1 /* 2 * Copyright(c) 2016 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include <rdma/opa_addr.h> 56 #include <rdma/uverbs_ioctl.h> 57 #include "qp.h" 58 #include "vt.h" 59 #include "trace.h" 60 61 static void rvt_rc_timeout(struct timer_list *t); 62 63 /* 64 * Convert the AETH RNR timeout code into the number of microseconds. 65 */ 66 static const u32 ib_rvt_rnr_table[32] = { 67 655360, /* 00: 655.36 */ 68 10, /* 01: .01 */ 69 20, /* 02 .02 */ 70 30, /* 03: .03 */ 71 40, /* 04: .04 */ 72 60, /* 05: .06 */ 73 80, /* 06: .08 */ 74 120, /* 07: .12 */ 75 160, /* 08: .16 */ 76 240, /* 09: .24 */ 77 320, /* 0A: .32 */ 78 480, /* 0B: .48 */ 79 640, /* 0C: .64 */ 80 960, /* 0D: .96 */ 81 1280, /* 0E: 1.28 */ 82 1920, /* 0F: 1.92 */ 83 2560, /* 10: 2.56 */ 84 3840, /* 11: 3.84 */ 85 5120, /* 12: 5.12 */ 86 7680, /* 13: 7.68 */ 87 10240, /* 14: 10.24 */ 88 15360, /* 15: 15.36 */ 89 20480, /* 16: 20.48 */ 90 30720, /* 17: 30.72 */ 91 40960, /* 18: 40.96 */ 92 61440, /* 19: 61.44 */ 93 81920, /* 1A: 81.92 */ 94 122880, /* 1B: 122.88 */ 95 163840, /* 1C: 163.84 */ 96 245760, /* 1D: 245.76 */ 97 327680, /* 1E: 327.68 */ 98 491520 /* 1F: 491.52 */ 99 }; 100 101 /* 102 * Note that it is OK to post send work requests in the SQE and ERR 103 * states; rvt_do_send() will process them and generate error 104 * completions as per IB 1.2 C10-96. 105 */ 106 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 107 [IB_QPS_RESET] = 0, 108 [IB_QPS_INIT] = RVT_POST_RECV_OK, 109 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 110 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 111 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 112 RVT_PROCESS_NEXT_SEND_OK, 113 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 114 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 115 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 116 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 117 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 118 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 119 }; 120 EXPORT_SYMBOL(ib_rvt_state_ops); 121 122 /* platform specific: return the last level cache (llc) size, in KiB */ 123 static int rvt_wss_llc_size(void) 124 { 125 /* assume that the boot CPU value is universal for all CPUs */ 126 return boot_cpu_data.x86_cache_size; 127 } 128 129 /* platform specific: cacheless copy */ 130 static void cacheless_memcpy(void *dst, void *src, size_t n) 131 { 132 /* 133 * Use the only available X64 cacheless copy. Add a __user cast 134 * to quiet sparse. The src agument is already in the kernel so 135 * there are no security issues. The extra fault recovery machinery 136 * is not invoked. 137 */ 138 __copy_user_nocache(dst, (void __user *)src, n, 0); 139 } 140 141 void rvt_wss_exit(struct rvt_dev_info *rdi) 142 { 143 struct rvt_wss *wss = rdi->wss; 144 145 if (!wss) 146 return; 147 148 /* coded to handle partially initialized and repeat callers */ 149 kfree(wss->entries); 150 wss->entries = NULL; 151 kfree(rdi->wss); 152 rdi->wss = NULL; 153 } 154 155 /** 156 * rvt_wss_init - Init wss data structures 157 * 158 * Return: 0 on success 159 */ 160 int rvt_wss_init(struct rvt_dev_info *rdi) 161 { 162 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 163 unsigned int wss_threshold = rdi->dparms.wss_threshold; 164 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 165 long llc_size; 166 long llc_bits; 167 long table_size; 168 long table_bits; 169 struct rvt_wss *wss; 170 int node = rdi->dparms.node; 171 172 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 173 rdi->wss = NULL; 174 return 0; 175 } 176 177 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 178 if (!rdi->wss) 179 return -ENOMEM; 180 wss = rdi->wss; 181 182 /* check for a valid percent range - default to 80 if none or invalid */ 183 if (wss_threshold < 1 || wss_threshold > 100) 184 wss_threshold = 80; 185 186 /* reject a wildly large period */ 187 if (wss_clean_period > 1000000) 188 wss_clean_period = 256; 189 190 /* reject a zero period */ 191 if (wss_clean_period == 0) 192 wss_clean_period = 1; 193 194 /* 195 * Calculate the table size - the next power of 2 larger than the 196 * LLC size. LLC size is in KiB. 197 */ 198 llc_size = rvt_wss_llc_size() * 1024; 199 table_size = roundup_pow_of_two(llc_size); 200 201 /* one bit per page in rounded up table */ 202 llc_bits = llc_size / PAGE_SIZE; 203 table_bits = table_size / PAGE_SIZE; 204 wss->pages_mask = table_bits - 1; 205 wss->num_entries = table_bits / BITS_PER_LONG; 206 207 wss->threshold = (llc_bits * wss_threshold) / 100; 208 if (wss->threshold == 0) 209 wss->threshold = 1; 210 211 wss->clean_period = wss_clean_period; 212 atomic_set(&wss->clean_counter, wss_clean_period); 213 214 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 215 GFP_KERNEL, node); 216 if (!wss->entries) { 217 rvt_wss_exit(rdi); 218 return -ENOMEM; 219 } 220 221 return 0; 222 } 223 224 /* 225 * Advance the clean counter. When the clean period has expired, 226 * clean an entry. 227 * 228 * This is implemented in atomics to avoid locking. Because multiple 229 * variables are involved, it can be racy which can lead to slightly 230 * inaccurate information. Since this is only a heuristic, this is 231 * OK. Any innaccuracies will clean themselves out as the counter 232 * advances. That said, it is unlikely the entry clean operation will 233 * race - the next possible racer will not start until the next clean 234 * period. 235 * 236 * The clean counter is implemented as a decrement to zero. When zero 237 * is reached an entry is cleaned. 238 */ 239 static void wss_advance_clean_counter(struct rvt_wss *wss) 240 { 241 int entry; 242 int weight; 243 unsigned long bits; 244 245 /* become the cleaner if we decrement the counter to zero */ 246 if (atomic_dec_and_test(&wss->clean_counter)) { 247 /* 248 * Set, not add, the clean period. This avoids an issue 249 * where the counter could decrement below the clean period. 250 * Doing a set can result in lost decrements, slowing the 251 * clean advance. Since this a heuristic, this possible 252 * slowdown is OK. 253 * 254 * An alternative is to loop, advancing the counter by a 255 * clean period until the result is > 0. However, this could 256 * lead to several threads keeping another in the clean loop. 257 * This could be mitigated by limiting the number of times 258 * we stay in the loop. 259 */ 260 atomic_set(&wss->clean_counter, wss->clean_period); 261 262 /* 263 * Uniquely grab the entry to clean and move to next. 264 * The current entry is always the lower bits of 265 * wss.clean_entry. The table size, wss.num_entries, 266 * is always a power-of-2. 267 */ 268 entry = (atomic_inc_return(&wss->clean_entry) - 1) 269 & (wss->num_entries - 1); 270 271 /* clear the entry and count the bits */ 272 bits = xchg(&wss->entries[entry], 0); 273 weight = hweight64((u64)bits); 274 /* only adjust the contended total count if needed */ 275 if (weight) 276 atomic_sub(weight, &wss->total_count); 277 } 278 } 279 280 /* 281 * Insert the given address into the working set array. 282 */ 283 static void wss_insert(struct rvt_wss *wss, void *address) 284 { 285 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 286 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 287 u32 nr = page & (BITS_PER_LONG - 1); 288 289 if (!test_and_set_bit(nr, &wss->entries[entry])) 290 atomic_inc(&wss->total_count); 291 292 wss_advance_clean_counter(wss); 293 } 294 295 /* 296 * Is the working set larger than the threshold? 297 */ 298 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 299 { 300 return atomic_read(&wss->total_count) >= wss->threshold; 301 } 302 303 static void get_map_page(struct rvt_qpn_table *qpt, 304 struct rvt_qpn_map *map) 305 { 306 unsigned long page = get_zeroed_page(GFP_KERNEL); 307 308 /* 309 * Free the page if someone raced with us installing it. 310 */ 311 312 spin_lock(&qpt->lock); 313 if (map->page) 314 free_page(page); 315 else 316 map->page = (void *)page; 317 spin_unlock(&qpt->lock); 318 } 319 320 /** 321 * init_qpn_table - initialize the QP number table for a device 322 * @qpt: the QPN table 323 */ 324 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 325 { 326 u32 offset, i; 327 struct rvt_qpn_map *map; 328 int ret = 0; 329 330 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 331 return -EINVAL; 332 333 spin_lock_init(&qpt->lock); 334 335 qpt->last = rdi->dparms.qpn_start; 336 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 337 338 /* 339 * Drivers may want some QPs beyond what we need for verbs let them use 340 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 341 * for those. The reserved range must be *after* the range which verbs 342 * will pick from. 343 */ 344 345 /* Figure out number of bit maps needed before reserved range */ 346 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 347 348 /* This should always be zero */ 349 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 350 351 /* Starting with the first reserved bit map */ 352 map = &qpt->map[qpt->nmaps]; 353 354 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 355 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 356 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 357 if (!map->page) { 358 get_map_page(qpt, map); 359 if (!map->page) { 360 ret = -ENOMEM; 361 break; 362 } 363 } 364 set_bit(offset, map->page); 365 offset++; 366 if (offset == RVT_BITS_PER_PAGE) { 367 /* next page */ 368 qpt->nmaps++; 369 map++; 370 offset = 0; 371 } 372 } 373 return ret; 374 } 375 376 /** 377 * free_qpn_table - free the QP number table for a device 378 * @qpt: the QPN table 379 */ 380 static void free_qpn_table(struct rvt_qpn_table *qpt) 381 { 382 int i; 383 384 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 385 free_page((unsigned long)qpt->map[i].page); 386 } 387 388 /** 389 * rvt_driver_qp_init - Init driver qp resources 390 * @rdi: rvt dev strucutre 391 * 392 * Return: 0 on success 393 */ 394 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 395 { 396 int i; 397 int ret = -ENOMEM; 398 399 if (!rdi->dparms.qp_table_size) 400 return -EINVAL; 401 402 /* 403 * If driver is not doing any QP allocation then make sure it is 404 * providing the necessary QP functions. 