the driver 1522 * @wr - the work request 1523 * 1524 * The routine validates the operation based on the 1525 * validation table an returns the length of the operation 1526 * which can extend beyond the ib_send_bw. Operation 1527 * dependent flags key atomic operation validation. 1528 * 1529 * There is an exception for UD qps that validates the pd and 1530 * overrides the length to include the additional UD specific 1531 * length. 1532 * 1533 * Returns a negative error or the length of the work request 1534 * for building the swqe. 1535 */ 1536 static inline int rvt_qp_valid_operation( 1537 struct rvt_qp *qp, 1538 const struct rvt_operation_params *post_parms, 1539 struct ib_send_wr *wr) 1540 { 1541 int len; 1542 1543 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1544 return -EINVAL; 1545 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1546 return -EINVAL; 1547 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1548 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1549 return -EINVAL; 1550 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1551 (wr->num_sge == 0 || 1552 wr->sg_list[0].length < sizeof(u64) || 1553 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1554 return -EINVAL; 1555 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1556 !qp->s_max_rd_atomic) 1557 return -EINVAL; 1558 len = post_parms[wr->opcode].length; 1559 /* UD specific */ 1560 if (qp->ibqp.qp_type != IB_QPT_UC && 1561 qp->ibqp.qp_type != IB_QPT_RC) { 1562 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1563 return -EINVAL; 1564 len = sizeof(struct ib_ud_wr); 1565 } 1566 return len; 1567 } 1568 1569 /** 1570 * rvt_qp_is_avail - determine queue capacity 1571 * @qp - the qp 1572 * @rdi - the rdmavt device 1573 * @reserved_op - is reserved operation 1574 * 1575 * This assumes the s_hlock is held but the s_last 1576 * qp variable is uncontrolled. 1577 * 1578 * For non reserved operations, the qp->s_avail 1579 * may be changed. 1580 * 1581 * The return value is zero or a -ENOMEM. 1582 */ 1583 static inline int rvt_qp_is_avail( 1584 struct rvt_qp *qp, 1585 struct rvt_dev_info *rdi, 1586 bool reserved_op) 1587 { 1588 u32 slast; 1589 u32 avail; 1590 u32 reserved_used; 1591 1592 /* see rvt_qp_wqe_unreserve() */ 1593 smp_mb__before_atomic(); 1594 reserved_used = atomic_read(&qp->s_reserved_used); 1595 if (unlikely(reserved_op)) { 1596 /* see rvt_qp_wqe_unreserve() */ 1597 smp_mb__before_atomic(); 1598 if (reserved_used >= rdi->dparms.reserved_operations) 1599 return -ENOMEM; 1600 return 0; 1601 } 1602 /* non-reserved operations */ 1603 if (likely(qp->s_avail)) 1604 return 0; 1605 smp_read_barrier_depends(); /* see rc.c */ 1606 slast = ACCESS_ONCE(qp->s_last); 1607 if (qp->s_head >= slast) 1608 avail = qp->s_size - (qp->s_head - slast); 1609 else 1610 avail = slast - qp->s_head; 1611 1612 /* see rvt_qp_wqe_unreserve() */ 1613 smp_mb__before_atomic(); 1614 reserved_used = atomic_read(&qp->s_reserved_used); 1615 avail = avail - 1 - 1616 (rdi->dparms.reserved_operations - reserved_used); 1617 /* insure we don't assign a negative s_avail */ 1618 if ((s32)avail <= 0) 1619 return -ENOMEM; 1620 qp->s_avail = avail; 1621 if (WARN_ON(qp->s_avail > 1622 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1623 rvt_pr_err(rdi, 1624 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1625 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1626 qp->s_head, qp->s_tail, qp->s_cur, 1627 qp->s_acked, qp->s_last); 1628 return 0; 1629 } 1630 1631 /** 1632 * rvt_post_one_wr - post one RC, UC, or UD send work request 1633 * @qp: the QP to post on 1634 * @wr: the work request to send 1635 */ 1636 static int rvt_post_one_wr(struct rvt_qp *qp, 1637 struct ib_send_wr *wr, 1638 int *call_send) 1639 { 1640 struct rvt_swqe *wqe; 1641 u32 next; 1642 int i; 1643 int j; 1644 int acc; 1645 struct rvt_lkey_table *rkt; 1646 struct rvt_pd *pd; 1647 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1648 u8 log_pmtu; 1649 int ret; 1650 size_t cplen; 1651 bool reserved_op; 1652 int local_ops_delayed = 0; 1653 1654 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1655 1656 /* IB spec says that num_sge == 0 is OK. */ 1657 if (unlikely(wr->num_sge > qp->s_max_sge)) 1658 return -EINVAL; 1659 1660 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1661 if (ret < 0) 1662 return ret; 1663 cplen = ret; 1664 1665 /* 1666 * Local operations include fast register and local invalidate. 