1 /* 2 * Copyright(c) 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/slab.h> 49 #include <linux/vmalloc.h> 50 #include <rdma/ib_umem.h> 51 #include <rdma/rdma_vt.h> 52 #include "vt.h" 53 #include "mr.h" 54 #include "trace.h" 55 56 /** 57 * rvt_driver_mr_init - Init MR resources per driver 58 * @rdi: rvt dev struct 59 * 60 * Do any intilization needed when a driver registers with rdmavt. 61 * 62 * Return: 0 on success or errno on failure 63 */ 64 int rvt_driver_mr_init(struct rvt_dev_info *rdi) 65 { 66 unsigned int lkey_table_size = rdi->dparms.lkey_table_size; 67 unsigned lk_tab_size; 68 int i; 69 70 /* 71 * The top hfi1_lkey_table_size bits are used to index the 72 * table. The lower 8 bits can be owned by the user (copied from 73 * the LKEY). The remaining bits act as a generation number or tag. 74 */ 75 if (!lkey_table_size) 76 return -EINVAL; 77 78 spin_lock_init(&rdi->lkey_table.lock); 79 80 /* ensure generation is at least 4 bits */ 81 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) { 82 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n", 83 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS); 84 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS; 85 lkey_table_size = rdi->dparms.lkey_table_size; 86 } 87 rdi->lkey_table.max = 1 << lkey_table_size; 88 rdi->lkey_table.shift = 32 - lkey_table_size; 89 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table); 90 rdi->lkey_table.table = (struct rvt_mregion __rcu **) 91 vmalloc_node(lk_tab_size, rdi->dparms.node); 92 if (!rdi->lkey_table.table) 93 return -ENOMEM; 94 95 RCU_INIT_POINTER(rdi->dma_mr, NULL); 96 for (i = 0; i < rdi->lkey_table.max; i++) 97 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL); 98 99 rdi->dparms.props.max_mr = rdi->lkey_table.max; 100 return 0; 101 } 102 103 /** 104 * rvt_mr_exit - clean up MR 105 * @rdi: rvt dev structure 106 * 107 * called when drivers have unregistered or perhaps failed to register with us 108 */ 109 void rvt_mr_exit(struct rvt_dev_info *rdi) 110 { 111 if (rdi->dma_mr) 112 rvt_pr_err(rdi, "DMA MR not null!\n"); 113 114 vfree(rdi->lkey_table.table); 115 } 116 117 static void rvt_deinit_mregion(struct rvt_mregion *mr) 118 { 119 int i = mr->mapsz; 120 121 mr->mapsz = 0; 122 while (i) 123 kfree(mr->map[--i]); 124 percpu_ref_exit(&mr->refcount); 125 } 126 127 static void __rvt_mregion_complete(struct percpu_ref *ref) 128 { 129 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion, 130 refcount); 131 132 complete(&mr->comp); 133 } 134 135 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd, 136 int count, unsigned int percpu_flags) 137 { 138 int m, i = 0; 139 struct rvt_dev_info *dev = ib_to_rvt(pd->device); 140 141 mr->mapsz = 0; 142 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 143 for (; i < m; i++) { 144 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL, 145 dev->dparms.node); 146 if (!mr->map[i]) 147 goto bail; 148 mr->mapsz++; 149 } 150 init_completion(&mr->comp); 151 /* count returning the ptr to user */ 152 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete, 153 percpu_flags, GFP_KERNEL)) 154 goto bail; 155 156 atomic_set(&mr->lkey_invalid, 0); 157 mr->pd = pd; 158 mr->max_segs = count; 159 return 0; 160 bail: 161 rvt_deinit_mregion(mr); 162 return -ENOMEM; 163 } 164 165 /** 166 * rvt_alloc_lkey - allocate an lkey 167 * @mr: memory region that this lkey protects 168 * @dma_region: 0->normal key, 1->restricted DMA key 169 * 170 * Returns 0 if successful, otherwise returns -errno. 