1 /* 2 * Copyright(c) 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/slab.h> 49 #include <linux/vmalloc.h> 50 #include <rdma/ib_umem.h> 51 #include <rdma/rdma_vt.h> 52 #include "vt.h" 53 #include "mr.h" 54 #include "trace.h" 55 56 /** 57 * rvt_driver_mr_init - Init MR resources per driver 58 * @rdi: rvt dev struct 59 * 60 * Do any intilization needed when a driver registers with rdmavt. 61 * 62 * Return: 0 on success or errno on failure 63 */ 64 int rvt_driver_mr_init(struct rvt_dev_info *rdi) 65 { 66 unsigned int lkey_table_size = rdi->dparms.lkey_table_size; 67 unsigned lk_tab_size; 68 int i; 69 70 /* 71 * The top hfi1_lkey_table_size bits are used to index the 72 * table. The lower 8 bits can be owned by the user (copied from 73 * the LKEY). The remaining bits act as a generation number or tag. 74 */ 75 if (!lkey_table_size) 76 return -EINVAL; 77 78 spin_lock_init(&rdi->lkey_table.lock); 79 80 /* ensure generation is at least 4 bits */ 81 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) { 82 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n", 83 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS); 84 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS; 85 lkey_table_size = rdi->dparms.lkey_table_size; 86 } 87 rdi->lkey_table.max = 1 << lkey_table_size; 88 rdi->lkey_table.shift = 32 - lkey_table_size; 89 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table); 90 rdi->lkey_table.table = (struct rvt_mregion __rcu **) 91 vmalloc_node(lk_tab_size, rdi->dparms.node); 92 if (!rdi->lkey_table.table) 93 return -ENOMEM; 94 95 RCU_INIT_POINTER(rdi->dma_mr, NULL); 96 for (i = 0; i < rdi->lkey_table.max; i++) 97 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL); 98 99 return 0; 100 } 101 102 /** 103 *rvt_mr_exit: clean up MR 104 *@rdi: rvt dev structure 105 * 106 * called when drivers have unregistered or perhaps failed to register with us 107 */ 108 void rvt_mr_exit(struct rvt_dev_info *rdi) 109 { 110 if (rdi->dma_mr) 111 rvt_pr_err(rdi, "DMA MR not null!\n"); 112 113 vfree(rdi->lkey_table.table); 114 } 115 116 static void rvt_deinit_mregion(struct rvt_mregion *mr) 117 { 118 int i = mr->mapsz; 119 120 mr->mapsz = 0; 121 while (i) 122 kfree(mr->map[--i]); 123 percpu_ref_exit(&mr->refcount); 124 } 125 126 static void __rvt_mregion_complete(struct percpu_ref *ref) 127 { 128 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion, 129 refcount); 130 131 complete(&mr->comp); 132 } 133 134 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd, 135 int count, unsigned int percpu_flags) 136 { 137 int m, i = 0; 138 struct rvt_dev_info *dev = ib_to_rvt(pd->device); 139 140 mr->mapsz = 0; 141 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 142 for (; i < m; i++) { 143 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL, 144 dev->dparms.node); 145 if (!mr->map[i]) 146 goto bail; 147 mr->mapsz++; 148 } 149 init_completion(&mr->comp); 150 /* count returning the ptr to user */ 151 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete, 152 percpu_flags, GFP_KERNEL)) 153 goto bail; 154 155 atomic_set(&mr->lkey_invalid, 0); 156 mr->pd = pd; 157 mr->max_segs = count; 158 return 0; 159 bail: 160 rvt_deinit_mregion(mr); 161 return -ENOMEM; 162 } 163 164 /** 165 * rvt_alloc_lkey - allocate an lkey 166 * @mr: memory region that this lkey protects 167 * @dma_region: 0->normal key, 1->restricted DMA key 168 * 169 * Returns 0 if successful, otherwise returns -errno. 170 * 171 * Increments mr reference count as required. 