405 */ 406 if (!rdi->driver_f.free_all_qps || 407 !rdi->driver_f.qp_priv_alloc || 408 !rdi->driver_f.qp_priv_free || 409 !rdi->driver_f.notify_qp_reset || 410 !rdi->driver_f.notify_restart_rc) 411 return -EINVAL; 412 413 /* allocate parent object */ 414 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 415 rdi->dparms.node); 416 if (!rdi->qp_dev) 417 return -ENOMEM; 418 419 /* allocate hash table */ 420 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 421 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 422 rdi->qp_dev->qp_table = 423 kmalloc_array_node(rdi->qp_dev->qp_table_size, 424 sizeof(*rdi->qp_dev->qp_table), 425 GFP_KERNEL, rdi->dparms.node); 426 if (!rdi->qp_dev->qp_table) 427 goto no_qp_table; 428 429 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 430 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 431 432 spin_lock_init(&rdi->qp_dev->qpt_lock); 433 434 /* initialize qpn map */ 435 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 436 goto fail_table; 437 438 spin_lock_init(&rdi->n_qps_lock); 439 440 return 0; 441 442 fail_table: 443 kfree(rdi->qp_dev->qp_table); 444 free_qpn_table(&rdi->qp_dev->qpn_table); 445 446 no_qp_table: 447 kfree(rdi->qp_dev); 448 449 return ret; 450 } 451 452 /** 453 * free_all_qps - check for QPs still in use 454 * @rdi: rvt device info structure 455 * 456 * There should not be any QPs still in use. 457 * Free memory for table. 458 */ 459 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 460 { 461 unsigned long flags; 462 struct rvt_qp *qp; 463 unsigned n, qp_inuse = 0; 464 spinlock_t *ql; /* work around too long line below */ 465 466 if (rdi->driver_f.free_all_qps) 467 qp_inuse = rdi->driver_f.free_all_qps(rdi); 468 469 qp_inuse += rvt_mcast_tree_empty(rdi); 470 471 if (!rdi->qp_dev) 472 return qp_inuse; 473 474 ql = &rdi->qp_dev->qpt_lock; 475 spin_lock_irqsave(ql, flags); 476 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) { 477 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n], 478 lockdep_is_held(ql)); 479 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL); 480 481 for (; qp; qp = rcu_dereference_protected(qp->next, 482 lockdep_is_held(ql))) 483 qp_inuse++; 484 } 485 spin_unlock_irqrestore(ql, flags); 486 synchronize_rcu(); 487 return qp_inuse; 488 } 489 490 /** 491 * rvt_qp_exit - clean up qps on device exit 492 * @rdi: rvt dev structure 493 * 494 * Check for qp leaks and free resources. 495 */ 496 void rvt_qp_exit(struct rvt_dev_info *rdi) 497 { 498 u32 qps_inuse = rvt_free_all_qps(rdi); 499 500 if (qps_inuse) 501 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 502 qps_inuse); 503 if (!rdi->qp_dev) 504 return; 505 506 kfree(rdi->qp_dev->qp_table); 507 free_qpn_table(&rdi->qp_dev->qpn_table); 508 kfree(rdi->qp_dev); 509 } 510 511 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 512 struct rvt_qpn_map *map, unsigned off) 513 { 514 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 515 } 516 517 /** 518 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 519 * IB_QPT_SMI/IB_QPT_GSI 520 * @rdi: rvt device info structure 521 * @qpt: queue pair number table pointer 522 * @port_num: IB port number, 1 based, comes from core 523 * 524 * Return: The queue pair number 525 */ 526 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 527 enum ib_qp_type type, u8 port_num) 528 { 529 u32 i, offset, max_scan, qpn; 530 struct rvt_qpn_map *map; 531 u32 ret; 532 533 if (rdi->driver_f.alloc_qpn) 534 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 535 536 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 537 unsigned n; 538 539 ret = type == IB_QPT_GSI; 540 n = 1 << (ret + 2 * (port_num - 1)); 541 spin_lock(&qpt->lock); 542 if (qpt->flags & n) 543 ret = -EINVAL; 544 else 545 qpt->flags |= n; 546 spin_unlock(&qpt->lock); 547 goto bail; 548 } 549 550 qpn = qpt->last + qpt->incr; 551 if (qpn >= RVT_QPN_MAX) 552 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 553 /* offset carries bit 0 */ 554 offset = qpn & RVT_BITS_PER_PAGE_MASK; 555 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 556 max_scan = qpt->nmaps - !offset; 557 for (i = 0;;) { 558 if (unlikely(!map->page)) { 559 get_map_page(qpt, map); 560 if (unlikely(!map->page)) 561 break; 562 } 563 do { 564 if (!test_and_set_bit(offset, map->page)) { 565 qpt->last = qpn; 566 ret = qpn; 567 goto bail; 568 } 569 offset += qpt->incr; 570 /* 571 * This qpn might be bogus if offset >= BITS_PER_PAGE. 572 * That is OK. It gets re-assigned below 573 */ 574 qpn = mk_qpn(qpt, map, offset); 575 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 576 /* 577 * In order to keep the number of pages allocated to a 578 * minimum, we scan the all existing pages before increasing 579 * the size of the bitmap table. 580 */ 581 if (++i > max_scan) { 582 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 583 break; 584 map = &qpt->map[qpt->nmaps++]; 585 /* start at incr with current bit 0 */ 586 offset = qpt->incr | (offset & 1); 587 } else if (map < &qpt->map[qpt->nmaps]) { 588 ++map; 589 /* start at incr with current bit 0 */ 590 offset = qpt->incr | (offset & 1); 591 } else { 592 map = &qpt->map[0]; 593 /* wrap to first map page, invert bit 0 */ 594 offset = qpt->incr | ((offset & 1) ^ 1); 595 } 596 /* there can be no set bits in low-order QoS bits */ 597 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1)); 598 qpn = mk_qpn(qpt, map, offset); 599 } 600 601 ret = -ENOMEM; 602 603 bail: 604 return ret; 605 } 606 607 /** 608 * rvt_clear_mr_refs - Drop help mr refs 609 * @qp: rvt qp data structure 610 * @clr_sends: If shoudl clear send side or not 611 */ 612 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 613 { 614 unsigned n; 615 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 616 617 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 618 rvt_put_ss(&qp->s_rdma_read_sge); 619 620 rvt_put_ss(&qp->r_sge); 621 622 if (clr_sends) { 623 while (qp->s_last != qp->s_head) { 624 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 625 626 rvt_put_qp_swqe(qp, wqe); 627 if (++qp->s_last >= qp->s_size) 628 qp->s_last = 0; 629 smp_wmb(); /* see qp_set_savail */ 630 } 631 if (qp->s_rdma_mr) { 632 rvt_put_mr(qp->s_rdma_mr); 633 qp->s_rdma_mr = NULL; 634 } 635 } 636 637 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 638 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 639 640 if (e->rdma_sge.mr) { 641 rvt_put_mr(e->rdma_sge.mr); 642 e->rdma_sge.mr = NULL; 643 } 644 } 645 } 646 647 /** 648 * rvt_swqe_has_lkey - return true if lkey is used by swqe 649 * @wqe - the send wqe 650 * @lkey - the lkey 651 * 652 * Test the swqe for using lkey 653 */ 654 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 655 { 656 int i; 657 658 for (i = 0; i < wqe->wr.num_sge; i++) { 659 struct rvt_sge *sge = &wqe->sg_list[i]; 660 661 if (rvt_mr_has_lkey(sge->mr, lkey)) 662 return true; 663 } 664 return false; 665 } 666 667 /** 668 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 669 * @qp - the rvt_qp 670 * @lkey - the lkey 671 */ 672 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 673 { 674 u32 s_last = qp->s_last; 675 676 while (s_last != qp->s_head) { 677 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 678 679 if (rvt_swqe_has_lkey(wqe, lkey)) 680 return true; 681 682 if (++s_last >= qp->s_size) 683 s_last = 0; 684 } 685 if (qp->s_rdma_mr) 686 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 687 return true; 688 return false; 689 } 690 691 /** 692 * rvt_qp_acks_has_lkey - return true if acks have lkey 693 * @qp - the qp 694 * @lkey - the lkey 695 */ 696 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 697 { 698 int i; 699 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 700 701 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 702 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 703 704 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 705 return true; 706 } 707 return false; 708 } 709 710 /* 711 * rvt_qp_mr_clean - clean up remote ops for lkey 712 * @qp - the qp 713 * @lkey - the lkey that is being de-registered 714 * 715 * This routine checks if the lkey is being used by 716 * the qp. 717 * 718 * If so, the qp is put into an error state to elminate 719 * any references from the qp. 720 */ 721 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 722 { 723 bool lastwqe = false; 724 725 if (qp->ibqp.qp_type == IB_QPT_SMI || 726 qp->ibqp.qp_type == IB_QPT_GSI) 727 /* avoid special QPs */ 728 return; 729 spin_lock_irq(&qp->r_lock); 730 spin_lock(&qp->s_hlock); 731 spin_lock(&qp->s_lock); 732 733 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 734 goto check_lwqe; 735 736 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 737 rvt_qp_sends_has_lkey(qp, lkey) || 738 rvt_qp_acks_has_lkey(qp, lkey)) 739 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 740 check_lwqe: 741 spin_unlock(&qp->s_lock); 742 spin_unlock(&qp->s_hlock); 743 spin_unlock_irq(&qp->r_lock); 744 if (lastwqe) { 745 struct ib_event ev; 746 747 ev.device = qp->ibqp.device; 748 ev.element.qp = &qp->ibqp; 749 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 750 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 751 } 752 } 753 754 /** 755 * rvt_remove_qp - remove qp form table 756 * @rdi: rvt dev struct 757 * @qp: qp to remove 758 * 759 * Remove the QP from the table so it can't be found asynchronously by 760 * the receive routine. 761 */ 762 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 763 { 764 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 765 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 766 unsigned long flags; 767 int removed = 1; 768 769 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 770 771 if (rcu_dereference_protected(rvp->qp[0], 772 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 773 RCU_INIT_POINTER(rvp->qp[0], NULL); 774 } else if (rcu_dereference_protected(rvp->qp[1], 775 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 776 RCU_INIT_POINTER(rvp->qp[1], NULL); 777 } else { 778 struct rvt_qp *q; 779 struct rvt_qp __rcu **qpp; 780 781 removed = 0; 782 qpp = &rdi->qp_dev->qp_table[n]; 783 for (; (q = rcu_dereference_protected(*qpp, 784 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 785 qpp = &q->next) { 786 if (q == qp) { 787 RCU_INIT_POINTER(*qpp, 788 rcu_dereference_protected(qp->next, 789 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 790 removed = 1; 791 trace_rvt_qpremove(qp, n); 792 break; 793 } 794 } 795 } 796 797 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 798 if (removed) { 799 synchronize_rcu(); 800 rvt_put_qp(qp); 801 } 802 } 803 804 /** 805 * rvt_init_qp - initialize the QP state to the reset state 806 * @qp: the QP to init or reinit 807 * @type: the QP type 808 * 809 * This function is called from both rvt_create_qp() and 810 * rvt_reset_qp(). The difference is that the reset 811 * patch the necessary locks to protect against concurent 812 * access. 