1 /* 2 * Copyright(c) 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/slab.h> 49 #include <linux/vmalloc.h> 50 #include <rdma/ib_umem.h> 51 #include <rdma/rdma_vt.h> 52 #include "vt.h" 53 #include "mr.h" 54 #include "trace.h" 55 56 /** 57 * rvt_driver_mr_init - Init MR resources per driver 58 * @rdi: rvt dev struct 59 * 60 * Do any intilization needed when a driver registers with rdmavt. 61 * 62 * Return: 0 on success or errno on failure 63 */ 64 int rvt_driver_mr_init(struct rvt_dev_info *rdi) 65 { 66 unsigned int lkey_table_size = rdi->dparms.lkey_table_size; 67 unsigned lk_tab_size; 68 int i; 69 70 /* 71 * The top hfi1_lkey_table_size bits are used to index the 72 * table. The lower 8 bits can be owned by the user (copied from 73 * the LKEY). The remaining bits act as a generation number or tag. 74 */ 75 if (!lkey_table_size) 76 return -EINVAL; 77 78 spin_lock_init(&rdi->lkey_table.lock); 79 80 /* ensure generation is at least 4 bits */ 81 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) { 82 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n", 83 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS); 84 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS; 85 lkey_table_size = rdi->dparms.lkey_table_size; 86 } 87 rdi->lkey_table.max = 1 << lkey_table_size; 88 rdi->lkey_table.shift = 32 - lkey_table_size; 89 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table); 90 rdi->lkey_table.table = (struct rvt_mregion __rcu **) 91 vmalloc_node(lk_tab_size, rdi->dparms.node); 92 if (!rdi->lkey_table.table) 93 return -ENOMEM; 94 95 RCU_INIT_POINTER(rdi->dma_mr, NULL); 96 for (i = 0; i < rdi->lkey_table.max; i++) 97 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL); 98 99 rdi->dparms.props.max_mr = rdi->lkey_table.max; 100 return 0; 101 } 102 103 /** 104 *rvt_mr_exit: clean up MR 105 *@rdi: rvt dev structure 106 * 107 * called when drivers have unregistered or perhaps failed to register with us 108 */ 109 void rvt_mr_exit(struct rvt_dev_info *rdi) 110 { 111 if (rdi->dma_mr) 112 rvt_pr_err(rdi, "DMA MR not null!\n"); 113 114 vfree(rdi->lkey_table.table); 115 } 116 117 static void rvt_deinit_mregion(struct rvt_mregion *mr) 118 { 119 int i = mr->mapsz; 120 121 mr->mapsz = 0; 122 while (i) 123 kfree(mr->map[--i]); 124 percpu_ref_exit(&mr->refcount); 125 } 126 127 static void __rvt_mregion_complete(struct percpu_ref *ref) 128 { 129 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion, 130 refcount); 131 132 complete(&mr->comp); 133 } 134 135 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd, 136 int count, unsigned int percpu_flags) 137 { 138 int m, i = 0; 139 struct rvt_dev_info *dev = ib_to_rvt(pd->device); 140 141 mr->mapsz = 0; 142 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 143 for (; i < m; i++) { 144 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL, 145 dev->dparms.node); 146 if (!mr->map[i]) 147 goto bail; 148 mr->mapsz++; 149 } 150 init_completion(&mr->comp); 151 /* count returning the ptr to user */ 152 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete, 153 percpu_flags, GFP_KERNEL)) 154 goto bail; 155 156 atomic_set(&mr->lkey_invalid, 0); 157 mr->pd = pd; 158 mr->max_segs = count; 159 return 0; 160 bail: 161 rvt_deinit_mregion(mr); 162 return -ENOMEM; 163 } 164 165 /** 166 * rvt_alloc_lkey - allocate an lkey 167 * @mr: memory region that this lkey protects 168 * @dma_region: 0->normal key, 1->restricted DMA key 169 * 170 * Returns 0 if successful, otherwise returns -errno. 