xref: /openbmc/linux/drivers/infiniband/sw/rdmavt/mr.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  * Copyright(c) 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54 #include "trace.h"
55 
56 /**
57  * rvt_driver_mr_init - Init MR resources per driver
58  * @rdi: rvt dev struct
59  *
60  * Do any intilization needed when a driver registers with rdmavt.
61  *
62  * Return: 0 on success or errno on failure
63  */
64 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65 {
66 	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67 	unsigned lk_tab_size;
68 	int i;
69 
70 	/*
71 	 * The top hfi1_lkey_table_size bits are used to index the
72 	 * table.  The lower 8 bits can be owned by the user (copied from
73 	 * the LKEY).  The remaining bits act as a generation number or tag.
74 	 */
75 	if (!lkey_table_size)
76 		return -EINVAL;
77 
78 	spin_lock_init(&rdi->lkey_table.lock);
79 
80 	/* ensure generation is at least 4 bits */
81 	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82 		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83 			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84 		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85 		lkey_table_size = rdi->dparms.lkey_table_size;
86 	}
87 	rdi->lkey_table.max = 1 << lkey_table_size;
88 	rdi->lkey_table.shift = 32 - lkey_table_size;
89 	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90 	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91 			       vmalloc_node(lk_tab_size, rdi->dparms.node);
92 	if (!rdi->lkey_table.table)
93 		return -ENOMEM;
94 
95 	RCU_INIT_POINTER(rdi->dma_mr, NULL);
96 	for (i = 0; i < rdi->lkey_table.max; i++)
97 		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98 
99 	return 0;
100 }
101 
102 /**
103  *rvt_mr_exit: clean up MR
104  *@rdi: rvt dev structure
105  *
106  * called when drivers have unregistered or perhaps failed to register with us
107  */
108 void rvt_mr_exit(struct rvt_dev_info *rdi)
109 {
110 	if (rdi->dma_mr)
111 		rvt_pr_err(rdi, "DMA MR not null!\n");
112 
113 	vfree(rdi->lkey_table.table);
114 }
115 
116 static void rvt_deinit_mregion(struct rvt_mregion *mr)
117 {
118 	int i = mr->mapsz;
119 
120 	mr->mapsz = 0;
121 	while (i)
122 		kfree(mr->map[--i]);
123 	percpu_ref_exit(&mr->refcount);
124 }
125 
126 static void __rvt_mregion_complete(struct percpu_ref *ref)
127 {
128 	struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
129 					      refcount);
130 
131 	complete(&mr->comp);
132 }
133 
134 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
135 			    int count, unsigned int percpu_flags)
136 {
137 	int m, i = 0;
138 	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
139 
140 	mr->mapsz = 0;
141 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
142 	for (; i < m; i++) {
143 		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
144 					  dev->dparms.node);
145 		if (!mr->map[i])
146 			goto bail;
147 		mr->mapsz++;
148 	}
149 	init_completion(&mr->comp);
150 	/* count returning the ptr to user */
151 	if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
152 			    percpu_flags, GFP_KERNEL))
153 		goto bail;
154 
155 	atomic_set(&mr->lkey_invalid, 0);
156 	mr->pd = pd;
157 	mr->max_segs = count;
158 	return 0;
159 bail:
160 	rvt_deinit_mregion(mr);
161 	return -ENOMEM;
162 }
163 
164 /**
165  * rvt_alloc_lkey - allocate an lkey
166  * @mr: memory region that this lkey protects
167  * @dma_region: 0->normal key, 1->restricted DMA key
168  *
169  * Returns 0 if successful, otherwise returns -errno.
170  *
171  * Increments mr reference count as required.
172  *
173  * Sets the lkey field mr for non-dma regions.
