1 /* 2 * Copyright(c) 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/slab.h> 49 #include <linux/vmalloc.h> 50 #include <rdma/ib_umem.h> 51 #include <rdma/rdma_vt.h> 52 #include "vt.h" 53 #include "mr.h" 54 #include "trace.h" 55 56 /** 57 * rvt_driver_mr_init - Init MR resources per driver 58 * @rdi: rvt dev struct 59 * 60 * Do any intilization needed when a driver registers with rdmavt. 61 * 62 * Return: 0 on success or errno on failure 63 */ 64 int rvt_driver_mr_init(struct rvt_dev_info *rdi) 65 { 66 unsigned int lkey_table_size = rdi->dparms.lkey_table_size; 67 unsigned lk_tab_size; 68 int i; 69 70 /* 71 * The top hfi1_lkey_table_size bits are used to index the 72 * table. The lower 8 bits can be owned by the user (copied from 73 * the LKEY). The remaining bits act as a generation number or tag. 74 */ 75 if (!lkey_table_size) 76 return -EINVAL; 77 78 spin_lock_init(&rdi->lkey_table.lock); 79 80 /* ensure generation is at least 4 bits */ 81 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) { 82 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n", 83 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS); 84 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS; 85 lkey_table_size = rdi->dparms.lkey_table_size; 86 } 87 rdi->lkey_table.max = 1 << lkey_table_size; 88 rdi->lkey_table.shift = 32 - lkey_table_size; 89 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table); 90 rdi->lkey_table.table = (struct rvt_mregion __rcu **) 91 vmalloc_node(lk_tab_size, rdi->dparms.node); 92 if (!rdi->lkey_table.table) 93 return -ENOMEM; 94 95 RCU_INIT_POINTER(rdi->dma_mr, NULL); 96 for (i = 0; i < rdi->lkey_table.max; i++) 97 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL); 98 99 return 0; 100 } 101 102 /** 103 *rvt_mr_exit: clean up MR 104 *@rdi: rvt dev structure 105 * 106 * called when drivers have unregistered or perhaps failed to register with us 107 */ 108 void rvt_mr_exit(struct rvt_dev_info *rdi) 109 { 110 if (rdi->dma_mr) 111 rvt_pr_err(rdi, "DMA MR not null!\n"); 112 113 vfree(rdi->lkey_table.table); 114 } 115 116 static void rvt_deinit_mregion(struct rvt_mregion *mr) 117 { 118 int i = mr->mapsz; 119 120 mr->mapsz = 0; 121 while (i) 122 kfree(mr->map[--i]); 123 percpu_ref_exit(&mr->refcount); 124 } 125 126 static void __rvt_mregion_complete(struct percpu_ref *ref) 127 { 128 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion, 129 refcount); 130 131 complete(&mr->comp); 132 } 133 134 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd, 135 int count, unsigned int percpu_flags) 136 { 137 int m, i = 0; 138 struct rvt_dev_info *dev = ib_to_rvt(pd->device); 139 140 mr->mapsz = 0; 141 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 142 for (; i < m; i++) { 143 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL, 144 dev->dparms.node); 145 if (!mr->map[i]) 146 goto bail; 147 mr->mapsz++; 148 } 149 init_completion(&mr->comp); 150 /* count returning the ptr to user */ 151 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete, 152 percpu_flags, GFP_KERNEL)) 153 goto bail; 154 155 atomic_set(&mr->lkey_invalid, 0); 156 mr->pd = pd; 157 mr->max_segs = count; 158 return 0; 159 bail: 160 rvt_deinit_mregion(mr); 161 return -ENOMEM; 162 } 163 164 /** 165 * rvt_alloc_lkey - allocate an lkey 166 * @mr: memory region that this lkey protects 167 * @dma_region: 0->normal key, 1->restricted DMA key 168 * 169 * Returns 0 if successful, otherwise returns -errno. 