813 */ 814 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 815 enum ib_qp_type type) 816 { 817 qp->remote_qpn = 0; 818 qp->qkey = 0; 819 qp->qp_access_flags = 0; 820 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 821 qp->s_hdrwords = 0; 822 qp->s_wqe = NULL; 823 qp->s_draining = 0; 824 qp->s_next_psn = 0; 825 qp->s_last_psn = 0; 826 qp->s_sending_psn = 0; 827 qp->s_sending_hpsn = 0; 828 qp->s_psn = 0; 829 qp->r_psn = 0; 830 qp->r_msn = 0; 831 if (type == IB_QPT_RC) { 832 qp->s_state = IB_OPCODE_RC_SEND_LAST; 833 qp->r_state = IB_OPCODE_RC_SEND_LAST; 834 } else { 835 qp->s_state = IB_OPCODE_UC_SEND_LAST; 836 qp->r_state = IB_OPCODE_UC_SEND_LAST; 837 } 838 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 839 qp->r_nak_state = 0; 840 qp->r_aflags = 0; 841 qp->r_flags = 0; 842 qp->s_head = 0; 843 qp->s_tail = 0; 844 qp->s_cur = 0; 845 qp->s_acked = 0; 846 qp->s_last = 0; 847 qp->s_ssn = 1; 848 qp->s_lsn = 0; 849 qp->s_mig_state = IB_MIG_MIGRATED; 850 qp->r_head_ack_queue = 0; 851 qp->s_tail_ack_queue = 0; 852 qp->s_acked_ack_queue = 0; 853 qp->s_num_rd_atomic = 0; 854 if (qp->r_rq.wq) { 855 qp->r_rq.wq->head = 0; 856 qp->r_rq.wq->tail = 0; 857 } 858 qp->r_sge.num_sge = 0; 859 atomic_set(&qp->s_reserved_used, 0); 860 } 861 862 /** 863 * rvt_reset_qp - initialize the QP state to the reset state 864 * @qp: the QP to reset 865 * @type: the QP type 866 * 867 * r_lock, s_hlock, and s_lock are required to be held by the caller 868 */ 869 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 870 enum ib_qp_type type) 871 __must_hold(&qp->s_lock) 872 __must_hold(&qp->s_hlock) 873 __must_hold(&qp->r_lock) 874 { 875 lockdep_assert_held(&qp->r_lock); 876 lockdep_assert_held(&qp->s_hlock); 877 lockdep_assert_held(&qp->s_lock); 878 if (qp->state != IB_QPS_RESET) { 879 qp->state = IB_QPS_RESET; 880 881 /* Let drivers flush their waitlist */ 882 rdi->driver_f.flush_qp_waiters(qp); 883 rvt_stop_rc_timers(qp); 884 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 885 spin_unlock(&qp->s_lock); 886 spin_unlock(&qp->s_hlock); 887 spin_unlock_irq(&qp->r_lock); 888 889 /* Stop the send queue and the retry timer */ 890 rdi->driver_f.stop_send_queue(qp); 891 rvt_del_timers_sync(qp); 892 /* Wait for things to stop */ 893 rdi->driver_f.quiesce_qp(qp); 894 895 /* take qp out the hash and wait for it to be unused */ 896 rvt_remove_qp(rdi, qp); 897 898 /* grab the lock b/c it was locked at call time */ 899 spin_lock_irq(&qp->r_lock); 900 spin_lock(&qp->s_hlock); 901 spin_lock(&qp->s_lock); 902 903 rvt_clear_mr_refs(qp, 1); 904 /* 905 * Let the driver do any tear down or re-init it needs to for 906 * a qp that has been reset 907 */ 908 rdi->driver_f.notify_qp_reset(qp); 909 } 910 rvt_init_qp(rdi, qp, type); 911 lockdep_assert_held(&qp->r_lock); 912 lockdep_assert_held(&qp->s_hlock); 913 lockdep_assert_held(&qp->s_lock); 914 } 915 916 /** rvt_free_qpn - Free a qpn from the bit map 917 * @qpt: QP table 918 * @qpn: queue pair number to free 919 */ 920 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 921 { 922 struct rvt_qpn_map *map; 923 924 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 925 if (map->page) 926 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 927 } 928 929 /** 930 * rvt_create_qp - create a queue pair for a device 931 * @ibpd: the protection domain who's device we create the queue pair for 932 * @init_attr: the attributes of the queue pair 933 * @udata: user data for libibverbs.so 934 * 935 * Queue pair creation is mostly an rvt issue. However, drivers have their own 936 * unique idea of what queue pair numbers mean. For instance there is a reserved 937 * range for PSM. 938 * 939 * Return: the queue pair on success, otherwise returns an errno. 940 * 941 * Called by the ib_create_qp() core verbs function. 942 */ 943 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 944 struct ib_qp_init_attr *init_attr, 945 struct ib_udata *udata) 946 { 947 struct rvt_qp *qp; 948 int err; 949 struct rvt_swqe *swq = NULL; 950 size_t sz; 951 size_t sg_list_sz; 952 struct ib_qp *ret = ERR_PTR(-ENOMEM); 953 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 954 void *priv = NULL; 955 size_t sqsize; 956 957 if (!rdi) 958 return ERR_PTR(-EINVAL); 959 960 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 961 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || 962 init_attr->create_flags) 963 return ERR_PTR(-EINVAL); 964 965 /* Check receive queue parameters if no SRQ is specified. */ 966 if (!init_attr->srq) { 967 if (init_attr->cap.max_recv_sge > 968 rdi->dparms.props.max_recv_sge || 969 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 970 return ERR_PTR(-EINVAL); 971 972 if (init_attr->cap.max_send_sge + 973 init_attr->cap.max_send_wr + 974 init_attr->cap.max_recv_sge + 975 init_attr->cap.max_recv_wr == 0) 976 return ERR_PTR(-EINVAL); 977 } 978 sqsize = 979 init_attr->cap.max_send_wr + 1 + 980 rdi->dparms.reserved_operations; 981 switch (init_attr->qp_type) { 982 case IB_QPT_SMI: 983 case IB_QPT_GSI: 984 if (init_attr->port_num == 0 || 985 init_attr->port_num > ibpd->device->phys_port_cnt) 986 return ERR_PTR(-EINVAL); 987 /* fall through */ 988 case IB_QPT_UC: 989 case IB_QPT_RC: 990 case IB_QPT_UD: 991 sz = sizeof(struct rvt_sge) * 992 init_attr->cap.max_send_sge + 993 sizeof(struct rvt_swqe); 994 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 995 if (!swq) 996 return ERR_PTR(-ENOMEM); 997 998 sz = sizeof(*qp); 999 sg_list_sz = 0; 1000 if (init_attr->srq) { 1001 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1002 1003 if (srq->rq.max_sge > 1) 1004 sg_list_sz = sizeof(*qp->r_sg_list) * 1005 (srq->rq.max_sge - 1); 1006 } else if (init_attr->cap.max_recv_sge > 1) 1007 sg_list_sz = sizeof(*qp->r_sg_list) * 1008 (init_attr->cap.max_recv_sge - 1); 1009 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, 1010 rdi->dparms.node); 1011 if (!qp) 1012 goto bail_swq; 1013 1014 RCU_INIT_POINTER(qp->next, NULL); 1015 if (init_attr->qp_type == IB_QPT_RC) { 1016 qp->s_ack_queue = 1017 kcalloc_node(rvt_max_atomic(rdi), 1018 sizeof(*qp->s_ack_queue), 1019 GFP_KERNEL, 1020 rdi->dparms.node); 1021 if (!qp->s_ack_queue) 1022 goto bail_qp; 1023 } 1024 /* initialize timers needed for rc qp */ 1025 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1026 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 1027 HRTIMER_MODE_REL); 1028 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 1029 1030 /* 1031 * Driver needs to set up it's private QP structure and do any 1032 * initialization that is needed. 1033 */ 1034 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1035 if (IS_ERR(priv)) { 1036 ret = priv; 1037 goto bail_qp; 1038 } 1039 qp->priv = priv; 1040 qp->timeout_jiffies = 1041 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1042 1000UL); 1043 if (init_attr->srq) { 1044 sz = 0; 1045 } else { 1046 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1047 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1048 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1049 sizeof(struct rvt_rwqe); 1050 if (udata) 1051 qp->r_rq.wq = vmalloc_user( 1052 sizeof(struct rvt_rwq) + 1053 qp->r_rq.size * sz); 1054 else 1055 qp->r_rq.wq = vzalloc_node( 1056 sizeof(struct rvt_rwq) + 1057 qp->r_rq.size * sz, 1058 rdi->dparms.node); 1059 if (!qp->r_rq.wq) 1060 goto bail_driver_priv; 1061 } 1062 1063 /* 1064 * ib_create_qp() will initialize qp->ibqp 1065 * except for qp->ibqp.qp_num. 1066 */ 1067 spin_lock_init(&qp->r_lock); 1068 spin_lock_init(&qp->s_hlock); 1069 spin_lock_init(&qp->s_lock); 1070 spin_lock_init(&qp->r_rq.lock); 1071 atomic_set(&qp->refcount, 0); 1072 atomic_set(&qp->local_ops_pending, 0); 1073 init_waitqueue_head(&qp->wait); 1074 INIT_LIST_HEAD(&qp->rspwait); 1075 qp->state = IB_QPS_RESET; 1076 qp->s_wq = swq; 1077 qp->s_size = sqsize; 1078 qp->s_avail = init_attr->cap.max_send_wr; 1079 qp->s_max_sge = init_attr->cap.max_send_sge; 1080 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1081 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1082 1083 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1084 init_attr->qp_type, 1085 init_attr->port_num); 1086 if (err < 0) { 1087 ret = ERR_PTR(err); 1088 goto bail_rq_wq; 1089 } 1090 qp->ibqp.qp_num = err; 1091 qp->port_num = init_attr->port_num; 1092 rvt_init_qp(rdi, qp, init_attr->qp_type); 1093 if (rdi->driver_f.qp_priv_init) { 1094 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); 1095 if (err) { 1096 ret = ERR_PTR(err); 1097 goto bail_rq_wq; 1098 } 1099 } 1100 break; 1101 1102 default: 1103 /* Don't support raw QPs */ 1104 return ERR_PTR(-EINVAL); 1105 } 1106 1107 init_attr->cap.max_inline_data = 0; 1108 1109 /* 1110 * Return the address of the RWQ as the offset to mmap. 1111 * See rvt_mmap() for details. 1112 */ 1113 if (udata && udata->outlen >= sizeof(__u64)) { 1114 if (!qp->r_rq.wq) { 1115 __u64 offset = 0; 1116 1117 err = ib_copy_to_udata(udata, &offset, 1118 sizeof(offset)); 1119 if (err) { 1120 ret = ERR_PTR(err); 1121 goto bail_qpn; 1122 } 1123 } else { 1124 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1125 1126 qp->ip = rvt_create_mmap_info(rdi, s, udata, 1127 qp->r_rq.wq); 1128 if (!qp->ip) { 1129 ret = ERR_PTR(-ENOMEM); 1130 goto bail_qpn; 1131 } 1132 1133 err = ib_copy_to_udata(udata, &qp->ip->offset, 1134 sizeof(qp->ip->offset)); 1135 if (err) { 1136 ret = ERR_PTR(err); 1137 goto bail_ip; 1138 } 1139 } 1140 qp->pid = current->pid; 1141 } 1142 1143 spin_lock(&rdi->n_qps_lock); 1144 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1145 spin_unlock(&rdi->n_qps_lock); 1146 ret = ERR_PTR(-ENOMEM); 1147 goto bail_ip; 1148 } 1149 1150 rdi->n_qps_allocated++; 1151 /* 1152 * Maintain a busy_jiffies variable that will be added to the timeout 1153 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1154 * is scaled by the number of rc qps created for the device to reduce 1155 * the number of timeouts occurring when there is a large number of 1156 * qps. busy_jiffies is incremented every rc qp scaling interval. 1157 * The scaling interval is selected based on extensive performance 1158 * evaluation of targeted workloads. 1159 */ 1160 if (init_attr->qp_type == IB_QPT_RC) { 1161 rdi->n_rc_qps++; 1162 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1163 } 1164 spin_unlock(&rdi->n_qps_lock); 1165 1166 if (qp->ip) { 1167 spin_lock_irq(&rdi->pending_lock); 1168 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1169 spin_unlock_irq(&rdi->pending_lock); 1170 } 1171 1172 ret = &qp->ibqp; 1173 1174 /* 1175 * We have our QP and its good, now keep track of what types of opcodes 1176 * can be processed on this QP. We do this by keeping track of what the 1177 * 3 high order bits of the opcode are. 1178 */ 1179 switch (init_attr->qp_type) { 1180 case IB_QPT_SMI: 1181 case IB_QPT_GSI: 1182 case IB_QPT_UD: 1183 qp->allowed_ops = IB_OPCODE_UD; 1184 break; 1185 case IB_QPT_RC: 1186 qp->allowed_ops = IB_OPCODE_RC; 1187 break; 1188 case IB_QPT_UC: 1189 qp->allowed_ops = IB_OPCODE_UC; 1190 break; 1191 default: 1192 ret = ERR_PTR(-EINVAL); 1193 goto bail_ip; 1194 } 1195 1196 return ret; 1197 1198 bail_ip: 1199 if (qp->ip) 1200 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1201 1202 bail_qpn: 1203 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1204 1205 bail_rq_wq: 1206 if (!qp->ip) 1207 vfree(qp->r_rq.wq); 1208 1209 bail_driver_priv: 1210 rdi->driver_f.qp_priv_free(rdi, qp); 1211 1212 bail_qp: 1213 kfree(qp->s_ack_queue); 1214 kfree(qp); 1215 1216 bail_swq: 1217 vfree(swq); 1218 1219 return ret; 1220 } 1221 1222 /** 1223 * rvt_error_qp - put a QP into the error state 1224 * @qp: the QP to put into the error state 1225 * @err: the receive completion error to signal if a RWQE is active 1226 * 1227 * Flushes both send and receive work queues. 