174  *
175  */
176 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
177 {
178 	unsigned long flags;
179 	u32 r;
180 	u32 n;
181 	int ret = 0;
182 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
183 	struct rvt_lkey_table *rkt = &dev->lkey_table;
184 
185 	rvt_get_mr(mr);
186 	spin_lock_irqsave(&rkt->lock, flags);
187 
188 	/* special case for dma_mr lkey == 0 */
189 	if (dma_region) {
190 		struct rvt_mregion *tmr;
191 
192 		tmr = rcu_access_pointer(dev->dma_mr);
193 		if (!tmr) {
194 			mr->lkey_published = 1;
195 			/* Insure published written first */
196 			rcu_assign_pointer(dev->dma_mr, mr);
197 			rvt_get_mr(mr);
198 		}
199 		goto success;
200 	}
201 
202 	/* Find the next available LKEY */
203 	r = rkt->next;
204 	n = r;
205 	for (;;) {
206 		if (!rcu_access_pointer(rkt->table[r]))
207 			break;
208 		r = (r + 1) & (rkt->max - 1);
209 		if (r == n)
210 			goto bail;
211 	}
212 	rkt->next = (r + 1) & (rkt->max - 1);
213 	/*
214 	 * Make sure lkey is never zero which is reserved to indicate an
215 	 * unrestricted LKEY.
216 	 */
217 	rkt->gen++;
218 	/*
219 	 * bits are capped to ensure enough bits for generation number
220 	 */
221 	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
222 		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
223 		 << 8);
224 	if (mr->lkey == 0) {
225 		mr->lkey |= 1 << 8;
226 		rkt->gen++;
227 	}
228 	mr->lkey_published = 1;
229 	/* Insure published written first */
230 	rcu_assign_pointer(rkt->table[r], mr);
231 success:
232 	spin_unlock_irqrestore(&rkt->lock, flags);
233 out:
234 	return ret;
235 bail:
236 	rvt_put_mr(mr);
237 	spin_unlock_irqrestore(&rkt->lock, flags);
238 	ret = -ENOMEM;
239 	goto out;
240 }
241 
242 /**
243  * rvt_free_lkey - free an lkey
244  * @mr: mr to free from tables
245  */
246 static void rvt_free_lkey(struct rvt_mregion *mr)
247 {
248 	unsigned long flags;
249 	u32 lkey = mr->lkey;
250 	u32 r;
251 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
252 	struct rvt_lkey_table *rkt = &dev->lkey_table;
253 	int freed = 0;
254 
255 	spin_lock_irqsave(&rkt->lock, flags);
256 	if (!lkey) {
257 		if (mr->lkey_published) {
258 			mr->lkey_published = 0;
259 			/* insure published is written before pointer */
260 			rcu_assign_pointer(dev->dma_mr, NULL);
261 			rvt_put_mr(mr);
262 		}
263 	} else {
264 		if (!mr->lkey_published)
265 			goto out;
266 		r = lkey >> (32 - dev->dparms.lkey_table_size);
267 		mr->lkey_published = 0;
268 		/* insure published is written before pointer */
269 		rcu_assign_pointer(rkt->table[r], NULL);
270 	}
271 	freed++;
272 out:
273 	spin_unlock_irqrestore(&rkt->lock, flags);
274 	if (freed)
275 		percpu_ref_kill(&mr->refcount);
276 }
277 
278 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
279 {
280 	struct rvt_mr *mr;
281 	int rval = -ENOMEM;
282 	int m;
283 
284 	/* Allocate struct plus pointers to first level page tables. */
285 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
286 	mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
287 	if (!mr)
288 		goto bail;
289 
290 	rval = rvt_init_mregion(&mr->mr, pd, count, 0);
291 	if (rval)
292 		goto bail;
293 	/*
294 	 * ib_reg_phys_mr() will initialize mr->ibmr except for
295 	 * lkey and rkey.
296 	 */
297 	rval = rvt_alloc_lkey(&mr->mr, 0);
298 	if (rval)
299 		goto bail_mregion;
300 	mr->ibmr.lkey = mr->mr.lkey;
301 	mr->ibmr.rkey = mr->mr.lkey;
302 done:
303 	return mr;
304 
305 bail_mregion:
306 	rvt_deinit_mregion(&mr->mr);
307 bail:
308 	kfree(mr);
309 	mr = ERR_PTR(rval);
310 	goto done;
311 }
312 
313 static void __rvt_free_mr(struct rvt_mr *mr)
314 {
315 	rvt_free_lkey(&mr->mr);
316 	rvt_deinit_mregion(&mr->mr);
317 	kfree(mr);
318 }
319 
320 /**
321  * rvt_get_dma_mr - get a DMA memory region
322  * @pd: protection domain for this memory region
323  * @acc: access flags
324  *
325  * Return: the memory region on success, otherwise returns an errno.