171 * 172 * Increments mr reference count as required. 173 * 174 * Sets the lkey field mr for non-dma regions. 175 * 176 */ 177 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region) 178 { 179 unsigned long flags; 180 u32 r; 181 u32 n; 182 int ret = 0; 183 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 184 struct rvt_lkey_table *rkt = &dev->lkey_table; 185 186 rvt_get_mr(mr); 187 spin_lock_irqsave(&rkt->lock, flags); 188 189 /* special case for dma_mr lkey == 0 */ 190 if (dma_region) { 191 struct rvt_mregion *tmr; 192 193 tmr = rcu_access_pointer(dev->dma_mr); 194 if (!tmr) { 195 mr->lkey_published = 1; 196 /* Insure published written first */ 197 rcu_assign_pointer(dev->dma_mr, mr); 198 rvt_get_mr(mr); 199 } 200 goto success; 201 } 202 203 /* Find the next available LKEY */ 204 r = rkt->next; 205 n = r; 206 for (;;) { 207 if (!rcu_access_pointer(rkt->table[r])) 208 break; 209 r = (r + 1) & (rkt->max - 1); 210 if (r == n) 211 goto bail; 212 } 213 rkt->next = (r + 1) & (rkt->max - 1); 214 /* 215 * Make sure lkey is never zero which is reserved to indicate an 216 * unrestricted LKEY. 217 */ 218 rkt->gen++; 219 /* 220 * bits are capped to ensure enough bits for generation number 221 */ 222 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) | 223 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen) 224 << 8); 225 if (mr->lkey == 0) { 226 mr->lkey |= 1 << 8; 227 rkt->gen++; 228 } 229 mr->lkey_published = 1; 230 /* Insure published written first */ 231 rcu_assign_pointer(rkt->table[r], mr); 232 success: 233 spin_unlock_irqrestore(&rkt->lock, flags); 234 out: 235 return ret; 236 bail: 237 rvt_put_mr(mr); 238 spin_unlock_irqrestore(&rkt->lock, flags); 239 ret = -ENOMEM; 240 goto out; 241 } 242 243 /** 244 * rvt_free_lkey - free an lkey 245 * @mr: mr to free from tables 246 */ 247 static void rvt_free_lkey(struct rvt_mregion *mr) 248 { 249 unsigned long flags; 250 u32 lkey = mr->lkey; 251 u32 r; 252 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 253 struct rvt_lkey_table *rkt = &dev->lkey_table; 254 int freed = 0; 255 256 spin_lock_irqsave(&rkt->lock, flags); 257 if (!lkey) { 258 if (mr->lkey_published) { 259 mr->lkey_published = 0; 260 /* insure published is written before pointer */ 261 rcu_assign_pointer(dev->dma_mr, NULL); 262 rvt_put_mr(mr); 263 } 264 } else { 265 if (!mr->lkey_published) 266 goto out; 267 r = lkey >> (32 - dev->dparms.lkey_table_size); 268 mr->lkey_published = 0; 269 /* insure published is written before pointer */ 270 rcu_assign_pointer(rkt->table[r], NULL); 271 } 272 freed++; 273 out: 274 spin_unlock_irqrestore(&rkt->lock, flags); 275 if (freed) 276 percpu_ref_kill(&mr->refcount); 277 } 278 279 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd) 280 { 281 struct rvt_mr *mr; 282 int rval = -ENOMEM; 283 int m; 284 285 /* Allocate struct plus pointers to first level page tables. */ 286 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 287 mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL); 288 if (!mr) 289 goto bail; 290 291 rval = rvt_init_mregion(&mr->mr, pd, count, 0); 292 if (rval) 293 goto bail; 294 /* 295 * ib_reg_phys_mr() will initialize mr->ibmr except for 296 * lkey and rkey. 297 */ 298 rval = rvt_alloc_lkey(&mr->mr, 0); 299 if (rval) 300 goto bail_mregion; 301 mr->ibmr.lkey = mr->mr.lkey; 302 mr->ibmr.rkey = mr->mr.lkey; 303 done: 304 return mr; 305 306 bail_mregion: 307 rvt_deinit_mregion(&mr->mr); 308 bail: 309 kfree(mr); 310 mr = ERR_PTR(rval); 311 goto done; 312 } 313 314 static void __rvt_free_mr(struct rvt_mr *mr) 315 { 316 rvt_free_lkey(&mr->mr); 317 rvt_deinit_mregion(&mr->mr); 318 kfree(mr); 319 } 320 321 /** 322 * rvt_get_dma_mr - get a DMA memory region 323 * @pd: protection domain for this memory region 324 * @acc: access flags 325 * 326 * Return: the memory region on success, otherwise returns an errno. 327 * Note that all DMA addresses should be created via the functions in 328 * struct dma_virt_ops. 329 */ 330 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc) 331 { 332 struct rvt_mr *mr; 333 struct ib_mr *ret; 334 int rval; 335 336 if (ibpd_to_rvtpd(pd)->user) 337 return ERR_PTR(-EPERM); 338 339 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 340 if (!mr) { 341 ret = ERR_PTR(-ENOMEM); 342 goto bail; 343 } 344 345 rval = rvt_init_mregion(&mr->mr, pd, 0, 0); 346 if (rval) { 347 ret = ERR_PTR(rval); 348 goto bail; 349 } 350 351 rval = rvt_alloc_lkey(&mr->mr, 1); 352 if (rval) { 353 ret = ERR_PTR(rval); 354 goto bail_mregion; 355 } 356 357 mr->mr.access_flags = acc; 358 ret = &mr->ibmr; 359 done: 360 return ret; 361 362 bail_mregion: 363 rvt_deinit_mregion(&mr->mr); 364 bail: 365 kfree(mr); 366 goto done; 367 } 368 369 /** 370 * rvt_reg_user_mr - register a userspace memory region 371 * @pd: protection domain for this memory region 372 * @start: starting userspace address 373 * @length: length of region to register 374 * @mr_access_flags: access flags for this memory region 375 * @udata: unused by the driver 376 * 377 * Return: the memory region on success, otherwise returns an errno. 378 */ 379 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 380 u64 virt_addr, int mr_access_flags, 381 struct ib_udata *udata) 382 { 383 struct rvt_mr *mr; 384 struct ib_umem *umem; 385 struct sg_page_iter sg_iter; 386 int n, m; 387 struct ib_mr *ret; 388 389 if (length == 0) 390 return ERR_PTR(-EINVAL); 391 392 umem = ib_umem_get(pd->device, start, length, mr_access_flags); 393 if (IS_ERR(umem)) 394 return (void *)umem; 395 396 n = ib_umem_num_pages(umem); 397 398 mr = __rvt_alloc_mr(n, pd); 399 if (IS_ERR(mr)) { 400 ret = (struct ib_mr *)mr; 401 goto bail_umem; 402 } 403 404 mr->mr.user_base = start; 405 mr->mr.iova = virt_addr; 406 mr->mr.length = length; 407 mr->mr.offset = ib_umem_offset(umem); 408 mr->mr.access_flags = mr_access_flags; 409 mr->umem = umem; 410 411 mr->mr.page_shift = PAGE_SHIFT; 412 m = 0; 413 n = 0; 414 for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) { 415 void *vaddr; 416 417 vaddr = page_address(sg_page_iter_page(&sg_iter)); 418 if (!vaddr) { 419 ret = ERR_PTR(-EINVAL); 420 goto bail_inval; 421 } 422 mr->mr.map[m]->segs[n].vaddr = vaddr; 423 mr->mr.map[m]->segs[n].length = PAGE_SIZE; 424 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE); 425 if (++n == RVT_SEGSZ) { 426 m++; 427 n = 0; 428 } 429 } 430 return &mr->ibmr; 431 432 bail_inval: 433 __rvt_free_mr(mr); 434 435 bail_umem: 436 ib_umem_release(umem); 437 438 return ret; 439 } 440 441 /** 442 * rvt_dereg_clean_qp_cb - callback from iterator 443 * @qp - the qp 444 * @v - the mregion (as u64) 445 * 446 * This routine fields the callback for all QPs and 447 * for QPs in the same PD as the MR will call the 448 * rvt_qp_mr_clean() to potentially cleanup references. 