1 /* 2 * Copyright(c) 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/slab.h> 49 #include <linux/vmalloc.h> 50 #include <rdma/ib_umem.h> 51 #include <rdma/rdma_vt.h> 52 #include "vt.h" 53 #include "mr.h" 54 #include "trace.h" 55 56 /** 57 * rvt_driver_mr_init - Init MR resources per driver 58 * @rdi: rvt dev struct 59 * 60 * Do any intilization needed when a driver registers with rdmavt. 61 * 62 * Return: 0 on success or errno on failure 63 */ 64 int rvt_driver_mr_init(struct rvt_dev_info *rdi) 65 { 66 unsigned int lkey_table_size = rdi->dparms.lkey_table_size; 67 unsigned lk_tab_size; 68 int i; 69 70 /* 71 * The top hfi1_lkey_table_size bits are used to index the 72 * table. The lower 8 bits can be owned by the user (copied from 73 * the LKEY). The remaining bits act as a generation number or tag. 74 */ 75 if (!lkey_table_size) 76 return -EINVAL; 77 78 spin_lock_init(&rdi->lkey_table.lock); 79 80 /* ensure generation is at least 4 bits */ 81 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) { 82 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n", 83 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS); 84 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS; 85 lkey_table_size = rdi->dparms.lkey_table_size; 86 } 87 rdi->lkey_table.max = 1 << lkey_table_size; 88 rdi->lkey_table.shift = 32 - lkey_table_size; 89 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table); 90 rdi->lkey_table.table = (struct rvt_mregion __rcu **) 91 vmalloc_node(lk_tab_size, rdi->dparms.node); 92 if (!rdi->lkey_table.table) 93 return -ENOMEM; 94 95 RCU_INIT_POINTER(rdi->dma_mr, NULL); 96 for (i = 0; i < rdi->lkey_table.max; i++) 97 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL); 98 99 rdi->dparms.props.max_mr = rdi->lkey_table.max; 100 rdi->dparms.props.max_fmr = rdi->lkey_table.max; 101 return 0; 102 } 103 104 /** 105 *rvt_mr_exit: clean up MR 106 *@rdi: rvt dev structure 107 * 108 * called when drivers have unregistered or perhaps failed to register with us 109 */ 110 void rvt_mr_exit(struct rvt_dev_info *rdi) 111 { 112 if (rdi->dma_mr) 113 rvt_pr_err(rdi, "DMA MR not null!\n"); 114 115 vfree(rdi->lkey_table.table); 116 } 117 118 static void rvt_deinit_mregion(struct rvt_mregion *mr) 119 { 120 int i = mr->mapsz; 121 122 mr->mapsz = 0; 123 while (i) 124 kfree(mr->map[--i]); 125 percpu_ref_exit(&mr->refcount); 126 } 127 128 static void __rvt_mregion_complete(struct percpu_ref *ref) 129 { 130 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion, 131 refcount); 132 133 complete(&mr->comp); 134 } 135 136 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd, 137 int count, unsigned int percpu_flags) 138 { 139 int m, i = 0; 140 struct rvt_dev_info *dev = ib_to_rvt(pd->device); 141 142 mr->mapsz = 0; 143 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 144 for (; i < m; i++) { 145 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL, 146 dev->dparms.node); 147 if (!mr->map[i]) 148 goto bail; 149 mr->mapsz++; 150 } 151 init_completion(&mr->comp); 152 /* count returning the ptr to user */ 153 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete, 154 percpu_flags, GFP_KERNEL)) 155 goto bail; 156 157 atomic_set(&mr->lkey_invalid, 0); 158 mr->pd = pd; 159 mr->max_segs = count; 160 return 0; 161 bail: 162 rvt_deinit_mregion(mr); 163 return -ENOMEM; 164 } 165 166 /** 167 * rvt_alloc_lkey - allocate an lkey 168 * @mr: memory region that this lkey protects 169 * @dma_region: 0->normal key, 1->restricted DMA key 170 * 171 * Returns 0 if successful, otherwise returns -errno. 