170 * 171 * Increments mr reference count as required. 172 * 173 * Sets the lkey field mr for non-dma regions. 174 * 175 */ 176 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region) 177 { 178 unsigned long flags; 179 u32 r; 180 u32 n; 181 int ret = 0; 182 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 183 struct rvt_lkey_table *rkt = &dev->lkey_table; 184 185 rvt_get_mr(mr); 186 spin_lock_irqsave(&rkt->lock, flags); 187 188 /* special case for dma_mr lkey == 0 */ 189 if (dma_region) { 190 struct rvt_mregion *tmr; 191 192 tmr = rcu_access_pointer(dev->dma_mr); 193 if (!tmr) { 194 mr->lkey_published = 1; 195 /* Insure published written first */ 196 rcu_assign_pointer(dev->dma_mr, mr); 197 rvt_get_mr(mr); 198 } 199 goto success; 200 } 201 202 /* Find the next available LKEY */ 203 r = rkt->next; 204 n = r; 205 for (;;) { 206 if (!rcu_access_pointer(rkt->table[r])) 207 break; 208 r = (r + 1) & (rkt->max - 1); 209 if (r == n) 210 goto bail; 211 } 212 rkt->next = (r + 1) & (rkt->max - 1); 213 /* 214 * Make sure lkey is never zero which is reserved to indicate an 215 * unrestricted LKEY. 216 */ 217 rkt->gen++; 218 /* 219 * bits are capped to ensure enough bits for generation number 220 */ 221 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) | 222 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen) 223 << 8); 224 if (mr->lkey == 0) { 225 mr->lkey |= 1 << 8; 226 rkt->gen++; 227 } 228 mr->lkey_published = 1; 229 /* Insure published written first */ 230 rcu_assign_pointer(rkt->table[r], mr); 231 success: 232 spin_unlock_irqrestore(&rkt->lock, flags); 233 out: 234 return ret; 235 bail: 236 rvt_put_mr(mr); 237 spin_unlock_irqrestore(&rkt->lock, flags); 238 ret = -ENOMEM; 239 goto out; 240 } 241 242 /** 243 * rvt_free_lkey - free an lkey 244 * @mr: mr to free from tables 245 */ 246 static void rvt_free_lkey(struct rvt_mregion *mr) 247 { 248 unsigned long flags; 249 u32 lkey = mr->lkey; 250 u32 r; 251 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 252 struct rvt_lkey_table *rkt = &dev->lkey_table; 253 int freed = 0; 254 255 spin_lock_irqsave(&rkt->lock, flags); 256 if (!lkey) { 257 if (mr->lkey_published) { 258 mr->lkey_published = 0; 259 /* insure published is written before pointer */ 260 rcu_assign_pointer(dev->dma_mr, NULL); 261 rvt_put_mr(mr); 262 } 263 } else { 264 if (!mr->lkey_published) 265 goto out; 266 r = lkey >> (32 - dev->dparms.lkey_table_size); 267 mr->lkey_published = 0; 268 /* insure published is written before pointer */ 269 rcu_assign_pointer(rkt->table[r], NULL); 270 } 271 freed++; 272 out: 273 spin_unlock_irqrestore(&rkt->lock, flags); 274 if (freed) 275 percpu_ref_kill(&mr->refcount); 276 } 277 278 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd) 279 { 280 struct rvt_mr *mr; 281 int rval = -ENOMEM; 282 int m; 283 284 /* Allocate struct plus pointers to first level page tables. */ 285 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 286 mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL); 287 if (!mr) 288 goto bail; 289 290 rval = rvt_init_mregion(&mr->mr, pd, count, 0); 291 if (rval) 292 goto bail; 293 /* 294 * ib_reg_phys_mr() will initialize mr->ibmr except for 295 * lkey and rkey. 296 */ 297 rval = rvt_alloc_lkey(&mr->mr, 0); 298 if (rval) 299 goto bail_mregion; 300 mr->ibmr.lkey = mr->mr.lkey; 301 mr->ibmr.rkey = mr->mr.lkey; 302 done: 303 return mr; 304 305 bail_mregion: 306 rvt_deinit_mregion(&mr->mr); 307 bail: 308 kfree(mr); 309 mr = ERR_PTR(rval); 310 goto done; 311 } 312 313 static void __rvt_free_mr(struct rvt_mr *mr) 314 { 315 rvt_free_lkey(&mr->mr); 316 rvt_deinit_mregion(&mr->mr); 317 kfree(mr); 318 } 319 320 /** 321 * rvt_get_dma_mr - get a DMA memory region 322 * @pd: protection domain for this memory region 323 * @acc: access flags 324 * 325 * Return: the memory region on success, otherwise returns an errno. 