xref: /openbmc/linux/drivers/infiniband/sw/rdmavt/qp.c (revision 151f4e2b)
1 /*
2  * Copyright(c) 2016 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
60 
61 static void rvt_rc_timeout(struct timer_list *t);
62 
63 /*
64  * Convert the AETH RNR timeout code into the number of microseconds.
65  */
66 static const u32 ib_rvt_rnr_table[32] = {
67 	655360, /* 00: 655.36 */
68 	10,     /* 01:    .01 */
69 	20,     /* 02     .02 */
70 	30,     /* 03:    .03 */
71 	40,     /* 04:    .04 */
72 	60,     /* 05:    .06 */
73 	80,     /* 06:    .08 */
74 	120,    /* 07:    .12 */
75 	160,    /* 08:    .16 */
76 	240,    /* 09:    .24 */
77 	320,    /* 0A:    .32 */
78 	480,    /* 0B:    .48 */
79 	640,    /* 0C:    .64 */
80 	960,    /* 0D:    .96 */
81 	1280,   /* 0E:   1.28 */
82 	1920,   /* 0F:   1.92 */
83 	2560,   /* 10:   2.56 */
84 	3840,   /* 11:   3.84 */
85 	5120,   /* 12:   5.12 */
86 	7680,   /* 13:   7.68 */
87 	10240,  /* 14:  10.24 */
88 	15360,  /* 15:  15.36 */
89 	20480,  /* 16:  20.48 */
90 	30720,  /* 17:  30.72 */
91 	40960,  /* 18:  40.96 */
92 	61440,  /* 19:  61.44 */
93 	81920,  /* 1A:  81.92 */
94 	122880, /* 1B: 122.88 */
95 	163840, /* 1C: 163.84 */
96 	245760, /* 1D: 245.76 */
97 	327680, /* 1E: 327.68 */
98 	491520  /* 1F: 491.52 */
99 };
100 
101 /*
102  * Note that it is OK to post send work requests in the SQE and ERR
103  * states; rvt_do_send() will process them and generate error
104  * completions as per IB 1.2 C10-96.
105  */
106 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
107 	[IB_QPS_RESET] = 0,
108 	[IB_QPS_INIT] = RVT_POST_RECV_OK,
109 	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
110 	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
111 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
112 	    RVT_PROCESS_NEXT_SEND_OK,
113 	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
114 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
115 	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
116 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
117 	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
118 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
119 };
120 EXPORT_SYMBOL(ib_rvt_state_ops);
121 
122 /* platform specific: return the last level cache (llc) size, in KiB */
123 static int rvt_wss_llc_size(void)
124 {
125 	/* assume that the boot CPU value is universal for all CPUs */
126 	return boot_cpu_data.x86_cache_size;
127 }
128 
129 /* platform specific: cacheless copy */
130 static void cacheless_memcpy(void *dst, void *src, size_t n)
131 {
132 	/*
133 	 * Use the only available X64 cacheless copy.  Add a __user cast
134 	 * to quiet sparse.  The src agument is already in the kernel so
135 	 * there are no security issues.  The extra fault recovery machinery
136 	 * is not invoked.
137 	 */
138 	__copy_user_nocache(dst, (void __user *)src, n, 0);
139 }
140 
141 void rvt_wss_exit(struct rvt_dev_info *rdi)
142 {
143 	struct rvt_wss *wss = rdi->wss;
144 
145 	if (!wss)
146 		return;
147 
148 	/* coded to handle partially initialized and repeat callers */
149 	kfree(wss->entries);
150 	wss->entries = NULL;
151 	kfree(rdi->wss);
152 	rdi->wss = NULL;
153 }
154 
155 /**
156  * rvt_wss_init - Init wss data structures
157  *
158  * Return: 0 on success
159  */
160 int rvt_wss_init(struct rvt_dev_info *rdi)
161 {
162 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
163 	unsigned int wss_threshold = rdi->dparms.wss_threshold;
164 	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
165 	long llc_size;
166 	long llc_bits;
167 	long table_size;
168 	long table_bits;
169 	struct rvt_wss *wss;
170 	int node = rdi->dparms.node;
171 
172 	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
173 		rdi->wss = NULL;
174 		return 0;
175 	}
176 
177 	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
178 	if (!rdi->wss)
179 		return -ENOMEM;
180 	wss = rdi->wss;
181 
182 	/* check for a valid percent range - default to 80 if none or invalid */
183 	if (wss_threshold < 1 || wss_threshold > 100)
184 		wss_threshold = 80;
185 
186 	/* reject a wildly large period */
187 	if (wss_clean_period > 1000000)
188 		wss_clean_period = 256;
189 
190 	/* reject a zero period */
191 	if (wss_clean_period == 0)
192 		wss_clean_period = 1;
193 
194 	/*
195 	 * Calculate the table size - the next power of 2 larger than the
196 	 * LLC size.  LLC size is in KiB.
197 	 */
198 	llc_size = rvt_wss_llc_size() * 1024;
199 	table_size = roundup_pow_of_two(llc_size);
200 
201 	/* one bit per page in rounded up table */
202 	llc_bits = llc_size / PAGE_SIZE;
203 	table_bits = table_size / PAGE_SIZE;
204 	wss->pages_mask = table_bits - 1;
205 	wss->num_entries = table_bits / BITS_PER_LONG;
206 
207 	wss->threshold = (llc_bits * wss_threshold) / 100;
208 	if (wss->threshold == 0)
209 		wss->threshold = 1;
210 
211 	wss->clean_period = wss_clean_period;
212 	atomic_set(&wss->clean_counter, wss_clean_period);
213 
214 	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
215 				    GFP_KERNEL, node);
216 	if (!wss->entries) {
217 		rvt_wss_exit(rdi);
218 		return -ENOMEM;
219 	}
220 
221 	return 0;
222 }
223 
224 /*
225  * Advance the clean counter.  When the clean period has expired,
226  * clean an entry.
227  *
228  * This is implemented in atomics to avoid locking.  Because multiple
229  * variables are involved, it can be racy which can lead to slightly
230  * inaccurate information.  Since this is only a heuristic, this is
231  * OK.  Any innaccuracies will clean themselves out as the counter
232  * advances.  That said, it is unlikely the entry clean operation will
233  * race - the next possible racer will not start until the next clean
234  * period.
235  *
236  * The clean counter is implemented as a decrement to zero.  When zero
237  * is reached an entry is cleaned.
238  */
239 static void wss_advance_clean_counter(struct rvt_wss *wss)
240 {
241 	int entry;
242 	int weight;
243 	unsigned long bits;
244 
245 	/* become the cleaner if we decrement the counter to zero */
246 	if (atomic_dec_and_test(&wss->clean_counter)) {
247 		/*
248 		 * Set, not add, the clean period.  This avoids an issue
249 		 * where the counter could decrement below the clean period.
250 		 * Doing a set can result in lost decrements, slowing the
251 		 * clean advance.  Since this a heuristic, this possible
252 		 * slowdown is OK.
253 		 *
254 		 * An alternative is to loop, advancing the counter by a
255 		 * clean period until the result is > 0. However, this could
256 		 * lead to several threads keeping another in the clean loop.
257 		 * This could be mitigated by limiting the number of times
258 		 * we stay in the loop.
259 		 */
260 		atomic_set(&wss->clean_counter, wss->clean_period);
261 
262 		/*
263 		 * Uniquely grab the entry to clean and move to next.
264 		 * The current entry is always the lower bits of
265 		 * wss.clean_entry.  The table size, wss.num_entries,
266 		 * is always a power-of-2.
267 		 */
268 		entry = (atomic_inc_return(&wss->clean_entry) - 1)
269 			& (wss->num_entries - 1);
270 
271 		/* clear the entry and count the bits */
272 		bits = xchg(&wss->entries[entry], 0);
273 		weight = hweight64((u64)bits);
274 		/* only adjust the contended total count if needed */
275 		if (weight)
276 			atomic_sub(weight, &wss->total_count);
277 	}
278 }
279 
280 /*
281  * Insert the given address into the working set array.
282  */
283 static void wss_insert(struct rvt_wss *wss, void *address)
284 {
285 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
286 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
287 	u32 nr = page & (BITS_PER_LONG - 1);
288 
289 	if (!test_and_set_bit(nr, &wss->entries[entry]))
290 		atomic_inc(&wss->total_count);
291 
292 	wss_advance_clean_counter(wss);
293 }
294 
295 /*
296  * Is the working set larger than the threshold?
297  */
298 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
299 {
300 	return atomic_read(&wss->total_count) >= wss->threshold;
301 }
302 
303 static void get_map_page(struct rvt_qpn_table *qpt,
304 			 struct rvt_qpn_map *map)
305 {
306 	unsigned long page = get_zeroed_page(GFP_KERNEL);
307 
308 	/*
309 	 * Free the page if someone raced with us installing it.
310 	 */
311 
312 	spin_lock(&qpt->lock);
313 	if (map->page)
314 		free_page(page);
315 	else
316 		map->page = (void *)page;
317 	spin_unlock(&qpt->lock);
318 }
319 
320 /**
321  * init_qpn_table - initialize the QP number table for a device
322  * @qpt: the QPN table
323  */
324 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
325 {
326 	u32 offset, i;
327 	struct rvt_qpn_map *map;
328 	int ret = 0;
329 
330 	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
331 		return -EINVAL;
332 
333 	spin_lock_init(&qpt->lock);
334 
335 	qpt->last = rdi->dparms.qpn_start;
336 	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
337 
338 	/*
339 	 * Drivers may want some QPs beyond what we need for verbs let them use
340 	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
341 	 * for those. The reserved range must be *after* the range which verbs
342 	 * will pick from.
343 	 */
344 
345 	/* Figure out number of bit maps needed before reserved range */
346 	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
347 
348 	/* This should always be zero */
349 	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
350 
351 	/* Starting with the first reserved bit map */
352 	map = &qpt->map[qpt->nmaps];
353 
354 	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
355 		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
356 	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
357 		if (!map->page) {
358 			get_map_page(qpt, map);
359 			if (!map->page) {
360 				ret = -ENOMEM;
361 				break;
362 			}
363 		}
364 		set_bit(offset, map->page);
365 		offset++;
366 		if (offset == RVT_BITS_PER_PAGE) {
367 			/* next page */
368 			qpt->nmaps++;
369 			map++;
370 			offset = 0;
371 		}
372 	}
373 	return ret;
374 }
375 
376 /**
377  * free_qpn_table - free the QP number table for a device
378  * @qpt: the QPN table
379  */
380 static void free_qpn_table(struct rvt_qpn_table *qpt)
381 {
382 	int i;
383 
384 	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
385 		free_page((unsigned long)qpt->map[i].page);
386 }
387 
388 /**
389  * rvt_driver_qp_init - Init driver qp resources
390  * @rdi: rvt dev strucutre
391  *
392  * Return: 0 on success
393  */
394 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
395 {
396 	int i;
397 	int ret = -ENOMEM;
398 
399 	if (!rdi->dparms.qp_table_size)
400 		return -EINVAL;
401 
402 	/*
403 	 * If driver is not doing any QP allocation then make sure it is
404 	 * providing the necessary QP functions.
405 	 */
406 	if (!rdi->driver_f.free_all_qps ||
407 	    !rdi->driver_f.qp_priv_alloc ||
408 	    !rdi->driver_f.qp_priv_free ||
409 	    !rdi->driver_f.notify_qp_reset ||
410 	    !rdi->driver_f.notify_restart_rc)
411 		return -EINVAL;
412 
413 	/* allocate parent object */
414 	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
415 				   rdi->dparms.node);
416 	if (!rdi->qp_dev)
417 		return -ENOMEM;
418 
419 	/* allocate hash table */
420 	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
421 	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
422 	rdi->qp_dev->qp_table =
423 		kmalloc_array_node(rdi->qp_dev->qp_table_size,
424 			     sizeof(*rdi->qp_dev->qp_table),
425 			     GFP_KERNEL, rdi->dparms.node);
426 	if (!rdi->qp_dev->qp_table)
427 		goto no_qp_table;
428 
429 	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
430 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
431 
432 	spin_lock_init(&rdi->qp_dev->qpt_lock);
433 
434 	/* initialize qpn map */
435 	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
436 		goto fail_table;
437 
438 	spin_lock_init(&rdi->n_qps_lock);
439 
440 	return 0;
441 
442 fail_table:
443 	kfree(rdi->qp_dev->qp_table);
444 	free_qpn_table(&rdi->qp_dev->qpn_table);
445 
446 no_qp_table:
447 	kfree(rdi->qp_dev);
448 
449 	return ret;
450 }
451 
452 /**
453  * free_all_qps - check for QPs still in use
454  * @rdi: rvt device info structure
455  *
456  * There should not be any QPs still in use.