1228 * 1229 * Return: true if last WQE event should be generated. 1230 * The QP r_lock and s_lock should be held and interrupts disabled. 1231 * If we are already in error state, just return. 1232 */ 1233 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1234 { 1235 struct ib_wc wc; 1236 int ret = 0; 1237 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1238 1239 lockdep_assert_held(&qp->r_lock); 1240 lockdep_assert_held(&qp->s_lock); 1241 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1242 goto bail; 1243 1244 qp->state = IB_QPS_ERR; 1245 1246 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1247 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1248 del_timer(&qp->s_timer); 1249 } 1250 1251 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1252 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1253 1254 rdi->driver_f.notify_error_qp(qp); 1255 1256 /* Schedule the sending tasklet to drain the send work queue. */ 1257 if (READ_ONCE(qp->s_last) != qp->s_head) 1258 rdi->driver_f.schedule_send(qp); 1259 1260 rvt_clear_mr_refs(qp, 0); 1261 1262 memset(&wc, 0, sizeof(wc)); 1263 wc.qp = &qp->ibqp; 1264 wc.opcode = IB_WC_RECV; 1265 1266 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1267 wc.wr_id = qp->r_wr_id; 1268 wc.status = err; 1269 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1270 } 1271 wc.status = IB_WC_WR_FLUSH_ERR; 1272 1273 if (qp->r_rq.wq) { 1274 struct rvt_rwq *wq; 1275 u32 head; 1276 u32 tail; 1277 1278 spin_lock(&qp->r_rq.lock); 1279 1280 /* sanity check pointers before trusting them */ 1281 wq = qp->r_rq.wq; 1282 head = wq->head; 1283 if (head >= qp->r_rq.size) 1284 head = 0; 1285 tail = wq->tail; 1286 if (tail >= qp->r_rq.size) 1287 tail = 0; 1288 while (tail != head) { 1289 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1290 if (++tail >= qp->r_rq.size) 1291 tail = 0; 1292 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1293 } 1294 wq->tail = tail; 1295 1296 spin_unlock(&qp->r_rq.lock); 1297 } else if (qp->ibqp.event_handler) { 1298 ret = 1; 1299 } 1300 1301 bail: 1302 return ret; 1303 } 1304 EXPORT_SYMBOL(rvt_error_qp); 1305 1306 /* 1307 * Put the QP into the hash table. 1308 * The hash table holds a reference to the QP. 1309 */ 1310 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1311 { 1312 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1313 unsigned long flags; 1314 1315 rvt_get_qp(qp); 1316 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1317 1318 if (qp->ibqp.qp_num <= 1) { 1319 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1320 } else { 1321 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1322 1323 qp->next = rdi->qp_dev->qp_table[n]; 1324 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1325 trace_rvt_qpinsert(qp, n); 1326 } 1327 1328 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1329 } 1330 1331 /** 1332 * rvt_modify_qp - modify the attributes of a queue pair 1333 * @ibqp: the queue pair who's attributes we're modifying 1334 * @attr: the new attributes 1335 * @attr_mask: the mask of attributes to modify 1336 * @udata: user data for libibverbs.so 1337 * 1338 * Return: 0 on success, otherwise returns an errno. 1339 */ 1340 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1341 int attr_mask, struct ib_udata *udata) 1342 { 1343 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1344 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1345 enum ib_qp_state cur_state, new_state; 1346 struct ib_event ev; 1347 int lastwqe = 0; 1348 int mig = 0; 1349 int pmtu = 0; /* for gcc warning only */ 1350 int opa_ah; 1351 1352 spin_lock_irq(&qp->r_lock); 1353 spin_lock(&qp->s_hlock); 1354 spin_lock(&qp->s_lock); 1355 1356 cur_state = attr_mask & IB_QP_CUR_STATE ? 1357 attr->cur_qp_state : qp->state; 1358 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1359 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1360 1361 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1362 attr_mask)) 1363 goto inval; 1364 1365 if (rdi->driver_f.check_modify_qp && 1366 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1367 goto inval; 1368 1369 if (attr_mask & IB_QP_AV) { 1370 if (opa_ah) { 1371 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1372 opa_get_mcast_base(OPA_MCAST_NR)) 1373 goto inval; 1374 } else { 1375 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1376 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1377 goto inval; 1378 } 1379 1380 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1381 goto inval; 1382 } 1383 1384 if (attr_mask & IB_QP_ALT_PATH) { 1385 if (opa_ah) { 1386 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1387 opa_get_mcast_base(OPA_MCAST_NR)) 1388 goto inval; 1389 } else { 1390 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1391 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1392 goto inval; 1393 } 1394 1395 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1396 goto inval; 1397 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1398 goto inval; 1399 } 1400 1401 if (attr_mask & IB_QP_PKEY_INDEX) 1402 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1403 goto inval; 1404 1405 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1406 if (attr->min_rnr_timer > 31) 1407 goto inval; 1408 1409 if (attr_mask & IB_QP_PORT) 1410 if (qp->ibqp.qp_type == IB_QPT_SMI || 1411 qp->ibqp.qp_type == IB_QPT_GSI || 1412 attr->port_num == 0 || 1413 attr->port_num > ibqp->device->phys_port_cnt) 1414 goto inval; 1415 1416 if (attr_mask & IB_QP_DEST_QPN) 1417 if (attr->dest_qp_num > RVT_QPN_MASK) 1418 goto inval; 1419 1420 if (attr_mask & IB_QP_RETRY_CNT) 1421 if (attr->retry_cnt > 7) 1422 goto inval; 1423 1424 if (attr_mask & IB_QP_RNR_RETRY) 1425 if (attr->rnr_retry > 7) 1426 goto inval; 1427 1428 /* 1429 * Don't allow invalid path_mtu values. OK to set greater 1430 * than the active mtu (or even the max_cap, if we have tuned 1431 * that to a small mtu. We'll set qp->path_mtu 1432 * to the lesser of requested attribute mtu and active, 1433 * for packetizing messages. 1434 * Note that the QP port has to be set in INIT and MTU in RTR. 1435 */ 1436 if (attr_mask & IB_QP_PATH_MTU) { 1437 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1438 if (pmtu < 0) 1439 goto inval; 1440 } 1441 1442 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1443 if (attr->path_mig_state == IB_MIG_REARM) { 1444 if (qp->s_mig_state == IB_MIG_ARMED) 1445 goto inval; 1446 if (new_state != IB_QPS_RTS) 1447 goto inval; 1448 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1449 if (qp->s_mig_state == IB_MIG_REARM) 1450 goto inval; 1451 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1452 goto inval; 1453 if (qp->s_mig_state == IB_MIG_ARMED) 1454 mig = 1; 1455 } else { 1456 goto inval; 1457 } 1458 } 1459 1460 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1461 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1462 goto inval; 1463 1464 switch (new_state) { 1465 case IB_QPS_RESET: 1466 if (qp->state != IB_QPS_RESET) 1467 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1468 break; 1469 1470 case IB_QPS_RTR: 1471 /* Allow event to re-trigger if QP set to RTR more than once */ 1472 qp->r_flags &= ~RVT_R_COMM_EST; 1473 qp->state = new_state; 1474 break; 1475 1476 case IB_QPS_SQD: 1477 qp->s_draining = qp->s_last != qp->s_cur; 1478 qp->state = new_state; 1479 break; 1480 1481 case IB_QPS_SQE: 1482 if (qp->ibqp.qp_type == IB_QPT_RC) 1483 goto inval; 1484 qp->state = new_state; 1485 break; 1486 1487 case IB_QPS_ERR: 1488 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1489 break; 1490 1491 default: 1492 qp->state = new_state; 1493 break; 1494 } 1495 1496 if (attr_mask & IB_QP_PKEY_INDEX) 1497 qp->s_pkey_index = attr->pkey_index; 1498 1499 if (attr_mask & IB_QP_PORT) 1500 qp->port_num = attr->port_num; 1501 1502 if (attr_mask & IB_QP_DEST_QPN) 1503 qp->remote_qpn = attr->dest_qp_num; 1504 1505 if (attr_mask & IB_QP_SQ_PSN) { 1506 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1507 qp->s_psn = qp->s_next_psn; 1508 qp->s_sending_psn = qp->s_next_psn; 1509 qp->s_last_psn = qp->s_next_psn - 1; 1510 qp->s_sending_hpsn = qp->s_last_psn; 1511 } 1512 1513 if (attr_mask & IB_QP_RQ_PSN) 1514 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1515 1516 if (attr_mask & IB_QP_ACCESS_FLAGS) 1517 qp->qp_access_flags = attr->qp_access_flags; 1518 1519 if (attr_mask & IB_QP_AV) { 1520 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1521 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1522 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1523 } 1524 1525 if (attr_mask & IB_QP_ALT_PATH) { 1526 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1527 qp->s_alt_pkey_index = attr->alt_pkey_index; 1528 } 1529 1530 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1531 qp->s_mig_state = attr->path_mig_state; 1532 if (mig) { 1533 qp->remote_ah_attr = qp->alt_ah_attr; 1534 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1535 qp->s_pkey_index = qp->s_alt_pkey_index; 1536 } 1537 } 1538 1539 if (attr_mask & IB_QP_PATH_MTU) { 1540 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1541 qp->log_pmtu = ilog2(qp->pmtu); 1542 } 1543 1544 if (attr_mask & IB_QP_RETRY_CNT) { 1545 qp->s_retry_cnt = attr->retry_cnt; 1546 qp->s_retry = attr->retry_cnt; 1547 } 1548 1549 if (attr_mask & IB_QP_RNR_RETRY) { 1550 qp->s_rnr_retry_cnt = attr->rnr_retry; 1551 qp->s_rnr_retry = attr->rnr_retry; 1552 } 1553 1554 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1555 qp->r_min_rnr_timer = attr->min_rnr_timer; 1556 1557 if (attr_mask & IB_QP_TIMEOUT) { 1558 qp->timeout = attr->timeout; 1559 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1560 } 1561 1562 if (attr_mask & IB_QP_QKEY) 1563 qp->qkey = attr->qkey; 1564 1565 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1566 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1567 1568 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1569 qp->s_max_rd_atomic = attr->max_rd_atomic; 1570 1571 if (rdi->driver_f.modify_qp) 1572 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1573 1574 spin_unlock(&qp->s_lock); 1575 spin_unlock(&qp->s_hlock); 1576 spin_unlock_irq(&qp->r_lock); 1577 1578 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1579 rvt_insert_qp(rdi, qp); 1580 1581 if (lastwqe) { 1582 ev.device = qp->ibqp.device; 1583 ev.element.qp = &qp->ibqp; 1584 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1585 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1586 } 1587 if (mig) { 1588 ev.device = qp->ibqp.device; 1589 ev.element.qp = &qp->ibqp; 1590 ev.event = IB_EVENT_PATH_MIG; 1591 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1592 } 1593 return 0; 1594 1595 inval: 1596 spin_unlock(&qp->s_lock); 1597 spin_unlock(&qp->s_hlock); 1598 spin_unlock_irq(&qp->r_lock); 1599 return -EINVAL; 1600 } 1601 1602 /** 1603 * rvt_destroy_qp - destroy a queue pair 1604 * @ibqp: the queue pair to destroy 1605 * 1606 * Note that this can be called while the QP is actively sending or 1607 * receiving! 