xref: /openbmc/linux/drivers/infiniband/sw/rdmavt/mr.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 /*
2  * Copyright(c) 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54 #include "trace.h"
55 
56 /**
57  * rvt_driver_mr_init - Init MR resources per driver
58  * @rdi: rvt dev struct
59  *
60  * Do any intilization needed when a driver registers with rdmavt.
61  *
62  * Return: 0 on success or errno on failure
63  */
64 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65 {
66 	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67 	unsigned lk_tab_size;
68 	int i;
69 
70 	/*
71 	 * The top hfi1_lkey_table_size bits are used to index the
72 	 * table.  The lower 8 bits can be owned by the user (copied from
73 	 * the LKEY).  The remaining bits act as a generation number or tag.
74 	 */
75 	if (!lkey_table_size)
76 		return -EINVAL;
77 
78 	spin_lock_init(&rdi->lkey_table.lock);
79 
80 	/* ensure generation is at least 4 bits */
81 	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82 		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83 			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84 		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85 		lkey_table_size = rdi->dparms.lkey_table_size;
86 	}
87 	rdi->lkey_table.max = 1 << lkey_table_size;
88 	rdi->lkey_table.shift = 32 - lkey_table_size;
89 	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90 	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91 			       vmalloc_node(lk_tab_size, rdi->dparms.node);
92 	if (!rdi->lkey_table.table)
93 		return -ENOMEM;
94 
95 	RCU_INIT_POINTER(rdi->dma_mr, NULL);
96 	for (i = 0; i < rdi->lkey_table.max; i++)
97 		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98 
99 	rdi->dparms.props.max_mr = rdi->lkey_table.max;
100 	return 0;
101 }
102 
103 /**
104  *rvt_mr_exit: clean up MR
105  *@rdi: rvt dev structure
106  *
107  * called when drivers have unregistered or perhaps failed to register with us
108  */
109 void rvt_mr_exit(struct rvt_dev_info *rdi)
110 {
111 	if (rdi->dma_mr)
112 		rvt_pr_err(rdi, "DMA MR not null!\n");
113 
114 	vfree(rdi->lkey_table.table);
115 }
116 
117 static void rvt_deinit_mregion(struct rvt_mregion *mr)
118 {
119 	int i = mr->mapsz;
120 
121 	mr->mapsz = 0;
122 	while (i)
123 		kfree(mr->map[--i]);
124 	percpu_ref_exit(&mr->refcount);
125 }
126 
127 static void __rvt_mregion_complete(struct percpu_ref *ref)
128 {
129 	struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
130 					      refcount);
131 
132 	complete(&mr->comp);
133 }
134 
135 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
136 			    int count, unsigned int percpu_flags)
137 {
138 	int m, i = 0;
139 	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
140 
141 	mr->mapsz = 0;
142 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
143 	for (; i < m; i++) {
144 		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
145 					  dev->dparms.node);
146 		if (!mr->map[i])
147 			goto bail;
148 		mr->mapsz++;
149 	}
150 	init_completion(&mr->comp);
151 	/* count returning the ptr to user */
152 	if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
153 			    percpu_flags, GFP_KERNEL))
154 		goto bail;
155 
156 	atomic_set(&mr->lkey_invalid, 0);
157 	mr->pd = pd;
158 	mr->max_segs = count;
159 	return 0;
160 bail:
161 	rvt_deinit_mregion(mr);
162 	return -ENOMEM;
163 }
164 
165 /**
166  * rvt_alloc_lkey - allocate an lkey
167  * @mr: memory region that this lkey protects
168  * @dma_region: 0->normal key, 1->restricted DMA key
169  *
170  * Returns 0 if successful, otherwise returns -errno.
171  *
172  * Increments mr reference count as required.
173  *
174  * Sets the lkey field mr for non-dma regions.