172 * 173 * Increments mr reference count as required. 174 * 175 * Sets the lkey field mr for non-dma regions. 176 * 177 */ 178 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region) 179 { 180 unsigned long flags; 181 u32 r; 182 u32 n; 183 int ret = 0; 184 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 185 struct rvt_lkey_table *rkt = &dev->lkey_table; 186 187 rvt_get_mr(mr); 188 spin_lock_irqsave(&rkt->lock, flags); 189 190 /* special case for dma_mr lkey == 0 */ 191 if (dma_region) { 192 struct rvt_mregion *tmr; 193 194 tmr = rcu_access_pointer(dev->dma_mr); 195 if (!tmr) { 196 mr->lkey_published = 1; 197 /* Insure published written first */ 198 rcu_assign_pointer(dev->dma_mr, mr); 199 rvt_get_mr(mr); 200 } 201 goto success; 202 } 203 204 /* Find the next available LKEY */ 205 r = rkt->next; 206 n = r; 207 for (;;) { 208 if (!rcu_access_pointer(rkt->table[r])) 209 break; 210 r = (r + 1) & (rkt->max - 1); 211 if (r == n) 212 goto bail; 213 } 214 rkt->next = (r + 1) & (rkt->max - 1); 215 /* 216 * Make sure lkey is never zero which is reserved to indicate an 217 * unrestricted LKEY. 218 */ 219 rkt->gen++; 220 /* 221 * bits are capped to ensure enough bits for generation number 222 */ 223 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) | 224 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen) 225 << 8); 226 if (mr->lkey == 0) { 227 mr->lkey |= 1 << 8; 228 rkt->gen++; 229 } 230 mr->lkey_published = 1; 231 /* Insure published written first */ 232 rcu_assign_pointer(rkt->table[r], mr); 233 success: 234 spin_unlock_irqrestore(&rkt->lock, flags); 235 out: 236 return ret; 237 bail: 238 rvt_put_mr(mr); 239 spin_unlock_irqrestore(&rkt->lock, flags); 240 ret = -ENOMEM; 241 goto out; 242 } 243 244 /** 245 * rvt_free_lkey - free an lkey 246 * @mr: mr to free from tables 247 */ 248 static void rvt_free_lkey(struct rvt_mregion *mr) 249 { 250 unsigned long flags; 251 u32 lkey = mr->lkey; 252 u32 r; 253 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 254 struct rvt_lkey_table *rkt = &dev->lkey_table; 255 int freed = 0; 256 257 spin_lock_irqsave(&rkt->lock, flags); 258 if (!lkey) { 259 if (mr->lkey_published) { 260 mr->lkey_published = 0; 261 /* insure published is written before pointer */ 262 rcu_assign_pointer(dev->dma_mr, NULL); 263 rvt_put_mr(mr); 264 } 265 } else { 266 if (!mr->lkey_published) 267 goto out; 268 r = lkey >> (32 - dev->dparms.lkey_table_size); 269 mr->lkey_published = 0; 270 /* insure published is written before pointer */ 271 rcu_assign_pointer(rkt->table[r], NULL); 272 } 273 freed++; 274 out: 275 spin_unlock_irqrestore(&rkt->lock, flags); 276 if (freed) 277 percpu_ref_kill(&mr->refcount); 278 } 279 280 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd) 281 { 282 struct rvt_mr *mr; 283 int rval = -ENOMEM; 284 int m; 285 286 /* Allocate struct plus pointers to first level page tables. */ 287 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 288 mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL); 289 if (!mr) 290 goto bail; 291 292 rval = rvt_init_mregion(&mr->mr, pd, count, 0); 293 if (rval) 294 goto bail; 295 /* 296 * ib_reg_phys_mr() will initialize mr->ibmr except for 297 * lkey and rkey. 298 */ 299 rval = rvt_alloc_lkey(&mr->mr, 0); 300 if (rval) 301 goto bail_mregion; 302 mr->ibmr.lkey = mr->mr.lkey; 303 mr->ibmr.rkey = mr->mr.lkey; 304 done: 305 return mr; 306 307 bail_mregion: 308 rvt_deinit_mregion(&mr->mr); 309 bail: 310 kfree(mr); 311 mr = ERR_PTR(rval); 312 goto done; 313 } 314 315 static void __rvt_free_mr(struct rvt_mr *mr) 316 { 317 rvt_free_lkey(&mr->mr); 318 rvt_deinit_mregion(&mr->mr); 319 kfree(mr); 320 } 321 322 /** 323 * rvt_get_dma_mr - get a DMA memory region 324 * @pd: protection domain for this memory region 325 * @acc: access flags 326 * 327 * Return: the memory region on success, otherwise returns an errno. 