172 * 173 * Sets the lkey field mr for non-dma regions. 174 * 175 */ 176 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region) 177 { 178 unsigned long flags; 179 u32 r; 180 u32 n; 181 int ret = 0; 182 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 183 struct rvt_lkey_table *rkt = &dev->lkey_table; 184 185 rvt_get_mr(mr); 186 spin_lock_irqsave(&rkt->lock, flags); 187 188 /* special case for dma_mr lkey == 0 */ 189 if (dma_region) { 190 struct rvt_mregion *tmr; 191 192 tmr = rcu_access_pointer(dev->dma_mr); 193 if (!tmr) { 194 mr->lkey_published = 1; 195 /* Insure published written first */ 196 rcu_assign_pointer(dev->dma_mr, mr); 197 rvt_get_mr(mr); 198 } 199 goto success; 200 } 201 202 /* Find the next available LKEY */ 203 r = rkt->next; 204 n = r; 205 for (;;) { 206 if (!rcu_access_pointer(rkt->table[r])) 207 break; 208 r = (r + 1) & (rkt->max - 1); 209 if (r == n) 210 goto bail; 211 } 212 rkt->next = (r + 1) & (rkt->max - 1); 213 /* 214 * Make sure lkey is never zero which is reserved to indicate an 215 * unrestricted LKEY. 216 */ 217 rkt->gen++; 218 /* 219 * bits are capped to ensure enough bits for generation number 220 */ 221 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) | 222 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen) 223 << 8); 224 if (mr->lkey == 0) { 225 mr->lkey |= 1 << 8; 226 rkt->gen++; 227 } 228 mr->lkey_published = 1; 229 /* Insure published written first */ 230 rcu_assign_pointer(rkt->table[r], mr); 231 success: 232 spin_unlock_irqrestore(&rkt->lock, flags); 233 out: 234 return ret; 235 bail: 236 rvt_put_mr(mr); 237 spin_unlock_irqrestore(&rkt->lock, flags); 238 ret = -ENOMEM; 239 goto out; 240 } 241 242 /** 243 * rvt_free_lkey - free an lkey 244 * @mr: mr to free from tables 245 */ 246 static void rvt_free_lkey(struct rvt_mregion *mr) 247 { 248 unsigned long flags; 249 u32 lkey = mr->lkey; 250 u32 r; 251 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 252 struct rvt_lkey_table *rkt = &dev->lkey_table; 253 int freed = 0; 254 255 spin_lock_irqsave(&rkt->lock, flags); 256 if (!lkey) { 257 if (mr->lkey_published) { 258 mr->lkey_published = 0; 259 /* insure published is written before pointer */ 260 rcu_assign_pointer(dev->dma_mr, NULL); 261 rvt_put_mr(mr); 262 } 263 } else { 264 if (!mr->lkey_published) 265 goto out; 266 r = lkey >> (32 - dev->dparms.lkey_table_size); 267 mr->lkey_published = 0; 268 /* insure published is written before pointer */ 269 rcu_assign_pointer(rkt->table[r], NULL); 270 } 271 freed++; 272 out: 273 spin_unlock_irqrestore(&rkt->lock, flags); 274 if (freed) 275 percpu_ref_kill(&mr->refcount); 276 } 277 278 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd) 279 { 280 struct rvt_mr *mr; 281 int rval = -ENOMEM; 282 int m; 283 284 /* Allocate struct plus pointers to first level page tables. */ 285 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 286 mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL); 287 if (!mr) 288 goto bail; 289 290 rval = rvt_init_mregion(&mr->mr, pd, count, 0); 291 if (rval) 292 goto bail; 293 /* 294 * ib_reg_phys_mr() will initialize mr->ibmr except for 295 * lkey and rkey. 296 */ 297 rval = rvt_alloc_lkey(&mr->mr, 0); 298 if (rval) 299 goto bail_mregion; 300 mr->ibmr.lkey = mr->mr.lkey; 301 mr->ibmr.rkey = mr->mr.lkey; 302 done: 303 return mr; 304 305 bail_mregion: 306 rvt_deinit_mregion(&mr->mr); 307 bail: 308 kfree(mr); 309 mr = ERR_PTR(rval); 310 goto done; 311 } 312 313 static void __rvt_free_mr(struct rvt_mr *mr) 314 { 315 rvt_free_lkey(&mr->mr); 316 rvt_deinit_mregion(&mr->mr); 317 kfree(mr); 318 } 319 320 /** 321 * rvt_get_dma_mr - get a DMA memory region 322 * @pd: protection domain for this memory region 323 * @acc: access flags 324 * 325 * Return: the memory region on success, otherwise returns an errno. 