175  *
176  */
177 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
178 {
179 	unsigned long flags;
180 	u32 r;
181 	u32 n;
182 	int ret = 0;
183 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
184 	struct rvt_lkey_table *rkt = &dev->lkey_table;
185 
186 	rvt_get_mr(mr);
187 	spin_lock_irqsave(&rkt->lock, flags);
188 
189 	/* special case for dma_mr lkey == 0 */
190 	if (dma_region) {
191 		struct rvt_mregion *tmr;
192 
193 		tmr = rcu_access_pointer(dev->dma_mr);
194 		if (!tmr) {
195 			mr->lkey_published = 1;
196 			/* Insure published written first */
197 			rcu_assign_pointer(dev->dma_mr, mr);
198 			rvt_get_mr(mr);
199 		}
200 		goto success;
201 	}
202 
203 	/* Find the next available LKEY */
204 	r = rkt->next;
205 	n = r;
206 	for (;;) {
207 		if (!rcu_access_pointer(rkt->table[r]))
208 			break;
209 		r = (r + 1) & (rkt->max - 1);
210 		if (r == n)
211 			goto bail;
212 	}
213 	rkt->next = (r + 1) & (rkt->max - 1);
214 	/*
215 	 * Make sure lkey is never zero which is reserved to indicate an
216 	 * unrestricted LKEY.
217 	 */
218 	rkt->gen++;
219 	/*
220 	 * bits are capped to ensure enough bits for generation number
221 	 */
222 	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
223 		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
224 		 << 8);
225 	if (mr->lkey == 0) {
226 		mr->lkey |= 1 << 8;
227 		rkt->gen++;
228 	}
229 	mr->lkey_published = 1;
230 	/* Insure published written first */
231 	rcu_assign_pointer(rkt->table[r], mr);
232 success:
233 	spin_unlock_irqrestore(&rkt->lock, flags);
234 out:
235 	return ret;
236 bail:
237 	rvt_put_mr(mr);
238 	spin_unlock_irqrestore(&rkt->lock, flags);
239 	ret = -ENOMEM;
240 	goto out;
241 }
242 
243 /**
244  * rvt_free_lkey - free an lkey
245  * @mr: mr to free from tables
246  */
247 static void rvt_free_lkey(struct rvt_mregion *mr)
248 {
249 	unsigned long flags;
250 	u32 lkey = mr->lkey;
251 	u32 r;
252 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
253 	struct rvt_lkey_table *rkt = &dev->lkey_table;
254 	int freed = 0;
255 
256 	spin_lock_irqsave(&rkt->lock, flags);
257 	if (!lkey) {
258 		if (mr->lkey_published) {
259 			mr->lkey_published = 0;
260 			/* insure published is written before pointer */
261 			rcu_assign_pointer(dev->dma_mr, NULL);
262 			rvt_put_mr(mr);
263 		}
264 	} else {
265 		if (!mr->lkey_published)
266 			goto out;
267 		r = lkey >> (32 - dev->dparms.lkey_table_size);
268 		mr->lkey_published = 0;
269 		/* insure published is written before pointer */
270 		rcu_assign_pointer(rkt->table[r], NULL);
271 	}
272 	freed++;
273 out:
274 	spin_unlock_irqrestore(&rkt->lock, flags);
275 	if (freed)
276 		percpu_ref_kill(&mr->refcount);
277 }
278 
279 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
280 {
281 	struct rvt_mr *mr;
282 	int rval = -ENOMEM;
283 	int m;
284 
285 	/* Allocate struct plus pointers to first level page tables. */
286 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
287 	mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
288 	if (!mr)
289 		goto bail;
290 
291 	rval = rvt_init_mregion(&mr->mr, pd, count, 0);
292 	if (rval)
293 		goto bail;
294 	/*
295 	 * ib_reg_phys_mr() will initialize mr->ibmr except for
296 	 * lkey and rkey.