326  * Note that all DMA addresses should be created via the functions in
327  * struct dma_virt_ops.
328  */
329 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
330 {
331 	struct rvt_mr *mr;
332 	struct ib_mr *ret;
333 	int rval;
334 
335 	if (ibpd_to_rvtpd(pd)->user)
336 		return ERR_PTR(-EPERM);
337 
338 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
339 	if (!mr) {
340 		ret = ERR_PTR(-ENOMEM);
341 		goto bail;
342 	}
343 
344 	rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
345 	if (rval) {
346 		ret = ERR_PTR(rval);
347 		goto bail;
348 	}
349 
350 	rval = rvt_alloc_lkey(&mr->mr, 1);
351 	if (rval) {
352 		ret = ERR_PTR(rval);
353 		goto bail_mregion;
354 	}
355 
356 	mr->mr.access_flags = acc;
357 	ret = &mr->ibmr;
358 done:
359 	return ret;
360 
361 bail_mregion:
362 	rvt_deinit_mregion(&mr->mr);
363 bail:
364 	kfree(mr);
365 	goto done;
366 }
367 
368 /**
369  * rvt_reg_user_mr - register a userspace memory region
370  * @pd: protection domain for this memory region
371  * @start: starting userspace address
372  * @length: length of region to register
373  * @mr_access_flags: access flags for this memory region
374  * @udata: unused by the driver
375  *
376  * Return: the memory region on success, otherwise returns an errno.
377  */
378 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
379 			      u64 virt_addr, int mr_access_flags,
380 			      struct ib_udata *udata)
381 {
382 	struct rvt_mr *mr;
383 	struct ib_umem *umem;
384 	struct scatterlist *sg;
385 	int n, m, entry;
386 	struct ib_mr *ret;
387 
388 	if (length == 0)
389 		return ERR_PTR(-EINVAL);
390 
391 	umem = ib_umem_get(pd->uobject->context, start, length,
392 			   mr_access_flags, 0);
393 	if (IS_ERR(umem))
394 		return (void *)umem;
395 
396 	n = umem->nmap;
397 
398 	mr = __rvt_alloc_mr(n, pd);
399 	if (IS_ERR(mr)) {
400 		ret = (struct ib_mr *)mr;
401 		goto bail_umem;
402 	}
403 
404 	mr->mr.user_base = start;
405 	mr->mr.iova = virt_addr;
406 	mr->mr.length = length;
407 	mr->mr.offset = ib_umem_offset(umem);
408 	mr->mr.access_flags = mr_access_flags;
409 	mr->umem = umem;
410 
411 	mr->mr.page_shift = umem->page_shift;
412 	m = 0;
413 	n = 0;
414 	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
415 		void *vaddr;
416 
417 		vaddr = page_address(sg_page(sg));
418 		if (!vaddr) {
419 			ret = ERR_PTR(-EINVAL);
420 			goto bail_inval;
421 		}
422 		mr->mr.map[m]->segs[n].vaddr = vaddr;
423 		mr->mr.map[m]->segs[n].length = BIT(umem->page_shift);
424 		trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr,
425 				      BIT(umem->page_shift));
426 		n++;
427 		if (n == RVT_SEGSZ) {
428 			m++;
429 			n = 0;
430 		}
431 	}
432 	return &mr->ibmr;
433 
434 bail_inval:
435 	__rvt_free_mr(mr);
436 
437 bail_umem:
438 	ib_umem_release(umem);
439 
440 	return ret;
441 }
442 
443 /**
444  * rvt_dereg_clean_qp_cb - callback from iterator
445  * @qp - the qp
446  * @v - the mregion (as u64)
447  *
448  * This routine fields the callback for all QPs and
449  * for QPs in the same PD as the MR will call the
450  * rvt_qp_mr_clean() to potentially cleanup references.
