1 /* 2 * Copyright(c) 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/slab.h> 49 #include <linux/vmalloc.h> 50 #include <rdma/ib_umem.h> 51 #include <rdma/rdma_vt.h> 52 #include "vt.h" 53 #include "mr.h" 54 55 /** 56 * rvt_driver_mr_init - Init MR resources per driver 57 * @rdi: rvt dev struct 58 * 59 * Do any intilization needed when a driver registers with rdmavt. 60 * 61 * Return: 0 on success or errno on failure 62 */ 63 int rvt_driver_mr_init(struct rvt_dev_info *rdi) 64 { 65 unsigned int lkey_table_size = rdi->dparms.lkey_table_size; 66 unsigned lk_tab_size; 67 int i; 68 69 /* 70 * The top hfi1_lkey_table_size bits are used to index the 71 * table. The lower 8 bits can be owned by the user (copied from 72 * the LKEY). The remaining bits act as a generation number or tag. 73 */ 74 if (!lkey_table_size) 75 return -EINVAL; 76 77 spin_lock_init(&rdi->lkey_table.lock); 78 79 /* ensure generation is at least 4 bits */ 80 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) { 81 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n", 82 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS); 83 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS; 84 lkey_table_size = rdi->dparms.lkey_table_size; 85 } 86 rdi->lkey_table.max = 1 << lkey_table_size; 87 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table); 88 rdi->lkey_table.table = (struct rvt_mregion __rcu **) 89 vmalloc_node(lk_tab_size, rdi->dparms.node); 90 if (!rdi->lkey_table.table) 91 return -ENOMEM; 92 93 RCU_INIT_POINTER(rdi->dma_mr, NULL); 94 for (i = 0; i < rdi->lkey_table.max; i++) 95 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL); 96 97 return 0; 98 } 99 100 /** 101 *rvt_mr_exit: clean up MR 102 *@rdi: rvt dev structure 103 * 104 * called when drivers have unregistered or perhaps failed to register with us 105 */ 106 void rvt_mr_exit(struct rvt_dev_info *rdi) 107 { 108 if (rdi->dma_mr) 109 rvt_pr_err(rdi, "DMA MR not null!\n"); 110 111 vfree(rdi->lkey_table.table); 112 } 113 114 static void rvt_deinit_mregion(struct rvt_mregion *mr) 115 { 116 int i = mr->mapsz; 117 118 mr->mapsz = 0; 119 while (i) 120 kfree(mr->map[--i]); 121 } 122 123 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd, 124 int count) 125 { 126 int m, i = 0; 127 128 mr->mapsz = 0; 129 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 130 for (; i < m; i++) { 131 mr->map[i] = kzalloc(sizeof(*mr->map[0]), GFP_KERNEL); 132 if (!mr->map[i]) { 133 rvt_deinit_mregion(mr); 134 return -ENOMEM; 135 } 136 mr->mapsz++; 137 } 138 init_completion(&mr->comp); 139 /* count returning the ptr to user */ 140 atomic_set(&mr->refcount, 1); 141 mr->pd = pd; 142 mr->max_segs = count; 143 return 0; 144 } 145 146 /** 147 * rvt_alloc_lkey - allocate an lkey 148 * @mr: memory region that this lkey protects 149 * @dma_region: 0->normal key, 1->restricted DMA key 150 * 151 * Returns 0 if successful, otherwise returns -errno. 152 * 153 * Increments mr reference count as required. 154 * 155 * Sets the lkey field mr for non-dma regions. 