328 * Note that all DMA addresses should be created via the functions in 329 * struct dma_virt_ops. 330 */ 331 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc) 332 { 333 struct rvt_mr *mr; 334 struct ib_mr *ret; 335 int rval; 336 337 if (ibpd_to_rvtpd(pd)->user) 338 return ERR_PTR(-EPERM); 339 340 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 341 if (!mr) { 342 ret = ERR_PTR(-ENOMEM); 343 goto bail; 344 } 345 346 rval = rvt_init_mregion(&mr->mr, pd, 0, 0); 347 if (rval) { 348 ret = ERR_PTR(rval); 349 goto bail; 350 } 351 352 rval = rvt_alloc_lkey(&mr->mr, 1); 353 if (rval) { 354 ret = ERR_PTR(rval); 355 goto bail_mregion; 356 } 357 358 mr->mr.access_flags = acc; 359 ret = &mr->ibmr; 360 done: 361 return ret; 362 363 bail_mregion: 364 rvt_deinit_mregion(&mr->mr); 365 bail: 366 kfree(mr); 367 goto done; 368 } 369 370 /** 371 * rvt_reg_user_mr - register a userspace memory region 372 * @pd: protection domain for this memory region 373 * @start: starting userspace address 374 * @length: length of region to register 375 * @mr_access_flags: access flags for this memory region 376 * @udata: unused by the driver 377 * 378 * Return: the memory region on success, otherwise returns an errno. 379 */ 380 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 381 u64 virt_addr, int mr_access_flags, 382 struct ib_udata *udata) 383 { 384 struct rvt_mr *mr; 385 struct ib_umem *umem; 386 struct sg_page_iter sg_iter; 387 int n, m; 388 struct ib_mr *ret; 389 390 if (length == 0) 391 return ERR_PTR(-EINVAL); 392 393 umem = ib_umem_get(udata, start, length, mr_access_flags, 0); 394 if (IS_ERR(umem)) 395 return (void *)umem; 396 397 n = ib_umem_num_pages(umem); 398 399 mr = __rvt_alloc_mr(n, pd); 400 if (IS_ERR(mr)) { 401 ret = (struct ib_mr *)mr; 402 goto bail_umem; 403 } 404 405 mr->mr.user_base = start; 406 mr->mr.iova = virt_addr; 407 mr->mr.length = length; 408 mr->mr.offset = ib_umem_offset(umem); 409 mr->mr.access_flags = mr_access_flags; 410 mr->umem = umem; 411 412 mr->mr.page_shift = PAGE_SHIFT; 413 m = 0; 414 n = 0; 415 for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) { 416 void *vaddr; 417 418 vaddr = page_address(sg_page_iter_page(&sg_iter)); 419 if (!vaddr) { 420 ret = ERR_PTR(-EINVAL); 421 goto bail_inval; 422 } 423 mr->mr.map[m]->segs[n].vaddr = vaddr; 424 mr->mr.map[m]->segs[n].length = PAGE_SIZE; 425 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE); 426 if (++n == RVT_SEGSZ) { 427 m++; 428 n = 0; 429 } 430 } 431 return &mr->ibmr; 432 433 bail_inval: 434 __rvt_free_mr(mr); 435 436 bail_umem: 437 ib_umem_release(umem); 438 439 return ret; 440 } 441 442 /** 443 * rvt_dereg_clean_qp_cb - callback from iterator 444 * @qp - the qp 445 * @v - the mregion (as u64) 446 * 447 * This routine fields the callback for all QPs and 448 * for QPs in the same PD as the MR will call the 449 * rvt_qp_mr_clean() to potentially cleanup references. 