1667 * Fast register needs to be processed immediately because the 1668 * registered lkey may be used by following work requests and the 1669 * lkey needs to be valid at the time those requests are posted. 1670 * Local invalidate can be processed immediately if fencing is 1671 * not required and no previous local invalidate ops are pending. 1672 * Signaled local operations that have been processed immediately 1673 * need to have requests with "completion only" flags set posted 1674 * to the send queue in order to generate completions. 1675 */ 1676 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 1677 switch (wr->opcode) { 1678 case IB_WR_REG_MR: 1679 ret = rvt_fast_reg_mr(qp, 1680 reg_wr(wr)->mr, 1681 reg_wr(wr)->key, 1682 reg_wr(wr)->access); 1683 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1684 return ret; 1685 break; 1686 case IB_WR_LOCAL_INV: 1687 if ((wr->send_flags & IB_SEND_FENCE) || 1688 atomic_read(&qp->local_ops_pending)) { 1689 local_ops_delayed = 1; 1690 } else { 1691 ret = rvt_invalidate_rkey( 1692 qp, wr->ex.invalidate_rkey); 1693 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1694 return ret; 1695 } 1696 break; 1697 default: 1698 return -EINVAL; 1699 } 1700 } 1701 1702 reserved_op = rdi->post_parms[wr->opcode].flags & 1703 RVT_OPERATION_USE_RESERVE; 1704 /* check for avail */ 1705 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 1706 if (ret) 1707 return ret; 1708 next = qp->s_head + 1; 1709 if (next >= qp->s_size) 1710 next = 0; 1711 1712 rkt = &rdi->lkey_table; 1713 pd = ibpd_to_rvtpd(qp->ibqp.pd); 1714 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 1715 1716 /* cplen has length from above */ 1717 memcpy(&wqe->wr, wr, cplen); 1718 1719 wqe->length = 0; 1720 j = 0; 1721 if (wr->num_sge) { 1722 acc = wr->opcode >= IB_WR_RDMA_READ ? 1723 IB_ACCESS_LOCAL_WRITE : 0; 1724 for (i = 0; i < wr->num_sge; i++) { 1725 u32 length = wr->sg_list[i].length; 1726 int ok; 1727 1728 if (length == 0) 1729 continue; 1730 ok = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], 1731 &wr->sg_list[i], acc); 1732 if (!ok) { 1733 ret = -EINVAL; 1734 goto bail_inval_free; 1735 } 1736 wqe->length += length; 1737 j++; 1738 } 1739 wqe->wr.num_sge = j; 1740 } 1741 1742 /* general part of wqe valid - allow for driver checks */ 1743 if (rdi->driver_f.check_send_wqe) { 1744 ret = rdi->driver_f.check_send_wqe(qp, wqe); 1745 if (ret < 0) 1746 goto bail_inval_free; 1747 if (ret) 1748 *call_send = ret; 1749 } 1750 1751 log_pmtu = qp->log_pmtu; 1752 if (qp->ibqp.qp_type != IB_QPT_UC && 1753 qp->ibqp.qp_type != IB_QPT_RC) { 1754 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah); 1755 1756 log_pmtu = ah->log_pmtu; 1757 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 1758 } 1759 1760 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 1761 if (local_ops_delayed) 1762 atomic_inc(&qp->local_ops_pending); 1763 else 1764 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 1765 wqe->ssn = 0; 1766 wqe->psn = 0; 1767 wqe->lpsn = 0; 1768 } else { 1769 wqe->ssn = qp->s_ssn++; 1770 wqe->psn = qp->s_next_psn; 1771 wqe->lpsn = wqe->psn + 1772 (wqe->length ? 1773 ((wqe->length - 1) >> log_pmtu) : 1774 0); 1775 qp->s_next_psn = wqe->lpsn + 1; 1776 } 1777 if (unlikely(reserved_op)) { 1778 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 1779 rvt_qp_wqe_reserve(qp, wqe); 1780 } else { 1781 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 1782 qp->s_avail--; 1783 } 1784 trace_rvt_post_one_wr(qp, wqe); 1785 smp_wmb(); /* see request builders */ 1786 qp->s_head = next; 1787 1788 return 0; 1789 1790 bail_inval_free: 1791 /* release mr holds */ 1792 while (j) { 1793 struct rvt_sge *sge = &wqe->sg_list[--j]; 1794 1795 rvt_put_mr(sge->mr); 1796 } 1797 return ret; 1798 } 1799 1800 /** 1801 * rvt_post_send - post a send on a QP 1802 * @ibqp: the QP to post the send on 1803 * @wr: the list of work requests to post 1804 * @bad_wr: the first bad WR is put here 1805 * 1806 * This may be called from interrupt context. 