457  * Free memory for table.
458  */
459 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
460 {
461 	unsigned long flags;
462 	struct rvt_qp *qp;
463 	unsigned n, qp_inuse = 0;
464 	spinlock_t *ql; /* work around too long line below */
465 
466 	if (rdi->driver_f.free_all_qps)
467 		qp_inuse = rdi->driver_f.free_all_qps(rdi);
468 
469 	qp_inuse += rvt_mcast_tree_empty(rdi);
470 
471 	if (!rdi->qp_dev)
472 		return qp_inuse;
473 
474 	ql = &rdi->qp_dev->qpt_lock;
475 	spin_lock_irqsave(ql, flags);
476 	for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
477 		qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
478 					       lockdep_is_held(ql));
479 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
480 
481 		for (; qp; qp = rcu_dereference_protected(qp->next,
482 							  lockdep_is_held(ql)))
483 			qp_inuse++;
484 	}
485 	spin_unlock_irqrestore(ql, flags);
486 	synchronize_rcu();
487 	return qp_inuse;
488 }
489 
490 /**
491  * rvt_qp_exit - clean up qps on device exit
492  * @rdi: rvt dev structure
493  *
494  * Check for qp leaks and free resources.
495  */
496 void rvt_qp_exit(struct rvt_dev_info *rdi)
497 {
498 	u32 qps_inuse = rvt_free_all_qps(rdi);
499 
500 	if (qps_inuse)
501 		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
502 			   qps_inuse);
503 	if (!rdi->qp_dev)
504 		return;
505 
506 	kfree(rdi->qp_dev->qp_table);
507 	free_qpn_table(&rdi->qp_dev->qpn_table);
508 	kfree(rdi->qp_dev);
509 }
510 
511 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
512 			      struct rvt_qpn_map *map, unsigned off)
513 {
514 	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
515 }
516 
517 /**
518  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
519  *	       IB_QPT_SMI/IB_QPT_GSI
520  * @rdi: rvt device info structure
521  * @qpt: queue pair number table pointer
522  * @port_num: IB port number, 1 based, comes from core
523  *
524  * Return: The queue pair number
525  */
526 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
527 		     enum ib_qp_type type, u8 port_num)
528 {
529 	u32 i, offset, max_scan, qpn;
530 	struct rvt_qpn_map *map;
531 	u32 ret;
532 
533 	if (rdi->driver_f.alloc_qpn)
534 		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
535 
536 	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
537 		unsigned n;
538 
539 		ret = type == IB_QPT_GSI;
540 		n = 1 << (ret + 2 * (port_num - 1));
541 		spin_lock(&qpt->lock);
542 		if (qpt->flags & n)
543 			ret = -EINVAL;
544 		else
545 			qpt->flags |= n;
546 		spin_unlock(&qpt->lock);
547 		goto bail;
548 	}
549 
550 	qpn = qpt->last + qpt->incr;
551 	if (qpn >= RVT_QPN_MAX)
552 		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
553 	/* offset carries bit 0 */
554 	offset = qpn & RVT_BITS_PER_PAGE_MASK;
555 	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
556 	max_scan = qpt->nmaps - !offset;
557 	for (i = 0;;) {
558 		if (unlikely(!map->page)) {
559 			get_map_page(qpt, map);
560 			if (unlikely(!map->page))
561 				break;
562 		}
563 		do {
564 			if (!test_and_set_bit(offset, map->page)) {
565 				qpt->last = qpn;
566 				ret = qpn;
567 				goto bail;
568 			}
569 			offset += qpt->incr;
570 			/*
571 			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
572 			 * That is OK.   It gets re-assigned below
573 			 */
574 			qpn = mk_qpn(qpt, map, offset);
575 		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
576 		/*
577 		 * In order to keep the number of pages allocated to a
578 		 * minimum, we scan the all existing pages before increasing
579 		 * the size of the bitmap table.
580 		 */
581 		if (++i > max_scan) {
582 			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
583 				break;
584 			map = &qpt->map[qpt->nmaps++];
585 			/* start at incr with current bit 0 */
586 			offset = qpt->incr | (offset & 1);
587 		} else if (map < &qpt->map[qpt->nmaps]) {
588 			++map;
589 			/* start at incr with current bit 0 */
590 			offset = qpt->incr | (offset & 1);
591 		} else {
592 			map = &qpt->map[0];
593 			/* wrap to first map page, invert bit 0 */
594 			offset = qpt->incr | ((offset & 1) ^ 1);
595 		}
596 		/* there can be no set bits in low-order QoS bits */
597 		WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
598 		qpn = mk_qpn(qpt, map, offset);
599 	}
600 
601 	ret = -ENOMEM;
602 
603 bail:
604 	return ret;
605 }
606 
607 /**
608  * rvt_clear_mr_refs - Drop help mr refs
609  * @qp: rvt qp data structure
610  * @clr_sends: If shoudl clear send side or not
611  */
612 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
613 {
614 	unsigned n;
615 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
616 
617 	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
618 		rvt_put_ss(&qp->s_rdma_read_sge);
619 
620 	rvt_put_ss(&qp->r_sge);
621 
622 	if (clr_sends) {
623 		while (qp->s_last != qp->s_head) {
624 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
625 
626 			rvt_put_qp_swqe(qp, wqe);
627 			if (++qp->s_last >= qp->s_size)
628 				qp->s_last = 0;
629 			smp_wmb(); /* see qp_set_savail */
630 		}
631 		if (qp->s_rdma_mr) {
632 			rvt_put_mr(qp->s_rdma_mr);
633 			qp->s_rdma_mr = NULL;
634 		}
635 	}
636 
637 	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
638 		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
639 
640 		if (e->rdma_sge.mr) {
641 			rvt_put_mr(e->rdma_sge.mr);
642 			e->rdma_sge.mr = NULL;
643 		}
644 	}
645 }
646 
647 /**
648  * rvt_swqe_has_lkey - return true if lkey is used by swqe
649  * @wqe - the send wqe
650  * @lkey - the lkey
651  *
652  * Test the swqe for using lkey
653  */
654 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
655 {
656 	int i;
657 
658 	for (i = 0; i < wqe->wr.num_sge; i++) {
659 		struct rvt_sge *sge = &wqe->sg_list[i];
660 
661 		if (rvt_mr_has_lkey(sge->mr, lkey))
662 			return true;
663 	}
664 	return false;
665 }
666 
667 /**
668  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
669  * @qp - the rvt_qp
670  * @lkey - the lkey
671  */
672 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
673 {
674 	u32 s_last = qp->s_last;
675 
676 	while (s_last != qp->s_head) {
677 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
678 
679 		if (rvt_swqe_has_lkey(wqe, lkey))
680 			return true;
681 
682 		if (++s_last >= qp->s_size)
683 			s_last = 0;
684 	}
685 	if (qp->s_rdma_mr)
686 		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
687 			return true;
688 	return false;
689 }
690 
691 /**
692  * rvt_qp_acks_has_lkey - return true if acks have lkey
693  * @qp - the qp
694  * @lkey - the lkey
695  */
696 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
697 {
698 	int i;
699 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
700 
701 	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
702 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
703 
704 		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
705 			return true;
706 	}
707 	return false;
708 }
709 
710 /*
711  * rvt_qp_mr_clean - clean up remote ops for lkey
712  * @qp - the qp
713  * @lkey - the lkey that is being de-registered
714  *
715  * This routine checks if the lkey is being used by
716  * the qp.
717  *
718  * If so, the qp is put into an error state to elminate
719  * any references from the qp.
720  */
721 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
722 {
723 	bool lastwqe = false;
724 
725 	if (qp->ibqp.qp_type == IB_QPT_SMI ||
726 	    qp->ibqp.qp_type == IB_QPT_GSI)
727 		/* avoid special QPs */
728 		return;
729 	spin_lock_irq(&qp->r_lock);
730 	spin_lock(&qp->s_hlock);
731 	spin_lock(&qp->s_lock);
732 
733 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
734 		goto check_lwqe;
735 
736 	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
737 	    rvt_qp_sends_has_lkey(qp, lkey) ||
738 	    rvt_qp_acks_has_lkey(qp, lkey))
739 		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
740 check_lwqe:
741 	spin_unlock(&qp->s_lock);
742 	spin_unlock(&qp->s_hlock);
743 	spin_unlock_irq(&qp->r_lock);
744 	if (lastwqe) {
745 		struct ib_event ev;
746 
747 		ev.device = qp->ibqp.device;
748 		ev.element.qp = &qp->ibqp;
749 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
750 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
751 	}
752 }
753 
754 /**
755  * rvt_remove_qp - remove qp form table
756  * @rdi: rvt dev struct
757  * @qp: qp to remove
758  *
759  * Remove the QP from the table so it can't be found asynchronously by
760  * the receive routine.
761  */
762 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
763 {
764 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
765 	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
766 	unsigned long flags;
767 	int removed = 1;
768 
769 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
770 
771 	if (rcu_dereference_protected(rvp->qp[0],
772 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
773 		RCU_INIT_POINTER(rvp->qp[0], NULL);
774 	} else if (rcu_dereference_protected(rvp->qp[1],
775 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
776 		RCU_INIT_POINTER(rvp->qp[1], NULL);
777 	} else {
778 		struct rvt_qp *q;
779 		struct rvt_qp __rcu **qpp;
780 
781 		removed = 0;
782 		qpp = &rdi->qp_dev->qp_table[n];
783 		for (; (q = rcu_dereference_protected(*qpp,
784 			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
785 			qpp = &q->next) {
786 			if (q == qp) {
787 				RCU_INIT_POINTER(*qpp,
788 				     rcu_dereference_protected(qp->next,
789 				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
790 				removed = 1;
791 				trace_rvt_qpremove(qp, n);
792 				break;
793 			}
794 		}
795 	}
796 
797 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
798 	if (removed) {
799 		synchronize_rcu();
800 		rvt_put_qp(qp);
801 	}
802 }
803 
804 /**
805  * rvt_init_qp - initialize the QP state to the reset state
806  * @qp: the QP to init or reinit
807  * @type: the QP type
808  *
809  * This function is called from both rvt_create_qp() and
810  * rvt_reset_qp().   The difference is that the reset
811  * patch the necessary locks to protect against concurent
812  * access.
813  */
814 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
815 			enum ib_qp_type type)
816 {
817 	qp->remote_qpn = 0;
818 	qp->qkey = 0;
819 	qp->qp_access_flags = 0;
820 	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
821 	qp->s_hdrwords = 0;
822 	qp->s_wqe = NULL;
823 	qp->s_draining = 0;
824 	qp->s_next_psn = 0;
825 	qp->s_last_psn = 0;
826 	qp->s_sending_psn = 0;
827 	qp->s_sending_hpsn = 0;
828 	qp->s_psn = 0;
829 	qp->r_psn = 0;
830 	qp->r_msn = 0;
831 	if (type == IB_QPT_RC) {
832 		qp->s_state = IB_OPCODE_RC_SEND_LAST;
833 		qp->r_state = IB_OPCODE_RC_SEND_LAST;
834 	} else {
835 		qp->s_state = IB_OPCODE_UC_SEND_LAST;
836 		qp->r_state = IB_OPCODE_UC_SEND_LAST;
837 	}
838 	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
839 	qp->r_nak_state = 0;
840 	qp->r_aflags = 0;
841 	qp->r_flags = 0;
842 	qp->s_head = 0;
843 	qp->s_tail = 0;
844 	qp->s_cur = 0;
845 	qp->s_acked = 0;
846 	qp->s_last = 0;
847 	qp->s_ssn = 1;
848 	qp->s_lsn = 0;
849 	qp->s_mig_state = IB_MIG_MIGRATED;
850 	qp->r_head_ack_queue = 0;
851 	qp->s_tail_ack_queue = 0;
852 	qp->s_acked_ack_queue = 0;
853 	qp->s_num_rd_atomic = 0;
854 	if (qp->r_rq.wq) {
855 		qp->r_rq.wq->head = 0;
856 		qp->r_rq.wq->tail = 0;
857 	}
858 	qp->r_sge.num_sge = 0;
859 	atomic_set(&qp->s_reserved_used, 0);
860 }
861 
862 /**
863  * rvt_reset_qp - initialize the QP state to the reset state
864  * @qp: the QP to reset
865  * @type: the QP type
866  *
867  * r_lock, s_hlock, and s_lock are required to be held by the caller
868  */
869 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
870 			 enum ib_qp_type type)
871 	__must_hold(&qp->s_lock)
872 	__must_hold(&qp->s_hlock)
873 	__must_hold(&qp->r_lock)
874 {
875 	lockdep_assert_held(&qp->r_lock);
876 	lockdep_assert_held(&qp->s_hlock);
877 	lockdep_assert_held(&qp->s_lock);
878 	if (qp->state != IB_QPS_RESET) {
879 		qp->state = IB_QPS_RESET;
880 
881 		/* Let drivers flush their waitlist */
882 		rdi->driver_f.flush_qp_waiters(qp);
883 		rvt_stop_rc_timers(qp);
884 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
885 		spin_unlock(&qp->s_lock);
886 		spin_unlock(&qp->s_hlock);
887 		spin_unlock_irq(&qp->r_lock);
888 
889 		/* Stop the send queue and the retry timer */
890 		rdi->driver_f.stop_send_queue(qp);
891 		rvt_del_timers_sync(qp);
892 		/* Wait for things to stop */
893 		rdi->driver_f.quiesce_qp(qp);
894 
895 		/* take qp out the hash and wait for it to be unused */
896 		rvt_remove_qp(rdi, qp);
897 
898 		/* grab the lock b/c it was locked at call time */
899 		spin_lock_irq(&qp->r_lock);
900 		spin_lock(&qp->s_hlock);
901 		spin_lock(&qp->s_lock);
902 
903 		rvt_clear_mr_refs(qp, 1);
904 		/*
905 		 * Let the driver do any tear down or re-init it needs to for
906 		 * a qp that has been reset
907 		 */
908 		rdi->driver_f.notify_qp_reset(qp);
909 	}
910 	rvt_init_qp(rdi, qp, type);
911 	lockdep_assert_held(&qp->r_lock);
912 	lockdep_assert_held(&qp->s_hlock);
913 	lockdep_assert_held(&qp->s_lock);
914 }
915 
916 /** rvt_free_qpn - Free a qpn from the bit map
917  * @qpt: QP table
918  * @qpn: queue pair number to free
919  */
920 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
921 {
922 	struct rvt_qpn_map *map;
923 
924 	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
925 	if (map->page)
926 		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
927 }
928 
929 /**
930  * rvt_create_qp - create a queue pair for a device
931  * @ibpd: the protection domain who's device we create the queue pair for
932  * @init_attr: the attributes of the queue pair
933  * @udata: user data for libibverbs.so
934  *
935  * Queue pair creation is mostly an rvt issue. However, drivers have their own
936  * unique idea of what queue pair numbers mean. For instance there is a reserved
937  * range for PSM.