450 */ 451 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v) 452 { 453 struct rvt_mregion *mr = (struct rvt_mregion *)v; 454 455 /* skip PDs that are not ours */ 456 if (mr->pd != qp->ibqp.pd) 457 return; 458 rvt_qp_mr_clean(qp, mr->lkey); 459 } 460 461 /** 462 * rvt_dereg_clean_qps - find QPs for reference cleanup 463 * @mr - the MR that is being deregistered 464 * 465 * This routine iterates RC QPs looking for references 466 * to the lkey noted in mr. 467 */ 468 static void rvt_dereg_clean_qps(struct rvt_mregion *mr) 469 { 470 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 471 472 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb); 473 } 474 475 /** 476 * rvt_check_refs - check references 477 * @mr - the megion 478 * @t - the caller identification 479 * 480 * This routine checks MRs holding a reference during 481 * when being de-registered. 482 * 483 * If the count is non-zero, the code calls a clean routine then 484 * waits for the timeout for the count to zero. 485 */ 486 static int rvt_check_refs(struct rvt_mregion *mr, const char *t) 487 { 488 unsigned long timeout; 489 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 490 491 if (mr->lkey) { 492 /* avoid dma mr */ 493 rvt_dereg_clean_qps(mr); 494 /* @mr was indexed on rcu protected @lkey_table */ 495 synchronize_rcu(); 496 } 497 498 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ); 499 if (!timeout) { 500 rvt_pr_err(rdi, 501 "%s timeout mr %p pd %p lkey %x refcount %ld\n", 502 t, mr, mr->pd, mr->lkey, 503 atomic_long_read(&mr->refcount.count)); 504 rvt_get_mr(mr); 505 return -EBUSY; 506 } 507 return 0; 508 } 509 510 /** 511 * rvt_mr_has_lkey - is MR 512 * @mr - the mregion 513 * @lkey - the lkey 514 */ 515 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey) 516 { 517 return mr && lkey == mr->lkey; 518 } 519 520 /** 521 * rvt_ss_has_lkey - is mr in sge tests 522 * @ss - the sge state 523 * @lkey 524 * 525 * This code tests for an MR in the indicated 526 * sge state. 527 */ 528 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey) 529 { 530 int i; 531 bool rval = false; 532 533 if (!ss->num_sge) 534 return rval; 535 /* first one */ 536 rval = rvt_mr_has_lkey(ss->sge.mr, lkey); 537 /* any others */ 538 for (i = 0; !rval && i < ss->num_sge - 1; i++) 539 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey); 540 return rval; 541 } 542 543 /** 544 * rvt_dereg_mr - unregister and free a memory region 545 * @ibmr: the memory region to free 546 * 547 * 548 * Note that this is called to free MRs created by rvt_get_dma_mr() 549 * or rvt_reg_user_mr(). 550 * 551 * Returns 0 on success. 552 */ 553 int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 554 { 555 struct rvt_mr *mr = to_imr(ibmr); 556 int ret; 557 558 rvt_free_lkey(&mr->mr); 559 560 rvt_put_mr(&mr->mr); /* will set completion if last */ 561 ret = rvt_check_refs(&mr->mr, __func__); 562 if (ret) 563 goto out; 564 rvt_deinit_mregion(&mr->mr); 565 if (mr->umem) 566 ib_umem_release(mr->umem); 567 kfree(mr); 568 out: 569 return ret; 570 } 571 572 /** 573 * rvt_alloc_mr - Allocate a memory region usable with the 574 * @pd: protection domain for this memory region 575 * @mr_type: mem region type 576 * @max_num_sg: Max number of segments allowed 577 * 578 * Return: the memory region on success, otherwise return an errno. 