1807 * 1808 * Return: 0 on success else errno 1809 */ 1810 int rvt_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr, 1811 struct ib_send_wr **bad_wr) 1812 { 1813 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1814 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1815 unsigned long flags = 0; 1816 int call_send; 1817 unsigned nreq = 0; 1818 int err = 0; 1819 1820 spin_lock_irqsave(&qp->s_hlock, flags); 1821 1822 /* 1823 * Ensure QP state is such that we can send. If not bail out early, 1824 * there is no need to do this every time we post a send. 1825 */ 1826 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 1827 spin_unlock_irqrestore(&qp->s_hlock, flags); 1828 return -EINVAL; 1829 } 1830 1831 /* 1832 * If the send queue is empty, and we only have a single WR then just go 1833 * ahead and kick the send engine into gear. Otherwise we will always 1834 * just schedule the send to happen later. 1835 */ 1836 call_send = qp->s_head == ACCESS_ONCE(qp->s_last) && !wr->next; 1837 1838 for (; wr; wr = wr->next) { 1839 err = rvt_post_one_wr(qp, wr, &call_send); 1840 if (unlikely(err)) { 1841 *bad_wr = wr; 1842 goto bail; 1843 } 1844 nreq++; 1845 } 1846 bail: 1847 spin_unlock_irqrestore(&qp->s_hlock, flags); 1848 if (nreq) { 1849 if (call_send) 1850 rdi->driver_f.do_send(qp); 1851 else 1852 rdi->driver_f.schedule_send_no_lock(qp); 1853 } 1854 return err; 1855 } 1856 1857 /** 1858 * rvt_post_srq_receive - post a receive on a shared receive queue 1859 * @ibsrq: the SRQ to post the receive on 1860 * @wr: the list of work requests to post 1861 * @bad_wr: A pointer to the first WR to cause a problem is put here 1862 * 1863 * This may be called from interrupt context. 1864 * 1865 * Return: 0 on success else errno 1866 */ 1867 int rvt_post_srq_recv(struct ib_srq *ibsrq, struct ib_recv_wr *wr, 1868 struct ib_recv_wr **bad_wr) 1869 { 1870 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 1871 struct rvt_rwq *wq; 1872 unsigned long flags; 1873 1874 for (; wr; wr = wr->next) { 1875 struct rvt_rwqe *wqe; 1876 u32 next; 1877 int i; 1878 1879 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 1880 *bad_wr = wr; 1881 return -EINVAL; 1882 } 1883 1884 spin_lock_irqsave(&srq->rq.lock, flags); 1885 wq = srq->rq.wq; 1886 next = wq->head + 1; 1887 if (next >= srq->rq.size) 1888 next = 0; 1889 if (next == wq->tail) { 1890 spin_unlock_irqrestore(&srq->rq.lock, flags); 1891 *bad_wr = wr; 1892 return -ENOMEM; 1893 } 1894 1895 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 1896 wqe->wr_id = wr->wr_id; 1897 wqe->num_sge = wr->num_sge; 1898 for (i = 0; i < wr->num_sge; i++) 1899 wqe->sg_list[i] = wr->sg_list[i]; 1900 /* Make sure queue entry is written before the head index. */ 1901 smp_wmb(); 1902 wq->head = next; 1903 spin_unlock_irqrestore(&srq->rq.lock, flags); 1904 } 1905 return 0; 1906 } 1907 1908 /** 1909 * qp_comm_est - handle trap with QP established 1910 * @qp: the QP 1911 */ 1912 void rvt_comm_est(struct rvt_qp *qp) 1913 { 1914 qp->r_flags |= RVT_R_COMM_EST; 1915 if (qp->ibqp.event_handler) { 1916 struct ib_event ev; 1917 1918 ev.device = qp->ibqp.device; 1919 ev.element.qp = &qp->ibqp; 1920 ev.event = IB_EVENT_COMM_EST; 1921 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1922 } 1923 } 1924 EXPORT_SYMBOL(rvt_comm_est); 1925 1926 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 1927 { 1928 unsigned long flags; 1929 int lastwqe; 1930 1931 spin_lock_irqsave(&qp->s_lock, flags); 1932 lastwqe = rvt_error_qp(qp, err); 1933 spin_unlock_irqrestore(&qp->s_lock, flags); 1934 1935 if (lastwqe) { 1936 struct ib_event ev; 1937 1938 ev.device = qp->ibqp.device; 1939 ev.element.qp = &qp->ibqp; 1940 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1941 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1942 } 1943 } 1944 EXPORT_SYMBOL(rvt_rc_error); 1945 1946 /* 1947 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 1948 * @index - the index 1949 * return usec from an index