326 * Note that all DMA addresses should be created via the functions in 327 * struct dma_virt_ops. 328 */ 329 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc) 330 { 331 struct rvt_mr *mr; 332 struct ib_mr *ret; 333 int rval; 334 335 if (ibpd_to_rvtpd(pd)->user) 336 return ERR_PTR(-EPERM); 337 338 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 339 if (!mr) { 340 ret = ERR_PTR(-ENOMEM); 341 goto bail; 342 } 343 344 rval = rvt_init_mregion(&mr->mr, pd, 0, 0); 345 if (rval) { 346 ret = ERR_PTR(rval); 347 goto bail; 348 } 349 350 rval = rvt_alloc_lkey(&mr->mr, 1); 351 if (rval) { 352 ret = ERR_PTR(rval); 353 goto bail_mregion; 354 } 355 356 mr->mr.access_flags = acc; 357 ret = &mr->ibmr; 358 done: 359 return ret; 360 361 bail_mregion: 362 rvt_deinit_mregion(&mr->mr); 363 bail: 364 kfree(mr); 365 goto done; 366 } 367 368 /** 369 * rvt_reg_user_mr - register a userspace memory region 370 * @pd: protection domain for this memory region 371 * @start: starting userspace address 372 * @length: length of region to register 373 * @mr_access_flags: access flags for this memory region 374 * @udata: unused by the driver 375 * 376 * Return: the memory region on success, otherwise returns an errno. 377 */ 378 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 379 u64 virt_addr, int mr_access_flags, 380 struct ib_udata *udata) 381 { 382 struct rvt_mr *mr; 383 struct ib_umem *umem; 384 struct scatterlist *sg; 385 int n, m, entry; 386 struct ib_mr *ret; 387 388 if (length == 0) 389 return ERR_PTR(-EINVAL); 390 391 umem = ib_umem_get(pd->uobject->context, start, length, 392 mr_access_flags, 0); 393 if (IS_ERR(umem)) 394 return (void *)umem; 395 396 n = umem->nmap; 397 398 mr = __rvt_alloc_mr(n, pd); 399 if (IS_ERR(mr)) { 400 ret = (struct ib_mr *)mr; 401 goto bail_umem; 402 } 403 404 mr->mr.user_base = start; 405 mr->mr.iova = virt_addr; 406 mr->mr.length = length; 407 mr->mr.offset = ib_umem_offset(umem); 408 mr->mr.access_flags = mr_access_flags; 409 mr->umem = umem; 410 411 mr->mr.page_shift = umem->page_shift; 412 m = 0; 413 n = 0; 414 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) { 415 void *vaddr; 416 417 vaddr = page_address(sg_page(sg)); 418 if (!vaddr) { 419 ret = ERR_PTR(-EINVAL); 420 goto bail_inval; 421 } 422 mr->mr.map[m]->segs[n].vaddr = vaddr; 423 mr->mr.map[m]->segs[n].length = BIT(umem->page_shift); 424 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, 425 BIT(umem->page_shift)); 426 n++; 427 if (n == RVT_SEGSZ) { 428 m++; 429 n = 0; 430 } 431 } 432 return &mr->ibmr; 433 434 bail_inval: 435 __rvt_free_mr(mr); 436 437 bail_umem: 438 ib_umem_release(umem); 439 440 return ret; 441 } 442 443 /** 444 * rvt_dereg_clean_qp_cb - callback from iterator 445 * @qp - the qp 446 * @v - the mregion (as u64) 447 * 448 * This routine fields the callback for all QPs and 449 * for QPs in the same PD as the MR will call the 450 * rvt_qp_mr_clean() to potentially cleanup references. 