579 */ 580 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 581 u32 max_num_sg, struct ib_udata *udata) 582 { 583 struct rvt_mr *mr; 584 585 if (mr_type != IB_MR_TYPE_MEM_REG) 586 return ERR_PTR(-EINVAL); 587 588 mr = __rvt_alloc_mr(max_num_sg, pd); 589 if (IS_ERR(mr)) 590 return (struct ib_mr *)mr; 591 592 return &mr->ibmr; 593 } 594 595 /** 596 * rvt_set_page - page assignment function called by ib_sg_to_pages 597 * @ibmr: memory region 598 * @addr: dma address of mapped page 599 * 600 * Return: 0 on success 601 */ 602 static int rvt_set_page(struct ib_mr *ibmr, u64 addr) 603 { 604 struct rvt_mr *mr = to_imr(ibmr); 605 u32 ps = 1 << mr->mr.page_shift; 606 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift; 607 int m, n; 608 609 if (unlikely(mapped_segs == mr->mr.max_segs)) 610 return -ENOMEM; 611 612 m = mapped_segs / RVT_SEGSZ; 613 n = mapped_segs % RVT_SEGSZ; 614 mr->mr.map[m]->segs[n].vaddr = (void *)addr; 615 mr->mr.map[m]->segs[n].length = ps; 616 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps); 617 mr->mr.length += ps; 618 619 return 0; 620 } 621 622 /** 623 * rvt_map_mr_sg - map sg list and set it the memory region 624 * @ibmr: memory region 625 * @sg: dma mapped scatterlist 626 * @sg_nents: number of entries in sg 627 * @sg_offset: offset in bytes into sg 628 * 629 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages. 630 * 631 * Return: number of sg elements mapped to the memory region 632 */ 633 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, 634 int sg_nents, unsigned int *sg_offset) 635 { 636 struct rvt_mr *mr = to_imr(ibmr); 637 int ret; 638 639 mr->mr.length = 0; 640 mr->mr.page_shift = PAGE_SHIFT; 641 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page); 642 mr->mr.user_base = ibmr->iova; 643 mr->mr.iova = ibmr->iova; 644 mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr; 645 mr->mr.length = (size_t)ibmr->length; 646 return ret; 647 } 648 649 /** 650 * rvt_fast_reg_mr - fast register physical MR 651 * @qp: the queue pair where the work request comes from 652 * @ibmr: the memory region to be registered 653 * @key: updated key for this memory region 654 * @access: access flags for this memory region 655 * 656 * Returns 0 on success. 657 */ 658 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key, 659 int access) 660 { 661 struct rvt_mr *mr = to_imr(ibmr); 662 663 if (qp->ibqp.pd != mr->mr.pd) 664 return -EACCES; 665 666 /* not applicable to dma MR or user MR */ 667 if (!mr->mr.lkey || mr->umem) 668 return -EINVAL; 669 670 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00)) 671 return -EINVAL; 672 673 ibmr->lkey = key; 674 ibmr->rkey = key; 675 mr->mr.lkey = key; 676 mr->mr.access_flags = access; 677 mr->mr.iova = ibmr->iova; 678 atomic_set(&mr->mr.lkey_invalid, 0); 679 680 return 0; 681 } 682 EXPORT_SYMBOL(rvt_fast_reg_mr); 683 684 /** 685 * rvt_invalidate_rkey - invalidate an MR rkey 686 * @qp: queue pair associated with the invalidate op 687 * @rkey: rkey to invalidate 688 * 689 * Returns 0 on success. 690 */ 691 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey) 692 { 693 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 694 struct rvt_lkey_table *rkt = &dev->lkey_table; 695 struct rvt_mregion *mr; 696 697 if (rkey == 0) 698 return -EINVAL; 699 700 rcu_read_lock(); 701 mr = rcu_dereference( 702 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]); 703 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 704 goto bail; 705 706 atomic_set(&mr->lkey_invalid, 1); 707 rcu_read_unlock(); 708 return 0; 709 710 bail: 711 rcu_read_unlock(); 712 return -EINVAL; 713 } 714 EXPORT_SYMBOL(rvt_invalidate_rkey); 715 716 /** 717 * rvt_alloc_fmr - allocate a fast memory region 718 * @pd: the protection domain for this memory region 719 * @mr_access_flags: access flags for this memory region 720 * @fmr_attr: fast memory region attributes 721 * 722 * Return: the memory region on success, otherwise returns an errno. 