938  *
939  * Return: the queue pair on success, otherwise returns an errno.
940  *
941  * Called by the ib_create_qp() core verbs function.
942  */
943 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
944 			    struct ib_qp_init_attr *init_attr,
945 			    struct ib_udata *udata)
946 {
947 	struct rvt_qp *qp;
948 	int err;
949 	struct rvt_swqe *swq = NULL;
950 	size_t sz;
951 	size_t sg_list_sz;
952 	struct ib_qp *ret = ERR_PTR(-ENOMEM);
953 	struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
954 	void *priv = NULL;
955 	size_t sqsize;
956 
957 	if (!rdi)
958 		return ERR_PTR(-EINVAL);
959 
960 	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
961 	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
962 	    init_attr->create_flags)
963 		return ERR_PTR(-EINVAL);
964 
965 	/* Check receive queue parameters if no SRQ is specified. */
966 	if (!init_attr->srq) {
967 		if (init_attr->cap.max_recv_sge >
968 		    rdi->dparms.props.max_recv_sge ||
969 		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
970 			return ERR_PTR(-EINVAL);
971 
972 		if (init_attr->cap.max_send_sge +
973 		    init_attr->cap.max_send_wr +
974 		    init_attr->cap.max_recv_sge +
975 		    init_attr->cap.max_recv_wr == 0)
976 			return ERR_PTR(-EINVAL);
977 	}
978 	sqsize =
979 		init_attr->cap.max_send_wr + 1 +
980 		rdi->dparms.reserved_operations;
981 	switch (init_attr->qp_type) {
982 	case IB_QPT_SMI:
983 	case IB_QPT_GSI:
984 		if (init_attr->port_num == 0 ||
985 		    init_attr->port_num > ibpd->device->phys_port_cnt)
986 			return ERR_PTR(-EINVAL);
987 		/* fall through */
988 	case IB_QPT_UC:
989 	case IB_QPT_RC:
990 	case IB_QPT_UD:
991 		sz = sizeof(struct rvt_sge) *
992 			init_attr->cap.max_send_sge +
993 			sizeof(struct rvt_swqe);
994 		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
995 		if (!swq)
996 			return ERR_PTR(-ENOMEM);
997 
998 		sz = sizeof(*qp);
999 		sg_list_sz = 0;
1000 		if (init_attr->srq) {
1001 			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1002 
1003 			if (srq->rq.max_sge > 1)
1004 				sg_list_sz = sizeof(*qp->r_sg_list) *
1005 					(srq->rq.max_sge - 1);
1006 		} else if (init_attr->cap.max_recv_sge > 1)
1007 			sg_list_sz = sizeof(*qp->r_sg_list) *
1008 				(init_attr->cap.max_recv_sge - 1);
1009 		qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1010 				  rdi->dparms.node);
1011 		if (!qp)
1012 			goto bail_swq;
1013 
1014 		RCU_INIT_POINTER(qp->next, NULL);
1015 		if (init_attr->qp_type == IB_QPT_RC) {
1016 			qp->s_ack_queue =
1017 				kcalloc_node(rvt_max_atomic(rdi),
1018 					     sizeof(*qp->s_ack_queue),
1019 					     GFP_KERNEL,
1020 					     rdi->dparms.node);
1021 			if (!qp->s_ack_queue)
1022 				goto bail_qp;
1023 		}
1024 		/* initialize timers needed for rc qp */
1025 		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1026 		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1027 			     HRTIMER_MODE_REL);
1028 		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1029 
1030 		/*
1031 		 * Driver needs to set up it's private QP structure and do any
1032 		 * initialization that is needed.
1033 		 */
1034 		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1035 		if (IS_ERR(priv)) {
1036 			ret = priv;
1037 			goto bail_qp;
1038 		}
1039 		qp->priv = priv;
1040 		qp->timeout_jiffies =
1041 			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1042 				1000UL);
1043 		if (init_attr->srq) {
1044 			sz = 0;
1045 		} else {
1046 			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1047 			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1048 			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1049 				sizeof(struct rvt_rwqe);
1050 			if (udata)
1051 				qp->r_rq.wq = vmalloc_user(
1052 						sizeof(struct rvt_rwq) +
1053 						qp->r_rq.size * sz);
1054 			else
1055 				qp->r_rq.wq = vzalloc_node(
1056 						sizeof(struct rvt_rwq) +
1057 						qp->r_rq.size * sz,
1058 						rdi->dparms.node);
1059 			if (!qp->r_rq.wq)
1060 				goto bail_driver_priv;
1061 		}
1062 
1063 		/*
1064 		 * ib_create_qp() will initialize qp->ibqp
1065 		 * except for qp->ibqp.qp_num.
1066 		 */
1067 		spin_lock_init(&qp->r_lock);
1068 		spin_lock_init(&qp->s_hlock);
1069 		spin_lock_init(&qp->s_lock);
1070 		spin_lock_init(&qp->r_rq.lock);
1071 		atomic_set(&qp->refcount, 0);
1072 		atomic_set(&qp->local_ops_pending, 0);
1073 		init_waitqueue_head(&qp->wait);
1074 		INIT_LIST_HEAD(&qp->rspwait);
1075 		qp->state = IB_QPS_RESET;
1076 		qp->s_wq = swq;
1077 		qp->s_size = sqsize;
1078 		qp->s_avail = init_attr->cap.max_send_wr;
1079 		qp->s_max_sge = init_attr->cap.max_send_sge;
1080 		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1081 			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1082 
1083 		err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1084 				init_attr->qp_type,
1085 				init_attr->port_num);
1086 		if (err < 0) {
1087 			ret = ERR_PTR(err);
1088 			goto bail_rq_wq;
1089 		}
1090 		qp->ibqp.qp_num = err;
1091 		qp->port_num = init_attr->port_num;
1092 		rvt_init_qp(rdi, qp, init_attr->qp_type);
1093 		if (rdi->driver_f.qp_priv_init) {
1094 			err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1095 			if (err) {
1096 				ret = ERR_PTR(err);
1097 				goto bail_rq_wq;
1098 			}
1099 		}
1100 		break;
1101 
1102 	default:
1103 		/* Don't support raw QPs */
1104 		return ERR_PTR(-EINVAL);
1105 	}
1106 
1107 	init_attr->cap.max_inline_data = 0;
1108 
1109 	/*
1110 	 * Return the address of the RWQ as the offset to mmap.
1111 	 * See rvt_mmap() for details.
1112 	 */
1113 	if (udata && udata->outlen >= sizeof(__u64)) {
1114 		if (!qp->r_rq.wq) {
1115 			__u64 offset = 0;
1116 
1117 			err = ib_copy_to_udata(udata, &offset,
1118 					       sizeof(offset));
1119 			if (err) {
1120 				ret = ERR_PTR(err);
1121 				goto bail_qpn;
1122 			}
1123 		} else {
1124 			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1125 
1126 			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1127 						      qp->r_rq.wq);
1128 			if (!qp->ip) {
1129 				ret = ERR_PTR(-ENOMEM);
1130 				goto bail_qpn;
1131 			}
1132 
1133 			err = ib_copy_to_udata(udata, &qp->ip->offset,
1134 					       sizeof(qp->ip->offset));
1135 			if (err) {
1136 				ret = ERR_PTR(err);
1137 				goto bail_ip;
1138 			}
1139 		}
1140 		qp->pid = current->pid;
1141 	}
1142 
1143 	spin_lock(&rdi->n_qps_lock);
1144 	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1145 		spin_unlock(&rdi->n_qps_lock);
1146 		ret = ERR_PTR(-ENOMEM);
1147 		goto bail_ip;
1148 	}
1149 
1150 	rdi->n_qps_allocated++;
1151 	/*
1152 	 * Maintain a busy_jiffies variable that will be added to the timeout
1153 	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1154 	 * is scaled by the number of rc qps created for the device to reduce
1155 	 * the number of timeouts occurring when there is a large number of
1156 	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1157 	 * The scaling interval is selected based on extensive performance
1158 	 * evaluation of targeted workloads.
1159 	 */
1160 	if (init_attr->qp_type == IB_QPT_RC) {
1161 		rdi->n_rc_qps++;
1162 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1163 	}
1164 	spin_unlock(&rdi->n_qps_lock);
1165 
1166 	if (qp->ip) {
1167 		spin_lock_irq(&rdi->pending_lock);
1168 		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1169 		spin_unlock_irq(&rdi->pending_lock);
1170 	}
1171 
1172 	ret = &qp->ibqp;
1173 
1174 	/*
1175 	 * We have our QP and its good, now keep track of what types of opcodes
1176 	 * can be processed on this QP. We do this by keeping track of what the
1177 	 * 3 high order bits of the opcode are.
1178 	 */
1179 	switch (init_attr->qp_type) {
1180 	case IB_QPT_SMI:
1181 	case IB_QPT_GSI:
1182 	case IB_QPT_UD:
1183 		qp->allowed_ops = IB_OPCODE_UD;
1184 		break;
1185 	case IB_QPT_RC:
1186 		qp->allowed_ops = IB_OPCODE_RC;
1187 		break;
1188 	case IB_QPT_UC:
1189 		qp->allowed_ops = IB_OPCODE_UC;
1190 		break;
1191 	default:
1192 		ret = ERR_PTR(-EINVAL);
1193 		goto bail_ip;
1194 	}
1195 
1196 	return ret;
1197 
1198 bail_ip:
1199 	if (qp->ip)
1200 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1201 
1202 bail_qpn:
1203 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1204 
1205 bail_rq_wq:
1206 	if (!qp->ip)
1207 		vfree(qp->r_rq.wq);
1208 
1209 bail_driver_priv:
1210 	rdi->driver_f.qp_priv_free(rdi, qp);
1211 
1212 bail_qp:
1213 	kfree(qp->s_ack_queue);
1214 	kfree(qp);
1215 
1216 bail_swq:
1217 	vfree(swq);
1218 
1219 	return ret;
1220 }
1221 
1222 /**
1223  * rvt_error_qp - put a QP into the error state
1224  * @qp: the QP to put into the error state
1225  * @err: the receive completion error to signal if a RWQE is active
1226  *
1227  * Flushes both send and receive work queues.
1228  *
1229  * Return: true if last WQE event should be generated.
1230  * The QP r_lock and s_lock should be held and interrupts disabled.
1231  * If we are already in error state, just return.