171 * 172 * Increments mr reference count as required. 173 * 174 * Sets the lkey field mr for non-dma regions. 175 * 176 */ 177 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region) 178 { 179 unsigned long flags; 180 u32 r; 181 u32 n; 182 int ret = 0; 183 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 184 struct rvt_lkey_table *rkt = &dev->lkey_table; 185 186 rvt_get_mr(mr); 187 spin_lock_irqsave(&rkt->lock, flags); 188 189 /* special case for dma_mr lkey == 0 */ 190 if (dma_region) { 191 struct rvt_mregion *tmr; 192 193 tmr = rcu_access_pointer(dev->dma_mr); 194 if (!tmr) { 195 mr->lkey_published = 1; 196 /* Insure published written first */ 197 rcu_assign_pointer(dev->dma_mr, mr); 198 rvt_get_mr(mr); 199 } 200 goto success; 201 } 202 203 /* Find the next available LKEY */ 204 r = rkt->next; 205 n = r; 206 for (;;) { 207 if (!rcu_access_pointer(rkt->table[r])) 208 break; 209 r = (r + 1) & (rkt->max - 1); 210 if (r == n) 211 goto bail; 212 } 213 rkt->next = (r + 1) & (rkt->max - 1); 214 /* 215 * Make sure lkey is never zero which is reserved to indicate an 216 * unrestricted LKEY. 217 */ 218 rkt->gen++; 219 /* 220 * bits are capped to ensure enough bits for generation number 221 */ 222 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) | 223 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen) 224 << 8); 225 if (mr->lkey == 0) { 226 mr->lkey |= 1 << 8; 227 rkt->gen++; 228 } 229 mr->lkey_published = 1; 230 /* Insure published written first */ 231 rcu_assign_pointer(rkt->table[r], mr); 232 success: 233 spin_unlock_irqrestore(&rkt->lock, flags); 234 out: 235 return ret; 236 bail: 237 rvt_put_mr(mr); 238 spin_unlock_irqrestore(&rkt->lock, flags); 239 ret = -ENOMEM; 240 goto out; 241 } 242 243 /** 244 * rvt_free_lkey - free an lkey 245 * @mr: mr to free from tables 246 */ 247 static void rvt_free_lkey(struct rvt_mregion *mr) 248 { 249 unsigned long flags; 250 u32 lkey = mr->lkey; 251 u32 r; 252 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 253 struct rvt_lkey_table *rkt = &dev->lkey_table; 254 int freed = 0; 255 256 spin_lock_irqsave(&rkt->lock, flags); 257 if (!lkey) { 258 if (mr->lkey_published) { 259 mr->lkey_published = 0; 260 /* insure published is written before pointer */ 261 rcu_assign_pointer(dev->dma_mr, NULL); 262 rvt_put_mr(mr); 263 } 264 } else { 265 if (!mr->lkey_published) 266 goto out; 267 r = lkey >> (32 - dev->dparms.lkey_table_size); 268 mr->lkey_published = 0; 269 /* insure published is written before pointer */ 270 rcu_assign_pointer(rkt->table[r], NULL); 271 } 272 freed++; 273 out: 274 spin_unlock_irqrestore(&rkt->lock, flags); 275 if (freed) 276 percpu_ref_kill(&mr->refcount); 277 } 278 279 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd) 280 { 281 struct rvt_mr *mr; 282 int rval = -ENOMEM; 283 int m; 284 285 /* Allocate struct plus pointers to first level page tables. */ 286 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 287 mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL); 288 if (!mr) 289 goto bail; 290 291 rval = rvt_init_mregion(&mr->mr, pd, count, 0); 292 if (rval) 293 goto bail; 294 /* 295 * ib_reg_phys_mr() will initialize mr->ibmr except for 296 * lkey and rkey. 297 */ 298 rval = rvt_alloc_lkey(&mr->mr, 0); 299 if (rval) 300 goto bail_mregion; 