1608 * 1609 * Return: 0 on success. 1610 */ 1611 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) 1612 { 1613 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1614 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1615 1616 spin_lock_irq(&qp->r_lock); 1617 spin_lock(&qp->s_hlock); 1618 spin_lock(&qp->s_lock); 1619 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1620 spin_unlock(&qp->s_lock); 1621 spin_unlock(&qp->s_hlock); 1622 spin_unlock_irq(&qp->r_lock); 1623 1624 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1625 /* qpn is now available for use again */ 1626 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1627 1628 spin_lock(&rdi->n_qps_lock); 1629 rdi->n_qps_allocated--; 1630 if (qp->ibqp.qp_type == IB_QPT_RC) { 1631 rdi->n_rc_qps--; 1632 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1633 } 1634 spin_unlock(&rdi->n_qps_lock); 1635 1636 if (qp->ip) 1637 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1638 else 1639 vfree(qp->r_rq.wq); 1640 rdi->driver_f.qp_priv_free(rdi, qp); 1641 kfree(qp->s_ack_queue); 1642 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1643 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1644 vfree(qp->s_wq); 1645 kfree(qp); 1646 return 0; 1647 } 1648 1649 /** 1650 * rvt_query_qp - query an ipbq 1651 * @ibqp: IB qp to query 1652 * @attr: attr struct to fill in 1653 * @attr_mask: attr mask ignored 1654 * @init_attr: struct to fill in 1655 * 1656 * Return: always 0 1657 */ 1658 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1659 int attr_mask, struct ib_qp_init_attr *init_attr) 1660 { 1661 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1662 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1663 1664 attr->qp_state = qp->state; 1665 attr->cur_qp_state = attr->qp_state; 1666 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1667 attr->path_mig_state = qp->s_mig_state; 1668 attr->qkey = qp->qkey; 1669 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1670 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1671 attr->dest_qp_num = qp->remote_qpn; 1672 attr->qp_access_flags = qp->qp_access_flags; 1673 attr->cap.max_send_wr = qp->s_size - 1 - 1674 rdi->dparms.reserved_operations; 1675 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1676 attr->cap.max_send_sge = qp->s_max_sge; 1677 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1678 attr->cap.max_inline_data = 0; 1679 attr->ah_attr = qp->remote_ah_attr; 1680 attr->alt_ah_attr = qp->alt_ah_attr; 1681 attr->pkey_index = qp->s_pkey_index; 1682 attr->alt_pkey_index = qp->s_alt_pkey_index; 1683 attr->en_sqd_async_notify = 0; 1684 attr->sq_draining = qp->s_draining; 1685 attr->max_rd_atomic = qp->s_max_rd_atomic; 1686 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1687 attr->min_rnr_timer = qp->r_min_rnr_timer; 1688 attr->port_num = qp->port_num; 1689 attr->timeout = qp->timeout; 1690 attr->retry_cnt = qp->s_retry_cnt; 1691 attr->rnr_retry = qp->s_rnr_retry_cnt; 1692 attr->alt_port_num = 1693 rdma_ah_get_port_num(&qp->alt_ah_attr); 1694 attr->alt_timeout = qp->alt_timeout; 1695 1696 init_attr->event_handler = qp->ibqp.event_handler; 1697 init_attr->qp_context = qp->ibqp.qp_context; 1698 init_attr->send_cq = qp->ibqp.send_cq; 1699 init_attr->recv_cq = qp->ibqp.recv_cq; 1700 init_attr->srq = qp->ibqp.srq; 1701 init_attr->cap = attr->cap; 1702 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1703 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1704 else 1705 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1706 init_attr->qp_type = qp->ibqp.qp_type; 1707 init_attr->port_num = qp->port_num; 1708 return 0; 1709 } 1710 1711 /** 1712 * rvt_post_receive - post a receive on a QP 1713 * @ibqp: the QP to post the receive on 1714 * @wr: the WR to post 1715 * @bad_wr: the first bad WR is put here 1716 * 1717 * This may be called from interrupt context. 1718 * 1719 * Return: 0 on success otherwise errno 1720 */ 1721 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1722 const struct ib_recv_wr **bad_wr) 1723 { 1724 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1725 struct rvt_rwq *wq = qp->r_rq.wq; 1726 unsigned long flags; 1727 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1728 !qp->ibqp.srq; 1729 1730 /* Check that state is OK to post receive. */ 1731 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1732 *bad_wr = wr; 1733 return -EINVAL; 1734 } 1735 1736 for (; wr; wr = wr->next) { 1737 struct rvt_rwqe *wqe; 1738 u32 next; 1739 int i; 1740 1741 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1742 *bad_wr = wr; 1743 return -EINVAL; 1744 } 1745 1746 spin_lock_irqsave(&qp->r_rq.lock, flags); 1747 next = wq->head + 1; 1748 if (next >= qp->r_rq.size) 1749 next = 0; 1750 if (next == wq->tail) { 1751 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1752 *bad_wr = wr; 1753 return -ENOMEM; 1754 } 1755 if (unlikely(qp_err_flush)) { 1756 struct ib_wc wc; 1757 1758 memset(&wc, 0, sizeof(wc)); 1759 wc.qp = &qp->ibqp; 1760 wc.opcode = IB_WC_RECV; 1761 wc.wr_id = wr->wr_id; 1762 wc.status = IB_WC_WR_FLUSH_ERR; 1763 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1764 } else { 1765 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1766 wqe->wr_id = wr->wr_id; 1767 wqe->num_sge = wr->num_sge; 1768 for (i = 0; i < wr->num_sge; i++) 1769 wqe->sg_list[i] = wr->sg_list[i]; 1770 /* 1771 * Make sure queue entry is written 1772 * before the head index. 1773 */ 1774 smp_wmb(); 1775 wq->head = next; 1776 } 1777 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1778 } 1779 return 0; 1780 } 1781 1782 /** 1783 * rvt_qp_valid_operation - validate post send wr request 1784 * @qp - the qp 1785 * @post-parms - the post send table for the driver 1786 * @wr - the work request 1787 * 1788 * The routine validates the operation based on the 1789 * validation table an returns the length of the operation 1790 * which can extend beyond the ib_send_bw. Operation 1791 * dependent flags key atomic operation validation. 1792 * 1793 * There is an exception for UD qps that validates the pd and 1794 * overrides the length to include the additional UD specific 1795 * length. 1796 * 1797 * Returns a negative error or the length of the work request 1798 * for building the swqe. 1799 */ 1800 static inline int rvt_qp_valid_operation( 1801 struct rvt_qp *qp, 1802 const struct rvt_operation_params *post_parms, 1803 const struct ib_send_wr *wr) 1804 { 1805 int len; 1806 1807 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1808 return -EINVAL; 1809 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1810 return -EINVAL; 1811 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1812 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1813 return -EINVAL; 1814 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1815 (wr->num_sge == 0 || 1816 wr->sg_list[0].length < sizeof(u64) || 1817 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1818 return -EINVAL; 1819 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1820 !qp->s_max_rd_atomic) 1821 return -EINVAL; 1822 len = post_parms[wr->opcode].length; 1823 /* UD specific */ 1824 if (qp->ibqp.qp_type != IB_QPT_UC && 1825 qp->ibqp.qp_type != IB_QPT_RC) { 1826 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1827 return -EINVAL; 1828 len = sizeof(struct ib_ud_wr); 1829 } 1830 return len; 1831 } 1832 1833 /** 1834 * rvt_qp_is_avail - determine queue capacity 1835 * @qp: the qp 1836 * @rdi: the rdmavt device 1837 * @reserved_op: is reserved operation 1838 * 1839 * This assumes the s_hlock is held but the s_last 1840 * qp variable is uncontrolled. 1841 * 1842 * For non reserved operations, the qp->s_avail 1843 * may be changed. 1844 * 1845 * The return value is zero or a -ENOMEM. 1846 */ 1847 static inline int rvt_qp_is_avail( 1848 struct rvt_qp *qp, 1849 struct rvt_dev_info *rdi, 1850 bool reserved_op) 1851 { 1852 u32 slast; 1853 u32 avail; 1854 u32 reserved_used; 1855 1856 /* see rvt_qp_wqe_unreserve() */ 1857 smp_mb__before_atomic(); 1858 reserved_used = atomic_read(&qp->s_reserved_used); 1859 if (unlikely(reserved_op)) { 1860 /* see rvt_qp_wqe_unreserve() */ 1861 smp_mb__before_atomic(); 1862 if (reserved_used >= rdi->dparms.reserved_operations) 1863 return -ENOMEM; 1864 return 0; 1865 } 1866 /* non-reserved operations */ 1867 if (likely(qp->s_avail)) 1868 return 0; 1869 slast = READ_ONCE(qp->s_last); 1870 if (qp->s_head >= slast) 1871 avail = qp->s_size - (qp->s_head - slast); 1872 else 1873 avail = slast - qp->s_head; 1874 1875 /* see rvt_qp_wqe_unreserve() */ 1876 smp_mb__before_atomic(); 1877 reserved_used = atomic_read(&qp->s_reserved_used); 1878 avail = avail - 1 - 1879 (rdi->dparms.reserved_operations - reserved_used); 1880 /* insure we don't assign a negative s_avail */ 1881 if ((s32)avail <= 0) 1882 return -ENOMEM; 1883 qp->s_avail = avail; 1884 if (WARN_ON(qp->s_avail > 1885 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1886 rvt_pr_err(rdi, 1887 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1888 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1889 qp->s_head, qp->s_tail, qp->s_cur, 1890 qp->s_acked, qp->s_last); 1891 return 0; 1892 } 1893 1894 /** 1895 * rvt_post_one_wr - post one RC, UC, or UD send work request 1896 * @qp: the QP to post on 1897 * @wr: the work request to send 1898 */ 1899 static int rvt_post_one_wr(struct rvt_qp *qp, 1900 const struct ib_send_wr *wr, 1901 bool *call_send) 1902 { 1903 struct rvt_swqe *wqe; 1904 u32 next; 1905 int i; 1906 int j; 1907 int acc; 1908 struct rvt_lkey_table *rkt; 1909 struct rvt_pd *pd; 1910 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1911 u8 log_pmtu; 1912 int ret; 1913 size_t cplen; 1914 bool reserved_op; 1915 int local_ops_delayed = 0; 1916 1917 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1918 1919 /* IB spec says that num_sge == 0 is OK. */ 1920 if (unlikely(wr->num_sge > qp->s_max_sge)) 1921 return -EINVAL; 1922 1923 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1924 if (ret < 0) 1925 return ret; 1926 cplen = ret; 1927 1928 /* 1929 * Local operations include fast register and local invalidate. 1930 * Fast register needs to be processed immediately because the 1931 * registered lkey may be used by following work requests and the 1932 * lkey needs to be valid at the time those requests are posted. 1933 * Local invalidate can be processed immediately if fencing is 1934 * not required and no previous local invalidate ops are pending. 1935 * Signaled local operations that have been processed immediately 1936 * need to have requests with "completion only" flags set posted 1937 * to the send queue in order to generate completions. 