1232  */
1233 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1234 {
1235 	struct ib_wc wc;
1236 	int ret = 0;
1237 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1238 
1239 	lockdep_assert_held(&qp->r_lock);
1240 	lockdep_assert_held(&qp->s_lock);
1241 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1242 		goto bail;
1243 
1244 	qp->state = IB_QPS_ERR;
1245 
1246 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1247 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1248 		del_timer(&qp->s_timer);
1249 	}
1250 
1251 	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1252 		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1253 
1254 	rdi->driver_f.notify_error_qp(qp);
1255 
1256 	/* Schedule the sending tasklet to drain the send work queue. */
1257 	if (READ_ONCE(qp->s_last) != qp->s_head)
1258 		rdi->driver_f.schedule_send(qp);
1259 
1260 	rvt_clear_mr_refs(qp, 0);
1261 
1262 	memset(&wc, 0, sizeof(wc));
1263 	wc.qp = &qp->ibqp;
1264 	wc.opcode = IB_WC_RECV;
1265 
1266 	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1267 		wc.wr_id = qp->r_wr_id;
1268 		wc.status = err;
1269 		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1270 	}
1271 	wc.status = IB_WC_WR_FLUSH_ERR;
1272 
1273 	if (qp->r_rq.wq) {
1274 		struct rvt_rwq *wq;
1275 		u32 head;
1276 		u32 tail;
1277 
1278 		spin_lock(&qp->r_rq.lock);
1279 
1280 		/* sanity check pointers before trusting them */
1281 		wq = qp->r_rq.wq;
1282 		head = wq->head;
1283 		if (head >= qp->r_rq.size)
1284 			head = 0;
1285 		tail = wq->tail;
1286 		if (tail >= qp->r_rq.size)
1287 			tail = 0;
1288 		while (tail != head) {
1289 			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1290 			if (++tail >= qp->r_rq.size)
1291 				tail = 0;
1292 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1293 		}
1294 		wq->tail = tail;
1295 
1296 		spin_unlock(&qp->r_rq.lock);
1297 	} else if (qp->ibqp.event_handler) {
1298 		ret = 1;
1299 	}
1300 
1301 bail:
1302 	return ret;
1303 }
1304 EXPORT_SYMBOL(rvt_error_qp);
1305 
1306 /*
1307  * Put the QP into the hash table.
1308  * The hash table holds a reference to the QP.
1309  */
1310 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1311 {
1312 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1313 	unsigned long flags;
1314 
1315 	rvt_get_qp(qp);
1316 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1317 
1318 	if (qp->ibqp.qp_num <= 1) {
1319 		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1320 	} else {
1321 		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1322 
1323 		qp->next = rdi->qp_dev->qp_table[n];
1324 		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1325 		trace_rvt_qpinsert(qp, n);
1326 	}
1327 
1328 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1329 }
1330 
1331 /**
1332  * rvt_modify_qp - modify the attributes of a queue pair
1333  * @ibqp: the queue pair who's attributes we're modifying
1334  * @attr: the new attributes
1335  * @attr_mask: the mask of attributes to modify
1336  * @udata: user data for libibverbs.so
1337  *
1338  * Return: 0 on success, otherwise returns an errno.
1339  */
1340 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1341 		  int attr_mask, struct ib_udata *udata)
1342 {
1343 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1344 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1345 	enum ib_qp_state cur_state, new_state;
1346 	struct ib_event ev;
1347 	int lastwqe = 0;
1348 	int mig = 0;
1349 	int pmtu = 0; /* for gcc warning only */
1350 	int opa_ah;
1351 
1352 	spin_lock_irq(&qp->r_lock);
1353 	spin_lock(&qp->s_hlock);
1354 	spin_lock(&qp->s_lock);
1355 
1356 	cur_state = attr_mask & IB_QP_CUR_STATE ?
1357 		attr->cur_qp_state : qp->state;
1358 	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1359 	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1360 
1361 	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1362 				attr_mask))
1363 		goto inval;
1364 
1365 	if (rdi->driver_f.check_modify_qp &&
1366 	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1367 		goto inval;
1368 
1369 	if (attr_mask & IB_QP_AV) {
1370 		if (opa_ah) {
1371 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1372 				opa_get_mcast_base(OPA_MCAST_NR))
1373 				goto inval;
1374 		} else {
1375 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1376 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1377 				goto inval;
1378 		}
1379 
1380 		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1381 			goto inval;
1382 	}
1383 
1384 	if (attr_mask & IB_QP_ALT_PATH) {
1385 		if (opa_ah) {
1386 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1387 				opa_get_mcast_base(OPA_MCAST_NR))
1388 				goto inval;
1389 		} else {
1390 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1391 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1392 				goto inval;
1393 		}
1394 
1395 		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1396 			goto inval;
1397 		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1398 			goto inval;
1399 	}
1400 
1401 	if (attr_mask & IB_QP_PKEY_INDEX)
1402 		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1403 			goto inval;
1404 
1405 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1406 		if (attr->min_rnr_timer > 31)
1407 			goto inval;
1408 
1409 	if (attr_mask & IB_QP_PORT)
1410 		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1411 		    qp->ibqp.qp_type == IB_QPT_GSI ||
1412 		    attr->port_num == 0 ||
1413 		    attr->port_num > ibqp->device->phys_port_cnt)
1414 			goto inval;
1415 
1416 	if (attr_mask & IB_QP_DEST_QPN)
1417 		if (attr->dest_qp_num > RVT_QPN_MASK)
1418 			goto inval;
1419 
1420 	if (attr_mask & IB_QP_RETRY_CNT)
1421 		if (attr->retry_cnt > 7)
1422 			goto inval;
1423 
1424 	if (attr_mask & IB_QP_RNR_RETRY)
1425 		if (attr->rnr_retry > 7)
1426 			goto inval;
1427 
1428 	/*
1429 	 * Don't allow invalid path_mtu values.  OK to set greater
1430 	 * than the active mtu (or even the max_cap, if we have tuned
1431 	 * that to a small mtu.  We'll set qp->path_mtu
1432 	 * to the lesser of requested attribute mtu and active,
1433 	 * for packetizing messages.
1434 	 * Note that the QP port has to be set in INIT and MTU in RTR.
1435 	 */
1436 	if (attr_mask & IB_QP_PATH_MTU) {
1437 		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1438 		if (pmtu < 0)
1439 			goto inval;
1440 	}
1441 
1442 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1443 		if (attr->path_mig_state == IB_MIG_REARM) {
1444 			if (qp->s_mig_state == IB_MIG_ARMED)
1445 				goto inval;
1446 			if (new_state != IB_QPS_RTS)
1447 				goto inval;
1448 		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1449 			if (qp->s_mig_state == IB_MIG_REARM)
1450 				goto inval;
1451 			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1452 				goto inval;
1453 			if (qp->s_mig_state == IB_MIG_ARMED)
1454 				mig = 1;
1455 		} else {
1456 			goto inval;
1457 		}
1458 	}
1459 
1460 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1461 		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1462 			goto inval;
1463 
1464 	switch (new_state) {
1465 	case IB_QPS_RESET:
1466 		if (qp->state != IB_QPS_RESET)
1467 			rvt_reset_qp(rdi, qp, ibqp->qp_type);
1468 		break;
1469 
1470 	case IB_QPS_RTR:
1471 		/* Allow event to re-trigger if QP set to RTR more than once */
1472 		qp->r_flags &= ~RVT_R_COMM_EST;
1473 		qp->state = new_state;
1474 		break;
1475 
1476 	case IB_QPS_SQD:
1477 		qp->s_draining = qp->s_last != qp->s_cur;
1478 		qp->state = new_state;
1479 		break;
1480 
1481 	case IB_QPS_SQE:
1482 		if (qp->ibqp.qp_type == IB_QPT_RC)
1483 			goto inval;
1484 		qp->state = new_state;
1485 		break;
1486 
1487 	case IB_QPS_ERR:
1488 		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1489 		break;
1490 
1491 	default:
1492 		qp->state = new_state;
1493 		break;
1494 	}
1495 
1496 	if (attr_mask & IB_QP_PKEY_INDEX)
1497 		qp->s_pkey_index = attr->pkey_index;
1498 
1499 	if (attr_mask & IB_QP_PORT)
1500 		qp->port_num = attr->port_num;
1501 
1502 	if (attr_mask & IB_QP_DEST_QPN)
1503 		qp->remote_qpn = attr->dest_qp_num;
1504 
1505 	if (attr_mask & IB_QP_SQ_PSN) {
1506 		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1507 		qp->s_psn = qp->s_next_psn;
1508 		qp->s_sending_psn = qp->s_next_psn;
1509 		qp->s_last_psn = qp->s_next_psn - 1;
1510 		qp->s_sending_hpsn = qp->s_last_psn;
1511 	}
1512 
1513 	if (attr_mask & IB_QP_RQ_PSN)
1514 		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1515 
1516 	if (attr_mask & IB_QP_ACCESS_FLAGS)
1517 		qp->qp_access_flags = attr->qp_access_flags;
1518 
1519 	if (attr_mask & IB_QP_AV) {
1520 		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1521 		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1522 		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1523 	}
1524 
1525 	if (attr_mask & IB_QP_ALT_PATH) {
1526 		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1527 		qp->s_alt_pkey_index = attr->alt_pkey_index;
1528 	}
1529 
1530 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1531 		qp->s_mig_state = attr->path_mig_state;
1532 		if (mig) {
1533 			qp->remote_ah_attr = qp->alt_ah_attr;
1534 			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1535 			qp->s_pkey_index = qp->s_alt_pkey_index;
1536 		}
1537 	}
1538 
1539 	if (attr_mask & IB_QP_PATH_MTU) {
1540 		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1541 		qp->log_pmtu = ilog2(qp->pmtu);
1542 	}
1543 
1544 	if (attr_mask & IB_QP_RETRY_CNT) {
1545 		qp->s_retry_cnt = attr->retry_cnt;
1546 		qp->s_retry = attr->retry_cnt;
1547 	}
1548 
1549 	if (attr_mask & IB_QP_RNR_RETRY) {
1550 		qp->s_rnr_retry_cnt = attr->rnr_retry;
1551 		qp->s_rnr_retry = attr->rnr_retry;
1552 	}
1553 
1554 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1555 		qp->r_min_rnr_timer = attr->min_rnr_timer;
1556 
1557 	if (attr_mask & IB_QP_TIMEOUT) {
1558 		qp->timeout = attr->timeout;
1559 		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1560 	}
1561 
1562 	if (attr_mask & IB_QP_QKEY)
1563 		qp->qkey = attr->qkey;
1564 
1565 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1566 		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1567 
1568 	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1569 		qp->s_max_rd_atomic = attr->max_rd_atomic;
1570 
1571 	if (rdi->driver_f.modify_qp)
1572 		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1573 
1574 	spin_unlock(&qp->s_lock);
1575 	spin_unlock(&qp->s_hlock);
1576 	spin_unlock_irq(&qp->r_lock);
1577 
1578 	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1579 		rvt_insert_qp(rdi, qp);
1580 
1581 	if (lastwqe) {
1582 		ev.device = qp->ibqp.device;
1583 		ev.element.qp = &qp->ibqp;
1584 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1585 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1586 	}
1587 	if (mig) {
1588 		ev.device = qp->ibqp.device;
1589 		ev.element.qp = &qp->ibqp;
1590 		ev.event = IB_EVENT_PATH_MIG;
1591 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1592 	}
1593 	return 0;
1594 
1595 inval:
1596 	spin_unlock(&qp->s_lock);
1597 	spin_unlock(&qp->s_hlock);
1598 	spin_unlock_irq(&qp->r_lock);
1599 	return -EINVAL;
1600 }
1601 
1602 /**
1603  * rvt_destroy_qp - destroy a queue pair
1604  * @ibqp: the queue pair to destroy
1605  *
1606  * Note that this can be called while the QP is actively sending or
1607  * receiving!
1608  *
1609  * Return: 0 on success.