723 */ 724 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags, 725 struct ib_fmr_attr *fmr_attr) 726 { 727 struct rvt_fmr *fmr; 728 int m; 729 struct ib_fmr *ret; 730 int rval = -ENOMEM; 731 732 /* Allocate struct plus pointers to first level page tables. */ 733 m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ; 734 fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL); 735 if (!fmr) 736 goto bail; 737 738 rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages, 739 PERCPU_REF_INIT_ATOMIC); 740 if (rval) 741 goto bail; 742 743 /* 744 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey & 745 * rkey. 746 */ 747 rval = rvt_alloc_lkey(&fmr->mr, 0); 748 if (rval) 749 goto bail_mregion; 750 fmr->ibfmr.rkey = fmr->mr.lkey; 751 fmr->ibfmr.lkey = fmr->mr.lkey; 752 /* 753 * Resources are allocated but no valid mapping (RKEY can't be 754 * used). 755 */ 756 fmr->mr.access_flags = mr_access_flags; 757 fmr->mr.max_segs = fmr_attr->max_pages; 758 fmr->mr.page_shift = fmr_attr->page_shift; 759 760 ret = &fmr->ibfmr; 761 done: 762 return ret; 763 764 bail_mregion: 765 rvt_deinit_mregion(&fmr->mr); 766 bail: 767 kfree(fmr); 768 ret = ERR_PTR(rval); 769 goto done; 770 } 771 772 /** 773 * rvt_map_phys_fmr - set up a fast memory region 774 * @ibfmr: the fast memory region to set up 775 * @page_list: the list of pages to associate with the fast memory region 776 * @list_len: the number of pages to associate with the fast memory region 777 * @iova: the virtual address of the start of the fast memory region 778 * 779 * This may be called from interrupt context. 780 * 781 * Return: 0 on success 782 */ 783 784 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, 785 int list_len, u64 iova) 786 { 787 struct rvt_fmr *fmr = to_ifmr(ibfmr); 788 struct rvt_lkey_table *rkt; 789 unsigned long flags; 790 int m, n; 791 unsigned long i; 792 u32 ps; 793 struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device); 794 795 i = atomic_long_read(&fmr->mr.refcount.count); 796 if (i > 2) 797 return -EBUSY; 798 799 if (list_len > fmr->mr.max_segs) 800 return -EINVAL; 801 802 rkt = &rdi->lkey_table; 803 spin_lock_irqsave(&rkt->lock, flags); 804 fmr->mr.user_base = iova; 805 fmr->mr.iova = iova; 806 ps = 1 << fmr->mr.page_shift; 807 fmr->mr.length = list_len * ps; 808 m = 0; 809 n = 0; 810 for (i = 0; i < list_len; i++) { 811 fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i]; 812 fmr->mr.map[m]->segs[n].length = ps; 813 trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps); 814 if (++n == RVT_SEGSZ) { 815 m++; 816 n = 0; 817 } 818 } 819 spin_unlock_irqrestore(&rkt->lock, flags); 820 return 0; 821 } 822 823 /** 824 * rvt_unmap_fmr - unmap fast memory regions 825 * @fmr_list: the list of fast memory regions to unmap 826 * 827 * Return: 0 on success. 828 */ 829 int rvt_unmap_fmr(struct list_head *fmr_list) 830 { 831 struct rvt_fmr *fmr; 832 struct rvt_lkey_table *rkt; 833 unsigned long flags; 834 struct rvt_dev_info *rdi; 835 836 list_for_each_entry(fmr, fmr_list, ibfmr.list) { 837 rdi = ib_to_rvt(fmr->ibfmr.device); 838 rkt = &rdi->lkey_table; 839 spin_lock_irqsave(&rkt->lock, flags); 840 fmr->mr.user_base = 0; 841 fmr->mr.iova = 0; 842 fmr->mr.length = 0; 843 spin_unlock_irqrestore(&rkt->lock, flags); 844 } 845 return 0; 846 } 847 848 /** 849 * rvt_dealloc_fmr - deallocate a fast memory region 850 * @ibfmr: the fast memory region to deallocate 851 * 852 * Return: 0 on success. 