xref: /openbmc/linux/drivers/infiniband/sw/rdmavt/mr.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /*
2  * Copyright(c) 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54 #include "trace.h"
55 
56 /**
57  * rvt_driver_mr_init - Init MR resources per driver
58  * @rdi: rvt dev struct
59  *
60  * Do any intilization needed when a driver registers with rdmavt.
61  *
62  * Return: 0 on success or errno on failure
63  */
64 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65 {
66 	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67 	unsigned lk_tab_size;
68 	int i;
69 
70 	/*
71 	 * The top hfi1_lkey_table_size bits are used to index the
72 	 * table.  The lower 8 bits can be owned by the user (copied from
73 	 * the LKEY).  The remaining bits act as a generation number or tag.
74 	 */
75 	if (!lkey_table_size)
76 		return -EINVAL;
77 
78 	spin_lock_init(&rdi->lkey_table.lock);
79 
80 	/* ensure generation is at least 4 bits */
81 	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82 		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83 			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84 		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85 		lkey_table_size = rdi->dparms.lkey_table_size;
86 	}
87 	rdi->lkey_table.max = 1 << lkey_table_size;
88 	rdi->lkey_table.shift = 32 - lkey_table_size;
89 	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90 	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91 			       vmalloc_node(lk_tab_size, rdi->dparms.node);
92 	if (!rdi->lkey_table.table)
93 		return -ENOMEM;
94 
95 	RCU_INIT_POINTER(rdi->dma_mr, NULL);
96 	for (i = 0; i < rdi->lkey_table.max; i++)
97 		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98 
99 	rdi->dparms.props.max_mr = rdi->lkey_table.max;
100 	return 0;
101 }
102 
103 /**
104  *rvt_mr_exit: clean up MR
105  *@rdi: rvt dev structure
106  *
107  * called when drivers have unregistered or perhaps failed to register with us
108  */
109 void rvt_mr_exit(struct rvt_dev_info *rdi)
110 {
111 	if (rdi->dma_mr)
112 		rvt_pr_err(rdi, "DMA MR not null!\n");
113 
114 	vfree(rdi->lkey_table.table);
115 }
116 
117 static void rvt_deinit_mregion(struct rvt_mregion *mr)
118 {
119 	int i = mr->mapsz;
120 
121 	mr->mapsz = 0;
122 	while (i)
123 		kfree(mr->map[--i]);
124 	percpu_ref_exit(&mr->refcount);
125 }
126 
127 static void __rvt_mregion_complete(struct percpu_ref *ref)
128 {
129 	struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
130 					      refcount);
131 
132 	complete(&mr->comp);
133 }
134 
135 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
136 			    int count, unsigned int percpu_flags)
137 {
138 	int m, i = 0;
139 	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
140 
141 	mr->mapsz = 0;
142 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
143 	for (; i < m; i++) {
144 		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
145 					  dev->dparms.node);
146 		if (!mr->map[i])
147 			goto bail;
148 		mr->mapsz++;
149 	}
150 	init_completion(&mr->comp);
151 	/* count returning the ptr to user */
152 	if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
153 			    percpu_flags, GFP_KERNEL))
154 		goto bail;
155 
156 	atomic_set(&mr->lkey_invalid, 0);
157 	mr->pd = pd;
158 	mr->max_segs = count;
159 	return 0;
160 bail:
161 	rvt_deinit_mregion(mr);
162 	return -ENOMEM;
163 }
164 
165 /**
166  * rvt_alloc_lkey - allocate an lkey
167  * @mr: memory region that this lkey protects
168  * @dma_region: 0->normal key, 1->restricted DMA key
169  *
170  * Returns 0 if successful, otherwise returns -errno.
171  *
172  * Increments mr reference count as required.
173  *
174  * Sets the lkey field mr for non-dma regions.
