xref: /openbmc/linux/drivers/infiniband/sw/rdmavt/mr.c (revision e5c86679)
1 /*
2  * Copyright(c) 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54 #include "trace.h"
55 
56 /**
57  * rvt_driver_mr_init - Init MR resources per driver
58  * @rdi: rvt dev struct
59  *
60  * Do any intilization needed when a driver registers with rdmavt.
61  *
62  * Return: 0 on success or errno on failure
63  */
64 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65 {
66 	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67 	unsigned lk_tab_size;
68 	int i;
69 
70 	/*
71 	 * The top hfi1_lkey_table_size bits are used to index the
72 	 * table.  The lower 8 bits can be owned by the user (copied from
73 	 * the LKEY).  The remaining bits act as a generation number or tag.
74 	 */
75 	if (!lkey_table_size)
76 		return -EINVAL;
77 
78 	spin_lock_init(&rdi->lkey_table.lock);
79 
80 	/* ensure generation is at least 4 bits */
81 	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82 		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83 			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84 		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85 		lkey_table_size = rdi->dparms.lkey_table_size;
86 	}
87 	rdi->lkey_table.max = 1 << lkey_table_size;
88 	rdi->lkey_table.shift = 32 - lkey_table_size;
89 	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90 	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91 			       vmalloc_node(lk_tab_size, rdi->dparms.node);
92 	if (!rdi->lkey_table.table)
93 		return -ENOMEM;
94 
95 	RCU_INIT_POINTER(rdi->dma_mr, NULL);
96 	for (i = 0; i < rdi->lkey_table.max; i++)
97 		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98 
99 	return 0;
100 }
101 
102 /**
103  *rvt_mr_exit: clean up MR
104  *@rdi: rvt dev structure
105  *
106  * called when drivers have unregistered or perhaps failed to register with us
107  */
108 void rvt_mr_exit(struct rvt_dev_info *rdi)
109 {
110 	if (rdi->dma_mr)
111 		rvt_pr_err(rdi, "DMA MR not null!\n");
112 
113 	vfree(rdi->lkey_table.table);
114 }
115 
116 static void rvt_deinit_mregion(struct rvt_mregion *mr)
117 {
118 	int i = mr->mapsz;
119 
120 	mr->mapsz = 0;
121 	while (i)
122 		kfree(mr->map[--i]);
123 	percpu_ref_exit(&mr->refcount);
124 }
125 
126 static void __rvt_mregion_complete(struct percpu_ref *ref)
127 {
128 	struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
129 					      refcount);
130 
131 	complete(&mr->comp);
132 }
133 
134 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
135 			    int count, unsigned int percpu_flags)
136 {
137 	int m, i = 0;
138 	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
139 
140 	mr->mapsz = 0;
141 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
142 	for (; i < m; i++) {
143 		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
144 					  dev->dparms.node);
145 		if (!mr->map[i])
146 			goto bail;
147 		mr->mapsz++;
148 	}
149 	init_completion(&mr->comp);
150 	/* count returning the ptr to user */
151 	if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
152 			    percpu_flags, GFP_KERNEL))
153 		goto bail;
154 
155 	atomic_set(&mr->lkey_invalid, 0);
156 	mr->pd = pd;
157 	mr->max_segs = count;
158 	return 0;
159 bail:
160 	rvt_deinit_mregion(mr);
161 	return -ENOMEM;
162 }
163 
164 /**
165  * rvt_alloc_lkey - allocate an lkey
166  * @mr: memory region that this lkey protects
167  * @dma_region: 0->normal key, 1->restricted DMA key
168  *
169  * Returns 0 if successful, otherwise returns -errno.
170  *
171  * Increments mr reference count as required.
172  *
173  * Sets the lkey field mr for non-dma regions.