451  */
452 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
453 {
454 	struct rvt_mregion *mr = (struct rvt_mregion *)v;
455 
456 	/* skip PDs that are not ours */
457 	if (mr->pd != qp->ibqp.pd)
458 		return;
459 	rvt_qp_mr_clean(qp, mr->lkey);
460 }
461 
462 /**
463  * rvt_dereg_clean_qps - find QPs for reference cleanup
464  * @mr - the MR that is being deregistered
465  *
466  * This routine iterates RC QPs looking for references
467  * to the lkey noted in mr.
468  */
469 static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
470 {
471 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
472 
473 	rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
474 }
475 
476 /**
477  * rvt_check_refs - check references
478  * @mr - the megion
479  * @t - the caller identification
480  *
481  * This routine checks MRs holding a reference during
482  * when being de-registered.
483  *
484  * If the count is non-zero, the code calls a clean routine then
485  * waits for the timeout for the count to zero.
486  */
487 static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
488 {
489 	unsigned long timeout;
490 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
491 
492 	if (percpu_ref_is_zero(&mr->refcount))
493 		return 0;
494 	/* avoid dma mr */
495 	if (mr->lkey)
496 		rvt_dereg_clean_qps(mr);
497 	timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
498 	if (!timeout) {
499 		rvt_pr_err(rdi,
500 			   "%s timeout mr %p pd %p lkey %x refcount %ld\n",
501 			   t, mr, mr->pd, mr->lkey,
502 			   atomic_long_read(&mr->refcount.count));
503 		rvt_get_mr(mr);
504 		return -EBUSY;
505 	}
506 	return 0;
507 }
508 
509 /**
510  * rvt_mr_has_lkey - is MR
511  * @mr - the mregion
512  * @lkey - the lkey
513  */
514 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
515 {
516 	return mr && lkey == mr->lkey;
517 }
518 
519 /**
520  * rvt_ss_has_lkey - is mr in sge tests
521  * @ss - the sge state
522  * @lkey
523  *
524  * This code tests for an MR in the indicated
525  * sge state.
526  */
527 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
528 {
529 	int i;
530 	bool rval = false;
531 
532 	if (!ss->num_sge)
533 		return rval;
534 	/* first one */
535 	rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
536 	/* any others */
537 	for (i = 0; !rval && i < ss->num_sge - 1; i++)
538 		rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
539 	return rval;
540 }
541 
542 /**
543  * rvt_dereg_mr - unregister and free a memory region
544  * @ibmr: the memory region to free
545  *
546  *
547  * Note that this is called to free MRs created by rvt_get_dma_mr()
548  * or rvt_reg_user_mr().
549  *
550  * Returns 0 on success.
551  */
552 int rvt_dereg_mr(struct ib_mr *ibmr)
553 {
554 	struct rvt_mr *mr = to_imr(ibmr);
555 	int ret;
556 
557 	rvt_free_lkey(&mr->mr);
558 
559 	rvt_put_mr(&mr->mr); /* will set completion if last */
560 	ret = rvt_check_refs(&mr->mr, __func__);
561 	if (ret)
562 		goto out;
563 	rvt_deinit_mregion(&mr->mr);
564 	if (mr->umem)
565 		ib_umem_release(mr->umem);
566 	kfree(mr);
567 out:
568 	return ret;
569 }
570 
571 /**
572  * rvt_alloc_mr - Allocate a memory region usable with the
573  * @pd: protection domain for this memory region
574  * @mr_type: mem region type
575  * @max_num_sg: Max number of segments allowed
576  *
577  * Return: the memory region on success, otherwise return an errno.