175  *
176  */
177 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
178 {
179 	unsigned long flags;
180 	u32 r;
181 	u32 n;
182 	int ret = 0;
183 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
184 	struct rvt_lkey_table *rkt = &dev->lkey_table;
185 
186 	rvt_get_mr(mr);
187 	spin_lock_irqsave(&rkt->lock, flags);
188 
189 	/* special case for dma_mr lkey == 0 */
190 	if (dma_region) {
191 		struct rvt_mregion *tmr;
192 
193 		tmr = rcu_access_pointer(dev->dma_mr);
194 		if (!tmr) {
195 			mr->lkey_published = 1;
196 			/* Insure published written first */
197 			rcu_assign_pointer(dev->dma_mr, mr);
198 			rvt_get_mr(mr);
199 		}
200 		goto success;
201 	}
202 
203 	/* Find the next available LKEY */
204 	r = rkt->next;
205 	n = r;
206 	for (;;) {
207 		if (!rcu_access_pointer(rkt->table[r]))
208 			break;
209 		r = (r + 1) & (rkt->max - 1);
210 		if (r == n)
211 			goto bail;
212 	}
213 	rkt->next = (r + 1) & (rkt->max - 1);
214 	/*
215 	 * Make sure lkey is never zero which is reserved to indicate an
216 	 * unrestricted LKEY.
217 	 */
218 	rkt->gen++;
219 	/*
220 	 * bits are capped to ensure enough bits for generation number
221 	 */
222 	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
223 		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
224 		 << 8);
225 	if (mr->lkey == 0) {
226 		mr->lkey |= 1 << 8;
227 		rkt->gen++;
228 	}
229 	mr->lkey_published = 1;
230 	/* Insure published written first */
231 	rcu_assign_pointer(rkt->table[r], mr);
232 success:
233 	spin_unlock_irqrestore(&rkt->lock, flags);
234 out:
235 	return ret;
236 bail:
237 	rvt_put_mr(mr);
238 	spin_unlock_irqrestore(&rkt->lock, flags);
239 	ret = -ENOMEM;
240 	goto out;
241 }
242 
243 /**
244  * rvt_free_lkey - free an lkey
245  * @mr: mr to free from tables
246  */
247 static void rvt_free_lkey(struct rvt_mregion *mr)
248 {
249 	unsigned long flags;
250 	u32 lkey = mr->lkey;
251 	u32 r;
252 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
253 	struct rvt_lkey_table *rkt = &dev->lkey_table;
254 	int freed = 0;
255 
256 	spin_lock_irqsave(&rkt->lock, flags);
257 	if (!lkey) {
258 		if (mr->lkey_published) {
259 			mr->lkey_published = 0;
260 			/* insure published is written before pointer */
261 			rcu_assign_pointer(dev->dma_mr, NULL);
262 			rvt_put_mr(mr);
263 		}
264 	} else {
265 		if (!mr->lkey_published)
266 			goto out;
267 		r = lkey >> (32 - dev->dparms.lkey_table_size);
268 		mr->lkey_published = 0;
269 		/* insure published is written before pointer */
270 		rcu_assign_pointer(rkt->table[r], NULL);
271 	}
272 	freed++;
273 out:
274 	spin_unlock_irqrestore(&rkt->lock, flags);
275 	if (freed)
276 		percpu_ref_kill(&mr->refcount);
277 }
278 
279 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
280 {
281 	struct rvt_mr *mr;
282 	int rval = -ENOMEM;
283 	int m;
284 
285 	/* Allocate struct plus pointers to first level page tables. */
286 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
287 	mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
288 	if (!mr)
289 		goto bail;
290 
291 	rval = rvt_init_mregion(&mr->mr, pd, count, 0);
292 	if (rval)
293 		goto bail;
294 	/*
295 	 * ib_reg_phys_mr() will initialize mr->ibmr except for
296 	 * lkey and rkey.