174  *
175  */
176 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
177 {
178 	unsigned long flags;
179 	u32 r;
180 	u32 n;
181 	int ret = 0;
182 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
183 	struct rvt_lkey_table *rkt = &dev->lkey_table;
184 
185 	rvt_get_mr(mr);
186 	spin_lock_irqsave(&rkt->lock, flags);
187 
188 	/* special case for dma_mr lkey == 0 */
189 	if (dma_region) {
190 		struct rvt_mregion *tmr;
191 
192 		tmr = rcu_access_pointer(dev->dma_mr);
193 		if (!tmr) {
194 			rcu_assign_pointer(dev->dma_mr, mr);
195 			mr->lkey_published = 1;
196 			rvt_get_mr(mr);
197 		}
198 		goto success;
199 	}
200 
201 	/* Find the next available LKEY */
202 	r = rkt->next;
203 	n = r;
204 	for (;;) {
205 		if (!rcu_access_pointer(rkt->table[r]))
206 			break;
207 		r = (r + 1) & (rkt->max - 1);
208 		if (r == n)
209 			goto bail;
210 	}
211 	rkt->next = (r + 1) & (rkt->max - 1);
212 	/*
213 	 * Make sure lkey is never zero which is reserved to indicate an
214 	 * unrestricted LKEY.
215 	 */
216 	rkt->gen++;
217 	/*
218 	 * bits are capped to ensure enough bits for generation number
219 	 */
220 	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
221 		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
222 		 << 8);
223 	if (mr->lkey == 0) {
224 		mr->lkey |= 1 << 8;
225 		rkt->gen++;
226 	}
227 	rcu_assign_pointer(rkt->table[r], mr);
228 	mr->lkey_published = 1;
229 success:
230 	spin_unlock_irqrestore(&rkt->lock, flags);
231 out:
232 	return ret;
233 bail:
234 	rvt_put_mr(mr);
235 	spin_unlock_irqrestore(&rkt->lock, flags);
236 	ret = -ENOMEM;
237 	goto out;
238 }
239 
240 /**
241  * rvt_free_lkey - free an lkey
242  * @mr: mr to free from tables
243  */
244 static void rvt_free_lkey(struct rvt_mregion *mr)
245 {
246 	unsigned long flags;
247 	u32 lkey = mr->lkey;
248 	u32 r;
249 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
250 	struct rvt_lkey_table *rkt = &dev->lkey_table;
251 	int freed = 0;
252 
253 	spin_lock_irqsave(&rkt->lock, flags);
254 	if (!lkey) {
255 		if (mr->lkey_published) {
256 			RCU_INIT_POINTER(dev->dma_mr, NULL);
257 			rvt_put_mr(mr);
258 		}
259 	} else {
260 		if (!mr->lkey_published)
261 			goto out;
262 		r = lkey >> (32 - dev->dparms.lkey_table_size);
263 		RCU_INIT_POINTER(rkt->table[r], NULL);
264 	}
265 	mr->lkey_published = 0;
266 	freed++;
267 out:
268 	spin_unlock_irqrestore(&rkt->lock, flags);
269 	if (freed) {
270 		synchronize_rcu();
271 		percpu_ref_kill(&mr->refcount);
272 	}
273 }
274 
275 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
276 {
277 	struct rvt_mr *mr;
278 	int rval = -ENOMEM;
279 	int m;
280 
281 	/* Allocate struct plus pointers to first level page tables. */
282 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
283 	mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
284 	if (!mr)
285 		goto bail;
286 
287 	rval = rvt_init_mregion(&mr->mr, pd, count, 0);
288 	if (rval)
289 		goto bail;
290 	/*
291 	 * ib_reg_phys_mr() will initialize mr->ibmr except for
292 	 * lkey and rkey.
293 	 */
294 	rval = rvt_alloc_lkey(&mr->mr, 0);
295 	if (rval)
296 		goto bail_mregion;
297 	mr->ibmr.lkey = mr->mr.lkey;
298 	mr->ibmr.rkey = mr->mr.lkey;
299 done:
300 	return mr;
301 
302 bail_mregion:
303 	rvt_deinit_mregion(&mr->mr);
304 bail:
305 	kfree(mr);
306 	mr = ERR_PTR(rval);
307 	goto done;
308 }
309 
310 static void __rvt_free_mr(struct rvt_mr *mr)
311 {
312 	rvt_free_lkey(&mr->mr);
313 	rvt_deinit_mregion(&mr->mr);
314 	kfree(mr);
315 }
316 
317 /**
318  * rvt_get_dma_mr - get a DMA memory region
319  * @pd: protection domain for this memory region
320  * @acc: access flags
321  *
322  * Return: the memory region on success, otherwise returns an errno.