301 mr->ibmr.lkey = mr->mr.lkey; 302 mr->ibmr.rkey = mr->mr.lkey; 303 done: 304 return mr; 305 306 bail_mregion: 307 rvt_deinit_mregion(&mr->mr); 308 bail: 309 kfree(mr); 310 mr = ERR_PTR(rval); 311 goto done; 312 } 313 314 static void __rvt_free_mr(struct rvt_mr *mr) 315 { 316 rvt_free_lkey(&mr->mr); 317 rvt_deinit_mregion(&mr->mr); 318 kfree(mr); 319 } 320 321 /** 322 * rvt_get_dma_mr - get a DMA memory region 323 * @pd: protection domain for this memory region 324 * @acc: access flags 325 * 326 * Return: the memory region on success, otherwise returns an errno. 327 */ 328 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc) 329 { 330 struct rvt_mr *mr; 331 struct ib_mr *ret; 332 int rval; 333 334 if (ibpd_to_rvtpd(pd)->user) 335 return ERR_PTR(-EPERM); 336 337 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 338 if (!mr) { 339 ret = ERR_PTR(-ENOMEM); 340 goto bail; 341 } 342 343 rval = rvt_init_mregion(&mr->mr, pd, 0, 0); 344 if (rval) { 345 ret = ERR_PTR(rval); 346 goto bail; 347 } 348 349 rval = rvt_alloc_lkey(&mr->mr, 1); 350 if (rval) { 351 ret = ERR_PTR(rval); 352 goto bail_mregion; 353 } 354 355 mr->mr.access_flags = acc; 356 ret = &mr->ibmr; 357 done: 358 return ret; 359 360 bail_mregion: 361 rvt_deinit_mregion(&mr->mr); 362 bail: 363 kfree(mr); 364 goto done; 365 } 366 367 /** 368 * rvt_reg_user_mr - register a userspace memory region 369 * @pd: protection domain for this memory region 370 * @start: starting userspace address 371 * @length: length of region to register 372 * @virt_addr: associated virtual address 373 * @mr_access_flags: access flags for this memory region 374 * @udata: unused by the driver 375 * 376 * Return: the memory region on success, otherwise returns an errno. 377 */ 378 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 379 u64 virt_addr, int mr_access_flags, 380 struct ib_udata *udata) 381 { 382 struct rvt_mr *mr; 383 struct ib_umem *umem; 384 struct sg_page_iter sg_iter; 385 int n, m; 386 struct ib_mr *ret; 387 388 if (length == 0) 389 return ERR_PTR(-EINVAL); 390 391 umem = ib_umem_get(pd->device, start, length, mr_access_flags); 392 if (IS_ERR(umem)) 393 return (void *)umem; 394 395 n = ib_umem_num_pages(umem); 396 397 mr = __rvt_alloc_mr(n, pd); 398 if (IS_ERR(mr)) { 399 ret = (struct ib_mr *)mr; 400 goto bail_umem; 401 } 402 403 mr->mr.user_base = start; 404 mr->mr.iova = virt_addr; 405 mr->mr.length = length; 406 mr->mr.offset = ib_umem_offset(umem); 407 mr->mr.access_flags = mr_access_flags; 408 mr->umem = umem; 409 410 mr->mr.page_shift = PAGE_SHIFT; 411 m = 0; 412 n = 0; 413 for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) { 414 void *vaddr; 415 416 vaddr = page_address(sg_page_iter_page(&sg_iter)); 417 if (!vaddr) { 418 ret = ERR_PTR(-EINVAL); 419 goto bail_inval; 420 } 421 mr->mr.map[m]->segs[n].vaddr = vaddr; 422 mr->mr.map[m]->segs[n].length = PAGE_SIZE; 423 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE); 424 if (++n == RVT_SEGSZ) { 425 m++; 426 n = 0; 427 } 428 } 429 return &mr->ibmr; 430 431 bail_inval: 432 __rvt_free_mr(mr); 433 434 bail_umem: 435 ib_umem_release(umem); 436 437 return ret; 438 } 439 440 /** 441 * rvt_dereg_clean_qp_cb - callback from iterator 442 * @qp: the qp 443 * @v: the mregion (as u64) 444 * 445 * This routine fields the callback for all QPs and 446 * for QPs in the same PD as the MR will call the 447 * rvt_qp_mr_clean() to potentially cleanup references. 