297 	 */
298 	rval = rvt_alloc_lkey(&mr->mr, 0);
299 	if (rval)
300 		goto bail_mregion;
301 	mr->ibmr.lkey = mr->mr.lkey;
302 	mr->ibmr.rkey = mr->mr.lkey;
303 done:
304 	return mr;
305 
306 bail_mregion:
307 	rvt_deinit_mregion(&mr->mr);
308 bail:
309 	kfree(mr);
310 	mr = ERR_PTR(rval);
311 	goto done;
312 }
313 
314 static void __rvt_free_mr(struct rvt_mr *mr)
315 {
316 	rvt_free_lkey(&mr->mr);
317 	rvt_deinit_mregion(&mr->mr);
318 	kfree(mr);
319 }
320 
321 /**
322  * rvt_get_dma_mr - get a DMA memory region
323  * @pd: protection domain for this memory region
324  * @acc: access flags
325  *
326  * Return: the memory region on success, otherwise returns an errno.
327  * Note that all DMA addresses should be created via the functions in
328  * struct dma_virt_ops.
329  */
330 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
331 {
332 	struct rvt_mr *mr;
333 	struct ib_mr *ret;
334 	int rval;
335 
336 	if (ibpd_to_rvtpd(pd)->user)
337 		return ERR_PTR(-EPERM);
338 
339 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
340 	if (!mr) {
341 		ret = ERR_PTR(-ENOMEM);
342 		goto bail;
343 	}
344 
345 	rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
346 	if (rval) {
347 		ret = ERR_PTR(rval);
348 		goto bail;
349 	}
350 
351 	rval = rvt_alloc_lkey(&mr->mr, 1);
352 	if (rval) {
353 		ret = ERR_PTR(rval);
354 		goto bail_mregion;
355 	}
356 
357 	mr->mr.access_flags = acc;
358 	ret = &mr->ibmr;
359 done:
360 	return ret;
361 
362 bail_mregion:
363 	rvt_deinit_mregion(&mr->mr);
364 bail:
365 	kfree(mr);
366 	goto done;
367 }
368 
369 /**
370  * rvt_reg_user_mr - register a userspace memory region
371  * @pd: protection domain for this memory region
372  * @start: starting userspace address
373  * @length: length of region to register
374  * @mr_access_flags: access flags for this memory region
375  * @udata: unused by the driver
376  *
377  * Return: the memory region on success, otherwise returns an errno.
378  */
379 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
380 			      u64 virt_addr, int mr_access_flags,
381 			      struct ib_udata *udata)
382 {
383 	struct rvt_mr *mr;
384 	struct ib_umem *umem;
385 	struct sg_page_iter sg_iter;
386 	int n, m;
387 	struct ib_mr *ret;
388 
389 	if (length == 0)
390 		return ERR_PTR(-EINVAL);
391 
392 	umem = ib_umem_get(pd->device, start, length, mr_access_flags);
393 	if (IS_ERR(umem))
394 		return (void *)umem;
395 
396 	n = ib_umem_num_pages(umem);
397 
398 	mr = __rvt_alloc_mr(n, pd);
399 	if (IS_ERR(mr)) {
400 		ret = (struct ib_mr *)mr;
401 		goto bail_umem;
402 	}
403 
404 	mr->mr.user_base = start;
405 	mr->mr.iova = virt_addr;
406 	mr->mr.length = length;
407 	mr->mr.offset = ib_umem_offset(umem);
408 	mr->mr.access_flags = mr_access_flags;
409 	mr->umem = umem;
410 
411 	mr->mr.page_shift = PAGE_SHIFT;
412 	m = 0;
413 	n = 0;
414 	for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) {
415 		void *vaddr;
416 
417 		vaddr = page_address(sg_page_iter_page(&sg_iter));
418 		if (!vaddr) {
419 			ret = ERR_PTR(-EINVAL);
420 			goto bail_inval;
421 		}
422 		mr->mr.map[m]->segs[n].vaddr = vaddr;
423 		mr->mr.map[m]->segs[n].length = PAGE_SIZE;
424 		trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE);
425 		if (++n == RVT_SEGSZ) {
426 			m++;
427 			n = 0;
428 		}
429 	}
430 	return &mr->ibmr;
431 
432 bail_inval:
433 	__rvt_free_mr(mr);
434 
435 bail_umem:
436 	ib_umem_release(umem);
437 
438 	return ret;
439 }
440 
441 /**
442  * rvt_dereg_clean_qp_cb - callback from iterator
443  * @qp - the qp
444  * @v - the mregion (as u64)
445  *
446  * This routine fields the callback for all QPs and
447  * for QPs in the same PD as the MR will call the
448  * rvt_qp_mr_clean() to potentially cleanup references.