323  * Note that all DMA addresses should be created via the functions in
324  * struct dma_virt_ops.
325  */
326 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
327 {
328 	struct rvt_mr *mr;
329 	struct ib_mr *ret;
330 	int rval;
331 
332 	if (ibpd_to_rvtpd(pd)->user)
333 		return ERR_PTR(-EPERM);
334 
335 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
336 	if (!mr) {
337 		ret = ERR_PTR(-ENOMEM);
338 		goto bail;
339 	}
340 
341 	rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
342 	if (rval) {
343 		ret = ERR_PTR(rval);
344 		goto bail;
345 	}
346 
347 	rval = rvt_alloc_lkey(&mr->mr, 1);
348 	if (rval) {
349 		ret = ERR_PTR(rval);
350 		goto bail_mregion;
351 	}
352 
353 	mr->mr.access_flags = acc;
354 	ret = &mr->ibmr;
355 done:
356 	return ret;
357 
358 bail_mregion:
359 	rvt_deinit_mregion(&mr->mr);
360 bail:
361 	kfree(mr);
362 	goto done;
363 }
364 
365 /**
366  * rvt_reg_user_mr - register a userspace memory region
367  * @pd: protection domain for this memory region
368  * @start: starting userspace address
369  * @length: length of region to register
370  * @mr_access_flags: access flags for this memory region
371  * @udata: unused by the driver
372  *
373  * Return: the memory region on success, otherwise returns an errno.
374  */
375 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
376 			      u64 virt_addr, int mr_access_flags,
377 			      struct ib_udata *udata)
378 {
379 	struct rvt_mr *mr;
380 	struct ib_umem *umem;
381 	struct scatterlist *sg;
382 	int n, m, entry;
383 	struct ib_mr *ret;
384 
385 	if (length == 0)
386 		return ERR_PTR(-EINVAL);
387 
388 	umem = ib_umem_get(pd->uobject->context, start, length,
389 			   mr_access_flags, 0);
390 	if (IS_ERR(umem))
391 		return (void *)umem;
392 
393 	n = umem->nmap;
394 
395 	mr = __rvt_alloc_mr(n, pd);
396 	if (IS_ERR(mr)) {
397 		ret = (struct ib_mr *)mr;
398 		goto bail_umem;
399 	}
400 
401 	mr->mr.user_base = start;
402 	mr->mr.iova = virt_addr;
403 	mr->mr.length = length;
404 	mr->mr.offset = ib_umem_offset(umem);
405 	mr->mr.access_flags = mr_access_flags;
406 	mr->umem = umem;
407 
408 	if (is_power_of_2(umem->page_size))
409 		mr->mr.page_shift = ilog2(umem->page_size);
410 	m = 0;
411 	n = 0;
412 	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
413 		void *vaddr;
414 
415 		vaddr = page_address(sg_page(sg));
416 		if (!vaddr) {
417 			ret = ERR_PTR(-EINVAL);
418 			goto bail_inval;
419 		}
420 		mr->mr.map[m]->segs[n].vaddr = vaddr;
421 		mr->mr.map[m]->segs[n].length = umem->page_size;
422 		trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, umem->page_size);
423 		n++;
424 		if (n == RVT_SEGSZ) {
425 			m++;
426 			n = 0;
427 		}
428 	}
429 	return &mr->ibmr;
430 
431 bail_inval:
432 	__rvt_free_mr(mr);
433 
434 bail_umem:
435 	ib_umem_release(umem);
436 
437 	return ret;
438 }
439 
440 /**
441  * rvt_dereg_mr - unregister and free a memory region
442  * @ibmr: the memory region to free
443  *
444  *
445  * Note that this is called to free MRs created by rvt_get_dma_mr()
446  * or rvt_reg_user_mr().
447  *
448  * Returns 0 on success.