853 */ 854 int rvt_dealloc_fmr(struct ib_fmr *ibfmr) 855 { 856 struct rvt_fmr *fmr = to_ifmr(ibfmr); 857 int ret = 0; 858 859 rvt_free_lkey(&fmr->mr); 860 rvt_put_mr(&fmr->mr); /* will set completion if last */ 861 ret = rvt_check_refs(&fmr->mr, __func__); 862 if (ret) 863 goto out; 864 rvt_deinit_mregion(&fmr->mr); 865 kfree(fmr); 866 out: 867 return ret; 868 } 869 870 /** 871 * rvt_sge_adjacent - is isge compressible 872 * @last_sge: last outgoing SGE written 873 * @sge: SGE to check 874 * 875 * If adjacent will update last_sge to add length. 876 * 877 * Return: true if isge is adjacent to last sge 878 */ 879 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge, 880 struct ib_sge *sge) 881 { 882 if (last_sge && sge->lkey == last_sge->mr->lkey && 883 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) { 884 if (sge->lkey) { 885 if (unlikely((sge->addr - last_sge->mr->user_base + 886 sge->length > last_sge->mr->length))) 887 return false; /* overrun, caller will catch */ 888 } else { 889 last_sge->length += sge->length; 890 } 891 last_sge->sge_length += sge->length; 892 trace_rvt_sge_adjacent(last_sge, sge); 893 return true; 894 } 895 return false; 896 } 897 898 /** 899 * rvt_lkey_ok - check IB SGE for validity and initialize 900 * @rkt: table containing lkey to check SGE against 901 * @pd: protection domain 902 * @isge: outgoing internal SGE 903 * @last_sge: last outgoing SGE written 904 * @sge: SGE to check 905 * @acc: access flags 906 * 907 * Check the IB SGE for validity and initialize our internal version 908 * of it. 909 * 910 * Increments the reference count when a new sge is stored. 911 * 912 * Return: 0 if compressed, 1 if added , otherwise returns -errno. 913 */ 914 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd, 915 struct rvt_sge *isge, struct rvt_sge *last_sge, 916 struct ib_sge *sge, int acc) 917 { 918 struct rvt_mregion *mr; 919 unsigned n, m; 920 size_t off; 921 922 /* 923 * We use LKEY == zero for kernel virtual addresses 924 * (see rvt_get_dma_mr() and dma_virt_ops). 925 */ 926 if (sge->lkey == 0) { 927 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device); 928 929 if (pd->user) 930 return -EINVAL; 931 if (rvt_sge_adjacent(last_sge, sge)) 932 return 0; 933 rcu_read_lock(); 934 mr = rcu_dereference(dev->dma_mr); 935 if (!mr) 936 goto bail; 937 rvt_get_mr(mr); 938 rcu_read_unlock(); 939 940 isge->mr = mr; 941 isge->vaddr = (void *)sge->addr; 942 isge->length = sge->length; 943 isge->sge_length = sge->length; 944 isge->m = 0; 945 isge->n = 0; 946 goto ok; 947 } 948 if (rvt_sge_adjacent(last_sge, sge)) 949 return 0; 950 rcu_read_lock(); 951 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]); 952 if (!mr) 953 goto bail; 954 rvt_get_mr(mr); 955 if (!READ_ONCE(mr->lkey_published)) 956 goto bail_unref; 957 958 if (unlikely(atomic_read(&mr->lkey_invalid) || 959 mr->lkey != sge->lkey || mr->pd != &pd->ibpd)) 960 goto bail_unref; 961 962 off = sge->addr - mr->user_base; 963 if (unlikely(sge->addr < mr->user_base || 964 off + sge->length > mr->length || 965 (mr->access_flags & acc) != acc)) 966 goto bail_unref; 967 rcu_read_unlock(); 968 969 off += mr->offset; 970 if (mr->page_shift) { 971 /* 972 * page sizes are uniform power of 2 so no loop is necessary 973 * entries_spanned_by_off is the number of times the loop below 974 * would have executed. 