449  */
450 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
451 {
452 	struct rvt_mregion *mr = (struct rvt_mregion *)v;
453 
454 	/* skip PDs that are not ours */
455 	if (mr->pd != qp->ibqp.pd)
456 		return;
457 	rvt_qp_mr_clean(qp, mr->lkey);
458 }
459 
460 /**
461  * rvt_dereg_clean_qps - find QPs for reference cleanup
462  * @mr - the MR that is being deregistered
463  *
464  * This routine iterates RC QPs looking for references
465  * to the lkey noted in mr.
466  */
467 static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
468 {
469 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
470 
471 	rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
472 }
473 
474 /**
475  * rvt_check_refs - check references
476  * @mr - the megion
477  * @t - the caller identification
478  *
479  * This routine checks MRs holding a reference during
480  * when being de-registered.
481  *
482  * If the count is non-zero, the code calls a clean routine then
483  * waits for the timeout for the count to zero.
484  */
485 static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
486 {
487 	unsigned long timeout;
488 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
489 
490 	if (mr->lkey) {
491 		/* avoid dma mr */
492 		rvt_dereg_clean_qps(mr);
493 		/* @mr was indexed on rcu protected @lkey_table */
494 		synchronize_rcu();
495 	}
496 
497 	timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
498 	if (!timeout) {
499 		rvt_pr_err(rdi,
500 			   "%s timeout mr %p pd %p lkey %x refcount %ld\n",
501 			   t, mr, mr->pd, mr->lkey,
502 			   atomic_long_read(&mr->refcount.count));
503 		rvt_get_mr(mr);
504 		return -EBUSY;
505 	}
506 	return 0;
507 }
508 
509 /**
510  * rvt_mr_has_lkey - is MR
511  * @mr - the mregion
512  * @lkey - the lkey
513  */
514 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
515 {
516 	return mr && lkey == mr->lkey;
517 }
518 
519 /**
520  * rvt_ss_has_lkey - is mr in sge tests
521  * @ss - the sge state
522  * @lkey
523  *
524  * This code tests for an MR in the indicated
525  * sge state.
526  */
527 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
528 {
529 	int i;
530 	bool rval = false;
531 
532 	if (!ss->num_sge)
533 		return rval;
534 	/* first one */
535 	rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
536 	/* any others */
537 	for (i = 0; !rval && i < ss->num_sge - 1; i++)
538 		rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
539 	return rval;
540 }
541 
542 /**
543  * rvt_dereg_mr - unregister and free a memory region
544  * @ibmr: the memory region to free
545  *
546  *
547  * Note that this is called to free MRs created by rvt_get_dma_mr()
548  * or rvt_reg_user_mr().
549  *
550  * Returns 0 on success.
551  */
552 int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
553 {
554 	struct rvt_mr *mr = to_imr(ibmr);
555 	int ret;
556 
557 	rvt_free_lkey(&mr->mr);
558 
559 	rvt_put_mr(&mr->mr); /* will set completion if last */
560 	ret = rvt_check_refs(&mr->mr, __func__);
561 	if (ret)
562 		goto out;
563 	rvt_deinit_mregion(&mr->mr);
564 	ib_umem_release(mr->umem);
565 	kfree(mr);
566 out:
567 	return ret;
568 }
569 
570 /**
571  * rvt_alloc_mr - Allocate a memory region usable with the
572  * @pd: protection domain for this memory region
573  * @mr_type: mem region type
574  * @max_num_sg: Max number of segments allowed
575  *
576  * Return: the memory region on success, otherwise return an errno.