326 * Note that all DMA addresses should be created via the functions in 327 * struct dma_virt_ops. 328 */ 329 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc) 330 { 331 struct rvt_mr *mr; 332 struct ib_mr *ret; 333 int rval; 334 335 if (ibpd_to_rvtpd(pd)->user) 336 return ERR_PTR(-EPERM); 337 338 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 339 if (!mr) { 340 ret = ERR_PTR(-ENOMEM); 341 goto bail; 342 } 343 344 rval = rvt_init_mregion(&mr->mr, pd, 0, 0); 345 if (rval) { 346 ret = ERR_PTR(rval); 347 goto bail; 348 } 349 350 rval = rvt_alloc_lkey(&mr->mr, 1); 351 if (rval) { 352 ret = ERR_PTR(rval); 353 goto bail_mregion; 354 } 355 356 mr->mr.access_flags = acc; 357 ret = &mr->ibmr; 358 done: 359 return ret; 360 361 bail_mregion: 362 rvt_deinit_mregion(&mr->mr); 363 bail: 364 kfree(mr); 365 goto done; 366 } 367 368 /** 369 * rvt_reg_user_mr - register a userspace memory region 370 * @pd: protection domain for this memory region 371 * @start: starting userspace address 372 * @length: length of region to register 373 * @mr_access_flags: access flags for this memory region 374 * @udata: unused by the driver 375 * 376 * Return: the memory region on success, otherwise returns an errno. 377 */ 378 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 379 u64 virt_addr, int mr_access_flags, 380 struct ib_udata *udata) 381 { 382 struct rvt_mr *mr; 383 struct ib_umem *umem; 384 struct sg_page_iter sg_iter; 385 int n, m; 386 struct ib_mr *ret; 387 388 if (length == 0) 389 return ERR_PTR(-EINVAL); 390 391 umem = ib_umem_get(udata, start, length, mr_access_flags, 0); 392 if (IS_ERR(umem)) 393 return (void *)umem; 394 395 n = ib_umem_num_pages(umem); 396 397 mr = __rvt_alloc_mr(n, pd); 398 if (IS_ERR(mr)) { 399 ret = (struct ib_mr *)mr; 400 goto bail_umem; 401 } 402 403 mr->mr.user_base = start; 404 mr->mr.iova = virt_addr; 405 mr->mr.length = length; 406 mr->mr.offset = ib_umem_offset(umem); 407 mr->mr.access_flags = mr_access_flags; 408 mr->umem = umem; 409 410 mr->mr.page_shift = PAGE_SHIFT; 411 m = 0; 412 n = 0; 413 for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) { 414 void *vaddr; 415 416 vaddr = page_address(sg_page_iter_page(&sg_iter)); 417 if (!vaddr) { 418 ret = ERR_PTR(-EINVAL); 419 goto bail_inval; 420 } 421 mr->mr.map[m]->segs[n].vaddr = vaddr; 422 mr->mr.map[m]->segs[n].length = PAGE_SIZE; 423 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE); 424 if (++n == RVT_SEGSZ) { 425 m++; 426 n = 0; 427 } 428 } 429 return &mr->ibmr; 430 431 bail_inval: 432 __rvt_free_mr(mr); 433 434 bail_umem: 435 ib_umem_release(umem); 436 437 return ret; 438 } 439 440 /** 441 * rvt_dereg_clean_qp_cb - callback from iterator 442 * @qp - the qp 443 * @v - the mregion (as u64) 444 * 445 * This routine fields the callback for all QPs and 446 * for QPs in the same PD as the MR will call the 447 * rvt_qp_mr_clean() to potentially cleanup references. 