451 */ 452 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v) 453 { 454 struct rvt_mregion *mr = (struct rvt_mregion *)v; 455 456 /* skip PDs that are not ours */ 457 if (mr->pd != qp->ibqp.pd) 458 return; 459 rvt_qp_mr_clean(qp, mr->lkey); 460 } 461 462 /** 463 * rvt_dereg_clean_qps - find QPs for reference cleanup 464 * @mr - the MR that is being deregistered 465 * 466 * This routine iterates RC QPs looking for references 467 * to the lkey noted in mr. 468 */ 469 static void rvt_dereg_clean_qps(struct rvt_mregion *mr) 470 { 471 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 472 473 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb); 474 } 475 476 /** 477 * rvt_check_refs - check references 478 * @mr - the megion 479 * @t - the caller identification 480 * 481 * This routine checks MRs holding a reference during 482 * when being de-registered. 483 * 484 * If the count is non-zero, the code calls a clean routine then 485 * waits for the timeout for the count to zero. 486 */ 487 static int rvt_check_refs(struct rvt_mregion *mr, const char *t) 488 { 489 unsigned long timeout; 490 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 491 492 if (percpu_ref_is_zero(&mr->refcount)) 493 return 0; 494 /* avoid dma mr */ 495 if (mr->lkey) 496 rvt_dereg_clean_qps(mr); 497 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ); 498 if (!timeout) { 499 rvt_pr_err(rdi, 500 "%s timeout mr %p pd %p lkey %x refcount %ld\n", 501 t, mr, mr->pd, mr->lkey, 502 atomic_long_read(&mr->refcount.count)); 503 rvt_get_mr(mr); 504 return -EBUSY; 505 } 506 return 0; 507 } 508 509 /** 510 * rvt_mr_has_lkey - is MR 511 * @mr - the mregion 512 * @lkey - the lkey 513 */ 514 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey) 515 { 516 return mr && lkey == mr->lkey; 517 } 518 519 /** 520 * rvt_ss_has_lkey - is mr in sge tests 521 * @ss - the sge state 522 * @lkey 523 * 524 * This code tests for an MR in the indicated 525 * sge state. 526 */ 527 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey) 528 { 529 int i; 530 bool rval = false; 531 532 if (!ss->num_sge) 533 return rval; 534 /* first one */ 535 rval = rvt_mr_has_lkey(ss->sge.mr, lkey); 536 /* any others */ 537 for (i = 0; !rval && i < ss->num_sge - 1; i++) 538 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey); 539 return rval; 540 } 541 542 /** 543 * rvt_dereg_mr - unregister and free a memory region 544 * @ibmr: the memory region to free 545 * 546 * 547 * Note that this is called to free MRs created by rvt_get_dma_mr() 548 * or rvt_reg_user_mr(). 549 * 550 * Returns 0 on success. 551 */ 552 int rvt_dereg_mr(struct ib_mr *ibmr) 553 { 554 struct rvt_mr *mr = to_imr(ibmr); 555 int ret; 556 557 rvt_free_lkey(&mr->mr); 558 559 rvt_put_mr(&mr->mr); /* will set completion if last */ 560 ret = rvt_check_refs(&mr->mr, __func__); 561 if (ret) 562 goto out; 563 rvt_deinit_mregion(&mr->mr); 564 if (mr->umem) 565 ib_umem_release(mr->umem); 566 kfree(mr); 567 out: 568 return ret; 569 } 570 571 /** 572 * rvt_alloc_mr - Allocate a memory region usable with the 573 * @pd: protection domain for this memory region 574 * @mr_type: mem region type 575 * @max_num_sg: Max number of segments allowed 576 * 577 * Return: the memory region on success, otherwise return an errno. 