975 */ 976 size_t entries_spanned_by_off; 977 978 entries_spanned_by_off = off >> mr->page_shift; 979 off -= (entries_spanned_by_off << mr->page_shift); 980 m = entries_spanned_by_off / RVT_SEGSZ; 981 n = entries_spanned_by_off % RVT_SEGSZ; 982 } else { 983 m = 0; 984 n = 0; 985 while (off >= mr->map[m]->segs[n].length) { 986 off -= mr->map[m]->segs[n].length; 987 n++; 988 if (n >= RVT_SEGSZ) { 989 m++; 990 n = 0; 991 } 992 } 993 } 994 isge->mr = mr; 995 isge->vaddr = mr->map[m]->segs[n].vaddr + off; 996 isge->length = mr->map[m]->segs[n].length - off; 997 isge->sge_length = sge->length; 998 isge->m = m; 999 isge->n = n; 1000 ok: 1001 trace_rvt_sge_new(isge, sge); 1002 return 1; 1003 bail_unref: 1004 rvt_put_mr(mr); 1005 bail: 1006 rcu_read_unlock(); 1007 return -EINVAL; 1008 } 1009 EXPORT_SYMBOL(rvt_lkey_ok); 1010 1011 /** 1012 * rvt_rkey_ok - check the IB virtual address, length, and RKEY 1013 * @qp: qp for validation 1014 * @sge: SGE state 1015 * @len: length of data 1016 * @vaddr: virtual address to place data 1017 * @rkey: rkey to check 1018 * @acc: access flags 1019 * 1020 * Return: 1 if successful, otherwise 0. 1021 * 1022 * increments the reference count upon success 1023 */ 1024 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge, 1025 u32 len, u64 vaddr, u32 rkey, int acc) 1026 { 1027 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 1028 struct rvt_lkey_table *rkt = &dev->lkey_table; 1029 struct rvt_mregion *mr; 1030 unsigned n, m; 1031 size_t off; 1032 1033 /* 1034 * We use RKEY == zero for kernel virtual addresses 1035 * (see rvt_get_dma_mr() and dma_virt_ops). 1036 */ 1037 rcu_read_lock(); 1038 if (rkey == 0) { 1039 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd); 1040 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device); 1041 1042 if (pd->user) 1043 goto bail; 1044 mr = rcu_dereference(rdi->dma_mr); 1045 if (!mr) 1046 goto bail; 1047 rvt_get_mr(mr); 1048 rcu_read_unlock(); 1049 1050 sge->mr = mr; 1051 sge->vaddr = (void *)vaddr; 1052 sge->length = len; 1053 sge->sge_length = len; 1054 sge->m = 0; 1055 sge->n = 0; 1056 goto ok; 1057 } 1058 1059 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]); 1060 if (!mr) 1061 goto bail; 1062 rvt_get_mr(mr); 1063 /* insure mr read is before test */ 1064 if (!READ_ONCE(mr->lkey_published)) 1065 goto bail_unref; 1066 if (unlikely(atomic_read(&mr->lkey_invalid) || 1067 mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 1068 goto bail_unref; 1069 1070 off = vaddr - mr->iova; 1071 if (unlikely(vaddr < mr->iova || off + len > mr->length || 1072 (mr->access_flags & acc) == 0)) 1073 goto bail_unref; 1074 rcu_read_unlock(); 1075 1076 off += mr->offset; 1077 if (mr->page_shift) { 1078 /* 1079 * page sizes are uniform power of 2 so no loop is necessary 1080 * entries_spanned_by_off is the number of times the loop below 1081 * would have executed. 1082 */ 1083 size_t entries_spanned_by_off; 1084 1085 entries_spanned_by_off = off >> mr->page_shift; 1086 off -= (entries_spanned_by_off << mr->page_shift); 1087 m = entries_spanned_by_off / RVT_SEGSZ; 1088 n = entries_spanned_by_off % RVT_SEGSZ; 1089 } else { 1090 m = 0; 1091 n = 0; 1092 while (off >= mr->map[m]->segs[n].length) { 1093 off -= mr->map[m]->segs[n].length; 1094 n++; 1095 if (n >= RVT_SEGSZ) { 1096 m++; 1097 n = 0; 1098 } 1099 } 1100 } 1101 sge->mr = mr; 1102 sge->vaddr = mr->map[m]->segs[n].vaddr + off; 1103 sge->length = mr->map[m]->segs[n].length - off; 1104 sge->sge_length = len; 1105 sge->m = m; 1106 sge->n = n; 1107 ok: 1108 return 1; 1109 bail_unref: 1110 rvt_put_mr(mr); 1111 bail: 1112 rcu_read_unlock(); 1113 return 0; 1114 } 1115 EXPORT_SYMBOL(rvt_rkey_ok); 1116