297 	 */
298 	rval = rvt_alloc_lkey(&mr->mr, 0);
299 	if (rval)
300 		goto bail_mregion;
301 	mr->ibmr.lkey = mr->mr.lkey;
302 	mr->ibmr.rkey = mr->mr.lkey;
303 done:
304 	return mr;
305 
306 bail_mregion:
307 	rvt_deinit_mregion(&mr->mr);
308 bail:
309 	kfree(mr);
310 	mr = ERR_PTR(rval);
311 	goto done;
312 }
313 
314 static void __rvt_free_mr(struct rvt_mr *mr)
315 {
316 	rvt_free_lkey(&mr->mr);
317 	rvt_deinit_mregion(&mr->mr);
318 	kfree(mr);
319 }
320 
321 /**
322  * rvt_get_dma_mr - get a DMA memory region
323  * @pd: protection domain for this memory region
324  * @acc: access flags
325  *
326  * Return: the memory region on success, otherwise returns an errno.
327  */
328 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
329 {
330 	struct rvt_mr *mr;
331 	struct ib_mr *ret;
332 	int rval;
333 
334 	if (ibpd_to_rvtpd(pd)->user)
335 		return ERR_PTR(-EPERM);
336 
337 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
338 	if (!mr) {
339 		ret = ERR_PTR(-ENOMEM);
340 		goto bail;
341 	}
342 
343 	rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
344 	if (rval) {
345 		ret = ERR_PTR(rval);
346 		goto bail;
347 	}
348 
349 	rval = rvt_alloc_lkey(&mr->mr, 1);
350 	if (rval) {
351 		ret = ERR_PTR(rval);
352 		goto bail_mregion;
353 	}
354 
355 	mr->mr.access_flags = acc;
356 	ret = &mr->ibmr;
357 done:
358 	return ret;
359 
360 bail_mregion:
361 	rvt_deinit_mregion(&mr->mr);
362 bail:
363 	kfree(mr);
364 	goto done;
365 }
366 
367 /**
368  * rvt_reg_user_mr - register a userspace memory region
369  * @pd: protection domain for this memory region
370  * @start: starting userspace address
371  * @length: length of region to register
372  * @virt_addr: associated virtual address
373  * @mr_access_flags: access flags for this memory region
374  * @udata: unused by the driver
375  *
376  * Return: the memory region on success, otherwise returns an errno.
377  */
378 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
379 			      u64 virt_addr, int mr_access_flags,
380 			      struct ib_udata *udata)
381 {
382 	struct rvt_mr *mr;
383 	struct ib_umem *umem;
384 	struct sg_page_iter sg_iter;
385 	int n, m;
386 	struct ib_mr *ret;
387 
388 	if (length == 0)
389 		return ERR_PTR(-EINVAL);
390 
391 	umem = ib_umem_get(pd->device, start, length, mr_access_flags);
392 	if (IS_ERR(umem))
393 		return (void *)umem;
394 
395 	n = ib_umem_num_pages(umem);
396 
397 	mr = __rvt_alloc_mr(n, pd);
398 	if (IS_ERR(mr)) {
399 		ret = (struct ib_mr *)mr;
400 		goto bail_umem;
401 	}
402 
403 	mr->mr.user_base = start;
404 	mr->mr.iova = virt_addr;
405 	mr->mr.length = length;
406 	mr->mr.offset = ib_umem_offset(umem);
407 	mr->mr.access_flags = mr_access_flags;
408 	mr->umem = umem;
409 
410 	mr->mr.page_shift = PAGE_SHIFT;
411 	m = 0;
412 	n = 0;
413 	for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) {
414 		void *vaddr;
415 
416 		vaddr = page_address(sg_page_iter_page(&sg_iter));
417 		if (!vaddr) {
418 			ret = ERR_PTR(-EINVAL);
419 			goto bail_inval;
420 		}
421 		mr->mr.map[m]->segs[n].vaddr = vaddr;
422 		mr->mr.map[m]->segs[n].length = PAGE_SIZE;
423 		trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE);
424 		if (++n == RVT_SEGSZ) {
425 			m++;
426 			n = 0;
427 		}
428 	}
429 	return &mr->ibmr;
430 
431 bail_inval:
432 	__rvt_free_mr(mr);
433 
434 bail_umem:
435 	ib_umem_release(umem);
436 
437 	return ret;
438 }
439 
440 /**
441  * rvt_dereg_clean_qp_cb - callback from iterator
442  * @qp: the qp
443  * @v: the mregion (as u64)
444  *
445  * This routine fields the callback for all QPs and
446  * for QPs in the same PD as the MR will call the
447  * rvt_qp_mr_clean() to potentially cleanup references.