156 * 157 */ 158 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region) 159 { 160 unsigned long flags; 161 u32 r; 162 u32 n; 163 int ret = 0; 164 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 165 struct rvt_lkey_table *rkt = &dev->lkey_table; 166 167 rvt_get_mr(mr); 168 spin_lock_irqsave(&rkt->lock, flags); 169 170 /* special case for dma_mr lkey == 0 */ 171 if (dma_region) { 172 struct rvt_mregion *tmr; 173 174 tmr = rcu_access_pointer(dev->dma_mr); 175 if (!tmr) { 176 rcu_assign_pointer(dev->dma_mr, mr); 177 mr->lkey_published = 1; 178 } else { 179 rvt_put_mr(mr); 180 } 181 goto success; 182 } 183 184 /* Find the next available LKEY */ 185 r = rkt->next; 186 n = r; 187 for (;;) { 188 if (!rcu_access_pointer(rkt->table[r])) 189 break; 190 r = (r + 1) & (rkt->max - 1); 191 if (r == n) 192 goto bail; 193 } 194 rkt->next = (r + 1) & (rkt->max - 1); 195 /* 196 * Make sure lkey is never zero which is reserved to indicate an 197 * unrestricted LKEY. 198 */ 199 rkt->gen++; 200 /* 201 * bits are capped to ensure enough bits for generation number 202 */ 203 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) | 204 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen) 205 << 8); 206 if (mr->lkey == 0) { 207 mr->lkey |= 1 << 8; 208 rkt->gen++; 209 } 210 rcu_assign_pointer(rkt->table[r], mr); 211 mr->lkey_published = 1; 212 success: 213 spin_unlock_irqrestore(&rkt->lock, flags); 214 out: 215 return ret; 216 bail: 217 rvt_put_mr(mr); 218 spin_unlock_irqrestore(&rkt->lock, flags); 219 ret = -ENOMEM; 220 goto out; 221 } 222 223 /** 224 * rvt_free_lkey - free an lkey 225 * @mr: mr to free from tables 226 */ 227 static void rvt_free_lkey(struct rvt_mregion *mr) 228 { 229 unsigned long flags; 230 u32 lkey = mr->lkey; 231 u32 r; 232 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 233 struct rvt_lkey_table *rkt = &dev->lkey_table; 234 int freed = 0; 235 236 spin_lock_irqsave(&rkt->lock, flags); 237 if (!mr->lkey_published) 238 goto out; 239 if (lkey == 0) { 240 RCU_INIT_POINTER(dev->dma_mr, NULL); 241 } else { 242 r = lkey >> (32 - dev->dparms.lkey_table_size); 243 RCU_INIT_POINTER(rkt->table[r], NULL); 244 } 245 mr->lkey_published = 0; 246 freed++; 247 out: 248 spin_unlock_irqrestore(&rkt->lock, flags); 249 if (freed) { 250 synchronize_rcu(); 251 rvt_put_mr(mr); 252 } 253 } 254 255 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd) 256 { 257 struct rvt_mr *mr; 258 int rval = -ENOMEM; 259 int m; 260 261 /* Allocate struct plus pointers to first level page tables. */ 262 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 263 mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL); 264 if (!mr) 265 goto bail; 266 267 rval = rvt_init_mregion(&mr->mr, pd, count); 268 if (rval) 269 goto bail; 270 /* 271 * ib_reg_phys_mr() will initialize mr->ibmr except for 272 * lkey and rkey. 273 */ 274 rval = rvt_alloc_lkey(&mr->mr, 0); 275 if (rval) 276 goto bail_mregion; 277 mr->ibmr.lkey = mr->mr.lkey; 278 mr->ibmr.rkey = mr->mr.lkey; 279 done: 280 return mr; 281 282 bail_mregion: 283 rvt_deinit_mregion(&mr->mr); 284 bail: 285 kfree(mr); 286 mr = ERR_PTR(rval); 287 goto done; 288 } 289 290 static void __rvt_free_mr(struct rvt_mr *mr) 291 { 292 rvt_deinit_mregion(&mr->mr); 293 rvt_free_lkey(&mr->mr); 294 vfree(mr); 295 } 296 297 /** 298 * rvt_get_dma_mr - get a DMA memory region 299 * @pd: protection domain for this memory region 300 * @acc: access flags 301 * 302 * Return: the memory region on success, otherwise returns an errno. 303 * Note that all DMA addresses should be created via the 304 * struct ib_dma_mapping_ops functions (see dma.c). 