into ib_rvt_rnr_table 1950 */ 1951 unsigned long rvt_rnr_tbl_to_usec(u32 index) 1952 { 1953 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 1954 } 1955 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 1956 1957 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 1958 { 1959 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 1960 IB_AETH_CREDIT_MASK]; 1961 } 1962 1963 /* 1964 * rvt_add_retry_timer - add/start a retry timer 1965 * @qp - the QP 1966 * add a retry timer on the QP 1967 */ 1968 void rvt_add_retry_timer(struct rvt_qp *qp) 1969 { 1970 struct ib_qp *ibqp = &qp->ibqp; 1971 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1972 1973 lockdep_assert_held(&qp->s_lock); 1974 qp->s_flags |= RVT_S_TIMER; 1975 /* 4.096 usec. * (1 << qp->timeout) */ 1976 qp->s_timer.expires = jiffies + qp->timeout_jiffies + 1977 rdi->busy_jiffies; 1978 add_timer(&qp->s_timer); 1979 } 1980 EXPORT_SYMBOL(rvt_add_retry_timer); 1981 1982 /** 1983 * rvt_add_rnr_timer - add/start an rnr timer 1984 * @qp - the QP 1985 * @aeth - aeth of RNR timeout, simulated aeth for loopback 1986 * add an rnr timer on the QP 1987 */ 1988 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 1989 { 1990 u32 to; 1991 1992 lockdep_assert_held(&qp->s_lock); 1993 qp->s_flags |= RVT_S_WAIT_RNR; 1994 to = rvt_aeth_to_usec(aeth); 1995 hrtimer_start(&qp->s_rnr_timer, 1996 ns_to_ktime(1000 * to), HRTIMER_MODE_REL); 1997 } 1998 EXPORT_SYMBOL(rvt_add_rnr_timer); 1999 2000 /** 2001 * rvt_stop_rc_timers - stop all timers 2002 * @qp - the QP 2003 * stop any pending timers 2004 */ 2005 void rvt_stop_rc_timers(struct rvt_qp *qp) 2006 { 2007 lockdep_assert_held(&qp->s_lock); 2008 /* Remove QP from all timers */ 2009 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2010 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2011 del_timer(&qp->s_timer); 2012 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2013 } 2014 } 2015 EXPORT_SYMBOL(rvt_stop_rc_timers); 2016 2017 /** 2018 * rvt_stop_rnr_timer - stop an rnr timer 2019 * @qp - the QP 2020 * 2021 * stop an rnr timer and return if the timer 2022 * had been pending. 2023 */ 2024 static int rvt_stop_rnr_timer(struct rvt_qp *qp) 2025 { 2026 int rval = 0; 2027 2028 lockdep_assert_held(&qp->s_lock); 2029 /* Remove QP from rnr timer */ 2030 if (qp->s_flags & RVT_S_WAIT_RNR) { 2031 qp->s_flags &= ~RVT_S_WAIT_RNR; 2032 rval = hrtimer_try_to_cancel(&qp->s_rnr_timer); 2033 } 2034 return rval; 2035 } 2036 2037 /** 2038 * rvt_del_timers_sync - wait for any timeout routines to exit 2039 * @qp - the QP 2040 */ 2041 void rvt_del_timers_sync(struct rvt_qp *qp) 2042 { 2043 del_timer_sync(&qp->s_timer); 2044 hrtimer_cancel(&qp->s_rnr_timer); 2045 } 2046 EXPORT_SYMBOL(rvt_del_timers_sync); 2047 2048 /** 2049 * This is called from s_timer for missing responses. 2050 */ 2051 static void rvt_rc_timeout(unsigned long arg) 2052 { 2053 struct rvt_qp *qp = (struct rvt_qp *)arg; 2054 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2055 unsigned long flags; 2056 2057 spin_lock_irqsave(&qp->r_lock, flags); 2058 spin_lock(&qp->s_lock); 2059 if (qp->s_flags & RVT_S_TIMER) { 2060 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2061 2062 qp->s_flags &= ~RVT_S_TIMER; 2063 rvp->n_rc_timeouts++; 2064 del_timer(&qp->s_timer); 2065 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2066 if (rdi->driver_f.notify_restart_rc) 2067 rdi->driver_f.notify_restart_rc(qp, 2068 qp->s_last_psn + 1, 2069 1); 2070 rdi->driver_f.schedule_send(qp); 2071 } 2072 spin_unlock(&qp->s_lock); 2073 spin_unlock_irqrestore(&qp->r_lock, flags); 2074 } 2075 2076 /* 2077 * This is called from s_timer for RNR timeouts. 2078 */ 2079 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2080 { 2081 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2082 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2083 unsigned long flags; 2084 2085 spin_lock_irqsave(&qp->s_lock, flags); 2086 rvt_stop_rnr_timer(qp); 2087 rdi->driver_f.schedule_send(qp); 2088 spin_unlock_irqrestore(&qp->s_lock, flags); 2089 return HRTIMER_NORESTART; 2090 } 2091 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2092