449  */
450 int rvt_dereg_mr(struct ib_mr *ibmr)
451 {
452 	struct rvt_mr *mr = to_imr(ibmr);
453 	struct rvt_dev_info *rdi = ib_to_rvt(ibmr->pd->device);
454 	int ret = 0;
455 	unsigned long timeout;
456 
457 	rvt_free_lkey(&mr->mr);
458 
459 	rvt_put_mr(&mr->mr); /* will set completion if last */
460 	timeout = wait_for_completion_timeout(&mr->mr.comp, 5 * HZ);
461 	if (!timeout) {
462 		rvt_pr_err(rdi,
463 			   "rvt_dereg_mr timeout mr %p pd %p\n",
464 			   mr, mr->mr.pd);
465 		rvt_get_mr(&mr->mr);
466 		ret = -EBUSY;
467 		goto out;
468 	}
469 	rvt_deinit_mregion(&mr->mr);
470 	if (mr->umem)
471 		ib_umem_release(mr->umem);
472 	kfree(mr);
473 out:
474 	return ret;
475 }
476 
477 /**
478  * rvt_alloc_mr - Allocate a memory region usable with the
479  * @pd: protection domain for this memory region
480  * @mr_type: mem region type
481  * @max_num_sg: Max number of segments allowed
482  *
483  * Return: the memory region on success, otherwise return an errno.
484  */
485 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
486 			   enum ib_mr_type mr_type,
487 			   u32 max_num_sg)
488 {
489 	struct rvt_mr *mr;
490 
491 	if (mr_type != IB_MR_TYPE_MEM_REG)
492 		return ERR_PTR(-EINVAL);
493 
494 	mr = __rvt_alloc_mr(max_num_sg, pd);
495 	if (IS_ERR(mr))
496 		return (struct ib_mr *)mr;
497 
498 	return &mr->ibmr;
499 }
500 
501 /**
502  * rvt_set_page - page assignment function called by ib_sg_to_pages
503  * @ibmr: memory region
504  * @addr: dma address of mapped page
505  *
506  * Return: 0 on success
507  */
508 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
509 {
510 	struct rvt_mr *mr = to_imr(ibmr);
511 	u32 ps = 1 << mr->mr.page_shift;
512 	u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
513 	int m, n;
514 
515 	if (unlikely(mapped_segs == mr->mr.max_segs))
516 		return -ENOMEM;
517 
518 	if (mr->mr.length == 0) {
519 		mr->mr.user_base = addr;
520 		mr->mr.iova = addr;
521 	}
522 
523 	m = mapped_segs / RVT_SEGSZ;
524 	n = mapped_segs % RVT_SEGSZ;
525 	mr->mr.map[m]->segs[n].vaddr = (void *)addr;
526 	mr->mr.map[m]->segs[n].length = ps;
527 	trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
528 	mr->mr.length += ps;
529 
530 	return 0;
531 }
532 
533 /**
534  * rvt_map_mr_sg - map sg list and set it the memory region
535  * @ibmr: memory region
536  * @sg: dma mapped scatterlist
537  * @sg_nents: number of entries in sg
538  * @sg_offset: offset in bytes into sg
539  *
540  * Return: number of sg elements mapped to the memory region
541  */
542 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
543 		  int sg_nents, unsigned int *sg_offset)
544 {
545 	struct rvt_mr *mr = to_imr(ibmr);
546 
547 	mr->mr.length = 0;
548 	mr->mr.page_shift = PAGE_SHIFT;
549 	return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
550 			      rvt_set_page);
551 }
552 
553 /**
554  * rvt_fast_reg_mr - fast register physical MR
555  * @qp: the queue pair where the work request comes from
556  * @ibmr: the memory region to be registered
557  * @key: updated key for this memory region
558  * @access: access flags for this memory region
559  *
560  * Returns 0 on success.
561  */
562 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
563 		    int access)
564 {
565 	struct rvt_mr *mr = to_imr(ibmr);
566 
567 	if (qp->ibqp.pd != mr->mr.pd)
568 		return -EACCES;
569 
570 	/* not applicable to dma MR or user MR */
571 	if (!mr->mr.lkey || mr->umem)
572 		return -EINVAL;
573 
574 	if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
575 		return -EINVAL;
576 
577 	ibmr->lkey = key;
578 	ibmr->rkey = key;
579 	mr->mr.lkey = key;
580 	mr->mr.access_flags = access;
581 	atomic_set(&mr->mr.lkey_invalid, 0);
582 
583 	return 0;
584 }
585 EXPORT_SYMBOL(rvt_fast_reg_mr);
586 
587 /**
588  * rvt_invalidate_rkey - invalidate an MR rkey
589  * @qp: queue pair associated with the invalidate op
590  * @rkey: rkey to invalidate
591  *
592  * Returns 0 on success.