578  */
579 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
580 			   enum ib_mr_type mr_type,
581 			   u32 max_num_sg)
582 {
583 	struct rvt_mr *mr;
584 
585 	if (mr_type != IB_MR_TYPE_MEM_REG)
586 		return ERR_PTR(-EINVAL);
587 
588 	mr = __rvt_alloc_mr(max_num_sg, pd);
589 	if (IS_ERR(mr))
590 		return (struct ib_mr *)mr;
591 
592 	return &mr->ibmr;
593 }
594 
595 /**
596  * rvt_set_page - page assignment function called by ib_sg_to_pages
597  * @ibmr: memory region
598  * @addr: dma address of mapped page
599  *
600  * Return: 0 on success
601  */
602 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
603 {
604 	struct rvt_mr *mr = to_imr(ibmr);
605 	u32 ps = 1 << mr->mr.page_shift;
606 	u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
607 	int m, n;
608 
609 	if (unlikely(mapped_segs == mr->mr.max_segs))
610 		return -ENOMEM;
611 
612 	if (mr->mr.length == 0) {
613 		mr->mr.user_base = addr;
614 		mr->mr.iova = addr;
615 	}
616 
617 	m = mapped_segs / RVT_SEGSZ;
618 	n = mapped_segs % RVT_SEGSZ;
619 	mr->mr.map[m]->segs[n].vaddr = (void *)addr;
620 	mr->mr.map[m]->segs[n].length = ps;
621 	trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
622 	mr->mr.length += ps;
623 
624 	return 0;
625 }
626 
627 /**
628  * rvt_map_mr_sg - map sg list and set it the memory region
629  * @ibmr: memory region
630  * @sg: dma mapped scatterlist
631  * @sg_nents: number of entries in sg
632  * @sg_offset: offset in bytes into sg
633  *
634  * Return: number of sg elements mapped to the memory region
635  */
636 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
637 		  int sg_nents, unsigned int *sg_offset)
638 {
639 	struct rvt_mr *mr = to_imr(ibmr);
640 
641 	mr->mr.length = 0;
642 	mr->mr.page_shift = PAGE_SHIFT;
643 	return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
644 			      rvt_set_page);
645 }
646 
647 /**
648  * rvt_fast_reg_mr - fast register physical MR
649  * @qp: the queue pair where the work request comes from
650  * @ibmr: the memory region to be registered
651  * @key: updated key for this memory region
652  * @access: access flags for this memory region
653  *
654  * Returns 0 on success.
655  */
656 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
657 		    int access)
658 {
659 	struct rvt_mr *mr = to_imr(ibmr);
660 
661 	if (qp->ibqp.pd != mr->mr.pd)
662 		return -EACCES;
663 
664 	/* not applicable to dma MR or user MR */
665 	if (!mr->mr.lkey || mr->umem)
666 		return -EINVAL;
667 
668 	if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
669 		return -EINVAL;
670 
671 	ibmr->lkey = key;
672 	ibmr->rkey = key;
673 	mr->mr.lkey = key;
674 	mr->mr.access_flags = access;
675 	atomic_set(&mr->mr.lkey_invalid, 0);
676 
677 	return 0;
678 }
679 EXPORT_SYMBOL(rvt_fast_reg_mr);
680 
681 /**
682  * rvt_invalidate_rkey - invalidate an MR rkey
683  * @qp: queue pair associated with the invalidate op
684  * @rkey: rkey to invalidate
685  *
686  * Returns 0 on success.
687  */
688 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
689 {
690 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
691 	struct rvt_lkey_table *rkt = &dev->lkey_table;
692 	struct rvt_mregion *mr;
693 
694 	if (rkey == 0)
695 		return -EINVAL;
696 
697 	rcu_read_lock();
698 	mr = rcu_dereference(
699 		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
700 	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
701 		goto bail;
702 
703 	atomic_set(&mr->lkey_invalid, 1);
704 	rcu_read_unlock();
705 	return 0;
706 
707 bail:
708 	rcu_read_unlock();
709 	return -EINVAL;
710 }
711 EXPORT_SYMBOL(rvt_invalidate_rkey);
712 
713 /**
714  * rvt_alloc_fmr - allocate a fast memory region
715  * @pd: the protection domain for this memory region
716  * @mr_access_flags: access flags for this memory region
717  * @fmr_attr: fast memory region attributes
718  *
719  * Return: the memory region on success, otherwise returns an errno.
720  */
721 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
722 			     struct ib_fmr_attr *fmr_attr)
723 {
724 	struct rvt_fmr *fmr;
725 	int m;
726 	struct ib_fmr *ret;
727 	int rval = -ENOMEM;
728 
729 	/* Allocate struct plus pointers to first level page tables. */
730 	m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
731 	fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
732 	if (!fmr)
733 		goto bail;
734 
735 	rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
736 				PERCPU_REF_INIT_ATOMIC);
737 	if (rval)
738 		goto bail;
739 
740 	/*
741 	 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
742 	 * rkey.