449 */ 450 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v) 451 { 452 struct rvt_mregion *mr = (struct rvt_mregion *)v; 453 454 /* skip PDs that are not ours */ 455 if (mr->pd != qp->ibqp.pd) 456 return; 457 rvt_qp_mr_clean(qp, mr->lkey); 458 } 459 460 /** 461 * rvt_dereg_clean_qps - find QPs for reference cleanup 462 * @mr - the MR that is being deregistered 463 * 464 * This routine iterates RC QPs looking for references 465 * to the lkey noted in mr. 466 */ 467 static void rvt_dereg_clean_qps(struct rvt_mregion *mr) 468 { 469 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 470 471 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb); 472 } 473 474 /** 475 * rvt_check_refs - check references 476 * @mr - the megion 477 * @t - the caller identification 478 * 479 * This routine checks MRs holding a reference during 480 * when being de-registered. 481 * 482 * If the count is non-zero, the code calls a clean routine then 483 * waits for the timeout for the count to zero. 484 */ 485 static int rvt_check_refs(struct rvt_mregion *mr, const char *t) 486 { 487 unsigned long timeout; 488 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 489 490 if (mr->lkey) { 491 /* avoid dma mr */ 492 rvt_dereg_clean_qps(mr); 493 /* @mr was indexed on rcu protected @lkey_table */ 494 synchronize_rcu(); 495 } 496 497 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ); 498 if (!timeout) { 499 rvt_pr_err(rdi, 500 "%s timeout mr %p pd %p lkey %x refcount %ld\n", 501 t, mr, mr->pd, mr->lkey, 502 atomic_long_read(&mr->refcount.count)); 503 rvt_get_mr(mr); 504 return -EBUSY; 505 } 506 return 0; 507 } 508 509 /** 510 * rvt_mr_has_lkey - is MR 511 * @mr - the mregion 512 * @lkey - the lkey 513 */ 514 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey) 515 { 516 return mr && lkey == mr->lkey; 517 } 518 519 /** 520 * rvt_ss_has_lkey - is mr in sge tests 521 * @ss - the sge state 522 * @lkey 523 * 524 * This code tests for an MR in the indicated 525 * sge state. 526 */ 527 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey) 528 { 529 int i; 530 bool rval = false; 531 532 if (!ss->num_sge) 533 return rval; 534 /* first one */ 535 rval = rvt_mr_has_lkey(ss->sge.mr, lkey); 536 /* any others */ 537 for (i = 0; !rval && i < ss->num_sge - 1; i++) 538 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey); 539 return rval; 540 } 541 542 /** 543 * rvt_dereg_mr - unregister and free a memory region 544 * @ibmr: the memory region to free 545 * 546 * 547 * Note that this is called to free MRs created by rvt_get_dma_mr() 548 * or rvt_reg_user_mr(). 549 * 550 * Returns 0 on success. 551 */ 552 int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 553 { 554 struct rvt_mr *mr = to_imr(ibmr); 555 int ret; 556 557 rvt_free_lkey(&mr->mr); 558 559 rvt_put_mr(&mr->mr); /* will set completion if last */ 560 ret = rvt_check_refs(&mr->mr, __func__); 561 if (ret) 562 goto out; 563 rvt_deinit_mregion(&mr->mr); 564 ib_umem_release(mr->umem); 565 kfree(mr); 566 out: 567 return ret; 568 } 569 570 /** 571 * rvt_alloc_mr - Allocate a memory region usable with the 572 * @pd: protection domain for this memory region 573 * @mr_type: mem region type 574 * @max_num_sg: Max number of segments allowed 575 * 576 * Return: the memory region on success, otherwise return an errno. 