448 */ 449 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v) 450 { 451 struct rvt_mregion *mr = (struct rvt_mregion *)v; 452 453 /* skip PDs that are not ours */ 454 if (mr->pd != qp->ibqp.pd) 455 return; 456 rvt_qp_mr_clean(qp, mr->lkey); 457 } 458 459 /** 460 * rvt_dereg_clean_qps - find QPs for reference cleanup 461 * @mr - the MR that is being deregistered 462 * 463 * This routine iterates RC QPs looking for references 464 * to the lkey noted in mr. 465 */ 466 static void rvt_dereg_clean_qps(struct rvt_mregion *mr) 467 { 468 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 469 470 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb); 471 } 472 473 /** 474 * rvt_check_refs - check references 475 * @mr - the megion 476 * @t - the caller identification 477 * 478 * This routine checks MRs holding a reference during 479 * when being de-registered. 480 * 481 * If the count is non-zero, the code calls a clean routine then 482 * waits for the timeout for the count to zero. 483 */ 484 static int rvt_check_refs(struct rvt_mregion *mr, const char *t) 485 { 486 unsigned long timeout; 487 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 488 489 if (mr->lkey) { 490 /* avoid dma mr */ 491 rvt_dereg_clean_qps(mr); 492 /* @mr was indexed on rcu protected @lkey_table */ 493 synchronize_rcu(); 494 } 495 496 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ); 497 if (!timeout) { 498 rvt_pr_err(rdi, 499 "%s timeout mr %p pd %p lkey %x refcount %ld\n", 500 t, mr, mr->pd, mr->lkey, 501 atomic_long_read(&mr->refcount.count)); 502 rvt_get_mr(mr); 503 return -EBUSY; 504 } 505 return 0; 506 } 507 508 /** 509 * rvt_mr_has_lkey - is MR 510 * @mr - the mregion 511 * @lkey - the lkey 512 */ 513 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey) 514 { 515 return mr && lkey == mr->lkey; 516 } 517 518 /** 519 * rvt_ss_has_lkey - is mr in sge tests 520 * @ss - the sge state 521 * @lkey 522 * 523 * This code tests for an MR in the indicated 524 * sge state. 525 */ 526 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey) 527 { 528 int i; 529 bool rval = false; 530 531 if (!ss->num_sge) 532 return rval; 533 /* first one */ 534 rval = rvt_mr_has_lkey(ss->sge.mr, lkey); 535 /* any others */ 536 for (i = 0; !rval && i < ss->num_sge - 1; i++) 537 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey); 538 return rval; 539 } 540 541 /** 542 * rvt_dereg_mr - unregister and free a memory region 543 * @ibmr: the memory region to free 544 * 545 * 546 * Note that this is called to free MRs created by rvt_get_dma_mr() 547 * or rvt_reg_user_mr(). 548 * 549 * Returns 0 on success. 550 */ 551 int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 552 { 553 struct rvt_mr *mr = to_imr(ibmr); 554 int ret; 555 556 rvt_free_lkey(&mr->mr); 557 558 rvt_put_mr(&mr->mr); /* will set completion if last */ 559 ret = rvt_check_refs(&mr->mr, __func__); 560 if (ret) 561 goto out; 562 rvt_deinit_mregion(&mr->mr); 563 if (mr->umem) 564 ib_umem_release(mr->umem); 565 kfree(mr); 566 out: 567 return ret; 568 } 569 570 /** 571 * rvt_alloc_mr - Allocate a memory region usable with the 572 * @pd: protection domain for this memory region 573 * @mr_type: mem region type 574 * @max_num_sg: Max number of segments allowed 575 * 576 * Return: the memory region on success, otherwise return an errno. 