448  */
449 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
450 {
451 	struct rvt_mregion *mr = (struct rvt_mregion *)v;
452 
453 	/* skip PDs that are not ours */
454 	if (mr->pd != qp->ibqp.pd)
455 		return;
456 	rvt_qp_mr_clean(qp, mr->lkey);
457 }
458 
459 /**
460  * rvt_dereg_clean_qps - find QPs for reference cleanup
461  * @mr: the MR that is being deregistered
462  *
463  * This routine iterates RC QPs looking for references
464  * to the lkey noted in mr.
465  */
466 static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
467 {
468 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
469 
470 	rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
471 }
472 
473 /**
474  * rvt_check_refs - check references
475  * @mr: the megion
476  * @t: the caller identification
477  *
478  * This routine checks MRs holding a reference during
479  * when being de-registered.
480  *
481  * If the count is non-zero, the code calls a clean routine then
482  * waits for the timeout for the count to zero.
483  */
484 static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
485 {
486 	unsigned long timeout;
487 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
488 
489 	if (mr->lkey) {
490 		/* avoid dma mr */
491 		rvt_dereg_clean_qps(mr);
492 		/* @mr was indexed on rcu protected @lkey_table */
493 		synchronize_rcu();
494 	}
495 
496 	timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
497 	if (!timeout) {
498 		rvt_pr_err(rdi,
499 			   "%s timeout mr %p pd %p lkey %x refcount %ld\n",
500 			   t, mr, mr->pd, mr->lkey,
501 			   atomic_long_read(&mr->refcount.data->count));
502 		rvt_get_mr(mr);
503 		return -EBUSY;
504 	}
505 	return 0;
506 }
507 
508 /**
509  * rvt_mr_has_lkey - is MR
510  * @mr: the mregion
511  * @lkey: the lkey
512  */
513 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
514 {
515 	return mr && lkey == mr->lkey;
516 }
517 
518 /**
519  * rvt_ss_has_lkey - is mr in sge tests
520  * @ss: the sge state
521  * @lkey: the lkey
522  *
523  * This code tests for an MR in the indicated
524  * sge state.
525  */
526 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
527 {
528 	int i;
529 	bool rval = false;
530 
531 	if (!ss->num_sge)
532 		return rval;
533 	/* first one */
534 	rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
535 	/* any others */
536 	for (i = 0; !rval && i < ss->num_sge - 1; i++)
537 		rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
538 	return rval;
539 }
540 
541 /**
542  * rvt_dereg_mr - unregister and free a memory region
543  * @ibmr: the memory region to free
544  * @udata: unused by the driver
545  *
546  * Note that this is called to free MRs created by rvt_get_dma_mr()
547  * or rvt_reg_user_mr().
548  *
549  * Returns 0 on success.
550  */
551 int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
552 {
553 	struct rvt_mr *mr = to_imr(ibmr);
554 	int ret;
555 
556 	rvt_free_lkey(&mr->mr);
557 
558 	rvt_put_mr(&mr->mr); /* will set completion if last */
559 	ret = rvt_check_refs(&mr->mr, __func__);
560 	if (ret)
561 		goto out;
562 	rvt_deinit_mregion(&mr->mr);
563 	ib_umem_release(mr->umem);
564 	kfree(mr);
565 out:
566 	return ret;
567 }
568 
569 /**
570  * rvt_alloc_mr - Allocate a memory region usable with the
571  * @pd: protection domain for this memory region
572  * @mr_type: mem region type
573  * @max_num_sg: Max number of segments allowed
574  *
575  * Return: the memory region on success, otherwise return an errno.