305 */ 306 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc) 307 { 308 struct rvt_mr *mr; 309 struct ib_mr *ret; 310 int rval; 311 312 if (ibpd_to_rvtpd(pd)->user) 313 return ERR_PTR(-EPERM); 314 315 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 316 if (!mr) { 317 ret = ERR_PTR(-ENOMEM); 318 goto bail; 319 } 320 321 rval = rvt_init_mregion(&mr->mr, pd, 0); 322 if (rval) { 323 ret = ERR_PTR(rval); 324 goto bail; 325 } 326 327 rval = rvt_alloc_lkey(&mr->mr, 1); 328 if (rval) { 329 ret = ERR_PTR(rval); 330 goto bail_mregion; 331 } 332 333 mr->mr.access_flags = acc; 334 ret = &mr->ibmr; 335 done: 336 return ret; 337 338 bail_mregion: 339 rvt_deinit_mregion(&mr->mr); 340 bail: 341 kfree(mr); 342 goto done; 343 } 344 345 /** 346 * rvt_reg_user_mr - register a userspace memory region 347 * @pd: protection domain for this memory region 348 * @start: starting userspace address 349 * @length: length of region to register 350 * @mr_access_flags: access flags for this memory region 351 * @udata: unused by the driver 352 * 353 * Return: the memory region on success, otherwise returns an errno. 354 */ 355 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 356 u64 virt_addr, int mr_access_flags, 357 struct ib_udata *udata) 358 { 359 struct rvt_mr *mr; 360 struct ib_umem *umem; 361 struct scatterlist *sg; 362 int n, m, entry; 363 struct ib_mr *ret; 364 365 if (length == 0) 366 return ERR_PTR(-EINVAL); 367 368 umem = ib_umem_get(pd->uobject->context, start, length, 369 mr_access_flags, 0); 370 if (IS_ERR(umem)) 371 return (void *)umem; 372 373 n = umem->nmap; 374 375 mr = __rvt_alloc_mr(n, pd); 376 if (IS_ERR(mr)) { 377 ret = (struct ib_mr *)mr; 378 goto bail_umem; 379 } 380 381 mr->mr.user_base = start; 382 mr->mr.iova = virt_addr; 383 mr->mr.length = length; 384 mr->mr.offset = ib_umem_offset(umem); 385 mr->mr.access_flags = mr_access_flags; 386 mr->umem = umem; 387 388 if (is_power_of_2(umem->page_size)) 389 mr->mr.page_shift = ilog2(umem->page_size); 390 m = 0; 391 n = 0; 392 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) { 393 void *vaddr; 394 395 vaddr = page_address(sg_page(sg)); 396 if (!vaddr) { 397 ret = ERR_PTR(-EINVAL); 398 goto bail_inval; 399 } 400 mr->mr.map[m]->segs[n].vaddr = vaddr; 401 mr->mr.map[m]->segs[n].length = umem->page_size; 402 n++; 403 if (n == RVT_SEGSZ) { 404 m++; 405 n = 0; 406 } 407 } 408 return &mr->ibmr; 409 410 bail_inval: 411 __rvt_free_mr(mr); 412 413 bail_umem: 414 ib_umem_release(umem); 415 416 return ret; 417 } 418 419 /** 420 * rvt_dereg_mr - unregister and free a memory region 421 * @ibmr: the memory region to free 422 * 423 * 424 * Note that this is called to free MRs created by rvt_get_dma_mr() 425 * or rvt_reg_user_mr(). 426 * 427 * Returns 0 on success. 428 */ 429 int rvt_dereg_mr(struct ib_mr *ibmr) 430 { 431 struct rvt_mr *mr = to_imr(ibmr); 432 struct rvt_dev_info *rdi = ib_to_rvt(ibmr->pd->device); 433 int ret = 0; 434 unsigned long timeout; 435 436 rvt_free_lkey(&mr->mr); 437 438 rvt_put_mr(&mr->mr); /* will set completion if last */ 439 timeout = wait_for_completion_timeout(&mr->mr.comp, 5 * HZ); 440 if (!timeout) { 441 rvt_pr_err(rdi, 442 "rvt_dereg_mr timeout mr %p pd %p refcount %u\n", 443 mr, mr->mr.pd, atomic_read(&mr->mr.refcount)); 444 rvt_get_mr(&mr->mr); 445 ret = -EBUSY; 446 goto out; 447 } 448 rvt_deinit_mregion(&mr->mr); 449 if (mr->umem) 450 ib_umem_release(mr->umem); 451 kfree(mr); 452 out: 453 return ret; 454 } 455 456 /** 457 * rvt_alloc_mr - Allocate a memory region usable with the 458 * @pd: protection domain for this memory region 459 * @mr_type: mem region type 460 * @max_num_sg: Max number of segments allowed 461 * 462 * Return: the memory region on success, otherwise return an errno. 