577 */ 578 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 579 u32 max_num_sg) 580 { 581 struct rvt_mr *mr; 582 583 if (mr_type != IB_MR_TYPE_MEM_REG) 584 return ERR_PTR(-EINVAL); 585 586 mr = __rvt_alloc_mr(max_num_sg, pd); 587 if (IS_ERR(mr)) 588 return (struct ib_mr *)mr; 589 590 return &mr->ibmr; 591 } 592 593 /** 594 * rvt_set_page - page assignment function called by ib_sg_to_pages 595 * @ibmr: memory region 596 * @addr: dma address of mapped page 597 * 598 * Return: 0 on success 599 */ 600 static int rvt_set_page(struct ib_mr *ibmr, u64 addr) 601 { 602 struct rvt_mr *mr = to_imr(ibmr); 603 u32 ps = 1 << mr->mr.page_shift; 604 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift; 605 int m, n; 606 607 if (unlikely(mapped_segs == mr->mr.max_segs)) 608 return -ENOMEM; 609 610 m = mapped_segs / RVT_SEGSZ; 611 n = mapped_segs % RVT_SEGSZ; 612 mr->mr.map[m]->segs[n].vaddr = (void *)addr; 613 mr->mr.map[m]->segs[n].length = ps; 614 mr->mr.length += ps; 615 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps); 616 617 return 0; 618 } 619 620 /** 621 * rvt_map_mr_sg - map sg list and set it the memory region 622 * @ibmr: memory region 623 * @sg: dma mapped scatterlist 624 * @sg_nents: number of entries in sg 625 * @sg_offset: offset in bytes into sg 626 * 627 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages. 628 * 629 * Return: number of sg elements mapped to the memory region 630 */ 631 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, 632 int sg_nents, unsigned int *sg_offset) 633 { 634 struct rvt_mr *mr = to_imr(ibmr); 635 int ret; 636 637 mr->mr.length = 0; 638 mr->mr.page_shift = PAGE_SHIFT; 639 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page); 640 mr->mr.user_base = ibmr->iova; 641 mr->mr.iova = ibmr->iova; 642 mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr; 643 mr->mr.length = (size_t)ibmr->length; 644 trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset); 645 return ret; 646 } 647 648 /** 649 * rvt_fast_reg_mr - fast register physical MR 650 * @qp: the queue pair where the work request comes from 651 * @ibmr: the memory region to be registered 652 * @key: updated key for this memory region 653 * @access: access flags for this memory region 654 * 655 * Returns 0 on success. 656 */ 657 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key, 658 int access) 659 { 660 struct rvt_mr *mr = to_imr(ibmr); 661 662 if (qp->ibqp.pd != mr->mr.pd) 663 return -EACCES; 664 665 /* not applicable to dma MR or user MR */ 666 if (!mr->mr.lkey || mr->umem) 667 return -EINVAL; 668 669 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00)) 670 return -EINVAL; 671 672 ibmr->lkey = key; 673 ibmr->rkey = key; 674 mr->mr.lkey = key; 675 mr->mr.access_flags = access; 676 mr->mr.iova = ibmr->iova; 677 atomic_set(&mr->mr.lkey_invalid, 0); 678 679 return 0; 680 } 681 EXPORT_SYMBOL(rvt_fast_reg_mr); 682 683 /** 684 * rvt_invalidate_rkey - invalidate an MR rkey 685 * @qp: queue pair associated with the invalidate op 686 * @rkey: rkey to invalidate 687 * 688 * Returns 0 on success. 