576  */
577 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
578 			   u32 max_num_sg)
579 {
580 	struct rvt_mr *mr;
581 
582 	if (mr_type != IB_MR_TYPE_MEM_REG)
583 		return ERR_PTR(-EINVAL);
584 
585 	mr = __rvt_alloc_mr(max_num_sg, pd);
586 	if (IS_ERR(mr))
587 		return (struct ib_mr *)mr;
588 
589 	return &mr->ibmr;
590 }
591 
592 /**
593  * rvt_set_page - page assignment function called by ib_sg_to_pages
594  * @ibmr: memory region
595  * @addr: dma address of mapped page
596  *
597  * Return: 0 on success
598  */
599 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
600 {
601 	struct rvt_mr *mr = to_imr(ibmr);
602 	u32 ps = 1 << mr->mr.page_shift;
603 	u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
604 	int m, n;
605 
606 	if (unlikely(mapped_segs == mr->mr.max_segs))
607 		return -ENOMEM;
608 
609 	m = mapped_segs / RVT_SEGSZ;
610 	n = mapped_segs % RVT_SEGSZ;
611 	mr->mr.map[m]->segs[n].vaddr = (void *)addr;
612 	mr->mr.map[m]->segs[n].length = ps;
613 	mr->mr.length += ps;
614 	trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
615 
616 	return 0;
617 }
618 
619 /**
620  * rvt_map_mr_sg - map sg list and set it the memory region
621  * @ibmr: memory region
622  * @sg: dma mapped scatterlist
623  * @sg_nents: number of entries in sg
624  * @sg_offset: offset in bytes into sg
625  *
626  * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
627  *
628  * Return: number of sg elements mapped to the memory region
629  */
630 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
631 		  int sg_nents, unsigned int *sg_offset)
632 {
633 	struct rvt_mr *mr = to_imr(ibmr);
634 	int ret;
635 
636 	mr->mr.length = 0;
637 	mr->mr.page_shift = PAGE_SHIFT;
638 	ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
639 	mr->mr.user_base = ibmr->iova;
640 	mr->mr.iova = ibmr->iova;
641 	mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
642 	mr->mr.length = (size_t)ibmr->length;
643 	trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset);
644 	return ret;
645 }
646 
647 /**
648  * rvt_fast_reg_mr - fast register physical MR
649  * @qp: the queue pair where the work request comes from
650  * @ibmr: the memory region to be registered
651  * @key: updated key for this memory region
652  * @access: access flags for this memory region
653  *
654  * Returns 0 on success.
655  */
656 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
657 		    int access)
658 {
659 	struct rvt_mr *mr = to_imr(ibmr);
660 
661 	if (qp->ibqp.pd != mr->mr.pd)
662 		return -EACCES;
663 
664 	/* not applicable to dma MR or user MR */
665 	if (!mr->mr.lkey || mr->umem)
666 		return -EINVAL;
667 
668 	if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
669 		return -EINVAL;
670 
671 	ibmr->lkey = key;
672 	ibmr->rkey = key;
673 	mr->mr.lkey = key;
674 	mr->mr.access_flags = access;
675 	mr->mr.iova = ibmr->iova;
676 	atomic_set(&mr->mr.lkey_invalid, 0);
677 
678 	return 0;
679 }
680 EXPORT_SYMBOL(rvt_fast_reg_mr);
681 
682 /**
683  * rvt_invalidate_rkey - invalidate an MR rkey
684  * @qp: queue pair associated with the invalidate op
685  * @rkey: rkey to invalidate
686  *
687  * Returns 0 on success.
688  */
689 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
690 {
691 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
692 	struct rvt_lkey_table *rkt = &dev->lkey_table;
693 	struct rvt_mregion *mr;
694 
695 	if (rkey == 0)
696 		return -EINVAL;
697 
698 	rcu_read_lock();
699 	mr = rcu_dereference(
700 		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
701 	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
702 		goto bail;
703 
704 	atomic_set(&mr->lkey_invalid, 1);
705 	rcu_read_unlock();
706 	return 0;
707 
708 bail:
709 	rcu_read_unlock();
710 	return -EINVAL;
711 }
712 EXPORT_SYMBOL(rvt_invalidate_rkey);
713 
714 /**
715  * rvt_sge_adjacent - is isge compressible
716  * @last_sge: last outgoing SGE written
717  * @sge: SGE to check
718  *
719  * If adjacent will update last_sge to add length.