463 */ 464 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, 465 enum ib_mr_type mr_type, 466 u32 max_num_sg) 467 { 468 struct rvt_mr *mr; 469 470 if (mr_type != IB_MR_TYPE_MEM_REG) 471 return ERR_PTR(-EINVAL); 472 473 mr = __rvt_alloc_mr(max_num_sg, pd); 474 if (IS_ERR(mr)) 475 return (struct ib_mr *)mr; 476 477 return &mr->ibmr; 478 } 479 480 /** 481 * rvt_alloc_fmr - allocate a fast memory region 482 * @pd: the protection domain for this memory region 483 * @mr_access_flags: access flags for this memory region 484 * @fmr_attr: fast memory region attributes 485 * 486 * Return: the memory region on success, otherwise returns an errno. 487 */ 488 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags, 489 struct ib_fmr_attr *fmr_attr) 490 { 491 struct rvt_fmr *fmr; 492 int m; 493 struct ib_fmr *ret; 494 int rval = -ENOMEM; 495 496 /* Allocate struct plus pointers to first level page tables. */ 497 m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ; 498 fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL); 499 if (!fmr) 500 goto bail; 501 502 rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages); 503 if (rval) 504 goto bail; 505 506 /* 507 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey & 508 * rkey. 509 */ 510 rval = rvt_alloc_lkey(&fmr->mr, 0); 511 if (rval) 512 goto bail_mregion; 513 fmr->ibfmr.rkey = fmr->mr.lkey; 514 fmr->ibfmr.lkey = fmr->mr.lkey; 515 /* 516 * Resources are allocated but no valid mapping (RKEY can't be 517 * used). 518 */ 519 fmr->mr.access_flags = mr_access_flags; 520 fmr->mr.max_segs = fmr_attr->max_pages; 521 fmr->mr.page_shift = fmr_attr->page_shift; 522 523 ret = &fmr->ibfmr; 524 done: 525 return ret; 526 527 bail_mregion: 528 rvt_deinit_mregion(&fmr->mr); 529 bail: 530 kfree(fmr); 531 ret = ERR_PTR(rval); 532 goto done; 533 } 534 535 /** 536 * rvt_map_phys_fmr - set up a fast memory region 537 * @ibmfr: the fast memory region to set up 538 * @page_list: the list of pages to associate with the fast memory region 539 * @list_len: the number of pages to associate with the fast memory region 540 * @iova: the virtual address of the start of the fast memory region 541 * 542 * This may be called from interrupt context. 543 * 544 * Return: 0 on success 545 */ 546 547 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, 548 int list_len, u64 iova) 549 { 550 struct rvt_fmr *fmr = to_ifmr(ibfmr); 551 struct rvt_lkey_table *rkt; 552 unsigned long flags; 553 int m, n, i; 554 u32 ps; 555 struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device); 556 557 i = atomic_read(&fmr->mr.refcount); 558 if (i > 2) 559 return -EBUSY; 560 561 if (list_len > fmr->mr.max_segs) 562 return -EINVAL; 563 564 rkt = &rdi->lkey_table; 565 spin_lock_irqsave(&rkt->lock, flags); 566 fmr->mr.user_base = iova; 567 fmr->mr.iova = iova; 568 ps = 1 << fmr->mr.page_shift; 569 fmr->mr.length = list_len * ps; 570 m = 0; 571 n = 0; 572 for (i = 0; i < list_len; i++) { 573 fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i]; 574 fmr->mr.map[m]->segs[n].length = ps; 575 if (++n == RVT_SEGSZ) { 576 m++; 577 n = 0; 578 } 579 } 580 spin_unlock_irqrestore(&rkt->lock, flags); 581 return 0; 582 } 583 584 /** 585 * rvt_unmap_fmr - unmap fast memory regions 586 * @fmr_list: the list of fast memory regions to unmap 587 * 588 * Return: 0 on success. 