593  */
594 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
595 {
596 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
597 	struct rvt_lkey_table *rkt = &dev->lkey_table;
598 	struct rvt_mregion *mr;
599 
600 	if (rkey == 0)
601 		return -EINVAL;
602 
603 	rcu_read_lock();
604 	mr = rcu_dereference(
605 		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
606 	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
607 		goto bail;
608 
609 	atomic_set(&mr->lkey_invalid, 1);
610 	rcu_read_unlock();
611 	return 0;
612 
613 bail:
614 	rcu_read_unlock();
615 	return -EINVAL;
616 }
617 EXPORT_SYMBOL(rvt_invalidate_rkey);
618 
619 /**
620  * rvt_alloc_fmr - allocate a fast memory region
621  * @pd: the protection domain for this memory region
622  * @mr_access_flags: access flags for this memory region
623  * @fmr_attr: fast memory region attributes
624  *
625  * Return: the memory region on success, otherwise returns an errno.
626  */
627 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
628 			     struct ib_fmr_attr *fmr_attr)
629 {
630 	struct rvt_fmr *fmr;
631 	int m;
632 	struct ib_fmr *ret;
633 	int rval = -ENOMEM;
634 
635 	/* Allocate struct plus pointers to first level page tables. */
636 	m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
637 	fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
638 	if (!fmr)
639 		goto bail;
640 
641 	rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
642 				PERCPU_REF_INIT_ATOMIC);
643 	if (rval)
644 		goto bail;
645 
646 	/*
647 	 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
648 	 * rkey.
649 	 */
650 	rval = rvt_alloc_lkey(&fmr->mr, 0);
651 	if (rval)
652 		goto bail_mregion;
653 	fmr->ibfmr.rkey = fmr->mr.lkey;
654 	fmr->ibfmr.lkey = fmr->mr.lkey;
655 	/*
656 	 * Resources are allocated but no valid mapping (RKEY can't be
657 	 * used).
658 	 */
659 	fmr->mr.access_flags = mr_access_flags;
660 	fmr->mr.max_segs = fmr_attr->max_pages;
661 	fmr->mr.page_shift = fmr_attr->page_shift;
662 
663 	ret = &fmr->ibfmr;
664 done:
665 	return ret;
666 
667 bail_mregion:
668 	rvt_deinit_mregion(&fmr->mr);
669 bail:
670 	kfree(fmr);
671 	ret = ERR_PTR(rval);
672 	goto done;
673 }
674 
675 /**
676  * rvt_map_phys_fmr - set up a fast memory region
677  * @ibmfr: the fast memory region to set up
678  * @page_list: the list of pages to associate with the fast memory region
679  * @list_len: the number of pages to associate with the fast memory region
680  * @iova: the virtual address of the start of the fast memory region
681  *
682  * This may be called from interrupt context.
683  *
684  * Return: 0 on success
685  */
686 
687 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
688 		     int list_len, u64 iova)
689 {
690 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
691 	struct rvt_lkey_table *rkt;
692 	unsigned long flags;
693 	int m, n;
694 	unsigned long i;
695 	u32 ps;
696 	struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
697 
698 	i = atomic_long_read(&fmr->mr.refcount.count);
699 	if (i > 2)
700 		return -EBUSY;
701 
702 	if (list_len > fmr->mr.max_segs)
703 		return -EINVAL;
704 
705 	rkt = &rdi->lkey_table;
706 	spin_lock_irqsave(&rkt->lock, flags);
707 	fmr->mr.user_base = iova;
708 	fmr->mr.iova = iova;
709 	ps = 1 << fmr->mr.page_shift;
710 	fmr->mr.length = list_len * ps;
711 	m = 0;
712 	n = 0;
713 	for (i = 0; i < list_len; i++) {
714 		fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
715 		fmr->mr.map[m]->segs[n].length = ps;
716 		trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
717 		if (++n == RVT_SEGSZ) {
718 			m++;
719 			n = 0;
720 		}
721 	}
722 	spin_unlock_irqrestore(&rkt->lock, flags);
723 	return 0;
724 }
725 
726 /**
727  * rvt_unmap_fmr - unmap fast memory regions
728  * @fmr_list: the list of fast memory regions to unmap
729  *
730  * Return: 0 on success.