720  *
721  * Return: true if isge is adjacent to last sge
722  */
723 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
724 				    struct ib_sge *sge)
725 {
726 	if (last_sge && sge->lkey == last_sge->mr->lkey &&
727 	    ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
728 		if (sge->lkey) {
729 			if (unlikely((sge->addr - last_sge->mr->user_base +
730 			      sge->length > last_sge->mr->length)))
731 				return false; /* overrun, caller will catch */
732 		} else {
733 			last_sge->length += sge->length;
734 		}
735 		last_sge->sge_length += sge->length;
736 		trace_rvt_sge_adjacent(last_sge, sge);
737 		return true;
738 	}
739 	return false;
740 }
741 
742 /**
743  * rvt_lkey_ok - check IB SGE for validity and initialize
744  * @rkt: table containing lkey to check SGE against
745  * @pd: protection domain
746  * @isge: outgoing internal SGE
747  * @last_sge: last outgoing SGE written
748  * @sge: SGE to check
749  * @acc: access flags
750  *
751  * Check the IB SGE for validity and initialize our internal version
752  * of it.
753  *
754  * Increments the reference count when a new sge is stored.
755  *
756  * Return: 0 if compressed, 1 if added , otherwise returns -errno.
757  */
758 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
759 		struct rvt_sge *isge, struct rvt_sge *last_sge,
760 		struct ib_sge *sge, int acc)
761 {
762 	struct rvt_mregion *mr;
763 	unsigned n, m;
764 	size_t off;
765 
766 	/*
767 	 * We use LKEY == zero for kernel virtual addresses
768 	 * (see rvt_get_dma_mr()).
769 	 */
770 	if (sge->lkey == 0) {
771 		struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
772 
773 		if (pd->user)
774 			return -EINVAL;
775 		if (rvt_sge_adjacent(last_sge, sge))
776 			return 0;
777 		rcu_read_lock();
778 		mr = rcu_dereference(dev->dma_mr);
779 		if (!mr)
780 			goto bail;
781 		rvt_get_mr(mr);
782 		rcu_read_unlock();
783 
784 		isge->mr = mr;
785 		isge->vaddr = (void *)sge->addr;
786 		isge->length = sge->length;
787 		isge->sge_length = sge->length;
788 		isge->m = 0;
789 		isge->n = 0;
790 		goto ok;
791 	}
792 	if (rvt_sge_adjacent(last_sge, sge))
793 		return 0;
794 	rcu_read_lock();
795 	mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
796 	if (!mr)
797 		goto bail;
798 	rvt_get_mr(mr);
799 	if (!READ_ONCE(mr->lkey_published))
800 		goto bail_unref;
801 
802 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
803 		     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
804 		goto bail_unref;
805 
806 	off = sge->addr - mr->user_base;
807 	if (unlikely(sge->addr < mr->user_base ||
808 		     off + sge->length > mr->length ||
809 		     (mr->access_flags & acc) != acc))
810 		goto bail_unref;
811 	rcu_read_unlock();
812 
813 	off += mr->offset;
814 	if (mr->page_shift) {
815 		/*
816 		 * page sizes are uniform power of 2 so no loop is necessary
817 		 * entries_spanned_by_off is the number of times the loop below
818 		 * would have executed.