589 */ 590 int rvt_unmap_fmr(struct list_head *fmr_list) 591 { 592 struct rvt_fmr *fmr; 593 struct rvt_lkey_table *rkt; 594 unsigned long flags; 595 struct rvt_dev_info *rdi; 596 597 list_for_each_entry(fmr, fmr_list, ibfmr.list) { 598 rdi = ib_to_rvt(fmr->ibfmr.device); 599 rkt = &rdi->lkey_table; 600 spin_lock_irqsave(&rkt->lock, flags); 601 fmr->mr.user_base = 0; 602 fmr->mr.iova = 0; 603 fmr->mr.length = 0; 604 spin_unlock_irqrestore(&rkt->lock, flags); 605 } 606 return 0; 607 } 608 609 /** 610 * rvt_dealloc_fmr - deallocate a fast memory region 611 * @ibfmr: the fast memory region to deallocate 612 * 613 * Return: 0 on success. 614 */ 615 int rvt_dealloc_fmr(struct ib_fmr *ibfmr) 616 { 617 struct rvt_fmr *fmr = to_ifmr(ibfmr); 618 int ret = 0; 619 unsigned long timeout; 620 621 rvt_free_lkey(&fmr->mr); 622 rvt_put_mr(&fmr->mr); /* will set completion if last */ 623 timeout = wait_for_completion_timeout(&fmr->mr.comp, 5 * HZ); 624 if (!timeout) { 625 rvt_get_mr(&fmr->mr); 626 ret = -EBUSY; 627 goto out; 628 } 629 rvt_deinit_mregion(&fmr->mr); 630 kfree(fmr); 631 out: 632 return ret; 633 } 634 635 /** 636 * rvt_lkey_ok - check IB SGE for validity and initialize 637 * @rkt: table containing lkey to check SGE against 638 * @pd: protection domain 639 * @isge: outgoing internal SGE 640 * @sge: SGE to check 641 * @acc: access flags 642 * 643 * Check the IB SGE for validity and initialize our internal version 644 * of it. 645 * 646 * Return: 1 if valid and successful, otherwise returns 0. 647 * 648 * increments the reference count upon success 649 * 650 */ 651 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd, 652 struct rvt_sge *isge, struct ib_sge *sge, int acc) 653 { 654 struct rvt_mregion *mr; 655 unsigned n, m; 656 size_t off; 657 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device); 658 659 /* 660 * We use LKEY == zero for kernel virtual addresses 661 * (see rvt_get_dma_mr and dma.c). 662 */ 663 rcu_read_lock(); 664 if (sge->lkey == 0) { 665 if (pd->user) 666 goto bail; 667 mr = rcu_dereference(dev->dma_mr); 668 if (!mr) 669 goto bail; 670 atomic_inc(&mr->refcount); 671 rcu_read_unlock(); 672 673 isge->mr = mr; 674 isge->vaddr = (void *)sge->addr; 675 isge->length = sge->length; 676 isge->sge_length = sge->length; 677 isge->m = 0; 678 isge->n = 0; 679 goto ok; 680 } 681 mr = rcu_dereference( 682 rkt->table[(sge->lkey >> (32 - dev->dparms.lkey_table_size))]); 683 if (unlikely(!mr || mr->lkey != sge->lkey || mr->pd != &pd->ibpd)) 684 goto bail; 685 686 off = sge->addr - mr->user_base; 687 if (unlikely(sge->addr < mr->user_base || 688 off + sge->length > mr->length || 689 (mr->access_flags & acc) != acc)) 690 goto bail; 691 atomic_inc(&mr->refcount); 692 rcu_read_unlock(); 693 694 off += mr->offset; 695 if (mr->page_shift) { 696 /* 697 * page sizes are uniform power of 2 so no loop is necessary 698 * entries_spanned_by_off is the number of times the loop below 699 * would have executed. 