578 */ 579 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, 580 enum ib_mr_type mr_type, 581 u32 max_num_sg) 582 { 583 struct rvt_mr *mr; 584 585 if (mr_type != IB_MR_TYPE_MEM_REG) 586 return ERR_PTR(-EINVAL); 587 588 mr = __rvt_alloc_mr(max_num_sg, pd); 589 if (IS_ERR(mr)) 590 return (struct ib_mr *)mr; 591 592 return &mr->ibmr; 593 } 594 595 /** 596 * rvt_set_page - page assignment function called by ib_sg_to_pages 597 * @ibmr: memory region 598 * @addr: dma address of mapped page 599 * 600 * Return: 0 on success 601 */ 602 static int rvt_set_page(struct ib_mr *ibmr, u64 addr) 603 { 604 struct rvt_mr *mr = to_imr(ibmr); 605 u32 ps = 1 << mr->mr.page_shift; 606 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift; 607 int m, n; 608 609 if (unlikely(mapped_segs == mr->mr.max_segs)) 610 return -ENOMEM; 611 612 if (mr->mr.length == 0) { 613 mr->mr.user_base = addr; 614 mr->mr.iova = addr; 615 } 616 617 m = mapped_segs / RVT_SEGSZ; 618 n = mapped_segs % RVT_SEGSZ; 619 mr->mr.map[m]->segs[n].vaddr = (void *)addr; 620 mr->mr.map[m]->segs[n].length = ps; 621 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps); 622 mr->mr.length += ps; 623 624 return 0; 625 } 626 627 /** 628 * rvt_map_mr_sg - map sg list and set it the memory region 629 * @ibmr: memory region 630 * @sg: dma mapped scatterlist 631 * @sg_nents: number of entries in sg 632 * @sg_offset: offset in bytes into sg 633 * 634 * Return: number of sg elements mapped to the memory region 635 */ 636 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, 637 int sg_nents, unsigned int *sg_offset) 638 { 639 struct rvt_mr *mr = to_imr(ibmr); 640 641 mr->mr.length = 0; 642 mr->mr.page_shift = PAGE_SHIFT; 643 return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 644 rvt_set_page); 645 } 646 647 /** 648 * rvt_fast_reg_mr - fast register physical MR 649 * @qp: the queue pair where the work request comes from 650 * @ibmr: the memory region to be registered 651 * @key: updated key for this memory region 652 * @access: access flags for this memory region 653 * 654 * Returns 0 on success. 655 */ 656 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key, 657 int access) 658 { 659 struct rvt_mr *mr = to_imr(ibmr); 660 661 if (qp->ibqp.pd != mr->mr.pd) 662 return -EACCES; 663 664 /* not applicable to dma MR or user MR */ 665 if (!mr->mr.lkey || mr->umem) 666 return -EINVAL; 667 668 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00)) 669 return -EINVAL; 670 671 ibmr->lkey = key; 672 ibmr->rkey = key; 673 mr->mr.lkey = key; 674 mr->mr.access_flags = access; 675 atomic_set(&mr->mr.lkey_invalid, 0); 676 677 return 0; 678 } 679 EXPORT_SYMBOL(rvt_fast_reg_mr); 680 681 /** 682 * rvt_invalidate_rkey - invalidate an MR rkey 683 * @qp: queue pair associated with the invalidate op 684 * @rkey: rkey to invalidate 685 * 686 * Returns 0 on success. 687 */ 688 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey) 689 { 690 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 691 struct rvt_lkey_table *rkt = &dev->lkey_table; 692 struct rvt_mregion *mr; 693 694 if (rkey == 0) 695 return -EINVAL; 696 697 rcu_read_lock(); 698 mr = rcu_dereference( 699 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]); 700 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 701 goto bail; 702 703 atomic_set(&mr->lkey_invalid, 1); 704 rcu_read_unlock(); 705 return 0; 706 707 bail: 708 rcu_read_unlock(); 709 return -EINVAL; 710 } 711 EXPORT_SYMBOL(rvt_invalidate_rkey); 712 713 /** 714 * rvt_alloc_fmr - allocate a fast memory region 715 * @pd: the protection domain for this memory region 716 * @mr_access_flags: access flags for this memory region 717 * @fmr_attr: fast memory region attributes 718 * 719 * Return: the memory region on success, otherwise returns an errno. 