731  */
732 int rvt_unmap_fmr(struct list_head *fmr_list)
733 {
734 	struct rvt_fmr *fmr;
735 	struct rvt_lkey_table *rkt;
736 	unsigned long flags;
737 	struct rvt_dev_info *rdi;
738 
739 	list_for_each_entry(fmr, fmr_list, ibfmr.list) {
740 		rdi = ib_to_rvt(fmr->ibfmr.device);
741 		rkt = &rdi->lkey_table;
742 		spin_lock_irqsave(&rkt->lock, flags);
743 		fmr->mr.user_base = 0;
744 		fmr->mr.iova = 0;
745 		fmr->mr.length = 0;
746 		spin_unlock_irqrestore(&rkt->lock, flags);
747 	}
748 	return 0;
749 }
750 
751 /**
752  * rvt_dealloc_fmr - deallocate a fast memory region
753  * @ibfmr: the fast memory region to deallocate
754  *
755  * Return: 0 on success.
756  */
757 int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
758 {
759 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
760 	int ret = 0;
761 	unsigned long timeout;
762 
763 	rvt_free_lkey(&fmr->mr);
764 	rvt_put_mr(&fmr->mr); /* will set completion if last */
765 	timeout = wait_for_completion_timeout(&fmr->mr.comp, 5 * HZ);
766 	if (!timeout) {
767 		rvt_get_mr(&fmr->mr);
768 		ret = -EBUSY;
769 		goto out;
770 	}
771 	rvt_deinit_mregion(&fmr->mr);
772 	kfree(fmr);
773 out:
774 	return ret;
775 }
776 
777 /**
778  * rvt_lkey_ok - check IB SGE for validity and initialize
779  * @rkt: table containing lkey to check SGE against
780  * @pd: protection domain
781  * @isge: outgoing internal SGE
782  * @sge: SGE to check
783  * @acc: access flags
784  *
785  * Check the IB SGE for validity and initialize our internal version
786  * of it.
787  *
788  * Return: 1 if valid and successful, otherwise returns 0.
789  *
790  * increments the reference count upon success
791  *
792  */
793 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
794 		struct rvt_sge *isge, struct ib_sge *sge, int acc)
795 {
796 	struct rvt_mregion *mr;
797 	unsigned n, m;
798 	size_t off;
799 
800 	/*
801 	 * We use LKEY == zero for kernel virtual addresses
802 	 * (see rvt_get_dma_mr() and dma_virt_ops).
803 	 */
804 	rcu_read_lock();
805 	if (sge->lkey == 0) {
806 		struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
807 
808 		if (pd->user)
809 			goto bail;
810 		mr = rcu_dereference(dev->dma_mr);
811 		if (!mr)
812 			goto bail;
813 		rvt_get_mr(mr);
814 		rcu_read_unlock();
815 
816 		isge->mr = mr;
817 		isge->vaddr = (void *)sge->addr;
818 		isge->length = sge->length;
819 		isge->sge_length = sge->length;
820 		isge->m = 0;
821 		isge->n = 0;
822 		goto ok;
823 	}
824 	mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
825 	if (unlikely(!mr || atomic_read(&mr->lkey_invalid) ||
826 		     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
827 		goto bail;
828 
829 	off = sge->addr - mr->user_base;
830 	if (unlikely(sge->addr < mr->user_base ||
831 		     off + sge->length > mr->length ||
832 		     (mr->access_flags & acc) != acc))
833 		goto bail;
834 	rvt_get_mr(mr);
835 	rcu_read_unlock();
836 
837 	off += mr->offset;
838 	if (mr->page_shift) {
839 		/*
840 		 * page sizes are uniform power of 2 so no loop is necessary
841 		 * entries_spanned_by_off is the number of times the loop below
842 		 * would have executed.