448 */ 449 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v) 450 { 451 struct rvt_mregion *mr = (struct rvt_mregion *)v; 452 453 /* skip PDs that are not ours */ 454 if (mr->pd != qp->ibqp.pd) 455 return; 456 rvt_qp_mr_clean(qp, mr->lkey); 457 } 458 459 /** 460 * rvt_dereg_clean_qps - find QPs for reference cleanup 461 * @mr: the MR that is being deregistered 462 * 463 * This routine iterates RC QPs looking for references 464 * to the lkey noted in mr. 465 */ 466 static void rvt_dereg_clean_qps(struct rvt_mregion *mr) 467 { 468 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 469 470 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb); 471 } 472 473 /** 474 * rvt_check_refs - check references 475 * @mr: the megion 476 * @t: the caller identification 477 * 478 * This routine checks MRs holding a reference during 479 * when being de-registered. 480 * 481 * If the count is non-zero, the code calls a clean routine then 482 * waits for the timeout for the count to zero. 483 */ 484 static int rvt_check_refs(struct rvt_mregion *mr, const char *t) 485 { 486 unsigned long timeout; 487 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 488 489 if (mr->lkey) { 490 /* avoid dma mr */ 491 rvt_dereg_clean_qps(mr); 492 /* @mr was indexed on rcu protected @lkey_table */ 493 synchronize_rcu(); 494 } 495 496 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ); 497 if (!timeout) { 498 rvt_pr_err(rdi, 499 "%s timeout mr %p pd %p lkey %x refcount %ld\n", 500 t, mr, mr->pd, mr->lkey, 501 atomic_long_read(&mr->refcount.data->count)); 502 rvt_get_mr(mr); 503 return -EBUSY; 504 } 505 return 0; 506 } 507 508 /** 509 * rvt_mr_has_lkey - is MR 510 * @mr: the mregion 511 * @lkey: the lkey 512 */ 513 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey) 514 { 515 return mr && lkey == mr->lkey; 516 } 517 518 /** 519 * rvt_ss_has_lkey - is mr in sge tests 520 * @ss: the sge state 521 * @lkey: the lkey 522 * 523 * This code tests for an MR in the indicated 524 * sge state. 525 */ 526 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey) 527 { 528 int i; 529 bool rval = false; 530 531 if (!ss->num_sge) 532 return rval; 533 /* first one */ 534 rval = rvt_mr_has_lkey(ss->sge.mr, lkey); 535 /* any others */ 536 for (i = 0; !rval && i < ss->num_sge - 1; i++) 537 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey); 538 return rval; 539 } 540 541 /** 542 * rvt_dereg_mr - unregister and free a memory region 543 * @ibmr: the memory region to free 544 * @udata: unused by the driver 545 * 546 * Note that this is called to free MRs created by rvt_get_dma_mr() 547 * or rvt_reg_user_mr(). 548 * 549 * Returns 0 on success. 550 */ 551 int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 552 { 553 struct rvt_mr *mr = to_imr(ibmr); 554 int ret; 555 556 rvt_free_lkey(&mr->mr); 557 558 rvt_put_mr(&mr->mr); /* will set completion if last */ 559 ret = rvt_check_refs(&mr->mr, __func__); 560 if (ret) 561 goto out; 562 rvt_deinit_mregion(&mr->mr); 563 ib_umem_release(mr->umem); 564 kfree(mr); 565 out: 566 return ret; 567 } 568 569 /** 570 * rvt_alloc_mr - Allocate a memory region usable with the 571 * @pd: protection domain for this memory region 572 * @mr_type: mem region type 573 * @max_num_sg: Max number of segments allowed 574 * 575 * Return: the memory region on success, otherwise return an errno. 