743 	 */
744 	rval = rvt_alloc_lkey(&fmr->mr, 0);
745 	if (rval)
746 		goto bail_mregion;
747 	fmr->ibfmr.rkey = fmr->mr.lkey;
748 	fmr->ibfmr.lkey = fmr->mr.lkey;
749 	/*
750 	 * Resources are allocated but no valid mapping (RKEY can't be
751 	 * used).
752 	 */
753 	fmr->mr.access_flags = mr_access_flags;
754 	fmr->mr.max_segs = fmr_attr->max_pages;
755 	fmr->mr.page_shift = fmr_attr->page_shift;
756 
757 	ret = &fmr->ibfmr;
758 done:
759 	return ret;
760 
761 bail_mregion:
762 	rvt_deinit_mregion(&fmr->mr);
763 bail:
764 	kfree(fmr);
765 	ret = ERR_PTR(rval);
766 	goto done;
767 }
768 
769 /**
770  * rvt_map_phys_fmr - set up a fast memory region
771  * @ibfmr: the fast memory region to set up
772  * @page_list: the list of pages to associate with the fast memory region
773  * @list_len: the number of pages to associate with the fast memory region
774  * @iova: the virtual address of the start of the fast memory region
775  *
776  * This may be called from interrupt context.
777  *
778  * Return: 0 on success
779  */
780 
781 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
782 		     int list_len, u64 iova)
783 {
784 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
785 	struct rvt_lkey_table *rkt;
786 	unsigned long flags;
787 	int m, n;
788 	unsigned long i;
789 	u32 ps;
790 	struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
791 
792 	i = atomic_long_read(&fmr->mr.refcount.count);
793 	if (i > 2)
794 		return -EBUSY;
795 
796 	if (list_len > fmr->mr.max_segs)
797 		return -EINVAL;
798 
799 	rkt = &rdi->lkey_table;
800 	spin_lock_irqsave(&rkt->lock, flags);
801 	fmr->mr.user_base = iova;
802 	fmr->mr.iova = iova;
803 	ps = 1 << fmr->mr.page_shift;
804 	fmr->mr.length = list_len * ps;
805 	m = 0;
806 	n = 0;
807 	for (i = 0; i < list_len; i++) {
808 		fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
809 		fmr->mr.map[m]->segs[n].length = ps;
810 		trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
811 		if (++n == RVT_SEGSZ) {
812 			m++;
813 			n = 0;
814 		}
815 	}
816 	spin_unlock_irqrestore(&rkt->lock, flags);
817 	return 0;
818 }
819 
820 /**
821  * rvt_unmap_fmr - unmap fast memory regions
822  * @fmr_list: the list of fast memory regions to unmap
823  *
824  * Return: 0 on success.
825  */
826 int rvt_unmap_fmr(struct list_head *fmr_list)
827 {
828 	struct rvt_fmr *fmr;
829 	struct rvt_lkey_table *rkt;
830 	unsigned long flags;
831 	struct rvt_dev_info *rdi;
832 
833 	list_for_each_entry(fmr, fmr_list, ibfmr.list) {
834 		rdi = ib_to_rvt(fmr->ibfmr.device);
835 		rkt = &rdi->lkey_table;
836 		spin_lock_irqsave(&rkt->lock, flags);
837 		fmr->mr.user_base = 0;
838 		fmr->mr.iova = 0;
839 		fmr->mr.length = 0;
840 		spin_unlock_irqrestore(&rkt->lock, flags);
841 	}
842 	return 0;
843 }
844 
845 /**
846  * rvt_dealloc_fmr - deallocate a fast memory region
847  * @ibfmr: the fast memory region to deallocate
848  *
849  * Return: 0 on success.
850  */
851 int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
852 {
853 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
854 	int ret = 0;
855 
856 	rvt_free_lkey(&fmr->mr);
857 	rvt_put_mr(&fmr->mr); /* will set completion if last */
858 	ret = rvt_check_refs(&fmr->mr, __func__);
859 	if (ret)
860 		goto out;
861 	rvt_deinit_mregion(&fmr->mr);
862 	kfree(fmr);
863 out:
864 	return ret;
865 }
866 
867 /**
868  * rvt_sge_adjacent - is isge compressible
869  * @last_sge: last outgoing SGE written
870  * @sge: SGE to check
871  *
872  * If adjacent will update last_sge to add length.