720 */ 721 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags, 722 struct ib_fmr_attr *fmr_attr) 723 { 724 struct rvt_fmr *fmr; 725 int m; 726 struct ib_fmr *ret; 727 int rval = -ENOMEM; 728 729 /* Allocate struct plus pointers to first level page tables. */ 730 m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ; 731 fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL); 732 if (!fmr) 733 goto bail; 734 735 rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages, 736 PERCPU_REF_INIT_ATOMIC); 737 if (rval) 738 goto bail; 739 740 /* 741 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey & 742 * rkey. 743 */ 744 rval = rvt_alloc_lkey(&fmr->mr, 0); 745 if (rval) 746 goto bail_mregion; 747 fmr->ibfmr.rkey = fmr->mr.lkey; 748 fmr->ibfmr.lkey = fmr->mr.lkey; 749 /* 750 * Resources are allocated but no valid mapping (RKEY can't be 751 * used). 752 */ 753 fmr->mr.access_flags = mr_access_flags; 754 fmr->mr.max_segs = fmr_attr->max_pages; 755 fmr->mr.page_shift = fmr_attr->page_shift; 756 757 ret = &fmr->ibfmr; 758 done: 759 return ret; 760 761 bail_mregion: 762 rvt_deinit_mregion(&fmr->mr); 763 bail: 764 kfree(fmr); 765 ret = ERR_PTR(rval); 766 goto done; 767 } 768 769 /** 770 * rvt_map_phys_fmr - set up a fast memory region 771 * @ibfmr: the fast memory region to set up 772 * @page_list: the list of pages to associate with the fast memory region 773 * @list_len: the number of pages to associate with the fast memory region 774 * @iova: the virtual address of the start of the fast memory region 775 * 776 * This may be called from interrupt context. 777 * 778 * Return: 0 on success 779 */ 780 781 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, 782 int list_len, u64 iova) 783 { 784 struct rvt_fmr *fmr = to_ifmr(ibfmr); 785 struct rvt_lkey_table *rkt; 786 unsigned long flags; 787 int m, n; 788 unsigned long i; 789 u32 ps; 790 struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device); 791 792 i = atomic_long_read(&fmr->mr.refcount.count); 793 if (i > 2) 794 return -EBUSY; 795 796 if (list_len > fmr->mr.max_segs) 797 return -EINVAL; 798 799 rkt = &rdi->lkey_table; 800 spin_lock_irqsave(&rkt->lock, flags); 801 fmr->mr.user_base = iova; 802 fmr->mr.iova = iova; 803 ps = 1 << fmr->mr.page_shift; 804 fmr->mr.length = list_len * ps; 805 m = 0; 806 n = 0; 807 for (i = 0; i < list_len; i++) { 808 fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i]; 809 fmr->mr.map[m]->segs[n].length = ps; 810 trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps); 811 if (++n == RVT_SEGSZ) { 812 m++; 813 n = 0; 814 } 815 } 816 spin_unlock_irqrestore(&rkt->lock, flags); 817 return 0; 818 } 819 820 /** 821 * rvt_unmap_fmr - unmap fast memory regions 822 * @fmr_list: the list of fast memory regions to unmap 823 * 824 * Return: 0 on success. 825 */ 826 int rvt_unmap_fmr(struct list_head *fmr_list) 827 { 828 struct rvt_fmr *fmr; 829 struct rvt_lkey_table *rkt; 830 unsigned long flags; 831 struct rvt_dev_info *rdi; 832 833 list_for_each_entry(fmr, fmr_list, ibfmr.list) { 834 rdi = ib_to_rvt(fmr->ibfmr.device); 835 rkt = &rdi->lkey_table; 836 spin_lock_irqsave(&rkt->lock, flags); 837 fmr->mr.user_base = 0; 838 fmr->mr.iova = 0; 839 fmr->mr.length = 0; 840 spin_unlock_irqrestore(&rkt->lock, flags); 841 } 842 return 0; 843 } 844 845 /** 846 * rvt_dealloc_fmr - deallocate a fast memory region 847 * @ibfmr: the fast memory region to deallocate 848 * 849 * Return: 0 on success. 