1938 */ 1939 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 1940 switch (wr->opcode) { 1941 case IB_WR_REG_MR: 1942 ret = rvt_fast_reg_mr(qp, 1943 reg_wr(wr)->mr, 1944 reg_wr(wr)->key, 1945 reg_wr(wr)->access); 1946 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1947 return ret; 1948 break; 1949 case IB_WR_LOCAL_INV: 1950 if ((wr->send_flags & IB_SEND_FENCE) || 1951 atomic_read(&qp->local_ops_pending)) { 1952 local_ops_delayed = 1; 1953 } else { 1954 ret = rvt_invalidate_rkey( 1955 qp, wr->ex.invalidate_rkey); 1956 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1957 return ret; 1958 } 1959 break; 1960 default: 1961 return -EINVAL; 1962 } 1963 } 1964 1965 reserved_op = rdi->post_parms[wr->opcode].flags & 1966 RVT_OPERATION_USE_RESERVE; 1967 /* check for avail */ 1968 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 1969 if (ret) 1970 return ret; 1971 next = qp->s_head + 1; 1972 if (next >= qp->s_size) 1973 next = 0; 1974 1975 rkt = &rdi->lkey_table; 1976 pd = ibpd_to_rvtpd(qp->ibqp.pd); 1977 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 1978 1979 /* cplen has length from above */ 1980 memcpy(&wqe->wr, wr, cplen); 1981 1982 wqe->length = 0; 1983 j = 0; 1984 if (wr->num_sge) { 1985 struct rvt_sge *last_sge = NULL; 1986 1987 acc = wr->opcode >= IB_WR_RDMA_READ ? 1988 IB_ACCESS_LOCAL_WRITE : 0; 1989 for (i = 0; i < wr->num_sge; i++) { 1990 u32 length = wr->sg_list[i].length; 1991 1992 if (length == 0) 1993 continue; 1994 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 1995 &wr->sg_list[i], acc); 1996 if (unlikely(ret < 0)) 1997 goto bail_inval_free; 1998 wqe->length += length; 1999 if (ret) 2000 last_sge = &wqe->sg_list[j]; 2001 j += ret; 2002 } 2003 wqe->wr.num_sge = j; 2004 } 2005 2006 /* 2007 * Calculate and set SWQE PSN values prior to handing it off 2008 * to the driver's check routine. This give the driver the 2009 * opportunity to adjust PSN values based on internal checks. 2010 */ 2011 log_pmtu = qp->log_pmtu; 2012 if (qp->allowed_ops == IB_OPCODE_UD) { 2013 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah); 2014 2015 log_pmtu = ah->log_pmtu; 2016 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 2017 } 2018 2019 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2020 if (local_ops_delayed) 2021 atomic_inc(&qp->local_ops_pending); 2022 else 2023 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2024 wqe->ssn = 0; 2025 wqe->psn = 0; 2026 wqe->lpsn = 0; 2027 } else { 2028 wqe->ssn = qp->s_ssn++; 2029 wqe->psn = qp->s_next_psn; 2030 wqe->lpsn = wqe->psn + 2031 (wqe->length ? 2032 ((wqe->length - 1) >> log_pmtu) : 2033 0); 2034 } 2035 2036 /* general part of wqe valid - allow for driver checks */ 2037 if (rdi->driver_f.setup_wqe) { 2038 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2039 if (ret < 0) 2040 goto bail_inval_free_ref; 2041 } 2042 2043 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2044 qp->s_next_psn = wqe->lpsn + 1; 2045 2046 if (unlikely(reserved_op)) { 2047 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2048 rvt_qp_wqe_reserve(qp, wqe); 2049 } else { 2050 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2051 qp->s_avail--; 2052 } 2053 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2054 smp_wmb(); /* see request builders */ 2055 qp->s_head = next; 2056 2057 return 0; 2058 2059 bail_inval_free_ref: 2060 if (qp->allowed_ops == IB_OPCODE_UD) 2061 atomic_dec(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 2062 bail_inval_free: 2063 /* release mr holds */ 2064 while (j) { 2065 struct rvt_sge *sge = &wqe->sg_list[--j]; 2066 2067 rvt_put_mr(sge->mr); 2068 } 2069 return ret; 2070 } 2071 2072 /** 2073 * rvt_post_send - post a send on a QP 2074 * @ibqp: the QP to post the send on 2075 * @wr: the list of work requests to post 2076 * @bad_wr: the first bad WR is put here 2077 * 2078 * This may be called from interrupt context. 2079 * 2080 * Return: 0 on success else errno 2081 */ 2082 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2083 const struct ib_send_wr **bad_wr) 2084 { 2085 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2086 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2087 unsigned long flags = 0; 2088 bool call_send; 2089 unsigned nreq = 0; 2090 int err = 0; 2091 2092 spin_lock_irqsave(&qp->s_hlock, flags); 2093 2094 /* 2095 * Ensure QP state is such that we can send. If not bail out early, 2096 * there is no need to do this every time we post a send. 2097 */ 2098 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2099 spin_unlock_irqrestore(&qp->s_hlock, flags); 2100 return -EINVAL; 2101 } 2102 2103 /* 2104 * If the send queue is empty, and we only have a single WR then just go 2105 * ahead and kick the send engine into gear. Otherwise we will always 2106 * just schedule the send to happen later. 2107 */ 2108 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2109 2110 for (; wr; wr = wr->next) { 2111 err = rvt_post_one_wr(qp, wr, &call_send); 2112 if (unlikely(err)) { 2113 *bad_wr = wr; 2114 goto bail; 2115 } 2116 nreq++; 2117 } 2118 bail: 2119 spin_unlock_irqrestore(&qp->s_hlock, flags); 2120 if (nreq) { 2121 /* 2122 * Only call do_send if there is exactly one packet, and the 2123 * driver said it was ok. 2124 */ 2125 if (nreq == 1 && call_send) 2126 rdi->driver_f.do_send(qp); 2127 else 2128 rdi->driver_f.schedule_send_no_lock(qp); 2129 } 2130 return err; 2131 } 2132 2133 /** 2134 * rvt_post_srq_receive - post a receive on a shared receive queue 2135 * @ibsrq: the SRQ to post the receive on 2136 * @wr: the list of work requests to post 2137 * @bad_wr: A pointer to the first WR to cause a problem is put here 2138 * 2139 * This may be called from interrupt context. 2140 * 2141 * Return: 0 on success else errno 2142 */ 2143 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2144 const struct ib_recv_wr **bad_wr) 2145 { 2146 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2147 struct rvt_rwq *wq; 2148 unsigned long flags; 2149 2150 for (; wr; wr = wr->next) { 2151 struct rvt_rwqe *wqe; 2152 u32 next; 2153 int i; 2154 2155 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2156 *bad_wr = wr; 2157 return -EINVAL; 2158 } 2159 2160 spin_lock_irqsave(&srq->rq.lock, flags); 2161 wq = srq->rq.wq; 2162 next = wq->head + 1; 2163 if (next >= srq->rq.size) 2164 next = 0; 2165 if (next == wq->tail) { 2166 spin_unlock_irqrestore(&srq->rq.lock, flags); 2167 *bad_wr = wr; 2168 return -ENOMEM; 2169 } 2170 2171 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2172 wqe->wr_id = wr->wr_id; 2173 wqe->num_sge = wr->num_sge; 2174 for (i = 0; i < wr->num_sge; i++) 2175 wqe->sg_list[i] = wr->sg_list[i]; 2176 /* Make sure queue entry is written before the head index. */ 2177 smp_wmb(); 2178 wq->head = next; 2179 spin_unlock_irqrestore(&srq->rq.lock, flags); 2180 } 2181 return 0; 2182 } 2183 2184 /* 2185 * Validate a RWQE and fill in the SGE state. 2186 * Return 1 if OK. 2187 */ 2188 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2189 { 2190 int i, j, ret; 2191 struct ib_wc wc; 2192 struct rvt_lkey_table *rkt; 2193 struct rvt_pd *pd; 2194 struct rvt_sge_state *ss; 2195 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2196 2197 rkt = &rdi->lkey_table; 2198 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2199 ss = &qp->r_sge; 2200 ss->sg_list = qp->r_sg_list; 2201 qp->r_len = 0; 2202 for (i = j = 0; i < wqe->num_sge; i++) { 2203 if (wqe->sg_list[i].length == 0) 2204 continue; 2205 /* Check LKEY */ 2206 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2207 NULL, &wqe->sg_list[i], 2208 IB_ACCESS_LOCAL_WRITE); 2209 if (unlikely(ret <= 0)) 2210 goto bad_lkey; 2211 qp->r_len += wqe->sg_list[i].length; 2212 j++; 2213 } 2214 ss->num_sge = j; 2215 ss->total_len = qp->r_len; 2216 return 1; 2217 2218 bad_lkey: 2219 while (j) { 2220 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2221 2222 rvt_put_mr(sge->mr); 2223 } 2224 ss->num_sge = 0; 2225 memset(&wc, 0, sizeof(wc)); 2226 wc.wr_id = wqe->wr_id; 2227 wc.status = IB_WC_LOC_PROT_ERR; 2228 wc.opcode = IB_WC_RECV; 2229 wc.qp = &qp->ibqp; 2230 /* Signal solicited completion event. */ 2231 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2232 return 0; 2233 } 2234 2235 /** 2236 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2237 * @qp: the QP 2238 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2239 * 2240 * Return -1 if there is a local error, 0 if no RWQE is available, 2241 * otherwise return 1. 2242 * 2243 * Can be called from interrupt level. 2244 */ 2245 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2246 { 2247 unsigned long flags; 2248 struct rvt_rq *rq; 2249 struct rvt_rwq *wq; 2250 struct rvt_srq *srq; 2251 struct rvt_rwqe *wqe; 2252 void (*handler)(struct ib_event *, void *); 2253 u32 tail; 2254 int ret; 2255 2256 if (qp->ibqp.srq) { 2257 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2258 handler = srq->ibsrq.event_handler; 2259 rq = &srq->rq; 2260 } else { 2261 srq = NULL; 2262 handler = NULL; 2263 rq = &qp->r_rq; 2264 } 2265 2266 spin_lock_irqsave(&rq->lock, flags); 2267 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2268 ret = 0; 2269 goto unlock; 2270 } 2271 2272 wq = rq->wq; 2273 tail = wq->tail; 2274 /* Validate tail before using it since it is user writable. */ 2275 if (tail >= rq->size) 2276 tail = 0; 2277 if (unlikely(tail == wq->head)) { 2278 ret = 0; 2279 goto unlock; 2280 } 2281 /* Make sure entry is read after head index is read. */ 2282 smp_rmb(); 2283 wqe = rvt_get_rwqe_ptr(rq, tail); 2284 /* 2285 * Even though we update the tail index in memory, the verbs 2286 * consumer is not supposed to post more entries until a 2287 * completion is generated. 