689 */ 690 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey) 691 { 692 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 693 struct rvt_lkey_table *rkt = &dev->lkey_table; 694 struct rvt_mregion *mr; 695 696 if (rkey == 0) 697 return -EINVAL; 698 699 rcu_read_lock(); 700 mr = rcu_dereference( 701 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]); 702 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 703 goto bail; 704 705 atomic_set(&mr->lkey_invalid, 1); 706 rcu_read_unlock(); 707 return 0; 708 709 bail: 710 rcu_read_unlock(); 711 return -EINVAL; 712 } 713 EXPORT_SYMBOL(rvt_invalidate_rkey); 714 715 /** 716 * rvt_sge_adjacent - is isge compressible 717 * @last_sge: last outgoing SGE written 718 * @sge: SGE to check 719 * 720 * If adjacent will update last_sge to add length. 721 * 722 * Return: true if isge is adjacent to last sge 723 */ 724 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge, 725 struct ib_sge *sge) 726 { 727 if (last_sge && sge->lkey == last_sge->mr->lkey && 728 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) { 729 if (sge->lkey) { 730 if (unlikely((sge->addr - last_sge->mr->user_base + 731 sge->length > last_sge->mr->length))) 732 return false; /* overrun, caller will catch */ 733 } else { 734 last_sge->length += sge->length; 735 } 736 last_sge->sge_length += sge->length; 737 trace_rvt_sge_adjacent(last_sge, sge); 738 return true; 739 } 740 return false; 741 } 742 743 /** 744 * rvt_lkey_ok - check IB SGE for validity and initialize 745 * @rkt: table containing lkey to check SGE against 746 * @pd: protection domain 747 * @isge: outgoing internal SGE 748 * @last_sge: last outgoing SGE written 749 * @sge: SGE to check 750 * @acc: access flags 751 * 752 * Check the IB SGE for validity and initialize our internal version 753 * of it. 754 * 755 * Increments the reference count when a new sge is stored. 756 * 757 * Return: 0 if compressed, 1 if added , otherwise returns -errno. 758 */ 759 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd, 760 struct rvt_sge *isge, struct rvt_sge *last_sge, 761 struct ib_sge *sge, int acc) 762 { 763 struct rvt_mregion *mr; 764 unsigned n, m; 765 size_t off; 766 767 /* 768 * We use LKEY == zero for kernel virtual addresses 769 * (see rvt_get_dma_mr() and dma_virt_ops). 770 */ 771 if (sge->lkey == 0) { 772 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device); 773 774 if (pd->user) 775 return -EINVAL; 776 if (rvt_sge_adjacent(last_sge, sge)) 777 return 0; 778 rcu_read_lock(); 779 mr = rcu_dereference(dev->dma_mr); 780 if (!mr) 781 goto bail; 782 rvt_get_mr(mr); 783 rcu_read_unlock(); 784 785 isge->mr = mr; 786 isge->vaddr = (void *)sge->addr; 787 isge->length = sge->length; 788 isge->sge_length = sge->length; 789 isge->m = 0; 790 isge->n = 0; 791 goto ok; 792 } 793 if (rvt_sge_adjacent(last_sge, sge)) 794 return 0; 795 rcu_read_lock(); 796 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]); 797 if (!mr) 798 goto bail; 799 rvt_get_mr(mr); 800 if (!READ_ONCE(mr->lkey_published)) 801 goto bail_unref; 802 803 if (unlikely(atomic_read(&mr->lkey_invalid) || 804 mr->lkey != sge->lkey || mr->pd != &pd->ibpd)) 805 goto bail_unref; 806 807 off = sge->addr - mr->user_base; 808 if (unlikely(sge->addr < mr->user_base || 809 off + sge->length > mr->length || 810 (mr->access_flags & acc) != acc)) 811 goto bail_unref; 812 rcu_read_unlock(); 813 814 off += mr->offset; 815 if (mr->page_shift) { 816 /* 817 * page sizes are uniform power of 2 so no loop is necessary 818 * entries_spanned_by_off is the number of times the loop below 819 * would have executed. 