577  */
578 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
579 			   u32 max_num_sg)
580 {
581 	struct rvt_mr *mr;
582 
583 	if (mr_type != IB_MR_TYPE_MEM_REG)
584 		return ERR_PTR(-EINVAL);
585 
586 	mr = __rvt_alloc_mr(max_num_sg, pd);
587 	if (IS_ERR(mr))
588 		return (struct ib_mr *)mr;
589 
590 	return &mr->ibmr;
591 }
592 
593 /**
594  * rvt_set_page - page assignment function called by ib_sg_to_pages
595  * @ibmr: memory region
596  * @addr: dma address of mapped page
597  *
598  * Return: 0 on success
599  */
600 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
601 {
602 	struct rvt_mr *mr = to_imr(ibmr);
603 	u32 ps = 1 << mr->mr.page_shift;
604 	u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
605 	int m, n;
606 
607 	if (unlikely(mapped_segs == mr->mr.max_segs))
608 		return -ENOMEM;
609 
610 	m = mapped_segs / RVT_SEGSZ;
611 	n = mapped_segs % RVT_SEGSZ;
612 	mr->mr.map[m]->segs[n].vaddr = (void *)addr;
613 	mr->mr.map[m]->segs[n].length = ps;
614 	mr->mr.length += ps;
615 	trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
616 
617 	return 0;
618 }
619 
620 /**
621  * rvt_map_mr_sg - map sg list and set it the memory region
622  * @ibmr: memory region
623  * @sg: dma mapped scatterlist
624  * @sg_nents: number of entries in sg
625  * @sg_offset: offset in bytes into sg
626  *
627  * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
628  *
629  * Return: number of sg elements mapped to the memory region
630  */
631 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
632 		  int sg_nents, unsigned int *sg_offset)
633 {
634 	struct rvt_mr *mr = to_imr(ibmr);
635 	int ret;
636 
637 	mr->mr.length = 0;
638 	mr->mr.page_shift = PAGE_SHIFT;
639 	ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
640 	mr->mr.user_base = ibmr->iova;
641 	mr->mr.iova = ibmr->iova;
642 	mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
643 	mr->mr.length = (size_t)ibmr->length;
644 	trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset);
645 	return ret;
646 }
647 
648 /**
649  * rvt_fast_reg_mr - fast register physical MR
650  * @qp: the queue pair where the work request comes from
651  * @ibmr: the memory region to be registered
652  * @key: updated key for this memory region
653  * @access: access flags for this memory region
654  *
655  * Returns 0 on success.
656  */
657 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
658 		    int access)
659 {
660 	struct rvt_mr *mr = to_imr(ibmr);
661 
662 	if (qp->ibqp.pd != mr->mr.pd)
663 		return -EACCES;
664 
665 	/* not applicable to dma MR or user MR */
666 	if (!mr->mr.lkey || mr->umem)
667 		return -EINVAL;
668 
669 	if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
670 		return -EINVAL;
671 
672 	ibmr->lkey = key;
673 	ibmr->rkey = key;
674 	mr->mr.lkey = key;
675 	mr->mr.access_flags = access;
676 	mr->mr.iova = ibmr->iova;
677 	atomic_set(&mr->mr.lkey_invalid, 0);
678 
679 	return 0;
680 }
681 EXPORT_SYMBOL(rvt_fast_reg_mr);
682 
683 /**
684  * rvt_invalidate_rkey - invalidate an MR rkey
685  * @qp: queue pair associated with the invalidate op
686  * @rkey: rkey to invalidate
687  *
688  * Returns 0 on success.
689  */
690 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
691 {
692 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
693 	struct rvt_lkey_table *rkt = &dev->lkey_table;
694 	struct rvt_mregion *mr;
695 
696 	if (rkey == 0)
697 		return -EINVAL;
698 
699 	rcu_read_lock();
700 	mr = rcu_dereference(
701 		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
702 	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
703 		goto bail;
704 
705 	atomic_set(&mr->lkey_invalid, 1);
706 	rcu_read_unlock();
707 	return 0;
708 
709 bail:
710 	rcu_read_unlock();
711 	return -EINVAL;
712 }
713 EXPORT_SYMBOL(rvt_invalidate_rkey);
714 
715 /**
716  * rvt_sge_adjacent - is isge compressible
717  * @last_sge: last outgoing SGE written
718  * @sge: SGE to check
719  *
720  * If adjacent will update last_sge to add length.