873  *
874  * Return: true if isge is adjacent to last sge
875  */
876 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
877 				    struct ib_sge *sge)
878 {
879 	if (last_sge && sge->lkey == last_sge->mr->lkey &&
880 	    ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
881 		if (sge->lkey) {
882 			if (unlikely((sge->addr - last_sge->mr->user_base +
883 			      sge->length > last_sge->mr->length)))
884 				return false; /* overrun, caller will catch */
885 		} else {
886 			last_sge->length += sge->length;
887 		}
888 		last_sge->sge_length += sge->length;
889 		trace_rvt_sge_adjacent(last_sge, sge);
890 		return true;
891 	}
892 	return false;
893 }
894 
895 /**
896  * rvt_lkey_ok - check IB SGE for validity and initialize
897  * @rkt: table containing lkey to check SGE against
898  * @pd: protection domain
899  * @isge: outgoing internal SGE
900  * @last_sge: last outgoing SGE written
901  * @sge: SGE to check
902  * @acc: access flags
903  *
904  * Check the IB SGE for validity and initialize our internal version
905  * of it.
906  *
907  * Increments the reference count when a new sge is stored.
908  *
909  * Return: 0 if compressed, 1 if added , otherwise returns -errno.
910  */
911 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
912 		struct rvt_sge *isge, struct rvt_sge *last_sge,
913 		struct ib_sge *sge, int acc)
914 {
915 	struct rvt_mregion *mr;
916 	unsigned n, m;
917 	size_t off;
918 
919 	/*
920 	 * We use LKEY == zero for kernel virtual addresses
921 	 * (see rvt_get_dma_mr() and dma_virt_ops).
922 	 */
923 	if (sge->lkey == 0) {
924 		struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
925 
926 		if (pd->user)
927 			return -EINVAL;
928 		if (rvt_sge_adjacent(last_sge, sge))
929 			return 0;
930 		rcu_read_lock();
931 		mr = rcu_dereference(dev->dma_mr);
932 		if (!mr)
933 			goto bail;
934 		rvt_get_mr(mr);
935 		rcu_read_unlock();
936 
937 		isge->mr = mr;
938 		isge->vaddr = (void *)sge->addr;
939 		isge->length = sge->length;
940 		isge->sge_length = sge->length;
941 		isge->m = 0;
942 		isge->n = 0;
943 		goto ok;
944 	}
945 	if (rvt_sge_adjacent(last_sge, sge))
946 		return 0;
947 	rcu_read_lock();
948 	mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
949 	if (!mr)
950 		goto bail;
951 	rvt_get_mr(mr);
952 	if (!READ_ONCE(mr->lkey_published))
953 		goto bail_unref;
954 
955 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
956 		     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
957 		goto bail_unref;
958 
959 	off = sge->addr - mr->user_base;
960 	if (unlikely(sge->addr < mr->user_base ||
961 		     off + sge->length > mr->length ||
962 		     (mr->access_flags & acc) != acc))
963 		goto bail_unref;
964 	rcu_read_unlock();
965 
966 	off += mr->offset;
967 	if (mr->page_shift) {
968 		/*
969 		 * page sizes are uniform power of 2 so no loop is necessary
970 		 * entries_spanned_by_off is the number of times the loop below
971 		 * would have executed.