1610  */
1611 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1612 {
1613 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1614 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1615 
1616 	spin_lock_irq(&qp->r_lock);
1617 	spin_lock(&qp->s_hlock);
1618 	spin_lock(&qp->s_lock);
1619 	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1620 	spin_unlock(&qp->s_lock);
1621 	spin_unlock(&qp->s_hlock);
1622 	spin_unlock_irq(&qp->r_lock);
1623 
1624 	wait_event(qp->wait, !atomic_read(&qp->refcount));
1625 	/* qpn is now available for use again */
1626 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1627 
1628 	spin_lock(&rdi->n_qps_lock);
1629 	rdi->n_qps_allocated--;
1630 	if (qp->ibqp.qp_type == IB_QPT_RC) {
1631 		rdi->n_rc_qps--;
1632 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1633 	}
1634 	spin_unlock(&rdi->n_qps_lock);
1635 
1636 	if (qp->ip)
1637 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1638 	else
1639 		vfree(qp->r_rq.wq);
1640 	rdi->driver_f.qp_priv_free(rdi, qp);
1641 	kfree(qp->s_ack_queue);
1642 	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1643 	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1644 	vfree(qp->s_wq);
1645 	kfree(qp);
1646 	return 0;
1647 }
1648 
1649 /**
1650  * rvt_query_qp - query an ipbq
1651  * @ibqp: IB qp to query
1652  * @attr: attr struct to fill in
1653  * @attr_mask: attr mask ignored
1654  * @init_attr: struct to fill in
1655  *
1656  * Return: always 0
1657  */
1658 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1659 		 int attr_mask, struct ib_qp_init_attr *init_attr)
1660 {
1661 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1662 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1663 
1664 	attr->qp_state = qp->state;
1665 	attr->cur_qp_state = attr->qp_state;
1666 	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1667 	attr->path_mig_state = qp->s_mig_state;
1668 	attr->qkey = qp->qkey;
1669 	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1670 	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1671 	attr->dest_qp_num = qp->remote_qpn;
1672 	attr->qp_access_flags = qp->qp_access_flags;
1673 	attr->cap.max_send_wr = qp->s_size - 1 -
1674 		rdi->dparms.reserved_operations;
1675 	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1676 	attr->cap.max_send_sge = qp->s_max_sge;
1677 	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1678 	attr->cap.max_inline_data = 0;
1679 	attr->ah_attr = qp->remote_ah_attr;
1680 	attr->alt_ah_attr = qp->alt_ah_attr;
1681 	attr->pkey_index = qp->s_pkey_index;
1682 	attr->alt_pkey_index = qp->s_alt_pkey_index;
1683 	attr->en_sqd_async_notify = 0;
1684 	attr->sq_draining = qp->s_draining;
1685 	attr->max_rd_atomic = qp->s_max_rd_atomic;
1686 	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1687 	attr->min_rnr_timer = qp->r_min_rnr_timer;
1688 	attr->port_num = qp->port_num;
1689 	attr->timeout = qp->timeout;
1690 	attr->retry_cnt = qp->s_retry_cnt;
1691 	attr->rnr_retry = qp->s_rnr_retry_cnt;
1692 	attr->alt_port_num =
1693 		rdma_ah_get_port_num(&qp->alt_ah_attr);
1694 	attr->alt_timeout = qp->alt_timeout;
1695 
1696 	init_attr->event_handler = qp->ibqp.event_handler;
1697 	init_attr->qp_context = qp->ibqp.qp_context;
1698 	init_attr->send_cq = qp->ibqp.send_cq;
1699 	init_attr->recv_cq = qp->ibqp.recv_cq;
1700 	init_attr->srq = qp->ibqp.srq;
1701 	init_attr->cap = attr->cap;
1702 	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1703 		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1704 	else
1705 		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1706 	init_attr->qp_type = qp->ibqp.qp_type;
1707 	init_attr->port_num = qp->port_num;
1708 	return 0;
1709 }
1710 
1711 /**
1712  * rvt_post_receive - post a receive on a QP
1713  * @ibqp: the QP to post the receive on
1714  * @wr: the WR to post
1715  * @bad_wr: the first bad WR is put here
1716  *
1717  * This may be called from interrupt context.
1718  *
1719  * Return: 0 on success otherwise errno
1720  */
1721 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1722 		  const struct ib_recv_wr **bad_wr)
1723 {
1724 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1725 	struct rvt_rwq *wq = qp->r_rq.wq;
1726 	unsigned long flags;
1727 	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1728 				!qp->ibqp.srq;
1729 
1730 	/* Check that state is OK to post receive. */
1731 	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1732 		*bad_wr = wr;
1733 		return -EINVAL;
1734 	}
1735 
1736 	for (; wr; wr = wr->next) {
1737 		struct rvt_rwqe *wqe;
1738 		u32 next;
1739 		int i;
1740 
1741 		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1742 			*bad_wr = wr;
1743 			return -EINVAL;
1744 		}
1745 
1746 		spin_lock_irqsave(&qp->r_rq.lock, flags);
1747 		next = wq->head + 1;
1748 		if (next >= qp->r_rq.size)
1749 			next = 0;
1750 		if (next == wq->tail) {
1751 			spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1752 			*bad_wr = wr;
1753 			return -ENOMEM;
1754 		}
1755 		if (unlikely(qp_err_flush)) {
1756 			struct ib_wc wc;
1757 
1758 			memset(&wc, 0, sizeof(wc));
1759 			wc.qp = &qp->ibqp;
1760 			wc.opcode = IB_WC_RECV;
1761 			wc.wr_id = wr->wr_id;
1762 			wc.status = IB_WC_WR_FLUSH_ERR;
1763 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1764 		} else {
1765 			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1766 			wqe->wr_id = wr->wr_id;
1767 			wqe->num_sge = wr->num_sge;
1768 			for (i = 0; i < wr->num_sge; i++)
1769 				wqe->sg_list[i] = wr->sg_list[i];
1770 			/*
1771 			 * Make sure queue entry is written
1772 			 * before the head index.
1773 			 */
1774 			smp_wmb();
1775 			wq->head = next;
1776 		}
1777 		spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1778 	}
1779 	return 0;
1780 }
1781 
1782 /**
1783  * rvt_qp_valid_operation - validate post send wr request
1784  * @qp - the qp
1785  * @post-parms - the post send table for the driver
1786  * @wr - the work request
1787  *
1788  * The routine validates the operation based on the
1789  * validation table an returns the length of the operation
1790  * which can extend beyond the ib_send_bw.  Operation
1791  * dependent flags key atomic operation validation.
1792  *
1793  * There is an exception for UD qps that validates the pd and
1794  * overrides the length to include the additional UD specific
1795  * length.
1796  *
1797  * Returns a negative error or the length of the work request
1798  * for building the swqe.
1799  */
1800 static inline int rvt_qp_valid_operation(
1801 	struct rvt_qp *qp,
1802 	const struct rvt_operation_params *post_parms,
1803 	const struct ib_send_wr *wr)
1804 {
1805 	int len;
1806 
1807 	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1808 		return -EINVAL;
1809 	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1810 		return -EINVAL;
1811 	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1812 	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1813 		return -EINVAL;
1814 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1815 	    (wr->num_sge == 0 ||
1816 	     wr->sg_list[0].length < sizeof(u64) ||
1817 	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1818 		return -EINVAL;
1819 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1820 	    !qp->s_max_rd_atomic)
1821 		return -EINVAL;
1822 	len = post_parms[wr->opcode].length;
1823 	/* UD specific */
1824 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1825 	    qp->ibqp.qp_type != IB_QPT_RC) {
1826 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1827 			return -EINVAL;
1828 		len = sizeof(struct ib_ud_wr);
1829 	}
1830 	return len;
1831 }
1832 
1833 /**
1834  * rvt_qp_is_avail - determine queue capacity
1835  * @qp: the qp
1836  * @rdi: the rdmavt device
1837  * @reserved_op: is reserved operation
1838  *
1839  * This assumes the s_hlock is held but the s_last
1840  * qp variable is uncontrolled.
1841  *
1842  * For non reserved operations, the qp->s_avail
1843  * may be changed.
1844  *
1845  * The return value is zero or a -ENOMEM.
1846  */
1847 static inline int rvt_qp_is_avail(
1848 	struct rvt_qp *qp,
1849 	struct rvt_dev_info *rdi,
1850 	bool reserved_op)
1851 {
1852 	u32 slast;
1853 	u32 avail;
1854 	u32 reserved_used;
1855 
1856 	/* see rvt_qp_wqe_unreserve() */
1857 	smp_mb__before_atomic();
1858 	reserved_used = atomic_read(&qp->s_reserved_used);
1859 	if (unlikely(reserved_op)) {
1860 		/* see rvt_qp_wqe_unreserve() */
1861 		smp_mb__before_atomic();
1862 		if (reserved_used >= rdi->dparms.reserved_operations)
1863 			return -ENOMEM;
1864 		return 0;
1865 	}
1866 	/* non-reserved operations */
1867 	if (likely(qp->s_avail))
1868 		return 0;
1869 	slast = READ_ONCE(qp->s_last);
1870 	if (qp->s_head >= slast)
1871 		avail = qp->s_size - (qp->s_head - slast);
1872 	else
1873 		avail = slast - qp->s_head;
1874 
1875 	/* see rvt_qp_wqe_unreserve() */
1876 	smp_mb__before_atomic();
1877 	reserved_used = atomic_read(&qp->s_reserved_used);
1878 	avail =  avail - 1 -
1879 		(rdi->dparms.reserved_operations - reserved_used);
1880 	/* insure we don't assign a negative s_avail */
1881 	if ((s32)avail <= 0)
1882 		return -ENOMEM;
1883 	qp->s_avail = avail;
1884 	if (WARN_ON(qp->s_avail >
1885 		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1886 		rvt_pr_err(rdi,
1887 			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1888 			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1889 			   qp->s_head, qp->s_tail, qp->s_cur,
1890 			   qp->s_acked, qp->s_last);
1891 	return 0;
1892 }
1893 
1894 /**
1895  * rvt_post_one_wr - post one RC, UC, or UD send work request
1896  * @qp: the QP to post on
1897  * @wr: the work request to send
1898  */
1899 static int rvt_post_one_wr(struct rvt_qp *qp,
1900 			   const struct ib_send_wr *wr,
1901 			   bool *call_send)
1902 {
1903 	struct rvt_swqe *wqe;
1904 	u32 next;
1905 	int i;
1906 	int j;
1907 	int acc;
1908 	struct rvt_lkey_table *rkt;
1909 	struct rvt_pd *pd;
1910 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1911 	u8 log_pmtu;
1912 	int ret;
1913 	size_t cplen;
1914 	bool reserved_op;
1915 	int local_ops_delayed = 0;
1916 
1917 	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1918 
1919 	/* IB spec says that num_sge == 0 is OK. */
1920 	if (unlikely(wr->num_sge > qp->s_max_sge))
1921 		return -EINVAL;
1922 
1923 	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1924 	if (ret < 0)
1925 		return ret;
1926 	cplen = ret;
1927 
1928 	/*
1929 	 * Local operations include fast register and local invalidate.
1930 	 * Fast register needs to be processed immediately because the
1931 	 * registered lkey may be used by following work requests and the
1932 	 * lkey needs to be valid at the time those requests are posted.
1933 	 * Local invalidate can be processed immediately if fencing is
1934 	 * not required and no previous local invalidate ops are pending.
1935 	 * Signaled local operations that have been processed immediately
1936 	 * need to have requests with "completion only" flags set posted
1937 	 * to the send queue in order to generate completions.
1938 	 */
1939 	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1940 		switch (wr->opcode) {
1941 		case IB_WR_REG_MR:
1942 			ret = rvt_fast_reg_mr(qp,
1943 					      reg_wr(wr)->mr,
1944 					      reg_wr(wr)->key,
1945 					      reg_wr(wr)->access);
1946 			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1947 				return ret;
1948 			break;
1949 		case IB_WR_LOCAL_INV:
1950 			if ((wr->send_flags & IB_SEND_FENCE) ||
1951 			    atomic_read(&qp->local_ops_pending)) {
1952 				local_ops_delayed = 1;
1953 			} else {
1954 				ret = rvt_invalidate_rkey(
1955 					qp, wr->ex.invalidate_rkey);
1956 				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1957 					return ret;
1958 			}
1959 			break;
1960 		default:
1961 			return -EINVAL;
1962 		}
1963 	}
1964 
1965 	reserved_op = rdi->post_parms[wr->opcode].flags &
1966 			RVT_OPERATION_USE_RESERVE;
1967 	/* check for avail */
1968 	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
1969 	if (ret)
1970 		return ret;
1971 	next = qp->s_head + 1;
1972 	if (next >= qp->s_size)
1973 		next = 0;
1974 
1975 	rkt = &rdi->lkey_table;
1976 	pd = ibpd_to_rvtpd(qp->ibqp.pd);
1977 	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
1978 
1979 	/* cplen has length from above */
1980 	memcpy(&wqe->wr, wr, cplen);
1981 
1982 	wqe->length = 0;
1983 	j = 0;
1984 	if (wr->num_sge) {
1985 		struct rvt_sge *last_sge = NULL;
1986 
1987 		acc = wr->opcode >= IB_WR_RDMA_READ ?