576 */ 577 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 578 u32 max_num_sg) 579 { 580 struct rvt_mr *mr; 581 582 if (mr_type != IB_MR_TYPE_MEM_REG) 583 return ERR_PTR(-EINVAL); 584 585 mr = __rvt_alloc_mr(max_num_sg, pd); 586 if (IS_ERR(mr)) 587 return (struct ib_mr *)mr; 588 589 return &mr->ibmr; 590 } 591 592 /** 593 * rvt_set_page - page assignment function called by ib_sg_to_pages 594 * @ibmr: memory region 595 * @addr: dma address of mapped page 596 * 597 * Return: 0 on success 598 */ 599 static int rvt_set_page(struct ib_mr *ibmr, u64 addr) 600 { 601 struct rvt_mr *mr = to_imr(ibmr); 602 u32 ps = 1 << mr->mr.page_shift; 603 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift; 604 int m, n; 605 606 if (unlikely(mapped_segs == mr->mr.max_segs)) 607 return -ENOMEM; 608 609 m = mapped_segs / RVT_SEGSZ; 610 n = mapped_segs % RVT_SEGSZ; 611 mr->mr.map[m]->segs[n].vaddr = (void *)addr; 612 mr->mr.map[m]->segs[n].length = ps; 613 mr->mr.length += ps; 614 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps); 615 616 return 0; 617 } 618 619 /** 620 * rvt_map_mr_sg - map sg list and set it the memory region 621 * @ibmr: memory region 622 * @sg: dma mapped scatterlist 623 * @sg_nents: number of entries in sg 624 * @sg_offset: offset in bytes into sg 625 * 626 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages. 627 * 628 * Return: number of sg elements mapped to the memory region 629 */ 630 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, 631 int sg_nents, unsigned int *sg_offset) 632 { 633 struct rvt_mr *mr = to_imr(ibmr); 634 int ret; 635 636 mr->mr.length = 0; 637 mr->mr.page_shift = PAGE_SHIFT; 638 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page); 639 mr->mr.user_base = ibmr->iova; 640 mr->mr.iova = ibmr->iova; 641 mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr; 642 mr->mr.length = (size_t)ibmr->length; 643 trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset); 644 return ret; 645 } 646 647 /** 648 * rvt_fast_reg_mr - fast register physical MR 649 * @qp: the queue pair where the work request comes from 650 * @ibmr: the memory region to be registered 651 * @key: updated key for this memory region 652 * @access: access flags for this memory region 653 * 654 * Returns 0 on success. 655 */ 656 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key, 657 int access) 658 { 659 struct rvt_mr *mr = to_imr(ibmr); 660 661 if (qp->ibqp.pd != mr->mr.pd) 662 return -EACCES; 663 664 /* not applicable to dma MR or user MR */ 665 if (!mr->mr.lkey || mr->umem) 666 return -EINVAL; 667 668 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00)) 669 return -EINVAL; 670 671 ibmr->lkey = key; 672 ibmr->rkey = key; 673 mr->mr.lkey = key; 674 mr->mr.access_flags = access; 675 mr->mr.iova = ibmr->iova; 676 atomic_set(&mr->mr.lkey_invalid, 0); 677 678 return 0; 679 } 680 EXPORT_SYMBOL(rvt_fast_reg_mr); 681 682 /** 683 * rvt_invalidate_rkey - invalidate an MR rkey 684 * @qp: queue pair associated with the invalidate op 685 * @rkey: rkey to invalidate 686 * 687 * Returns 0 on success. 