2288 */ 2289 if (++tail >= rq->size) 2290 tail = 0; 2291 wq->tail = tail; 2292 if (!wr_id_only && !init_sge(qp, wqe)) { 2293 ret = -1; 2294 goto unlock; 2295 } 2296 qp->r_wr_id = wqe->wr_id; 2297 2298 ret = 1; 2299 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2300 if (handler) { 2301 u32 n; 2302 2303 /* 2304 * Validate head pointer value and compute 2305 * the number of remaining WQEs. 2306 */ 2307 n = wq->head; 2308 if (n >= rq->size) 2309 n = 0; 2310 if (n < tail) 2311 n += rq->size - tail; 2312 else 2313 n -= tail; 2314 if (n < srq->limit) { 2315 struct ib_event ev; 2316 2317 srq->limit = 0; 2318 spin_unlock_irqrestore(&rq->lock, flags); 2319 ev.device = qp->ibqp.device; 2320 ev.element.srq = qp->ibqp.srq; 2321 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2322 handler(&ev, srq->ibsrq.srq_context); 2323 goto bail; 2324 } 2325 } 2326 unlock: 2327 spin_unlock_irqrestore(&rq->lock, flags); 2328 bail: 2329 return ret; 2330 } 2331 EXPORT_SYMBOL(rvt_get_rwqe); 2332 2333 /** 2334 * qp_comm_est - handle trap with QP established 2335 * @qp: the QP 2336 */ 2337 void rvt_comm_est(struct rvt_qp *qp) 2338 { 2339 qp->r_flags |= RVT_R_COMM_EST; 2340 if (qp->ibqp.event_handler) { 2341 struct ib_event ev; 2342 2343 ev.device = qp->ibqp.device; 2344 ev.element.qp = &qp->ibqp; 2345 ev.event = IB_EVENT_COMM_EST; 2346 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2347 } 2348 } 2349 EXPORT_SYMBOL(rvt_comm_est); 2350 2351 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2352 { 2353 unsigned long flags; 2354 int lastwqe; 2355 2356 spin_lock_irqsave(&qp->s_lock, flags); 2357 lastwqe = rvt_error_qp(qp, err); 2358 spin_unlock_irqrestore(&qp->s_lock, flags); 2359 2360 if (lastwqe) { 2361 struct ib_event ev; 2362 2363 ev.device = qp->ibqp.device; 2364 ev.element.qp = &qp->ibqp; 2365 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2366 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2367 } 2368 } 2369 EXPORT_SYMBOL(rvt_rc_error); 2370 2371 /* 2372 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2373 * @index - the index 2374 * return usec from an index into ib_rvt_rnr_table 2375 */ 2376 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2377 { 2378 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2379 } 2380 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2381 2382 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2383 { 2384 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2385 IB_AETH_CREDIT_MASK]; 2386 } 2387 2388 /* 2389 * rvt_add_retry_timer_ext - add/start a retry timer 2390 * @qp - the QP 2391 * @shift - timeout shift to wait for multiple packets 2392 * add a retry timer on the QP 2393 */ 2394 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) 2395 { 2396 struct ib_qp *ibqp = &qp->ibqp; 2397 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2398 2399 lockdep_assert_held(&qp->s_lock); 2400 qp->s_flags |= RVT_S_TIMER; 2401 /* 4.096 usec. * (1 << qp->timeout) */ 2402 qp->s_timer.expires = jiffies + rdi->busy_jiffies + 2403 (qp->timeout_jiffies << shift); 2404 add_timer(&qp->s_timer); 2405 } 2406 EXPORT_SYMBOL(rvt_add_retry_timer_ext); 2407 2408 /** 2409 * rvt_add_rnr_timer - add/start an rnr timer 2410 * @qp - the QP 2411 * @aeth - aeth of RNR timeout, simulated aeth for loopback 2412 * add an rnr timer on the QP 2413 */ 2414 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2415 { 2416 u32 to; 2417 2418 lockdep_assert_held(&qp->s_lock); 2419 qp->s_flags |= RVT_S_WAIT_RNR; 2420 to = rvt_aeth_to_usec(aeth); 2421 trace_rvt_rnrnak_add(qp, to); 2422 hrtimer_start(&qp->s_rnr_timer, 2423 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2424 } 2425 EXPORT_SYMBOL(rvt_add_rnr_timer); 2426 2427 /** 2428 * rvt_stop_rc_timers - stop all timers 2429 * @qp - the QP 2430 * stop any pending timers 2431 */ 2432 void rvt_stop_rc_timers(struct rvt_qp *qp) 2433 { 2434 lockdep_assert_held(&qp->s_lock); 2435 /* Remove QP from all timers */ 2436 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2437 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2438 del_timer(&qp->s_timer); 2439 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2440 } 2441 } 2442 EXPORT_SYMBOL(rvt_stop_rc_timers); 2443 2444 /** 2445 * rvt_stop_rnr_timer - stop an rnr timer 2446 * @qp - the QP 2447 * 2448 * stop an rnr timer and return if the timer 2449 * had been pending. 2450 */ 2451 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2452 { 2453 lockdep_assert_held(&qp->s_lock); 2454 /* Remove QP from rnr timer */ 2455 if (qp->s_flags & RVT_S_WAIT_RNR) { 2456 qp->s_flags &= ~RVT_S_WAIT_RNR; 2457 trace_rvt_rnrnak_stop(qp, 0); 2458 } 2459 } 2460 2461 /** 2462 * rvt_del_timers_sync - wait for any timeout routines to exit 2463 * @qp - the QP 2464 */ 2465 void rvt_del_timers_sync(struct rvt_qp *qp) 2466 { 2467 del_timer_sync(&qp->s_timer); 2468 hrtimer_cancel(&qp->s_rnr_timer); 2469 } 2470 EXPORT_SYMBOL(rvt_del_timers_sync); 2471 2472 /** 2473 * This is called from s_timer for missing responses. 2474 */ 2475 static void rvt_rc_timeout(struct timer_list *t) 2476 { 2477 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2478 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2479 unsigned long flags; 2480 2481 spin_lock_irqsave(&qp->r_lock, flags); 2482 spin_lock(&qp->s_lock); 2483 if (qp->s_flags & RVT_S_TIMER) { 2484 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2485 2486 qp->s_flags &= ~RVT_S_TIMER; 2487 rvp->n_rc_timeouts++; 2488 del_timer(&qp->s_timer); 2489 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2490 if (rdi->driver_f.notify_restart_rc) 2491 rdi->driver_f.notify_restart_rc(qp, 2492 qp->s_last_psn + 1, 2493 1); 2494 rdi->driver_f.schedule_send(qp); 2495 } 2496 spin_unlock(&qp->s_lock); 2497 spin_unlock_irqrestore(&qp->r_lock, flags); 2498 } 2499 2500 /* 2501 * This is called from s_timer for RNR timeouts. 2502 */ 2503 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2504 { 2505 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2506 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2507 unsigned long flags; 2508 2509 spin_lock_irqsave(&qp->s_lock, flags); 2510 rvt_stop_rnr_timer(qp); 2511 trace_rvt_rnrnak_timeout(qp, 0); 2512 rdi->driver_f.schedule_send(qp); 2513 spin_unlock_irqrestore(&qp->s_lock, flags); 2514 return HRTIMER_NORESTART; 2515 } 2516 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2517 2518 /** 2519 * rvt_qp_iter_init - initial for QP iteration 2520 * @rdi: rvt devinfo 2521 * @v: u64 value 2522 * 2523 * This returns an iterator suitable for iterating QPs 2524 * in the system. 2525 * 2526 * The @cb is a user defined callback and @v is a 64 2527 * bit value passed to and relevant for processing in the 2528 * @cb. An example use case would be to alter QP processing 2529 * based on criteria not part of the rvt_qp. 2530 * 2531 * Use cases that require memory allocation to succeed 2532 * must preallocate appropriately. 2533 * 2534 * Return: a pointer to an rvt_qp_iter or NULL 2535 */ 2536 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2537 u64 v, 2538 void (*cb)(struct rvt_qp *qp, u64 v)) 2539 { 2540 struct rvt_qp_iter *i; 2541 2542 i = kzalloc(sizeof(*i), GFP_KERNEL); 2543 if (!i) 2544 return NULL; 2545 2546 i->rdi = rdi; 2547 /* number of special QPs (SMI/GSI) for device */ 2548 i->specials = rdi->ibdev.phys_port_cnt * 2; 2549 i->v = v; 2550 i->cb = cb; 2551 2552 return i; 2553 } 2554 EXPORT_SYMBOL(rvt_qp_iter_init); 2555 2556 /** 2557 * rvt_qp_iter_next - return the next QP in iter 2558 * @iter - the iterator 2559 * 2560 * Fine grained QP iterator suitable for use 2561 * with debugfs seq_file mechanisms. 2562 * 2563 * Updates iter->qp with the current QP when the return 2564 * value is 0. 2565 * 2566 * Return: 0 - iter->qp is valid 1 - no more QPs 2567 */ 2568 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2569 __must_hold(RCU) 2570 { 2571 int n = iter->n; 2572 int ret = 1; 2573 struct rvt_qp *pqp = iter->qp; 2574 struct rvt_qp *qp; 2575 struct rvt_dev_info *rdi = iter->rdi; 2576 2577 /* 2578 * The approach is to consider the special qps 2579 * as additional table entries before the 2580 * real hash table. Since the qp code sets 2581 * the qp->next hash link to NULL, this works just fine. 2582 * 2583 * iter->specials is 2 * # ports 2584 * 2585 * n = 0..iter->specials is the special qp indices 2586 * 2587 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2588 * the potential hash bucket entries 2589 * 2590 */ 2591 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2592 if (pqp) { 2593 qp = rcu_dereference(pqp->next); 2594 } else { 2595 if (n < iter->specials) { 2596 struct rvt_ibport *rvp; 2597 int pidx; 2598 2599 pidx = n % rdi->ibdev.phys_port_cnt; 2600 rvp = rdi->ports[pidx]; 2601 qp = rcu_dereference(rvp->qp[n & 1]); 2602 } else { 2603 qp = rcu_dereference( 2604 rdi->qp_dev->qp_table[ 2605 (n - iter->specials)]); 2606 } 2607 } 2608 pqp = qp; 2609 if (qp) { 2610 iter->qp = qp; 2611 iter->n = n; 2612 return 0; 2613 } 2614 } 2615 return ret; 2616 } 2617 EXPORT_SYMBOL(rvt_qp_iter_next); 2618 2619 /** 2620 * rvt_qp_iter - iterate all QPs 2621 * @rdi - rvt devinfo 2622 * @v - a 64 bit value 2623 * @cb - a callback 2624 * 2625 * This provides a way for iterating all QPs. 2626 * 2627 * The @cb is a user defined callback and @v is a 64 2628 * bit value passed to and relevant for processing in the 2629 * cb. An example use case would be to alter QP processing 2630 * based on criteria not part of the rvt_qp. 2631 * 2632 * The code has an internal iterator to simplify 2633 * non seq_file use cases. 2634 */ 2635 void rvt_qp_iter(struct rvt_dev_info *rdi, 2636 u64 v, 2637 void (*cb)(struct rvt_qp *qp, u64 v)) 2638 { 2639 int ret; 2640 struct rvt_qp_iter i = { 2641 .rdi = rdi, 2642 .specials = rdi->ibdev.phys_port_cnt * 2, 2643 .v = v, 2644 .cb = cb 2645 }; 2646 2647 rcu_read_lock(); 2648 do { 2649 ret = rvt_qp_iter_next(&i); 2650 if (!ret) { 2651 rvt_get_qp(i.qp); 2652 rcu_read_unlock(); 2653 i.cb(i.qp, i.v); 2654 rcu_read_lock(); 2655 rvt_put_qp(i.qp); 2656 } 2657 } while (!ret); 2658 rcu_read_unlock(); 2659 } 2660 EXPORT_SYMBOL(rvt_qp_iter); 2661 2662 /* 2663 * This should be called with s_lock held. 2664 */ 2665 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2666 enum ib_wc_status status) 2667 { 2668 u32 old_last, last; 2669 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2670 2671 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2672 return; 2673 2674 last = qp->s_last; 2675 old_last = last; 2676 trace_rvt_qp_send_completion(qp, wqe, last); 2677 if (++last >= qp->s_size) 2678 last = 0; 2679 trace_rvt_qp_send_completion(qp, wqe, last); 2680 qp->s_last = last; 2681 /* See post_send() */ 2682 barrier(); 2683 rvt_put_qp_swqe(qp, wqe); 2684 2685 rvt_qp_swqe_complete(qp, 2686 wqe, 2687 rdi->wc_opcode[wqe->wr.opcode], 2688 status); 2689 2690 if (qp->s_acked == old_last) 2691 qp->s_acked = last; 2692 if (qp->s_cur == old_last) 2693 qp->s_cur = last; 2694 if (qp->s_tail == old_last) 2695 qp->s_tail = last; 2696 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2697 qp->s_draining = 0; 2698 } 2699 EXPORT_SYMBOL(rvt_send_complete); 2700 2701 /** 2702 * rvt_copy_sge - copy data to SGE memory 2703 * @qp: associated QP 2704 * @ss: the SGE state 2705 * @data: the data to copy 2706 * @length: the length of the data 2707 * @release: boolean to release MR 2708 * @copy_last: do a separate copy of the last 8 bytes 2709 */ 2710 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2711 void *data, u32 length, 2712 bool release, bool copy_last) 2713 { 2714 struct rvt_sge *sge = &ss->sge; 2715 int i; 2716 bool in_last = false; 2717 bool cacheless_copy = false; 2718 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2719 struct rvt_wss *wss = rdi->wss; 2720 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2721 2722 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2723 cacheless_copy = length >= PAGE_SIZE; 2724 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2725 if (length >= PAGE_SIZE) { 2726 /* 2727 * NOTE: this *assumes*: 2728 * o The first vaddr is the dest. 2729 * o If multiple pages, then vaddr is sequential. 