577 */ 578 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 579 u32 max_num_sg, struct ib_udata *udata) 580 { 581 struct rvt_mr *mr; 582 583 if (mr_type != IB_MR_TYPE_MEM_REG) 584 return ERR_PTR(-EINVAL); 585 586 mr = __rvt_alloc_mr(max_num_sg, pd); 587 if (IS_ERR(mr)) 588 return (struct ib_mr *)mr; 589 590 return &mr->ibmr; 591 } 592 593 /** 594 * rvt_set_page - page assignment function called by ib_sg_to_pages 595 * @ibmr: memory region 596 * @addr: dma address of mapped page 597 * 598 * Return: 0 on success 599 */ 600 static int rvt_set_page(struct ib_mr *ibmr, u64 addr) 601 { 602 struct rvt_mr *mr = to_imr(ibmr); 603 u32 ps = 1 << mr->mr.page_shift; 604 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift; 605 int m, n; 606 607 if (unlikely(mapped_segs == mr->mr.max_segs)) 608 return -ENOMEM; 609 610 m = mapped_segs / RVT_SEGSZ; 611 n = mapped_segs % RVT_SEGSZ; 612 mr->mr.map[m]->segs[n].vaddr = (void *)addr; 613 mr->mr.map[m]->segs[n].length = ps; 614 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps); 615 mr->mr.length += ps; 616 617 return 0; 618 } 619 620 /** 621 * rvt_map_mr_sg - map sg list and set it the memory region 622 * @ibmr: memory region 623 * @sg: dma mapped scatterlist 624 * @sg_nents: number of entries in sg 625 * @sg_offset: offset in bytes into sg 626 * 627 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages. 628 * 629 * Return: number of sg elements mapped to the memory region 630 */ 631 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, 632 int sg_nents, unsigned int *sg_offset) 633 { 634 struct rvt_mr *mr = to_imr(ibmr); 635 int ret; 636 637 mr->mr.length = 0; 638 mr->mr.page_shift = PAGE_SHIFT; 639 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page); 640 mr->mr.user_base = ibmr->iova; 641 mr->mr.iova = ibmr->iova; 642 mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr; 643 mr->mr.length = (size_t)ibmr->length; 644 return ret; 645 } 646 647 /** 648 * rvt_fast_reg_mr - fast register physical MR 649 * @qp: the queue pair where the work request comes from 650 * @ibmr: the memory region to be registered 651 * @key: updated key for this memory region 652 * @access: access flags for this memory region 653 * 654 * Returns 0 on success. 655 */ 656 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key, 657 int access) 658 { 659 struct rvt_mr *mr = to_imr(ibmr); 660 661 if (qp->ibqp.pd != mr->mr.pd) 662 return -EACCES; 663 664 /* not applicable to dma MR or user MR */ 665 if (!mr->mr.lkey || mr->umem) 666 return -EINVAL; 667 668 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00)) 669 return -EINVAL; 670 671 ibmr->lkey = key; 672 ibmr->rkey = key; 673 mr->mr.lkey = key; 674 mr->mr.access_flags = access; 675 mr->mr.iova = ibmr->iova; 676 atomic_set(&mr->mr.lkey_invalid, 0); 677 678 return 0; 679 } 680 EXPORT_SYMBOL(rvt_fast_reg_mr); 681 682 /** 683 * rvt_invalidate_rkey - invalidate an MR rkey 684 * @qp: queue pair associated with the invalidate op 685 * @rkey: rkey to invalidate 686 * 687 * Returns 0 on success. 688 */ 689 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey) 690 { 691 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 692 struct rvt_lkey_table *rkt = &dev->lkey_table; 693 struct rvt_mregion *mr; 694 695 if (rkey == 0) 696 return -EINVAL; 697 698 rcu_read_lock(); 699 mr = rcu_dereference( 700 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]); 701 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 702 goto bail; 703 704 atomic_set(&mr->lkey_invalid, 1); 705 rcu_read_unlock(); 706 return 0; 707 708 bail: 709 rcu_read_unlock(); 710 return -EINVAL; 711 } 712 EXPORT_SYMBOL(rvt_invalidate_rkey); 713 714 /** 715 * rvt_alloc_fmr - allocate a fast memory region 716 * @pd: the protection domain for this memory region 717 * @mr_access_flags: access flags for this memory region 718 * @fmr_attr: fast memory region attributes 719 * 720 * Return: the memory region on success, otherwise returns an errno. 