688 */ 689 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey) 690 { 691 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 692 struct rvt_lkey_table *rkt = &dev->lkey_table; 693 struct rvt_mregion *mr; 694 695 if (rkey == 0) 696 return -EINVAL; 697 698 rcu_read_lock(); 699 mr = rcu_dereference( 700 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]); 701 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 702 goto bail; 703 704 atomic_set(&mr->lkey_invalid, 1); 705 rcu_read_unlock(); 706 return 0; 707 708 bail: 709 rcu_read_unlock(); 710 return -EINVAL; 711 } 712 EXPORT_SYMBOL(rvt_invalidate_rkey); 713 714 /** 715 * rvt_sge_adjacent - is isge compressible 716 * @last_sge: last outgoing SGE written 717 * @sge: SGE to check 718 * 719 * If adjacent will update last_sge to add length. 720 * 721 * Return: true if isge is adjacent to last sge 722 */ 723 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge, 724 struct ib_sge *sge) 725 { 726 if (last_sge && sge->lkey == last_sge->mr->lkey && 727 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) { 728 if (sge->lkey) { 729 if (unlikely((sge->addr - last_sge->mr->user_base + 730 sge->length > last_sge->mr->length))) 731 return false; /* overrun, caller will catch */ 732 } else { 733 last_sge->length += sge->length; 734 } 735 last_sge->sge_length += sge->length; 736 trace_rvt_sge_adjacent(last_sge, sge); 737 return true; 738 } 739 return false; 740 } 741 742 /** 743 * rvt_lkey_ok - check IB SGE for validity and initialize 744 * @rkt: table containing lkey to check SGE against 745 * @pd: protection domain 746 * @isge: outgoing internal SGE 747 * @last_sge: last outgoing SGE written 748 * @sge: SGE to check 749 * @acc: access flags 750 * 751 * Check the IB SGE for validity and initialize our internal version 752 * of it. 753 * 754 * Increments the reference count when a new sge is stored. 755 * 756 * Return: 0 if compressed, 1 if added , otherwise returns -errno. 757 */ 758 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd, 759 struct rvt_sge *isge, struct rvt_sge *last_sge, 760 struct ib_sge *sge, int acc) 761 { 762 struct rvt_mregion *mr; 763 unsigned n, m; 764 size_t off; 765 766 /* 767 * We use LKEY == zero for kernel virtual addresses 768 * (see rvt_get_dma_mr()). 769 */ 770 if (sge->lkey == 0) { 771 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device); 772 773 if (pd->user) 774 return -EINVAL; 775 if (rvt_sge_adjacent(last_sge, sge)) 776 return 0; 777 rcu_read_lock(); 778 mr = rcu_dereference(dev->dma_mr); 779 if (!mr) 780 goto bail; 781 rvt_get_mr(mr); 782 rcu_read_unlock(); 783 784 isge->mr = mr; 785 isge->vaddr = (void *)sge->addr; 786 isge->length = sge->length; 787 isge->sge_length = sge->length; 788 isge->m = 0; 789 isge->n = 0; 790 goto ok; 791 } 792 if (rvt_sge_adjacent(last_sge, sge)) 793 return 0; 794 rcu_read_lock(); 795 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]); 796 if (!mr) 797 goto bail; 798 rvt_get_mr(mr); 799 if (!READ_ONCE(mr->lkey_published)) 800 goto bail_unref; 801 802 if (unlikely(atomic_read(&mr->lkey_invalid) || 803 mr->lkey != sge->lkey || mr->pd != &pd->ibpd)) 804 goto bail_unref; 805 806 off = sge->addr - mr->user_base; 807 if (unlikely(sge->addr < mr->user_base || 808 off + sge->length > mr->length || 809 (mr->access_flags & acc) != acc)) 810 goto bail_unref; 811 rcu_read_unlock(); 812 813 off += mr->offset; 814 if (mr->page_shift) { 815 /* 816 * page sizes are uniform power of 2 so no loop is necessary 817 * entries_spanned_by_off is the number of times the loop below 818 * would have executed. 