850 */ 851 int rvt_dealloc_fmr(struct ib_fmr *ibfmr) 852 { 853 struct rvt_fmr *fmr = to_ifmr(ibfmr); 854 int ret = 0; 855 856 rvt_free_lkey(&fmr->mr); 857 rvt_put_mr(&fmr->mr); /* will set completion if last */ 858 ret = rvt_check_refs(&fmr->mr, __func__); 859 if (ret) 860 goto out; 861 rvt_deinit_mregion(&fmr->mr); 862 kfree(fmr); 863 out: 864 return ret; 865 } 866 867 /** 868 * rvt_sge_adjacent - is isge compressible 869 * @last_sge: last outgoing SGE written 870 * @sge: SGE to check 871 * 872 * If adjacent will update last_sge to add length. 873 * 874 * Return: true if isge is adjacent to last sge 875 */ 876 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge, 877 struct ib_sge *sge) 878 { 879 if (last_sge && sge->lkey == last_sge->mr->lkey && 880 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) { 881 if (sge->lkey) { 882 if (unlikely((sge->addr - last_sge->mr->user_base + 883 sge->length > last_sge->mr->length))) 884 return false; /* overrun, caller will catch */ 885 } else { 886 last_sge->length += sge->length; 887 } 888 last_sge->sge_length += sge->length; 889 trace_rvt_sge_adjacent(last_sge, sge); 890 return true; 891 } 892 return false; 893 } 894 895 /** 896 * rvt_lkey_ok - check IB SGE for validity and initialize 897 * @rkt: table containing lkey to check SGE against 898 * @pd: protection domain 899 * @isge: outgoing internal SGE 900 * @last_sge: last outgoing SGE written 901 * @sge: SGE to check 902 * @acc: access flags 903 * 904 * Check the IB SGE for validity and initialize our internal version 905 * of it. 906 * 907 * Increments the reference count when a new sge is stored. 908 * 909 * Return: 0 if compressed, 1 if added , otherwise returns -errno. 910 */ 911 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd, 912 struct rvt_sge *isge, struct rvt_sge *last_sge, 913 struct ib_sge *sge, int acc) 914 { 915 struct rvt_mregion *mr; 916 unsigned n, m; 917 size_t off; 918 919 /* 920 * We use LKEY == zero for kernel virtual addresses 921 * (see rvt_get_dma_mr() and dma_virt_ops). 922 */ 923 if (sge->lkey == 0) { 924 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device); 925 926 if (pd->user) 927 return -EINVAL; 928 if (rvt_sge_adjacent(last_sge, sge)) 929 return 0; 930 rcu_read_lock(); 931 mr = rcu_dereference(dev->dma_mr); 932 if (!mr) 933 goto bail; 934 rvt_get_mr(mr); 935 rcu_read_unlock(); 936 937 isge->mr = mr; 938 isge->vaddr = (void *)sge->addr; 939 isge->length = sge->length; 940 isge->sge_length = sge->length; 941 isge->m = 0; 942 isge->n = 0; 943 goto ok; 944 } 945 if (rvt_sge_adjacent(last_sge, sge)) 946 return 0; 947 rcu_read_lock(); 948 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]); 949 if (!mr) 950 goto bail; 951 rvt_get_mr(mr); 952 if (!READ_ONCE(mr->lkey_published)) 953 goto bail_unref; 954 955 if (unlikely(atomic_read(&mr->lkey_invalid) || 956 mr->lkey != sge->lkey || mr->pd != &pd->ibpd)) 957 goto bail_unref; 958 959 off = sge->addr - mr->user_base; 960 if (unlikely(sge->addr < mr->user_base || 961 off + sge->length > mr->length || 962 (mr->access_flags & acc) != acc)) 963 goto bail_unref; 964 rcu_read_unlock(); 965 966 off += mr->offset; 967 if (mr->page_shift) { 968 /* 969 * page sizes are uniform power of 2 so no loop is necessary 970 * entries_spanned_by_off is the number of times the loop below 971 * would have executed. 