972 		*/
973 		size_t entries_spanned_by_off;
974 
975 		entries_spanned_by_off = off >> mr->page_shift;
976 		off -= (entries_spanned_by_off << mr->page_shift);
977 		m = entries_spanned_by_off / RVT_SEGSZ;
978 		n = entries_spanned_by_off % RVT_SEGSZ;
979 	} else {
980 		m = 0;
981 		n = 0;
982 		while (off >= mr->map[m]->segs[n].length) {
983 			off -= mr->map[m]->segs[n].length;
984 			n++;
985 			if (n >= RVT_SEGSZ) {
986 				m++;
987 				n = 0;
988 			}
989 		}
990 	}
991 	isge->mr = mr;
992 	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
993 	isge->length = mr->map[m]->segs[n].length - off;
994 	isge->sge_length = sge->length;
995 	isge->m = m;
996 	isge->n = n;
997 ok:
998 	trace_rvt_sge_new(isge, sge);
999 	return 1;
1000 bail_unref:
1001 	rvt_put_mr(mr);
1002 bail:
1003 	rcu_read_unlock();
1004 	return -EINVAL;
1005 }
1006 EXPORT_SYMBOL(rvt_lkey_ok);
1007 
1008 /**
1009  * rvt_rkey_ok - check the IB virtual address, length, and RKEY
1010  * @qp: qp for validation
1011  * @sge: SGE state
1012  * @len: length of data
1013  * @vaddr: virtual address to place data
1014  * @rkey: rkey to check
1015  * @acc: access flags
1016  *
1017  * Return: 1 if successful, otherwise 0.
1018  *
1019  * increments the reference count upon success
1020  */
1021 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
1022 		u32 len, u64 vaddr, u32 rkey, int acc)
1023 {
1024 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
1025 	struct rvt_lkey_table *rkt = &dev->lkey_table;
1026 	struct rvt_mregion *mr;
1027 	unsigned n, m;
1028 	size_t off;
1029 
1030 	/*
1031 	 * We use RKEY == zero for kernel virtual addresses
1032 	 * (see rvt_get_dma_mr() and dma_virt_ops).
1033 	 */
1034 	rcu_read_lock();
1035 	if (rkey == 0) {
1036 		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
1037 		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
1038 
1039 		if (pd->user)
1040 			goto bail;
1041 		mr = rcu_dereference(rdi->dma_mr);
1042 		if (!mr)
1043 			goto bail;
1044 		rvt_get_mr(mr);
1045 		rcu_read_unlock();
1046 
1047 		sge->mr = mr;
1048 		sge->vaddr = (void *)vaddr;
1049 		sge->length = len;
1050 		sge->sge_length = len;
1051 		sge->m = 0;
1052 		sge->n = 0;
1053 		goto ok;
1054 	}
1055 
1056 	mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
1057 	if (!mr)
1058 		goto bail;
1059 	rvt_get_mr(mr);
1060 	/* insure mr read is before test */
1061 	if (!READ_ONCE(mr->lkey_published))
1062 		goto bail_unref;
1063 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
1064 		     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
1065 		goto bail_unref;
1066 
1067 	off = vaddr - mr->iova;
1068 	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
1069 		     (mr->access_flags & acc) == 0))
1070 		goto bail_unref;
1071 	rcu_read_unlock();
1072 
1073 	off += mr->offset;
1074 	if (mr->page_shift) {
1075 		/*
1076 		 * page sizes are uniform power of 2 so no loop is necessary
1077 		 * entries_spanned_by_off is the number of times the loop below
1078 		 * would have executed.
1079 		*/
1080 		size_t entries_spanned_by_off;
1081 
1082 		entries_spanned_by_off = off >> mr->page_shift;
1083 		off -= (entries_spanned_by_off << mr->page_shift);
1084 		m = entries_spanned_by_off / RVT_SEGSZ;
1085 		n = entries_spanned_by_off % RVT_SEGSZ;
1086 	} else {
1087 		m = 0;
1088 		n = 0;
1089 		while (off >= mr->map[m]->segs[n].length) {
1090 			off -= mr->map[m]->segs[n].length;
1091 			n++;
1092 			if (n >= RVT_SEGSZ) {
1093 				m++;
1094 				n = 0;
1095 			}
1096 		}
1097 	}
1098 	sge->mr = mr;
1099 	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
1100 	sge->length = mr->map[m]->segs[n].length - off;
1101 	sge->sge_length = len;
1102 	sge->m = m;
1103 	sge->n = n;
1104 ok:
1105 	return 1;
1106 bail_unref:
1107 	rvt_put_mr(mr);
1108 bail:
1109 	rcu_read_unlock();
1110 	return 0;
1111 }
1112 EXPORT_SYMBOL(rvt_rkey_ok);
1113