819 */ 820 size_t entries_spanned_by_off; 821 822 entries_spanned_by_off = off >> mr->page_shift; 823 off -= (entries_spanned_by_off << mr->page_shift); 824 m = entries_spanned_by_off / RVT_SEGSZ; 825 n = entries_spanned_by_off % RVT_SEGSZ; 826 } else { 827 m = 0; 828 n = 0; 829 while (off >= mr->map[m]->segs[n].length) { 830 off -= mr->map[m]->segs[n].length; 831 n++; 832 if (n >= RVT_SEGSZ) { 833 m++; 834 n = 0; 835 } 836 } 837 } 838 isge->mr = mr; 839 isge->vaddr = mr->map[m]->segs[n].vaddr + off; 840 isge->length = mr->map[m]->segs[n].length - off; 841 isge->sge_length = sge->length; 842 isge->m = m; 843 isge->n = n; 844 ok: 845 trace_rvt_sge_new(isge, sge); 846 return 1; 847 bail_unref: 848 rvt_put_mr(mr); 849 bail: 850 rcu_read_unlock(); 851 return -EINVAL; 852 } 853 EXPORT_SYMBOL(rvt_lkey_ok); 854 855 /** 856 * rvt_rkey_ok - check the IB virtual address, length, and RKEY 857 * @qp: qp for validation 858 * @sge: SGE state 859 * @len: length of data 860 * @vaddr: virtual address to place data 861 * @rkey: rkey to check 862 * @acc: access flags 863 * 864 * Return: 1 if successful, otherwise 0. 865 * 866 * increments the reference count upon success 867 */ 868 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge, 869 u32 len, u64 vaddr, u32 rkey, int acc) 870 { 871 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 872 struct rvt_lkey_table *rkt = &dev->lkey_table; 873 struct rvt_mregion *mr; 874 unsigned n, m; 875 size_t off; 876 877 /* 878 * We use RKEY == zero for kernel virtual addresses 879 * (see rvt_get_dma_mr()). 880 */ 881 rcu_read_lock(); 882 if (rkey == 0) { 883 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd); 884 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device); 885 886 if (pd->user) 887 goto bail; 888 mr = rcu_dereference(rdi->dma_mr); 889 if (!mr) 890 goto bail; 891 rvt_get_mr(mr); 892 rcu_read_unlock(); 893 894 sge->mr = mr; 895 sge->vaddr = (void *)vaddr; 896 sge->length = len; 897 sge->sge_length = len; 898 sge->m = 0; 899 sge->n = 0; 900 goto ok; 901 } 902 903 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]); 904 if (!mr) 905 goto bail; 906 rvt_get_mr(mr); 907 /* insure mr read is before test */ 908 if (!READ_ONCE(mr->lkey_published)) 909 goto bail_unref; 910 if (unlikely(atomic_read(&mr->lkey_invalid) || 911 mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 912 goto bail_unref; 913 914 off = vaddr - mr->iova; 915 if (unlikely(vaddr < mr->iova || off + len > mr->length || 916 (mr->access_flags & acc) == 0)) 917 goto bail_unref; 918 rcu_read_unlock(); 919 920 off += mr->offset; 921 if (mr->page_shift) { 922 /* 923 * page sizes are uniform power of 2 so no loop is necessary 924 * entries_spanned_by_off is the number of times the loop below 925 * would have executed. 926 */ 927 size_t entries_spanned_by_off; 928 929 entries_spanned_by_off = off >> mr->page_shift; 930 off -= (entries_spanned_by_off << mr->page_shift); 931 m = entries_spanned_by_off / RVT_SEGSZ; 932 n = entries_spanned_by_off % RVT_SEGSZ; 933 } else { 934 m = 0; 935 n = 0; 936 while (off >= mr->map[m]->segs[n].length) { 937 off -= mr->map[m]->segs[n].length; 938 n++; 939 if (n >= RVT_SEGSZ) { 940 m++; 941 n = 0; 942 } 943 } 944 } 945 sge->mr = mr; 946 sge->vaddr = mr->map[m]->segs[n].vaddr + off; 947 sge->length = mr->map[m]->segs[n].length - off; 948 sge->sge_length = len; 949 sge->m = m; 950 sge->n = n; 951 ok: 952 return 1; 953 bail_unref: 954 rvt_put_mr(mr); 955 bail: 956 rcu_read_unlock(); 957 return 0; 958 } 959 EXPORT_SYMBOL(rvt_rkey_ok); 960