700 */ 701 size_t entries_spanned_by_off; 702 703 entries_spanned_by_off = off >> mr->page_shift; 704 off -= (entries_spanned_by_off << mr->page_shift); 705 m = entries_spanned_by_off / RVT_SEGSZ; 706 n = entries_spanned_by_off % RVT_SEGSZ; 707 } else { 708 m = 0; 709 n = 0; 710 while (off >= mr->map[m]->segs[n].length) { 711 off -= mr->map[m]->segs[n].length; 712 n++; 713 if (n >= RVT_SEGSZ) { 714 m++; 715 n = 0; 716 } 717 } 718 } 719 isge->mr = mr; 720 isge->vaddr = mr->map[m]->segs[n].vaddr + off; 721 isge->length = mr->map[m]->segs[n].length - off; 722 isge->sge_length = sge->length; 723 isge->m = m; 724 isge->n = n; 725 ok: 726 return 1; 727 bail: 728 rcu_read_unlock(); 729 return 0; 730 } 731 EXPORT_SYMBOL(rvt_lkey_ok); 732 733 /** 734 * rvt_rkey_ok - check the IB virtual address, length, and RKEY 735 * @qp: qp for validation 736 * @sge: SGE state 737 * @len: length of data 738 * @vaddr: virtual address to place data 739 * @rkey: rkey to check 740 * @acc: access flags 741 * 742 * Return: 1 if successful, otherwise 0. 743 * 744 * increments the reference count upon success 745 */ 746 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge, 747 u32 len, u64 vaddr, u32 rkey, int acc) 748 { 749 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 750 struct rvt_lkey_table *rkt = &dev->lkey_table; 751 struct rvt_mregion *mr; 752 unsigned n, m; 753 size_t off; 754 755 /* 756 * We use RKEY == zero for kernel virtual addresses 757 * (see rvt_get_dma_mr and dma.c). 758 */ 759 rcu_read_lock(); 760 if (rkey == 0) { 761 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd); 762 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device); 763 764 if (pd->user) 765 goto bail; 766 mr = rcu_dereference(rdi->dma_mr); 767 if (!mr) 768 goto bail; 769 atomic_inc(&mr->refcount); 770 rcu_read_unlock(); 771 772 sge->mr = mr; 773 sge->vaddr = (void *)vaddr; 774 sge->length = len; 775 sge->sge_length = len; 776 sge->m = 0; 777 sge->n = 0; 778 goto ok; 779 } 780 781 mr = rcu_dereference( 782 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]); 783 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 784 goto bail; 785 786 off = vaddr - mr->iova; 787 if (unlikely(vaddr < mr->iova || off + len > mr->length || 788 (mr->access_flags & acc) == 0)) 789 goto bail; 790 atomic_inc(&mr->refcount); 791 rcu_read_unlock(); 792 793 off += mr->offset; 794 if (mr->page_shift) { 795 /* 796 * page sizes are uniform power of 2 so no loop is necessary 797 * entries_spanned_by_off is the number of times the loop below 798 * would have executed. 799 */ 800 size_t entries_spanned_by_off; 801 802 entries_spanned_by_off = off >> mr->page_shift; 803 off -= (entries_spanned_by_off << mr->page_shift); 804 m = entries_spanned_by_off / RVT_SEGSZ; 805 n = entries_spanned_by_off % RVT_SEGSZ; 806 } else { 807 m = 0; 808 n = 0; 809 while (off >= mr->map[m]->segs[n].length) { 810 off -= mr->map[m]->segs[n].length; 811 n++; 812 if (n >= RVT_SEGSZ) { 813 m++; 814 n = 0; 815 } 816 } 817 } 818 sge->mr = mr; 819 sge->vaddr = mr->map[m]->segs[n].vaddr + off; 820 sge->length = mr->map[m]->segs[n].length - off; 821 sge->sge_length = len; 822 sge->m = m; 823 sge->n = n; 824 ok: 825 return 1; 826 bail: 827 rcu_read_unlock(); 828 return 0; 829 } 830 EXPORT_SYMBOL(rvt_rkey_ok); 831