721  *
722  * Return: true if isge is adjacent to last sge
723  */
724 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
725 				    struct ib_sge *sge)
726 {
727 	if (last_sge && sge->lkey == last_sge->mr->lkey &&
728 	    ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
729 		if (sge->lkey) {
730 			if (unlikely((sge->addr - last_sge->mr->user_base +
731 			      sge->length > last_sge->mr->length)))
732 				return false; /* overrun, caller will catch */
733 		} else {
734 			last_sge->length += sge->length;
735 		}
736 		last_sge->sge_length += sge->length;
737 		trace_rvt_sge_adjacent(last_sge, sge);
738 		return true;
739 	}
740 	return false;
741 }
742 
743 /**
744  * rvt_lkey_ok - check IB SGE for validity and initialize
745  * @rkt: table containing lkey to check SGE against
746  * @pd: protection domain
747  * @isge: outgoing internal SGE
748  * @last_sge: last outgoing SGE written
749  * @sge: SGE to check
750  * @acc: access flags
751  *
752  * Check the IB SGE for validity and initialize our internal version
753  * of it.
754  *
755  * Increments the reference count when a new sge is stored.
756  *
757  * Return: 0 if compressed, 1 if added , otherwise returns -errno.
758  */
759 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
760 		struct rvt_sge *isge, struct rvt_sge *last_sge,
761 		struct ib_sge *sge, int acc)
762 {
763 	struct rvt_mregion *mr;
764 	unsigned n, m;
765 	size_t off;
766 
767 	/*
768 	 * We use LKEY == zero for kernel virtual addresses
769 	 * (see rvt_get_dma_mr() and dma_virt_ops).
770 	 */
771 	if (sge->lkey == 0) {
772 		struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
773 
774 		if (pd->user)
775 			return -EINVAL;
776 		if (rvt_sge_adjacent(last_sge, sge))
777 			return 0;
778 		rcu_read_lock();
779 		mr = rcu_dereference(dev->dma_mr);
780 		if (!mr)
781 			goto bail;
782 		rvt_get_mr(mr);
783 		rcu_read_unlock();
784 
785 		isge->mr = mr;
786 		isge->vaddr = (void *)sge->addr;
787 		isge->length = sge->length;
788 		isge->sge_length = sge->length;
789 		isge->m = 0;
790 		isge->n = 0;
791 		goto ok;
792 	}
793 	if (rvt_sge_adjacent(last_sge, sge))
794 		return 0;
795 	rcu_read_lock();
796 	mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
797 	if (!mr)
798 		goto bail;
799 	rvt_get_mr(mr);
800 	if (!READ_ONCE(mr->lkey_published))
801 		goto bail_unref;
802 
803 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
804 		     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
805 		goto bail_unref;
806 
807 	off = sge->addr - mr->user_base;
808 	if (unlikely(sge->addr < mr->user_base ||
809 		     off + sge->length > mr->length ||
810 		     (mr->access_flags & acc) != acc))
811 		goto bail_unref;
812 	rcu_read_unlock();
813 
814 	off += mr->offset;
815 	if (mr->page_shift) {
816 		/*
817 		 * page sizes are uniform power of 2 so no loop is necessary
818 		 * entries_spanned_by_off is the number of times the loop below
819 		 * would have executed.