1988 			IB_ACCESS_LOCAL_WRITE : 0;
1989 		for (i = 0; i < wr->num_sge; i++) {
1990 			u32 length = wr->sg_list[i].length;
1991 
1992 			if (length == 0)
1993 				continue;
1994 			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
1995 					  &wr->sg_list[i], acc);
1996 			if (unlikely(ret < 0))
1997 				goto bail_inval_free;
1998 			wqe->length += length;
1999 			if (ret)
2000 				last_sge = &wqe->sg_list[j];
2001 			j += ret;
2002 		}
2003 		wqe->wr.num_sge = j;
2004 	}
2005 
2006 	/*
2007 	 * Calculate and set SWQE PSN values prior to handing it off
2008 	 * to the driver's check routine. This give the driver the
2009 	 * opportunity to adjust PSN values based on internal checks.
2010 	 */
2011 	log_pmtu = qp->log_pmtu;
2012 	if (qp->allowed_ops == IB_OPCODE_UD) {
2013 		struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
2014 
2015 		log_pmtu = ah->log_pmtu;
2016 		atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
2017 	}
2018 
2019 	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2020 		if (local_ops_delayed)
2021 			atomic_inc(&qp->local_ops_pending);
2022 		else
2023 			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2024 		wqe->ssn = 0;
2025 		wqe->psn = 0;
2026 		wqe->lpsn = 0;
2027 	} else {
2028 		wqe->ssn = qp->s_ssn++;
2029 		wqe->psn = qp->s_next_psn;
2030 		wqe->lpsn = wqe->psn +
2031 				(wqe->length ?
2032 					((wqe->length - 1) >> log_pmtu) :
2033 					0);
2034 	}
2035 
2036 	/* general part of wqe valid - allow for driver checks */
2037 	if (rdi->driver_f.setup_wqe) {
2038 		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2039 		if (ret < 0)
2040 			goto bail_inval_free_ref;
2041 	}
2042 
2043 	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2044 		qp->s_next_psn = wqe->lpsn + 1;
2045 
2046 	if (unlikely(reserved_op)) {
2047 		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2048 		rvt_qp_wqe_reserve(qp, wqe);
2049 	} else {
2050 		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2051 		qp->s_avail--;
2052 	}
2053 	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2054 	smp_wmb(); /* see request builders */
2055 	qp->s_head = next;
2056 
2057 	return 0;
2058 
2059 bail_inval_free_ref:
2060 	if (qp->allowed_ops == IB_OPCODE_UD)
2061 		atomic_dec(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
2062 bail_inval_free:
2063 	/* release mr holds */
2064 	while (j) {
2065 		struct rvt_sge *sge = &wqe->sg_list[--j];
2066 
2067 		rvt_put_mr(sge->mr);
2068 	}
2069 	return ret;
2070 }
2071 
2072 /**
2073  * rvt_post_send - post a send on a QP
2074  * @ibqp: the QP to post the send on
2075  * @wr: the list of work requests to post
2076  * @bad_wr: the first bad WR is put here
2077  *
2078  * This may be called from interrupt context.
2079  *
2080  * Return: 0 on success else errno
2081  */
2082 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2083 		  const struct ib_send_wr **bad_wr)
2084 {
2085 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2086 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2087 	unsigned long flags = 0;
2088 	bool call_send;
2089 	unsigned nreq = 0;
2090 	int err = 0;
2091 
2092 	spin_lock_irqsave(&qp->s_hlock, flags);
2093 
2094 	/*
2095 	 * Ensure QP state is such that we can send. If not bail out early,
2096 	 * there is no need to do this every time we post a send.
2097 	 */
2098 	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2099 		spin_unlock_irqrestore(&qp->s_hlock, flags);
2100 		return -EINVAL;
2101 	}
2102 
2103 	/*
2104 	 * If the send queue is empty, and we only have a single WR then just go
2105 	 * ahead and kick the send engine into gear. Otherwise we will always
2106 	 * just schedule the send to happen later.
2107 	 */
2108 	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2109 
2110 	for (; wr; wr = wr->next) {
2111 		err = rvt_post_one_wr(qp, wr, &call_send);
2112 		if (unlikely(err)) {
2113 			*bad_wr = wr;
2114 			goto bail;
2115 		}
2116 		nreq++;
2117 	}
2118 bail:
2119 	spin_unlock_irqrestore(&qp->s_hlock, flags);
2120 	if (nreq) {
2121 		/*
2122 		 * Only call do_send if there is exactly one packet, and the
2123 		 * driver said it was ok.
2124 		 */
2125 		if (nreq == 1 && call_send)
2126 			rdi->driver_f.do_send(qp);
2127 		else
2128 			rdi->driver_f.schedule_send_no_lock(qp);
2129 	}
2130 	return err;
2131 }
2132 
2133 /**
2134  * rvt_post_srq_receive - post a receive on a shared receive queue
2135  * @ibsrq: the SRQ to post the receive on
2136  * @wr: the list of work requests to post
2137  * @bad_wr: A pointer to the first WR to cause a problem is put here
2138  *
2139  * This may be called from interrupt context.
2140  *
2141  * Return: 0 on success else errno
2142  */
2143 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2144 		      const struct ib_recv_wr **bad_wr)
2145 {
2146 	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2147 	struct rvt_rwq *wq;
2148 	unsigned long flags;
2149 
2150 	for (; wr; wr = wr->next) {
2151 		struct rvt_rwqe *wqe;
2152 		u32 next;
2153 		int i;
2154 
2155 		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2156 			*bad_wr = wr;
2157 			return -EINVAL;
2158 		}
2159 
2160 		spin_lock_irqsave(&srq->rq.lock, flags);
2161 		wq = srq->rq.wq;
2162 		next = wq->head + 1;
2163 		if (next >= srq->rq.size)
2164 			next = 0;
2165 		if (next == wq->tail) {
2166 			spin_unlock_irqrestore(&srq->rq.lock, flags);
2167 			*bad_wr = wr;
2168 			return -ENOMEM;
2169 		}
2170 
2171 		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2172 		wqe->wr_id = wr->wr_id;
2173 		wqe->num_sge = wr->num_sge;
2174 		for (i = 0; i < wr->num_sge; i++)
2175 			wqe->sg_list[i] = wr->sg_list[i];
2176 		/* Make sure queue entry is written before the head index. */
2177 		smp_wmb();
2178 		wq->head = next;
2179 		spin_unlock_irqrestore(&srq->rq.lock, flags);
2180 	}
2181 	return 0;
2182 }
2183 
2184 /*
2185  * Validate a RWQE and fill in the SGE state.
2186  * Return 1 if OK.
2187  */
2188 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2189 {
2190 	int i, j, ret;
2191 	struct ib_wc wc;
2192 	struct rvt_lkey_table *rkt;
2193 	struct rvt_pd *pd;
2194 	struct rvt_sge_state *ss;
2195 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2196 
2197 	rkt = &rdi->lkey_table;
2198 	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2199 	ss = &qp->r_sge;
2200 	ss->sg_list = qp->r_sg_list;
2201 	qp->r_len = 0;
2202 	for (i = j = 0; i < wqe->num_sge; i++) {
2203 		if (wqe->sg_list[i].length == 0)
2204 			continue;
2205 		/* Check LKEY */
2206 		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2207 				  NULL, &wqe->sg_list[i],
2208 				  IB_ACCESS_LOCAL_WRITE);
2209 		if (unlikely(ret <= 0))
2210 			goto bad_lkey;
2211 		qp->r_len += wqe->sg_list[i].length;
2212 		j++;
2213 	}
2214 	ss->num_sge = j;
2215 	ss->total_len = qp->r_len;
2216 	return 1;
2217 
2218 bad_lkey:
2219 	while (j) {
2220 		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2221 
2222 		rvt_put_mr(sge->mr);
2223 	}
2224 	ss->num_sge = 0;
2225 	memset(&wc, 0, sizeof(wc));
2226 	wc.wr_id = wqe->wr_id;
2227 	wc.status = IB_WC_LOC_PROT_ERR;
2228 	wc.opcode = IB_WC_RECV;
2229 	wc.qp = &qp->ibqp;
2230 	/* Signal solicited completion event. */
2231 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2232 	return 0;
2233 }
2234 
2235 /**
2236  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2237  * @qp: the QP
2238  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2239  *
2240  * Return -1 if there is a local error, 0 if no RWQE is available,
2241  * otherwise return 1.
2242  *
2243  * Can be called from interrupt level.
2244  */
2245 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2246 {
2247 	unsigned long flags;
2248 	struct rvt_rq *rq;
2249 	struct rvt_rwq *wq;
2250 	struct rvt_srq *srq;
2251 	struct rvt_rwqe *wqe;
2252 	void (*handler)(struct ib_event *, void *);
2253 	u32 tail;
2254 	int ret;
2255 
2256 	if (qp->ibqp.srq) {
2257 		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2258 		handler = srq->ibsrq.event_handler;
2259 		rq = &srq->rq;
2260 	} else {
2261 		srq = NULL;
2262 		handler = NULL;
2263 		rq = &qp->r_rq;
2264 	}
2265 
2266 	spin_lock_irqsave(&rq->lock, flags);
2267 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2268 		ret = 0;
2269 		goto unlock;
2270 	}
2271 
2272 	wq = rq->wq;
2273 	tail = wq->tail;
2274 	/* Validate tail before using it since it is user writable. */
2275 	if (tail >= rq->size)
2276 		tail = 0;
2277 	if (unlikely(tail == wq->head)) {
2278 		ret = 0;
2279 		goto unlock;
2280 	}
2281 	/* Make sure entry is read after head index is read. */
2282 	smp_rmb();
2283 	wqe = rvt_get_rwqe_ptr(rq, tail);
2284 	/*
2285 	 * Even though we update the tail index in memory, the verbs
2286 	 * consumer is not supposed to post more entries until a
2287 	 * completion is generated.
2288 	 */
2289 	if (++tail >= rq->size)
2290 		tail = 0;
2291 	wq->tail = tail;
2292 	if (!wr_id_only && !init_sge(qp, wqe)) {
2293 		ret = -1;
2294 		goto unlock;
2295 	}
2296 	qp->r_wr_id = wqe->wr_id;
2297 
2298 	ret = 1;
2299 	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2300 	if (handler) {
2301 		u32 n;
2302 
2303 		/*
2304 		 * Validate head pointer value and compute
2305 		 * the number of remaining WQEs.
2306 		 */
2307 		n = wq->head;
2308 		if (n >= rq->size)
2309 			n = 0;
2310 		if (n < tail)
2311 			n += rq->size - tail;
2312 		else
2313 			n -= tail;
2314 		if (n < srq->limit) {
2315 			struct ib_event ev;
2316 
2317 			srq->limit = 0;
2318 			spin_unlock_irqrestore(&rq->lock, flags);
2319 			ev.device = qp->ibqp.device;
2320 			ev.element.srq = qp->ibqp.srq;
2321 			ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2322 			handler(&ev, srq->ibsrq.srq_context);
2323 			goto bail;
2324 		}
2325 	}
2326 unlock:
2327 	spin_unlock_irqrestore(&rq->lock, flags);
2328 bail:
2329 	return ret;
2330 }
2331 EXPORT_SYMBOL(rvt_get_rwqe);
2332 
2333 /**
2334  * qp_comm_est - handle trap with QP established
2335  * @qp: the QP
2336  */
2337 void rvt_comm_est(struct rvt_qp *qp)
2338 {
2339 	qp->r_flags |= RVT_R_COMM_EST;
2340 	if (qp->ibqp.event_handler) {
2341 		struct ib_event ev;
2342 
2343 		ev.device = qp->ibqp.device;
2344 		ev.element.qp = &qp->ibqp;
2345 		ev.event = IB_EVENT_COMM_EST;
2346 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2347 	}
2348 }
2349 EXPORT_SYMBOL(rvt_comm_est);
2350 
2351 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2352 {
2353 	unsigned long flags;
2354 	int lastwqe;
2355 
2356 	spin_lock_irqsave(&qp->s_lock, flags);
2357 	lastwqe = rvt_error_qp(qp, err);
2358 	spin_unlock_irqrestore(&qp->s_lock, flags);
2359 
2360 	if (lastwqe) {
2361 		struct ib_event ev;
2362 
2363 		ev.device = qp->ibqp.device;
2364 		ev.element.qp = &qp->ibqp;
2365 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2366 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2367 	}
2368 }
2369 EXPORT_SYMBOL(rvt_rc_error);
2370 
2371 /*
2372  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2373  *  @index - the index
2374  *  return usec from an index into ib_rvt_rnr_table
2375  */
2376 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2377 {
2378 	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2379 }
2380 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2381 
2382 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2383 {
2384 	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2385 				  IB_AETH_CREDIT_MASK];
2386 }
2387 
2388 /*
2389  *  rvt_add_retry_timer_ext - add/start a retry timer
2390  *  @qp - the QP
2391  *  @shift - timeout shift to wait for multiple packets
2392  *  add a retry timer on the QP
2393  */
2394 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2395 {
2396 	struct ib_qp *ibqp = &qp->ibqp;
2397 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2398 
2399 	lockdep_assert_held(&qp->s_lock);
2400 	qp->s_flags |= RVT_S_TIMER;
2401        /* 4.096 usec. * (1 << qp->timeout) */
2402 	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2403 			      (qp->timeout_jiffies << shift);
2404 	add_timer(&qp->s_timer);
2405 }
2406 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2407 
2408 /**
2409  * rvt_add_rnr_timer - add/start an rnr timer
2410  * @qp - the QP
2411  * @aeth - aeth of RNR timeout, simulated aeth for loopback
2412  * add an rnr timer on the QP
2413  */
2414 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2415 {
2416 	u32 to;
2417 
2418 	lockdep_assert_held(&qp->s_lock);
2419 	qp->s_flags |= RVT_S_WAIT_RNR;
2420 	to = rvt_aeth_to_usec(aeth);
2421 	trace_rvt_rnrnak_add(qp, to);
2422 	hrtimer_start(&qp->s_rnr_timer,
2423 		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2424 }
2425 EXPORT_SYMBOL(rvt_add_rnr_timer);
2426 
2427 /**
2428  * rvt_stop_rc_timers - stop all timers
2429  * @qp - the QP
2430  * stop any pending timers
2431  */
2432 void rvt_stop_rc_timers(struct rvt_qp *qp)
2433 {
2434 	lockdep_assert_held(&qp->s_lock);
2435 	/* Remove QP from all timers */
2436 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2437 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2438 		del_timer(&qp->s_timer);
2439 		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2440 	}
2441 }
2442 EXPORT_SYMBOL(rvt_stop_rc_timers);
2443 
2444 /**
2445  * rvt_stop_rnr_timer - stop an rnr timer
2446  * @qp - the QP
2447  *
2448  * stop an rnr timer and return if the timer
2449  * had been pending.