972 */ 973 size_t entries_spanned_by_off; 974 975 entries_spanned_by_off = off >> mr->page_shift; 976 off -= (entries_spanned_by_off << mr->page_shift); 977 m = entries_spanned_by_off / RVT_SEGSZ; 978 n = entries_spanned_by_off % RVT_SEGSZ; 979 } else { 980 m = 0; 981 n = 0; 982 while (off >= mr->map[m]->segs[n].length) { 983 off -= mr->map[m]->segs[n].length; 984 n++; 985 if (n >= RVT_SEGSZ) { 986 m++; 987 n = 0; 988 } 989 } 990 } 991 isge->mr = mr; 992 isge->vaddr = mr->map[m]->segs[n].vaddr + off; 993 isge->length = mr->map[m]->segs[n].length - off; 994 isge->sge_length = sge->length; 995 isge->m = m; 996 isge->n = n; 997 ok: 998 trace_rvt_sge_new(isge, sge); 999 return 1; 1000 bail_unref: 1001 rvt_put_mr(mr); 1002 bail: 1003 rcu_read_unlock(); 1004 return -EINVAL; 1005 } 1006 EXPORT_SYMBOL(rvt_lkey_ok); 1007 1008 /** 1009 * rvt_rkey_ok - check the IB virtual address, length, and RKEY 1010 * @qp: qp for validation 1011 * @sge: SGE state 1012 * @len: length of data 1013 * @vaddr: virtual address to place data 1014 * @rkey: rkey to check 1015 * @acc: access flags 1016 * 1017 * Return: 1 if successful, otherwise 0. 1018 * 1019 * increments the reference count upon success 1020 */ 1021 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge, 1022 u32 len, u64 vaddr, u32 rkey, int acc) 1023 { 1024 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 1025 struct rvt_lkey_table *rkt = &dev->lkey_table; 1026 struct rvt_mregion *mr; 1027 unsigned n, m; 1028 size_t off; 1029 1030 /* 1031 * We use RKEY == zero for kernel virtual addresses 1032 * (see rvt_get_dma_mr() and dma_virt_ops). 1033 */ 1034 rcu_read_lock(); 1035 if (rkey == 0) { 1036 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd); 1037 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device); 1038 1039 if (pd->user) 1040 goto bail; 1041 mr = rcu_dereference(rdi->dma_mr); 1042 if (!mr) 1043 goto bail; 1044 rvt_get_mr(mr); 1045 rcu_read_unlock(); 1046 1047 sge->mr = mr; 1048 sge->vaddr = (void *)vaddr; 1049 sge->length = len; 1050 sge->sge_length = len; 1051 sge->m = 0; 1052 sge->n = 0; 1053 goto ok; 1054 } 1055 1056 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]); 1057 if (!mr) 1058 goto bail; 1059 rvt_get_mr(mr); 1060 /* insure mr read is before test */ 1061 if (!READ_ONCE(mr->lkey_published)) 1062 goto bail_unref; 1063 if (unlikely(atomic_read(&mr->lkey_invalid) || 1064 mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 1065 goto bail_unref; 1066 1067 off = vaddr - mr->iova; 1068 if (unlikely(vaddr < mr->iova || off + len > mr->length || 1069 (mr->access_flags & acc) == 0)) 1070 goto bail_unref; 1071 rcu_read_unlock(); 1072 1073 off += mr->offset; 1074 if (mr->page_shift) { 1075 /* 1076 * page sizes are uniform power of 2 so no loop is necessary 1077 * entries_spanned_by_off is the number of times the loop below 1078 * would have executed. 1079 */ 1080 size_t entries_spanned_by_off; 1081 1082 entries_spanned_by_off = off >> mr->page_shift; 1083 off -= (entries_spanned_by_off << mr->page_shift); 1084 m = entries_spanned_by_off / RVT_SEGSZ; 1085 n = entries_spanned_by_off % RVT_SEGSZ; 1086 } else { 1087 m = 0; 1088 n = 0; 1089 while (off >= mr->map[m]->segs[n].length) { 1090 off -= mr->map[m]->segs[n].length; 1091 n++; 1092 if (n >= RVT_SEGSZ) { 1093 m++; 1094 n = 0; 1095 } 1096 } 1097 } 1098 sge->mr = mr; 1099 sge->vaddr = mr->map[m]->segs[n].vaddr + off; 1100 sge->length = mr->map[m]->segs[n].length - off; 1101 sge->sge_length = len; 1102 sge->m = m; 1103 sge->n = n; 1104 ok: 1105 return 1; 1106 bail_unref: 1107 rvt_put_mr(mr); 1108 bail: 1109 rcu_read_unlock(); 1110 return 0; 1111 } 1112 EXPORT_SYMBOL(rvt_rkey_ok); 1113