819 		*/
820 		size_t entries_spanned_by_off;
821 
822 		entries_spanned_by_off = off >> mr->page_shift;
823 		off -= (entries_spanned_by_off << mr->page_shift);
824 		m = entries_spanned_by_off / RVT_SEGSZ;
825 		n = entries_spanned_by_off % RVT_SEGSZ;
826 	} else {
827 		m = 0;
828 		n = 0;
829 		while (off >= mr->map[m]->segs[n].length) {
830 			off -= mr->map[m]->segs[n].length;
831 			n++;
832 			if (n >= RVT_SEGSZ) {
833 				m++;
834 				n = 0;
835 			}
836 		}
837 	}
838 	isge->mr = mr;
839 	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
840 	isge->length = mr->map[m]->segs[n].length - off;
841 	isge->sge_length = sge->length;
842 	isge->m = m;
843 	isge->n = n;
844 ok:
845 	trace_rvt_sge_new(isge, sge);
846 	return 1;
847 bail_unref:
848 	rvt_put_mr(mr);
849 bail:
850 	rcu_read_unlock();
851 	return -EINVAL;
852 }
853 EXPORT_SYMBOL(rvt_lkey_ok);
854 
855 /**
856  * rvt_rkey_ok - check the IB virtual address, length, and RKEY
857  * @qp: qp for validation
858  * @sge: SGE state
859  * @len: length of data
860  * @vaddr: virtual address to place data
861  * @rkey: rkey to check
862  * @acc: access flags
863  *
864  * Return: 1 if successful, otherwise 0.
865  *
866  * increments the reference count upon success
867  */
868 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
869 		u32 len, u64 vaddr, u32 rkey, int acc)
870 {
871 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
872 	struct rvt_lkey_table *rkt = &dev->lkey_table;
873 	struct rvt_mregion *mr;
874 	unsigned n, m;
875 	size_t off;
876 
877 	/*
878 	 * We use RKEY == zero for kernel virtual addresses
879 	 * (see rvt_get_dma_mr()).
880 	 */
881 	rcu_read_lock();
882 	if (rkey == 0) {
883 		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
884 		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
885 
886 		if (pd->user)
887 			goto bail;
888 		mr = rcu_dereference(rdi->dma_mr);
889 		if (!mr)
890 			goto bail;
891 		rvt_get_mr(mr);
892 		rcu_read_unlock();
893 
894 		sge->mr = mr;
895 		sge->vaddr = (void *)vaddr;
896 		sge->length = len;
897 		sge->sge_length = len;
898 		sge->m = 0;
899 		sge->n = 0;
900 		goto ok;
901 	}
902 
903 	mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
904 	if (!mr)
905 		goto bail;
906 	rvt_get_mr(mr);
907 	/* insure mr read is before test */
908 	if (!READ_ONCE(mr->lkey_published))
909 		goto bail_unref;
910 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
911 		     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
912 		goto bail_unref;
913 
914 	off = vaddr - mr->iova;
915 	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
916 		     (mr->access_flags & acc) == 0))
917 		goto bail_unref;
918 	rcu_read_unlock();
919 
920 	off += mr->offset;
921 	if (mr->page_shift) {
922 		/*
923 		 * page sizes are uniform power of 2 so no loop is necessary
924 		 * entries_spanned_by_off is the number of times the loop below
925 		 * would have executed.
926 		*/
927 		size_t entries_spanned_by_off;
928 
929 		entries_spanned_by_off = off >> mr->page_shift;
930 		off -= (entries_spanned_by_off << mr->page_shift);
931 		m = entries_spanned_by_off / RVT_SEGSZ;
932 		n = entries_spanned_by_off % RVT_SEGSZ;
933 	} else {
934 		m = 0;
935 		n = 0;
936 		while (off >= mr->map[m]->segs[n].length) {
937 			off -= mr->map[m]->segs[n].length;
938 			n++;
939 			if (n >= RVT_SEGSZ) {
940 				m++;
941 				n = 0;
942 			}
943 		}
944 	}
945 	sge->mr = mr;
946 	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
947 	sge->length = mr->map[m]->segs[n].length - off;
948 	sge->sge_length = len;
949 	sge->m = m;
950 	sge->n = n;
951 ok:
952 	return 1;
953 bail_unref:
954 	rvt_put_mr(mr);
955 bail:
956 	rcu_read_unlock();
957 	return 0;
958 }
959 EXPORT_SYMBOL(rvt_rkey_ok);
960