2450  */
2451 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2452 {
2453 	lockdep_assert_held(&qp->s_lock);
2454 	/* Remove QP from rnr timer */
2455 	if (qp->s_flags & RVT_S_WAIT_RNR) {
2456 		qp->s_flags &= ~RVT_S_WAIT_RNR;
2457 		trace_rvt_rnrnak_stop(qp, 0);
2458 	}
2459 }
2460 
2461 /**
2462  * rvt_del_timers_sync - wait for any timeout routines to exit
2463  * @qp - the QP
2464  */
2465 void rvt_del_timers_sync(struct rvt_qp *qp)
2466 {
2467 	del_timer_sync(&qp->s_timer);
2468 	hrtimer_cancel(&qp->s_rnr_timer);
2469 }
2470 EXPORT_SYMBOL(rvt_del_timers_sync);
2471 
2472 /**
2473  * This is called from s_timer for missing responses.
2474  */
2475 static void rvt_rc_timeout(struct timer_list *t)
2476 {
2477 	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2478 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2479 	unsigned long flags;
2480 
2481 	spin_lock_irqsave(&qp->r_lock, flags);
2482 	spin_lock(&qp->s_lock);
2483 	if (qp->s_flags & RVT_S_TIMER) {
2484 		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2485 
2486 		qp->s_flags &= ~RVT_S_TIMER;
2487 		rvp->n_rc_timeouts++;
2488 		del_timer(&qp->s_timer);
2489 		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2490 		if (rdi->driver_f.notify_restart_rc)
2491 			rdi->driver_f.notify_restart_rc(qp,
2492 							qp->s_last_psn + 1,
2493 							1);
2494 		rdi->driver_f.schedule_send(qp);
2495 	}
2496 	spin_unlock(&qp->s_lock);
2497 	spin_unlock_irqrestore(&qp->r_lock, flags);
2498 }
2499 
2500 /*
2501  * This is called from s_timer for RNR timeouts.
2502  */
2503 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2504 {
2505 	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2506 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2507 	unsigned long flags;
2508 
2509 	spin_lock_irqsave(&qp->s_lock, flags);
2510 	rvt_stop_rnr_timer(qp);
2511 	trace_rvt_rnrnak_timeout(qp, 0);
2512 	rdi->driver_f.schedule_send(qp);
2513 	spin_unlock_irqrestore(&qp->s_lock, flags);
2514 	return HRTIMER_NORESTART;
2515 }
2516 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2517 
2518 /**
2519  * rvt_qp_iter_init - initial for QP iteration
2520  * @rdi: rvt devinfo
2521  * @v: u64 value
2522  *
2523  * This returns an iterator suitable for iterating QPs
2524  * in the system.
2525  *
2526  * The @cb is a user defined callback and @v is a 64
2527  * bit value passed to and relevant for processing in the
2528  * @cb.  An example use case would be to alter QP processing
2529  * based on criteria not part of the rvt_qp.
2530  *
2531  * Use cases that require memory allocation to succeed
2532  * must preallocate appropriately.
2533  *
2534  * Return: a pointer to an rvt_qp_iter or NULL
2535  */
2536 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2537 				     u64 v,
2538 				     void (*cb)(struct rvt_qp *qp, u64 v))
2539 {
2540 	struct rvt_qp_iter *i;
2541 
2542 	i = kzalloc(sizeof(*i), GFP_KERNEL);
2543 	if (!i)
2544 		return NULL;
2545 
2546 	i->rdi = rdi;
2547 	/* number of special QPs (SMI/GSI) for device */
2548 	i->specials = rdi->ibdev.phys_port_cnt * 2;
2549 	i->v = v;
2550 	i->cb = cb;
2551 
2552 	return i;
2553 }
2554 EXPORT_SYMBOL(rvt_qp_iter_init);
2555 
2556 /**
2557  * rvt_qp_iter_next - return the next QP in iter
2558  * @iter - the iterator
2559  *
2560  * Fine grained QP iterator suitable for use
2561  * with debugfs seq_file mechanisms.
2562  *
2563  * Updates iter->qp with the current QP when the return
2564  * value is 0.
2565  *
2566  * Return: 0 - iter->qp is valid 1 - no more QPs
2567  */
2568 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2569 	__must_hold(RCU)
2570 {
2571 	int n = iter->n;
2572 	int ret = 1;
2573 	struct rvt_qp *pqp = iter->qp;
2574 	struct rvt_qp *qp;
2575 	struct rvt_dev_info *rdi = iter->rdi;
2576 
2577 	/*
2578 	 * The approach is to consider the special qps
2579 	 * as additional table entries before the
2580 	 * real hash table.  Since the qp code sets
2581 	 * the qp->next hash link to NULL, this works just fine.
2582 	 *
2583 	 * iter->specials is 2 * # ports
2584 	 *
2585 	 * n = 0..iter->specials is the special qp indices
2586 	 *
2587 	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2588 	 * the potential hash bucket entries
2589 	 *
2590 	 */
2591 	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2592 		if (pqp) {
2593 			qp = rcu_dereference(pqp->next);
2594 		} else {
2595 			if (n < iter->specials) {
2596 				struct rvt_ibport *rvp;
2597 				int pidx;
2598 
2599 				pidx = n % rdi->ibdev.phys_port_cnt;
2600 				rvp = rdi->ports[pidx];
2601 				qp = rcu_dereference(rvp->qp[n & 1]);
2602 			} else {
2603 				qp = rcu_dereference(
2604 					rdi->qp_dev->qp_table[
2605 						(n - iter->specials)]);
2606 			}
2607 		}
2608 		pqp = qp;
2609 		if (qp) {
2610 			iter->qp = qp;
2611 			iter->n = n;
2612 			return 0;
2613 		}
2614 	}
2615 	return ret;
2616 }
2617 EXPORT_SYMBOL(rvt_qp_iter_next);
2618 
2619 /**
2620  * rvt_qp_iter - iterate all QPs
2621  * @rdi - rvt devinfo
2622  * @v - a 64 bit value
2623  * @cb - a callback
2624  *
2625  * This provides a way for iterating all QPs.
2626  *
2627  * The @cb is a user defined callback and @v is a 64
2628  * bit value passed to and relevant for processing in the
2629  * cb.  An example use case would be to alter QP processing
2630  * based on criteria not part of the rvt_qp.
2631  *
2632  * The code has an internal iterator to simplify
2633  * non seq_file use cases.
2634  */
2635 void rvt_qp_iter(struct rvt_dev_info *rdi,
2636 		 u64 v,
2637 		 void (*cb)(struct rvt_qp *qp, u64 v))
2638 {
2639 	int ret;
2640 	struct rvt_qp_iter i = {
2641 		.rdi = rdi,
2642 		.specials = rdi->ibdev.phys_port_cnt * 2,
2643 		.v = v,
2644 		.cb = cb
2645 	};
2646 
2647 	rcu_read_lock();
2648 	do {
2649 		ret = rvt_qp_iter_next(&i);
2650 		if (!ret) {
2651 			rvt_get_qp(i.qp);
2652 			rcu_read_unlock();
2653 			i.cb(i.qp, i.v);
2654 			rcu_read_lock();
2655 			rvt_put_qp(i.qp);
2656 		}
2657 	} while (!ret);
2658 	rcu_read_unlock();
2659 }
2660 EXPORT_SYMBOL(rvt_qp_iter);
2661 
2662 /*
2663  * This should be called with s_lock held.
2664  */
2665 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2666 		       enum ib_wc_status status)
2667 {
2668 	u32 old_last, last;
2669 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2670 
2671 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2672 		return;
2673 
2674 	last = qp->s_last;
2675 	old_last = last;
2676 	trace_rvt_qp_send_completion(qp, wqe, last);
2677 	if (++last >= qp->s_size)
2678 		last = 0;
2679 	trace_rvt_qp_send_completion(qp, wqe, last);
2680 	qp->s_last = last;
2681 	/* See post_send() */
2682 	barrier();
2683 	rvt_put_qp_swqe(qp, wqe);
2684 
2685 	rvt_qp_swqe_complete(qp,
2686 			     wqe,
2687 			     rdi->wc_opcode[wqe->wr.opcode],
2688 			     status);
2689 
2690 	if (qp->s_acked == old_last)
2691 		qp->s_acked = last;
2692 	if (qp->s_cur == old_last)
2693 		qp->s_cur = last;
2694 	if (qp->s_tail == old_last)
2695 		qp->s_tail = last;
2696 	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2697 		qp->s_draining = 0;
2698 }
2699 EXPORT_SYMBOL(rvt_send_complete);
2700 
2701 /**
2702  * rvt_copy_sge - copy data to SGE memory
2703  * @qp: associated QP
2704  * @ss: the SGE state
2705  * @data: the data to copy
2706  * @length: the length of the data
2707  * @release: boolean to release MR
2708  * @copy_last: do a separate copy of the last 8 bytes
2709  */
2710 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2711 		  void *data, u32 length,
2712 		  bool release, bool copy_last)
2713 {
2714 	struct rvt_sge *sge = &ss->sge;
2715 	int i;
2716 	bool in_last = false;
2717 	bool cacheless_copy = false;
2718 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2719 	struct rvt_wss *wss = rdi->wss;
2720 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2721 
2722 	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2723 		cacheless_copy = length >= PAGE_SIZE;
2724 	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2725 		if (length >= PAGE_SIZE) {
2726 			/*
2727 			 * NOTE: this *assumes*:
2728 			 * o The first vaddr is the dest.
2729 			 * o If multiple pages, then vaddr is sequential.
2730 			 */
2731 			wss_insert(wss, sge->vaddr);
2732 			if (length >= (2 * PAGE_SIZE))
2733 				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2734 
2735 			cacheless_copy = wss_exceeds_threshold(wss);
2736 		} else {
2737 			wss_advance_clean_counter(wss);
2738 		}
2739 	}
2740 
2741 	if (copy_last) {
2742 		if (length > 8) {
2743 			length -= 8;
2744 		} else {
2745 			copy_last = false;
2746 			in_last = true;
2747 		}
2748 	}
2749 
2750 again:
2751 	while (length) {
2752 		u32 len = rvt_get_sge_length(sge, length);
2753 
2754 		WARN_ON_ONCE(len == 0);
2755 		if (unlikely(in_last)) {
2756 			/* enforce byte transfer ordering */
2757 			for (i = 0; i < len; i++)
2758 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2759 		} else if (cacheless_copy) {
2760 			cacheless_memcpy(sge->vaddr, data, len);
2761 		} else {
2762 			memcpy(sge->vaddr, data, len);
2763 		}
2764 		rvt_update_sge(ss, len, release);
2765 		data += len;
2766 		length -= len;
2767 	}
2768 
2769 	if (copy_last) {
2770 		copy_last = false;
2771 		in_last = true;
2772 		length = 8;
2773 		goto again;
2774 	}
2775 }
2776 EXPORT_SYMBOL(rvt_copy_sge);
2777 
2778 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2779 					  struct rvt_qp *sqp)
2780 {
2781 	rvp->n_pkt_drops++;
2782 	/*
2783 	 * For RC, the requester would timeout and retry so
2784 	 * shortcut the timeouts and just signal too many retries.