721 */ 722 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags, 723 struct ib_fmr_attr *fmr_attr) 724 { 725 struct rvt_fmr *fmr; 726 int m; 727 struct ib_fmr *ret; 728 int rval = -ENOMEM; 729 730 /* Allocate struct plus pointers to first level page tables. */ 731 m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ; 732 fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL); 733 if (!fmr) 734 goto bail; 735 736 rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages, 737 PERCPU_REF_INIT_ATOMIC); 738 if (rval) 739 goto bail; 740 741 /* 742 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey & 743 * rkey. 744 */ 745 rval = rvt_alloc_lkey(&fmr->mr, 0); 746 if (rval) 747 goto bail_mregion; 748 fmr->ibfmr.rkey = fmr->mr.lkey; 749 fmr->ibfmr.lkey = fmr->mr.lkey; 750 /* 751 * Resources are allocated but no valid mapping (RKEY can't be 752 * used). 753 */ 754 fmr->mr.access_flags = mr_access_flags; 755 fmr->mr.max_segs = fmr_attr->max_pages; 756 fmr->mr.page_shift = fmr_attr->page_shift; 757 758 ret = &fmr->ibfmr; 759 done: 760 return ret; 761 762 bail_mregion: 763 rvt_deinit_mregion(&fmr->mr); 764 bail: 765 kfree(fmr); 766 ret = ERR_PTR(rval); 767 goto done; 768 } 769 770 /** 771 * rvt_map_phys_fmr - set up a fast memory region 772 * @ibfmr: the fast memory region to set up 773 * @page_list: the list of pages to associate with the fast memory region 774 * @list_len: the number of pages to associate with the fast memory region 775 * @iova: the virtual address of the start of the fast memory region 776 * 777 * This may be called from interrupt context. 778 * 779 * Return: 0 on success 780 */ 781 782 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, 783 int list_len, u64 iova) 784 { 785 struct rvt_fmr *fmr = to_ifmr(ibfmr); 786 struct rvt_lkey_table *rkt; 787 unsigned long flags; 788 int m, n; 789 unsigned long i; 790 u32 ps; 791 struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device); 792 793 i = atomic_long_read(&fmr->mr.refcount.count); 794 if (i > 2) 795 return -EBUSY; 796 797 if (list_len > fmr->mr.max_segs) 798 return -EINVAL; 799 800 rkt = &rdi->lkey_table; 801 spin_lock_irqsave(&rkt->lock, flags); 802 fmr->mr.user_base = iova; 803 fmr->mr.iova = iova; 804 ps = 1 << fmr->mr.page_shift; 805 fmr->mr.length = list_len * ps; 806 m = 0; 807 n = 0; 808 for (i = 0; i < list_len; i++) { 809 fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i]; 810 fmr->mr.map[m]->segs[n].length = ps; 811 trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps); 812 if (++n == RVT_SEGSZ) { 813 m++; 814 n = 0; 815 } 816 } 817 spin_unlock_irqrestore(&rkt->lock, flags); 818 return 0; 819 } 820 821 /** 822 * rvt_unmap_fmr - unmap fast memory regions 823 * @fmr_list: the list of fast memory regions to unmap 824 * 825 * Return: 0 on success. 826 */ 827 int rvt_unmap_fmr(struct list_head *fmr_list) 828 { 829 struct rvt_fmr *fmr; 830 struct rvt_lkey_table *rkt; 831 unsigned long flags; 832 struct rvt_dev_info *rdi; 833 834 list_for_each_entry(fmr, fmr_list, ibfmr.list) { 835 rdi = ib_to_rvt(fmr->ibfmr.device); 836 rkt = &rdi->lkey_table; 837 spin_lock_irqsave(&rkt->lock, flags); 838 fmr->mr.user_base = 0; 839 fmr->mr.iova = 0; 840 fmr->mr.length = 0; 841 spin_unlock_irqrestore(&rkt->lock, flags); 842 } 843 return 0; 844 } 845 846 /** 847 * rvt_dealloc_fmr - deallocate a fast memory region 848 * @ibfmr: the fast memory region to deallocate 849 * 850 * Return: 0 on success. 