2730 */ 2731 wss_insert(wss, sge->vaddr); 2732 if (length >= (2 * PAGE_SIZE)) 2733 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2734 2735 cacheless_copy = wss_exceeds_threshold(wss); 2736 } else { 2737 wss_advance_clean_counter(wss); 2738 } 2739 } 2740 2741 if (copy_last) { 2742 if (length > 8) { 2743 length -= 8; 2744 } else { 2745 copy_last = false; 2746 in_last = true; 2747 } 2748 } 2749 2750 again: 2751 while (length) { 2752 u32 len = rvt_get_sge_length(sge, length); 2753 2754 WARN_ON_ONCE(len == 0); 2755 if (unlikely(in_last)) { 2756 /* enforce byte transfer ordering */ 2757 for (i = 0; i < len; i++) 2758 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2759 } else if (cacheless_copy) { 2760 cacheless_memcpy(sge->vaddr, data, len); 2761 } else { 2762 memcpy(sge->vaddr, data, len); 2763 } 2764 rvt_update_sge(ss, len, release); 2765 data += len; 2766 length -= len; 2767 } 2768 2769 if (copy_last) { 2770 copy_last = false; 2771 in_last = true; 2772 length = 8; 2773 goto again; 2774 } 2775 } 2776 EXPORT_SYMBOL(rvt_copy_sge); 2777 2778 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, 2779 struct rvt_qp *sqp) 2780 { 2781 rvp->n_pkt_drops++; 2782 /* 2783 * For RC, the requester would timeout and retry so 2784 * shortcut the timeouts and just signal too many retries. 2785 */ 2786 return sqp->ibqp.qp_type == IB_QPT_RC ? 2787 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; 2788 } 2789 2790 /** 2791 * ruc_loopback - handle UC and RC loopback requests 2792 * @sqp: the sending QP 2793 * 2794 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2795 * Note that although we are single threaded due to the send engine, we still 2796 * have to protect against post_send(). We don't have to worry about 2797 * receive interrupts since this is a connected protocol and all packets 2798 * will pass through here. 2799 */ 2800 void rvt_ruc_loopback(struct rvt_qp *sqp) 2801 { 2802 struct rvt_ibport *rvp = NULL; 2803 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2804 struct rvt_qp *qp; 2805 struct rvt_swqe *wqe; 2806 struct rvt_sge *sge; 2807 unsigned long flags; 2808 struct ib_wc wc; 2809 u64 sdata; 2810 atomic64_t *maddr; 2811 enum ib_wc_status send_status; 2812 bool release; 2813 int ret; 2814 bool copy_last = false; 2815 int local_ops = 0; 2816 2817 rcu_read_lock(); 2818 rvp = rdi->ports[sqp->port_num - 1]; 2819 2820 /* 2821 * Note that we check the responder QP state after 2822 * checking the requester's state. 2823 */ 2824 2825 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2826 sqp->remote_qpn); 2827 2828 spin_lock_irqsave(&sqp->s_lock, flags); 2829 2830 /* Return if we are already busy processing a work request. */ 2831 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2832 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2833 goto unlock; 2834 2835 sqp->s_flags |= RVT_S_BUSY; 2836 2837 again: 2838 if (sqp->s_last == READ_ONCE(sqp->s_head)) 2839 goto clr_busy; 2840 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 2841 2842 /* Return if it is not OK to start a new work request. */ 2843 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 2844 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 2845 goto clr_busy; 2846 /* We are in the error state, flush the work request. */ 2847 send_status = IB_WC_WR_FLUSH_ERR; 2848 goto flush_send; 2849 } 2850 2851 /* 2852 * We can rely on the entry not changing without the s_lock 2853 * being held until we update s_last. 2854 * We increment s_cur to indicate s_last is in progress. 2855 */ 2856 if (sqp->s_last == sqp->s_cur) { 2857 if (++sqp->s_cur >= sqp->s_size) 2858 sqp->s_cur = 0; 2859 } 2860 spin_unlock_irqrestore(&sqp->s_lock, flags); 2861 2862 if (!qp) { 2863 send_status = loopback_qp_drop(rvp, sqp); 2864 goto serr_no_r_lock; 2865 } 2866 spin_lock_irqsave(&qp->r_lock, flags); 2867 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 2868 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 2869 send_status = loopback_qp_drop(rvp, sqp); 2870 goto serr; 2871 } 2872 2873 memset(&wc, 0, sizeof(wc)); 2874 send_status = IB_WC_SUCCESS; 2875 2876 release = true; 2877 sqp->s_sge.sge = wqe->sg_list[0]; 2878 sqp->s_sge.sg_list = wqe->sg_list + 1; 2879 sqp->s_sge.num_sge = wqe->wr.num_sge; 2880 sqp->s_len = wqe->length; 2881 switch (wqe->wr.opcode) { 2882 case IB_WR_REG_MR: 2883 goto send_comp; 2884 2885 case IB_WR_LOCAL_INV: 2886 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 2887 if (rvt_invalidate_rkey(sqp, 2888 wqe->wr.ex.invalidate_rkey)) 2889 send_status = IB_WC_LOC_PROT_ERR; 2890 local_ops = 1; 2891 } 2892 goto send_comp; 2893 2894 case IB_WR_SEND_WITH_INV: 2895 case IB_WR_SEND_WITH_IMM: 2896 case IB_WR_SEND: 2897 ret = rvt_get_rwqe(qp, false); 2898 if (ret < 0) 2899 goto op_err; 2900 if (!ret) 2901 goto rnr_nak; 2902 if (wqe->length > qp->r_len) 2903 goto inv_err; 2904 switch (wqe->wr.opcode) { 2905 case IB_WR_SEND_WITH_INV: 2906 if (!rvt_invalidate_rkey(qp, 2907 wqe->wr.ex.invalidate_rkey)) { 2908 wc.wc_flags = IB_WC_WITH_INVALIDATE; 2909 wc.ex.invalidate_rkey = 2910 wqe->wr.ex.invalidate_rkey; 2911 } 2912 break; 2913 case IB_WR_SEND_WITH_IMM: 2914 wc.wc_flags = IB_WC_WITH_IMM; 2915 wc.ex.imm_data = wqe->wr.ex.imm_data; 2916 break; 2917 default: 2918 break; 2919 } 2920 break; 2921 2922 case IB_WR_RDMA_WRITE_WITH_IMM: 2923 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 2924 goto inv_err; 2925 wc.wc_flags = IB_WC_WITH_IMM; 2926 wc.ex.imm_data = wqe->wr.ex.imm_data; 2927 ret = rvt_get_rwqe(qp, true); 2928 if (ret < 0) 2929 goto op_err; 2930 if (!ret) 2931 goto rnr_nak; 2932 /* skip copy_last set and qp_access_flags recheck */ 2933 goto do_write; 2934 case IB_WR_RDMA_WRITE: 2935 copy_last = rvt_is_user_qp(qp); 2936 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 2937 goto inv_err; 2938 do_write: 2939 if (wqe->length == 0) 2940 break; 2941 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 2942 wqe->rdma_wr.remote_addr, 2943 wqe->rdma_wr.rkey, 2944 IB_ACCESS_REMOTE_WRITE))) 2945 goto acc_err; 2946 qp->r_sge.sg_list = NULL; 2947 qp->r_sge.num_sge = 1; 2948 qp->r_sge.total_len = wqe->length; 2949 break; 2950 2951 case IB_WR_RDMA_READ: 2952 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 2953 goto inv_err; 2954 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 2955 wqe->rdma_wr.remote_addr, 2956 wqe->rdma_wr.rkey, 2957 IB_ACCESS_REMOTE_READ))) 2958 goto acc_err; 2959 release = false; 2960 sqp->s_sge.sg_list = NULL; 2961 sqp->s_sge.num_sge = 1; 2962 qp->r_sge.sge = wqe->sg_list[0]; 2963 qp->r_sge.sg_list = wqe->sg_list + 1; 2964 qp->r_sge.num_sge = wqe->wr.num_sge; 2965 qp->r_sge.total_len = wqe->length; 2966 break; 2967 2968 case IB_WR_ATOMIC_CMP_AND_SWP: 2969 case IB_WR_ATOMIC_FETCH_AND_ADD: 2970 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 2971 goto inv_err; 2972 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 2973 wqe->atomic_wr.remote_addr, 2974 wqe->atomic_wr.rkey, 2975 IB_ACCESS_REMOTE_ATOMIC))) 2976 goto acc_err; 2977 /* Perform atomic OP and save result. */ 2978 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 2979 sdata = wqe->atomic_wr.compare_add; 2980 *(u64 *)sqp->s_sge.sge.vaddr = 2981 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 2982 (u64)atomic64_add_return(sdata, maddr) - sdata : 2983 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 2984 sdata, wqe->atomic_wr.swap); 2985 rvt_put_mr(qp->r_sge.sge.mr); 2986 qp->r_sge.num_sge = 0; 2987 goto send_comp; 2988 2989 default: 2990 send_status = IB_WC_LOC_QP_OP_ERR; 2991 goto serr; 2992 } 2993 2994 sge = &sqp->s_sge.sge; 2995 while (sqp->s_len) { 2996 u32 len = rvt_get_sge_length(sge, sqp->s_len); 2997 2998 WARN_ON_ONCE(len == 0); 2999 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 3000 len, release, copy_last); 3001 rvt_update_sge(&sqp->s_sge, len, !release); 3002 sqp->s_len -= len; 3003 } 3004 if (release) 3005 rvt_put_ss(&qp->r_sge); 3006 3007 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3008 goto send_comp; 3009 3010 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3011 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3012 else 3013 wc.opcode = IB_WC_RECV; 3014 wc.wr_id = qp->r_wr_id; 3015 wc.status = IB_WC_SUCCESS; 3016 wc.byte_len = wqe->length; 3017 wc.qp = &qp->ibqp; 3018 wc.src_qp = qp->remote_qpn; 3019 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3020 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3021 wc.port_num = 1; 3022 /* Signal completion event if the solicited bit is set. */ 3023 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 3024 wqe->wr.send_flags & IB_SEND_SOLICITED); 3025 3026 send_comp: 3027 spin_unlock_irqrestore(&qp->r_lock, flags); 3028 spin_lock_irqsave(&sqp->s_lock, flags); 3029 rvp->n_loop_pkts++; 3030 flush_send: 3031 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3032 rvt_send_complete(sqp, wqe, send_status); 3033 if (local_ops) { 3034 atomic_dec(&sqp->local_ops_pending); 3035 local_ops = 0; 3036 } 3037 goto again; 3038 3039 rnr_nak: 3040 /* Handle RNR NAK */ 3041 if (qp->ibqp.qp_type == IB_QPT_UC) 3042 goto send_comp; 3043 rvp->n_rnr_naks++; 3044 /* 3045 * Note: we don't need the s_lock held since the BUSY flag 3046 * makes this single threaded. 3047 */ 3048 if (sqp->s_rnr_retry == 0) { 3049 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3050 goto serr; 3051 } 3052 if (sqp->s_rnr_retry_cnt < 7) 3053 sqp->s_rnr_retry--; 3054 spin_unlock_irqrestore(&qp->r_lock, flags); 3055 spin_lock_irqsave(&sqp->s_lock, flags); 3056 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3057 goto clr_busy; 3058 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3059 IB_AETH_CREDIT_SHIFT); 3060 goto clr_busy; 3061 3062 op_err: 3063 send_status = IB_WC_REM_OP_ERR; 3064 wc.status = IB_WC_LOC_QP_OP_ERR; 3065 goto err; 3066 3067 inv_err: 3068 send_status = 3069 sqp->ibqp.qp_type == IB_QPT_RC ? 3070 IB_WC_REM_INV_REQ_ERR : 3071 IB_WC_SUCCESS; 3072 wc.status = IB_WC_LOC_QP_OP_ERR; 3073 goto err; 3074 3075 acc_err: 3076 send_status = IB_WC_REM_ACCESS_ERR; 3077 wc.status = IB_WC_LOC_PROT_ERR; 3078 err: 3079 /* responder goes to error state */ 3080 rvt_rc_error(qp, wc.status); 3081 3082 serr: 3083 spin_unlock_irqrestore(&qp->r_lock, flags); 3084 serr_no_r_lock: 3085 spin_lock_irqsave(&sqp->s_lock, flags); 3086 rvt_send_complete(sqp, wqe, send_status); 3087 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3088 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3089 3090 sqp->s_flags &= ~RVT_S_BUSY; 3091 spin_unlock_irqrestore(&sqp->s_lock, flags); 3092 if (lastwqe) { 3093 struct ib_event ev; 3094 3095 ev.device = sqp->ibqp.device; 3096 ev.element.qp = &sqp->ibqp; 3097 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3098 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3099 } 3100 goto done; 3101 } 3102 clr_busy: 3103 sqp->s_flags &= ~RVT_S_BUSY; 3104 unlock: 3105 spin_unlock_irqrestore(&sqp->s_lock, flags); 3106 done: 3107 rcu_read_unlock(); 3108 } 3109 EXPORT_SYMBOL(rvt_ruc_loopback); 3110