2785 	 */
2786 	return sqp->ibqp.qp_type == IB_QPT_RC ?
2787 		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2788 }
2789 
2790 /**
2791  * ruc_loopback - handle UC and RC loopback requests
2792  * @sqp: the sending QP
2793  *
2794  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2795  * Note that although we are single threaded due to the send engine, we still
2796  * have to protect against post_send().  We don't have to worry about
2797  * receive interrupts since this is a connected protocol and all packets
2798  * will pass through here.
2799  */
2800 void rvt_ruc_loopback(struct rvt_qp *sqp)
2801 {
2802 	struct rvt_ibport *rvp =  NULL;
2803 	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2804 	struct rvt_qp *qp;
2805 	struct rvt_swqe *wqe;
2806 	struct rvt_sge *sge;
2807 	unsigned long flags;
2808 	struct ib_wc wc;
2809 	u64 sdata;
2810 	atomic64_t *maddr;
2811 	enum ib_wc_status send_status;
2812 	bool release;
2813 	int ret;
2814 	bool copy_last = false;
2815 	int local_ops = 0;
2816 
2817 	rcu_read_lock();
2818 	rvp = rdi->ports[sqp->port_num - 1];
2819 
2820 	/*
2821 	 * Note that we check the responder QP state after
2822 	 * checking the requester's state.
2823 	 */
2824 
2825 	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2826 			    sqp->remote_qpn);
2827 
2828 	spin_lock_irqsave(&sqp->s_lock, flags);
2829 
2830 	/* Return if we are already busy processing a work request. */
2831 	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2832 	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2833 		goto unlock;
2834 
2835 	sqp->s_flags |= RVT_S_BUSY;
2836 
2837 again:
2838 	if (sqp->s_last == READ_ONCE(sqp->s_head))
2839 		goto clr_busy;
2840 	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2841 
2842 	/* Return if it is not OK to start a new work request. */
2843 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2844 		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2845 			goto clr_busy;
2846 		/* We are in the error state, flush the work request. */
2847 		send_status = IB_WC_WR_FLUSH_ERR;
2848 		goto flush_send;
2849 	}
2850 
2851 	/*
2852 	 * We can rely on the entry not changing without the s_lock
2853 	 * being held until we update s_last.
2854 	 * We increment s_cur to indicate s_last is in progress.
2855 	 */
2856 	if (sqp->s_last == sqp->s_cur) {
2857 		if (++sqp->s_cur >= sqp->s_size)
2858 			sqp->s_cur = 0;
2859 	}
2860 	spin_unlock_irqrestore(&sqp->s_lock, flags);
2861 
2862 	if (!qp) {
2863 		send_status = loopback_qp_drop(rvp, sqp);
2864 		goto serr_no_r_lock;
2865 	}
2866 	spin_lock_irqsave(&qp->r_lock, flags);
2867 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2868 	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2869 		send_status = loopback_qp_drop(rvp, sqp);
2870 		goto serr;
2871 	}
2872 
2873 	memset(&wc, 0, sizeof(wc));
2874 	send_status = IB_WC_SUCCESS;
2875 
2876 	release = true;
2877 	sqp->s_sge.sge = wqe->sg_list[0];
2878 	sqp->s_sge.sg_list = wqe->sg_list + 1;
2879 	sqp->s_sge.num_sge = wqe->wr.num_sge;
2880 	sqp->s_len = wqe->length;
2881 	switch (wqe->wr.opcode) {
2882 	case IB_WR_REG_MR:
2883 		goto send_comp;
2884 
2885 	case IB_WR_LOCAL_INV:
2886 		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2887 			if (rvt_invalidate_rkey(sqp,
2888 						wqe->wr.ex.invalidate_rkey))
2889 				send_status = IB_WC_LOC_PROT_ERR;
2890 			local_ops = 1;
2891 		}
2892 		goto send_comp;
2893 
2894 	case IB_WR_SEND_WITH_INV:
2895 	case IB_WR_SEND_WITH_IMM:
2896 	case IB_WR_SEND:
2897 		ret = rvt_get_rwqe(qp, false);
2898 		if (ret < 0)
2899 			goto op_err;
2900 		if (!ret)
2901 			goto rnr_nak;
2902 		if (wqe->length > qp->r_len)
2903 			goto inv_err;
2904 		switch (wqe->wr.opcode) {
2905 		case IB_WR_SEND_WITH_INV:
2906 			if (!rvt_invalidate_rkey(qp,
2907 						 wqe->wr.ex.invalidate_rkey)) {
2908 				wc.wc_flags = IB_WC_WITH_INVALIDATE;
2909 				wc.ex.invalidate_rkey =
2910 					wqe->wr.ex.invalidate_rkey;
2911 			}
2912 			break;
2913 		case IB_WR_SEND_WITH_IMM:
2914 			wc.wc_flags = IB_WC_WITH_IMM;
2915 			wc.ex.imm_data = wqe->wr.ex.imm_data;
2916 			break;
2917 		default:
2918 			break;
2919 		}
2920 		break;
2921 
2922 	case IB_WR_RDMA_WRITE_WITH_IMM:
2923 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
2924 			goto inv_err;
2925 		wc.wc_flags = IB_WC_WITH_IMM;
2926 		wc.ex.imm_data = wqe->wr.ex.imm_data;
2927 		ret = rvt_get_rwqe(qp, true);
2928 		if (ret < 0)
2929 			goto op_err;
2930 		if (!ret)
2931 			goto rnr_nak;
2932 		/* skip copy_last set and qp_access_flags recheck */
2933 		goto do_write;
2934 	case IB_WR_RDMA_WRITE:
2935 		copy_last = rvt_is_user_qp(qp);
2936 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
2937 			goto inv_err;
2938 do_write:
2939 		if (wqe->length == 0)
2940 			break;
2941 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
2942 					  wqe->rdma_wr.remote_addr,
2943 					  wqe->rdma_wr.rkey,
2944 					  IB_ACCESS_REMOTE_WRITE)))
2945 			goto acc_err;
2946 		qp->r_sge.sg_list = NULL;
2947 		qp->r_sge.num_sge = 1;
2948 		qp->r_sge.total_len = wqe->length;
2949 		break;
2950 
2951 	case IB_WR_RDMA_READ:
2952 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2953 			goto inv_err;
2954 		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
2955 					  wqe->rdma_wr.remote_addr,
2956 					  wqe->rdma_wr.rkey,
2957 					  IB_ACCESS_REMOTE_READ)))
2958 			goto acc_err;
2959 		release = false;
2960 		sqp->s_sge.sg_list = NULL;
2961 		sqp->s_sge.num_sge = 1;
2962 		qp->r_sge.sge = wqe->sg_list[0];
2963 		qp->r_sge.sg_list = wqe->sg_list + 1;
2964 		qp->r_sge.num_sge = wqe->wr.num_sge;
2965 		qp->r_sge.total_len = wqe->length;
2966 		break;
2967 
2968 	case IB_WR_ATOMIC_CMP_AND_SWP:
2969 	case IB_WR_ATOMIC_FETCH_AND_ADD:
2970 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
2971 			goto inv_err;
2972 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
2973 					  wqe->atomic_wr.remote_addr,
2974 					  wqe->atomic_wr.rkey,
2975 					  IB_ACCESS_REMOTE_ATOMIC)))
2976 			goto acc_err;
2977 		/* Perform atomic OP and save result. */
2978 		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
2979 		sdata = wqe->atomic_wr.compare_add;
2980 		*(u64 *)sqp->s_sge.sge.vaddr =
2981 			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
2982 			(u64)atomic64_add_return(sdata, maddr) - sdata :
2983 			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
2984 				      sdata, wqe->atomic_wr.swap);
2985 		rvt_put_mr(qp->r_sge.sge.mr);
2986 		qp->r_sge.num_sge = 0;
2987 		goto send_comp;
2988 
2989 	default:
2990 		send_status = IB_WC_LOC_QP_OP_ERR;
2991 		goto serr;
2992 	}
2993 
2994 	sge = &sqp->s_sge.sge;
2995 	while (sqp->s_len) {
2996 		u32 len = rvt_get_sge_length(sge, sqp->s_len);
2997 
2998 		WARN_ON_ONCE(len == 0);
2999 		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3000 			     len, release, copy_last);
3001 		rvt_update_sge(&sqp->s_sge, len, !release);
3002 		sqp->s_len -= len;
3003 	}
3004 	if (release)
3005 		rvt_put_ss(&qp->r_sge);
3006 
3007 	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3008 		goto send_comp;
3009 
3010 	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3011 		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3012 	else
3013 		wc.opcode = IB_WC_RECV;
3014 	wc.wr_id = qp->r_wr_id;
3015 	wc.status = IB_WC_SUCCESS;
3016 	wc.byte_len = wqe->length;
3017 	wc.qp = &qp->ibqp;
3018 	wc.src_qp = qp->remote_qpn;
3019 	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3020 	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3021 	wc.port_num = 1;
3022 	/* Signal completion event if the solicited bit is set. */
3023 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc,
3024 		     wqe->wr.send_flags & IB_SEND_SOLICITED);
3025 
3026 send_comp:
3027 	spin_unlock_irqrestore(&qp->r_lock, flags);
3028 	spin_lock_irqsave(&sqp->s_lock, flags);
3029 	rvp->n_loop_pkts++;
3030 flush_send:
3031 	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3032 	rvt_send_complete(sqp, wqe, send_status);
3033 	if (local_ops) {
3034 		atomic_dec(&sqp->local_ops_pending);
3035 		local_ops = 0;
3036 	}
3037 	goto again;
3038 
3039 rnr_nak:
3040 	/* Handle RNR NAK */
3041 	if (qp->ibqp.qp_type == IB_QPT_UC)
3042 		goto send_comp;
3043 	rvp->n_rnr_naks++;
3044 	/*
3045 	 * Note: we don't need the s_lock held since the BUSY flag
3046 	 * makes this single threaded.
3047 	 */
3048 	if (sqp->s_rnr_retry == 0) {
3049 		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3050 		goto serr;
3051 	}
3052 	if (sqp->s_rnr_retry_cnt < 7)
3053 		sqp->s_rnr_retry--;
3054 	spin_unlock_irqrestore(&qp->r_lock, flags);
3055 	spin_lock_irqsave(&sqp->s_lock, flags);
3056 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3057 		goto clr_busy;
3058 	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3059 				IB_AETH_CREDIT_SHIFT);
3060 	goto clr_busy;
3061 
3062 op_err:
3063 	send_status = IB_WC_REM_OP_ERR;
3064 	wc.status = IB_WC_LOC_QP_OP_ERR;
3065 	goto err;
3066 
3067 inv_err:
3068 	send_status =
3069 		sqp->ibqp.qp_type == IB_QPT_RC ?
3070 			IB_WC_REM_INV_REQ_ERR :
3071 			IB_WC_SUCCESS;
3072 	wc.status = IB_WC_LOC_QP_OP_ERR;
3073 	goto err;
3074 
3075 acc_err:
3076 	send_status = IB_WC_REM_ACCESS_ERR;
3077 	wc.status = IB_WC_LOC_PROT_ERR;
3078 err:
3079 	/* responder goes to error state */
3080 	rvt_rc_error(qp, wc.status);
3081 
3082 serr:
3083 	spin_unlock_irqrestore(&qp->r_lock, flags);
3084 serr_no_r_lock:
3085 	spin_lock_irqsave(&sqp->s_lock, flags);
3086 	rvt_send_complete(sqp, wqe, send_status);
3087 	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3088 		int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3089 
3090 		sqp->s_flags &= ~RVT_S_BUSY;
3091 		spin_unlock_irqrestore(&sqp->s_lock, flags);
3092 		if (lastwqe) {
3093 			struct ib_event ev;
3094 
3095 			ev.device = sqp->ibqp.device;
3096 			ev.element.qp = &sqp->ibqp;
3097 			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3098 			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3099 		}
3100 		goto done;
3101 	}
3102 clr_busy:
3103 	sqp->s_flags &= ~RVT_S_BUSY;
3104 unlock:
3105 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3106 done:
3107 	rcu_read_unlock();
3108 }
3109 EXPORT_SYMBOL(rvt_ruc_loopback);
3110