843 		*/
844 		size_t entries_spanned_by_off;
845 
846 		entries_spanned_by_off = off >> mr->page_shift;
847 		off -= (entries_spanned_by_off << mr->page_shift);
848 		m = entries_spanned_by_off / RVT_SEGSZ;
849 		n = entries_spanned_by_off % RVT_SEGSZ;
850 	} else {
851 		m = 0;
852 		n = 0;
853 		while (off >= mr->map[m]->segs[n].length) {
854 			off -= mr->map[m]->segs[n].length;
855 			n++;
856 			if (n >= RVT_SEGSZ) {
857 				m++;
858 				n = 0;
859 			}
860 		}
861 	}
862 	isge->mr = mr;
863 	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
864 	isge->length = mr->map[m]->segs[n].length - off;
865 	isge->sge_length = sge->length;
866 	isge->m = m;
867 	isge->n = n;
868 ok:
869 	return 1;
870 bail:
871 	rcu_read_unlock();
872 	return 0;
873 }
874 EXPORT_SYMBOL(rvt_lkey_ok);
875 
876 /**
877  * rvt_rkey_ok - check the IB virtual address, length, and RKEY
878  * @qp: qp for validation
879  * @sge: SGE state
880  * @len: length of data
881  * @vaddr: virtual address to place data
882  * @rkey: rkey to check
883  * @acc: access flags
884  *
885  * Return: 1 if successful, otherwise 0.
886  *
887  * increments the reference count upon success
888  */
889 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
890 		u32 len, u64 vaddr, u32 rkey, int acc)
891 {
892 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
893 	struct rvt_lkey_table *rkt = &dev->lkey_table;
894 	struct rvt_mregion *mr;
895 	unsigned n, m;
896 	size_t off;
897 
898 	/*
899 	 * We use RKEY == zero for kernel virtual addresses
900 	 * (see rvt_get_dma_mr() and dma_virt_ops).
901 	 */
902 	rcu_read_lock();
903 	if (rkey == 0) {
904 		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
905 		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
906 
907 		if (pd->user)
908 			goto bail;
909 		mr = rcu_dereference(rdi->dma_mr);
910 		if (!mr)
911 			goto bail;
912 		rvt_get_mr(mr);
913 		rcu_read_unlock();
914 
915 		sge->mr = mr;
916 		sge->vaddr = (void *)vaddr;
917 		sge->length = len;
918 		sge->sge_length = len;
919 		sge->m = 0;
920 		sge->n = 0;
921 		goto ok;
922 	}
923 
924 	mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
925 	if (unlikely(!mr || atomic_read(&mr->lkey_invalid) ||
926 		     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
927 		goto bail;
928 
929 	off = vaddr - mr->iova;
930 	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
931 		     (mr->access_flags & acc) == 0))
932 		goto bail;
933 	rvt_get_mr(mr);
934 	rcu_read_unlock();
935 
936 	off += mr->offset;
937 	if (mr->page_shift) {
938 		/*
939 		 * page sizes are uniform power of 2 so no loop is necessary
940 		 * entries_spanned_by_off is the number of times the loop below
941 		 * would have executed.
942 		*/
943 		size_t entries_spanned_by_off;
944 
945 		entries_spanned_by_off = off >> mr->page_shift;
946 		off -= (entries_spanned_by_off << mr->page_shift);
947 		m = entries_spanned_by_off / RVT_SEGSZ;
948 		n = entries_spanned_by_off % RVT_SEGSZ;
949 	} else {
950 		m = 0;
951 		n = 0;
952 		while (off >= mr->map[m]->segs[n].length) {
953 			off -= mr->map[m]->segs[n].length;
954 			n++;
955 			if (n >= RVT_SEGSZ) {
956 				m++;
957 				n = 0;
958 			}
959 		}
960 	}
961 	sge->mr = mr;
962 	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
963 	sge->length = mr->map[m]->segs[n].length - off;
964 	sge->sge_length = len;
965 	sge->m = m;
966 	sge->n = n;
967 ok:
968 	return 1;
969 bail:
970 	rcu_read_unlock();
971 	return 0;
972 }
973 EXPORT_SYMBOL(rvt_rkey_ok);
974