820 */ 821 size_t entries_spanned_by_off; 822 823 entries_spanned_by_off = off >> mr->page_shift; 824 off -= (entries_spanned_by_off << mr->page_shift); 825 m = entries_spanned_by_off / RVT_SEGSZ; 826 n = entries_spanned_by_off % RVT_SEGSZ; 827 } else { 828 m = 0; 829 n = 0; 830 while (off >= mr->map[m]->segs[n].length) { 831 off -= mr->map[m]->segs[n].length; 832 n++; 833 if (n >= RVT_SEGSZ) { 834 m++; 835 n = 0; 836 } 837 } 838 } 839 isge->mr = mr; 840 isge->vaddr = mr->map[m]->segs[n].vaddr + off; 841 isge->length = mr->map[m]->segs[n].length - off; 842 isge->sge_length = sge->length; 843 isge->m = m; 844 isge->n = n; 845 ok: 846 trace_rvt_sge_new(isge, sge); 847 return 1; 848 bail_unref: 849 rvt_put_mr(mr); 850 bail: 851 rcu_read_unlock(); 852 return -EINVAL; 853 } 854 EXPORT_SYMBOL(rvt_lkey_ok); 855 856 /** 857 * rvt_rkey_ok - check the IB virtual address, length, and RKEY 858 * @qp: qp for validation 859 * @sge: SGE state 860 * @len: length of data 861 * @vaddr: virtual address to place data 862 * @rkey: rkey to check 863 * @acc: access flags 864 * 865 * Return: 1 if successful, otherwise 0. 866 * 867 * increments the reference count upon success 868 */ 869 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge, 870 u32 len, u64 vaddr, u32 rkey, int acc) 871 { 872 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 873 struct rvt_lkey_table *rkt = &dev->lkey_table; 874 struct rvt_mregion *mr; 875 unsigned n, m; 876 size_t off; 877 878 /* 879 * We use RKEY == zero for kernel virtual addresses 880 * (see rvt_get_dma_mr() and dma_virt_ops). 881 */ 882 rcu_read_lock(); 883 if (rkey == 0) { 884 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd); 885 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device); 886 887 if (pd->user) 888 goto bail; 889 mr = rcu_dereference(rdi->dma_mr); 890 if (!mr) 891 goto bail; 892 rvt_get_mr(mr); 893 rcu_read_unlock(); 894 895 sge->mr = mr; 896 sge->vaddr = (void *)vaddr; 897 sge->length = len; 898 sge->sge_length = len; 899 sge->m = 0; 900 sge->n = 0; 901 goto ok; 902 } 903 904 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]); 905 if (!mr) 906 goto bail; 907 rvt_get_mr(mr); 908 /* insure mr read is before test */ 909 if (!READ_ONCE(mr->lkey_published)) 910 goto bail_unref; 911 if (unlikely(atomic_read(&mr->lkey_invalid) || 912 mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 913 goto bail_unref; 914 915 off = vaddr - mr->iova; 916 if (unlikely(vaddr < mr->iova || off + len > mr->length || 917 (mr->access_flags & acc) == 0)) 918 goto bail_unref; 919 rcu_read_unlock(); 920 921 off += mr->offset; 922 if (mr->page_shift) { 923 /* 924 * page sizes are uniform power of 2 so no loop is necessary 925 * entries_spanned_by_off is the number of times the loop below 926 * would have executed. 927 */ 928 size_t entries_spanned_by_off; 929 930 entries_spanned_by_off = off >> mr->page_shift; 931 off -= (entries_spanned_by_off << mr->page_shift); 932 m = entries_spanned_by_off / RVT_SEGSZ; 933 n = entries_spanned_by_off % RVT_SEGSZ; 934 } else { 935 m = 0; 936 n = 0; 937 while (off >= mr->map[m]->segs[n].length) { 938 off -= mr->map[m]->segs[n].length; 939 n++; 940 if (n >= RVT_SEGSZ) { 941 m++; 942 n = 0; 943 } 944 } 945 } 946 sge->mr = mr; 947 sge->vaddr = mr->map[m]->segs[n].vaddr + off; 948 sge->length = mr->map[m]->segs[n].length - off; 949 sge->sge_length = len; 950 sge->m = m; 951 sge->n = n; 952 ok: 953 return 1; 954 bail_unref: 955 rvt_put_mr(mr); 956 bail: 957 rcu_read_unlock(); 958 return 0; 959 } 960 EXPORT_SYMBOL(rvt_rkey_ok); 961