851 */ 852 int rvt_dealloc_fmr(struct ib_fmr *ibfmr) 853 { 854 struct rvt_fmr *fmr = to_ifmr(ibfmr); 855 int ret = 0; 856 857 rvt_free_lkey(&fmr->mr); 858 rvt_put_mr(&fmr->mr); /* will set completion if last */ 859 ret = rvt_check_refs(&fmr->mr, __func__); 860 if (ret) 861 goto out; 862 rvt_deinit_mregion(&fmr->mr); 863 kfree(fmr); 864 out: 865 return ret; 866 } 867 868 /** 869 * rvt_sge_adjacent - is isge compressible 870 * @last_sge: last outgoing SGE written 871 * @sge: SGE to check 872 * 873 * If adjacent will update last_sge to add length. 874 * 875 * Return: true if isge is adjacent to last sge 876 */ 877 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge, 878 struct ib_sge *sge) 879 { 880 if (last_sge && sge->lkey == last_sge->mr->lkey && 881 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) { 882 if (sge->lkey) { 883 if (unlikely((sge->addr - last_sge->mr->user_base + 884 sge->length > last_sge->mr->length))) 885 return false; /* overrun, caller will catch */ 886 } else { 887 last_sge->length += sge->length; 888 } 889 last_sge->sge_length += sge->length; 890 trace_rvt_sge_adjacent(last_sge, sge); 891 return true; 892 } 893 return false; 894 } 895 896 /** 897 * rvt_lkey_ok - check IB SGE for validity and initialize 898 * @rkt: table containing lkey to check SGE against 899 * @pd: protection domain 900 * @isge: outgoing internal SGE 901 * @last_sge: last outgoing SGE written 902 * @sge: SGE to check 903 * @acc: access flags 904 * 905 * Check the IB SGE for validity and initialize our internal version 906 * of it. 907 * 908 * Increments the reference count when a new sge is stored. 909 * 910 * Return: 0 if compressed, 1 if added , otherwise returns -errno. 911 */ 912 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd, 913 struct rvt_sge *isge, struct rvt_sge *last_sge, 914 struct ib_sge *sge, int acc) 915 { 916 struct rvt_mregion *mr; 917 unsigned n, m; 918 size_t off; 919 920 /* 921 * We use LKEY == zero for kernel virtual addresses 922 * (see rvt_get_dma_mr() and dma_virt_ops). 923 */ 924 if (sge->lkey == 0) { 925 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device); 926 927 if (pd->user) 928 return -EINVAL; 929 if (rvt_sge_adjacent(last_sge, sge)) 930 return 0; 931 rcu_read_lock(); 932 mr = rcu_dereference(dev->dma_mr); 933 if (!mr) 934 goto bail; 935 rvt_get_mr(mr); 936 rcu_read_unlock(); 937 938 isge->mr = mr; 939 isge->vaddr = (void *)sge->addr; 940 isge->length = sge->length; 941 isge->sge_length = sge->length; 942 isge->m = 0; 943 isge->n = 0; 944 goto ok; 945 } 946 if (rvt_sge_adjacent(last_sge, sge)) 947 return 0; 948 rcu_read_lock(); 949 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]); 950 if (!mr) 951 goto bail; 952 rvt_get_mr(mr); 953 if (!READ_ONCE(mr->lkey_published)) 954 goto bail_unref; 955 956 if (unlikely(atomic_read(&mr->lkey_invalid) || 957 mr->lkey != sge->lkey || mr->pd != &pd->ibpd)) 958 goto bail_unref; 959 960 off = sge->addr - mr->user_base; 961 if (unlikely(sge->addr < mr->user_base || 962 off + sge->length > mr->length || 963 (mr->access_flags & acc) != acc)) 964 goto bail_unref; 965 rcu_read_unlock(); 966 967 off += mr->offset; 968 if (mr->page_shift) { 969 /* 970 * page sizes are uniform power of 2 so no loop is necessary 971 * entries_spanned_by_off is the number of times the loop below 972 * would have executed. 