820 		*/
821 		size_t entries_spanned_by_off;
822 
823 		entries_spanned_by_off = off >> mr->page_shift;
824 		off -= (entries_spanned_by_off << mr->page_shift);
825 		m = entries_spanned_by_off / RVT_SEGSZ;
826 		n = entries_spanned_by_off % RVT_SEGSZ;
827 	} else {
828 		m = 0;
829 		n = 0;
830 		while (off >= mr->map[m]->segs[n].length) {
831 			off -= mr->map[m]->segs[n].length;
832 			n++;
833 			if (n >= RVT_SEGSZ) {
834 				m++;
835 				n = 0;
836 			}
837 		}
838 	}
839 	isge->mr = mr;
840 	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
841 	isge->length = mr->map[m]->segs[n].length - off;
842 	isge->sge_length = sge->length;
843 	isge->m = m;
844 	isge->n = n;
845 ok:
846 	trace_rvt_sge_new(isge, sge);
847 	return 1;
848 bail_unref:
849 	rvt_put_mr(mr);
850 bail:
851 	rcu_read_unlock();
852 	return -EINVAL;
853 }
854 EXPORT_SYMBOL(rvt_lkey_ok);
855 
856 /**
857  * rvt_rkey_ok - check the IB virtual address, length, and RKEY
858  * @qp: qp for validation
859  * @sge: SGE state
860  * @len: length of data
861  * @vaddr: virtual address to place data
862  * @rkey: rkey to check
863  * @acc: access flags
864  *
865  * Return: 1 if successful, otherwise 0.
866  *
867  * increments the reference count upon success
868  */
869 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
870 		u32 len, u64 vaddr, u32 rkey, int acc)
871 {
872 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
873 	struct rvt_lkey_table *rkt = &dev->lkey_table;
874 	struct rvt_mregion *mr;
875 	unsigned n, m;
876 	size_t off;
877 
878 	/*
879 	 * We use RKEY == zero for kernel virtual addresses
880 	 * (see rvt_get_dma_mr() and dma_virt_ops).
881 	 */
882 	rcu_read_lock();
883 	if (rkey == 0) {
884 		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
885 		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
886 
887 		if (pd->user)
888 			goto bail;
889 		mr = rcu_dereference(rdi->dma_mr);
890 		if (!mr)
891 			goto bail;
892 		rvt_get_mr(mr);
893 		rcu_read_unlock();
894 
895 		sge->mr = mr;
896 		sge->vaddr = (void *)vaddr;
897 		sge->length = len;
898 		sge->sge_length = len;
899 		sge->m = 0;
900 		sge->n = 0;
901 		goto ok;
902 	}
903 
904 	mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
905 	if (!mr)
906 		goto bail;
907 	rvt_get_mr(mr);
908 	/* insure mr read is before test */
909 	if (!READ_ONCE(mr->lkey_published))
910 		goto bail_unref;
911 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
912 		     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
913 		goto bail_unref;
914 
915 	off = vaddr - mr->iova;
916 	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
917 		     (mr->access_flags & acc) == 0))
918 		goto bail_unref;
919 	rcu_read_unlock();
920 
921 	off += mr->offset;
922 	if (mr->page_shift) {
923 		/*
924 		 * page sizes are uniform power of 2 so no loop is necessary
925 		 * entries_spanned_by_off is the number of times the loop below
926 		 * would have executed.
927 		*/
928 		size_t entries_spanned_by_off;
929 
930 		entries_spanned_by_off = off >> mr->page_shift;
931 		off -= (entries_spanned_by_off << mr->page_shift);
932 		m = entries_spanned_by_off / RVT_SEGSZ;
933 		n = entries_spanned_by_off % RVT_SEGSZ;
934 	} else {
935 		m = 0;
936 		n = 0;
937 		while (off >= mr->map[m]->segs[n].length) {
938 			off -= mr->map[m]->segs[n].length;
939 			n++;
940 			if (n >= RVT_SEGSZ) {
941 				m++;
942 				n = 0;
943 			}
944 		}
945 	}
946 	sge->mr = mr;
947 	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
948 	sge->length = mr->map[m]->segs[n].length - off;
949 	sge->sge_length = len;
950 	sge->m = m;
951 	sge->n = n;
952 ok:
953 	return 1;
954 bail_unref:
955 	rvt_put_mr(mr);
956 bail:
957 	rcu_read_unlock();
958 	return 0;
959 }
960 EXPORT_SYMBOL(rvt_rkey_ok);
961