973 */ 974 size_t entries_spanned_by_off; 975 976 entries_spanned_by_off = off >> mr->page_shift; 977 off -= (entries_spanned_by_off << mr->page_shift); 978 m = entries_spanned_by_off / RVT_SEGSZ; 979 n = entries_spanned_by_off % RVT_SEGSZ; 980 } else { 981 m = 0; 982 n = 0; 983 while (off >= mr->map[m]->segs[n].length) { 984 off -= mr->map[m]->segs[n].length; 985 n++; 986 if (n >= RVT_SEGSZ) { 987 m++; 988 n = 0; 989 } 990 } 991 } 992 isge->mr = mr; 993 isge->vaddr = mr->map[m]->segs[n].vaddr + off; 994 isge->length = mr->map[m]->segs[n].length - off; 995 isge->sge_length = sge->length; 996 isge->m = m; 997 isge->n = n; 998 ok: 999 trace_rvt_sge_new(isge, sge); 1000 return 1; 1001 bail_unref: 1002 rvt_put_mr(mr); 1003 bail: 1004 rcu_read_unlock(); 1005 return -EINVAL; 1006 } 1007 EXPORT_SYMBOL(rvt_lkey_ok); 1008 1009 /** 1010 * rvt_rkey_ok - check the IB virtual address, length, and RKEY 1011 * @qp: qp for validation 1012 * @sge: SGE state 1013 * @len: length of data 1014 * @vaddr: virtual address to place data 1015 * @rkey: rkey to check 1016 * @acc: access flags 1017 * 1018 * Return: 1 if successful, otherwise 0. 1019 * 1020 * increments the reference count upon success 1021 */ 1022 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge, 1023 u32 len, u64 vaddr, u32 rkey, int acc) 1024 { 1025 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 1026 struct rvt_lkey_table *rkt = &dev->lkey_table; 1027 struct rvt_mregion *mr; 1028 unsigned n, m; 1029 size_t off; 1030 1031 /* 1032 * We use RKEY == zero for kernel virtual addresses 1033 * (see rvt_get_dma_mr() and dma_virt_ops). 1034 */ 1035 rcu_read_lock(); 1036 if (rkey == 0) { 1037 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd); 1038 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device); 1039 1040 if (pd->user) 1041 goto bail; 1042 mr = rcu_dereference(rdi->dma_mr); 1043 if (!mr) 1044 goto bail; 1045 rvt_get_mr(mr); 1046 rcu_read_unlock(); 1047 1048 sge->mr = mr; 1049 sge->vaddr = (void *)vaddr; 1050 sge->length = len; 1051 sge->sge_length = len; 1052 sge->m = 0; 1053 sge->n = 0; 1054 goto ok; 1055 } 1056 1057 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]); 1058 if (!mr) 1059 goto bail; 1060 rvt_get_mr(mr); 1061 /* insure mr read is before test */ 1062 if (!READ_ONCE(mr->lkey_published)) 1063 goto bail_unref; 1064 if (unlikely(atomic_read(&mr->lkey_invalid) || 1065 mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 1066 goto bail_unref; 1067 1068 off = vaddr - mr->iova; 1069 if (unlikely(vaddr < mr->iova || off + len > mr->length || 1070 (mr->access_flags & acc) == 0)) 1071 goto bail_unref; 1072 rcu_read_unlock(); 1073 1074 off += mr->offset; 1075 if (mr->page_shift) { 1076 /* 1077 * page sizes are uniform power of 2 so no loop is necessary 1078 * entries_spanned_by_off is the number of times the loop below 1079 * would have executed. 1080 */ 1081 size_t entries_spanned_by_off; 1082 1083 entries_spanned_by_off = off >> mr->page_shift; 1084 off -= (entries_spanned_by_off << mr->page_shift); 1085 m = entries_spanned_by_off / RVT_SEGSZ; 1086 n = entries_spanned_by_off % RVT_SEGSZ; 1087 } else { 1088 m = 0; 1089 n = 0; 1090 while (off >= mr->map[m]->segs[n].length) { 1091 off -= mr->map[m]->segs[n].length; 1092 n++; 1093 if (n >= RVT_SEGSZ) { 1094 m++; 1095 n = 0; 1096 } 1097 } 1098 } 1099 sge->mr = mr; 1100 sge->vaddr = mr->map[m]->segs[n].vaddr + off; 1101 sge->length = mr->map[m]->segs[n].length - off; 1102 sge->sge_length = len; 1103 sge->m = m; 1104 sge->n = n; 1105 ok: 1106 return 1; 1107 bail_unref: 1108 rvt_put_mr(mr); 1109 bail: 1110 rcu_read_unlock(); 1111 return 0; 1112 } 1113 EXPORT_SYMBOL(rvt_rkey_ok); 1114