1 /* 2 * Copyright(c) 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/slab.h> 49 #include <linux/vmalloc.h> 50 #include <rdma/ib_umem.h> 51 #include <rdma/rdma_vt.h> 52 #include "vt.h" 53 #include "mr.h" 54 #include "trace.h" 55 56 /** 57 * rvt_driver_mr_init - Init MR resources per driver 58 * @rdi: rvt dev struct 59 * 60 * Do any intilization needed when a driver registers with rdmavt. 61 * 62 * Return: 0 on success or errno on failure 63 */ 64 int rvt_driver_mr_init(struct rvt_dev_info *rdi) 65 { 66 unsigned int lkey_table_size = rdi->dparms.lkey_table_size; 67 unsigned lk_tab_size; 68 int i; 69 70 /* 71 * The top hfi1_lkey_table_size bits are used to index the 72 * table. The lower 8 bits can be owned by the user (copied from 73 * the LKEY). The remaining bits act as a generation number or tag. 74 */ 75 if (!lkey_table_size) 76 return -EINVAL; 77 78 spin_lock_init(&rdi->lkey_table.lock); 79 80 /* ensure generation is at least 4 bits */ 81 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) { 82 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n", 83 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS); 84 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS; 85 lkey_table_size = rdi->dparms.lkey_table_size; 86 } 87 rdi->lkey_table.max = 1 << lkey_table_size; 88 rdi->lkey_table.shift = 32 - lkey_table_size; 89 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table); 90 rdi->lkey_table.table = (struct rvt_mregion __rcu **) 91 vmalloc_node(lk_tab_size, rdi->dparms.node); 92 if (!rdi->lkey_table.table) 93 return -ENOMEM; 94 95 RCU_INIT_POINTER(rdi->dma_mr, NULL); 96 for (i = 0; i < rdi->lkey_table.max; i++) 97 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL); 98 99 return 0; 100 } 101 102 /** 103 *rvt_mr_exit: clean up MR 104 *@rdi: rvt dev structure 105 * 106 * called when drivers have unregistered or perhaps failed to register with us 107 */ 108 void rvt_mr_exit(struct rvt_dev_info *rdi) 109 { 110 if (rdi->dma_mr) 111 rvt_pr_err(rdi, "DMA MR not null!\n"); 112 113 vfree(rdi->lkey_table.table); 114 } 115 116 static void rvt_deinit_mregion(struct rvt_mregion *mr) 117 { 118 int i = mr->mapsz; 119 120 mr->mapsz = 0; 121 while (i) 122 kfree(mr->map[--i]); 123 percpu_ref_exit(&mr->refcount); 124 } 125 126 static void __rvt_mregion_complete(struct percpu_ref *ref) 127 { 128 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion, 129 refcount); 130 131 complete(&mr->comp); 132 } 133 134 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd, 135 int count, unsigned int percpu_flags) 136 { 137 int m, i = 0; 138 struct rvt_dev_info *dev = ib_to_rvt(pd->device); 139 140 mr->mapsz = 0; 141 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 142 for (; i < m; i++) { 143 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL, 144 dev->dparms.node); 145 if (!mr->map[i]) 146 goto bail; 147 mr->mapsz++; 148 } 149 init_completion(&mr->comp); 150 /* count returning the ptr to user */ 151 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete, 152 percpu_flags, GFP_KERNEL)) 153 goto bail; 154 155 atomic_set(&mr->lkey_invalid, 0); 156 mr->pd = pd; 157 mr->max_segs = count; 158 return 0; 159 bail: 160 rvt_deinit_mregion(mr); 161 return -ENOMEM; 162 } 163 164 /** 165 * rvt_alloc_lkey - allocate an lkey 166 * @mr: memory region that this lkey protects 167 * @dma_region: 0->normal key, 1->restricted DMA key 168 * 169 * Returns 0 if successful, otherwise returns -errno. 170 * 171 * Increments mr reference count as required. 172 * 173 * Sets the lkey field mr for non-dma regions. 174 * 175 */ 176 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region) 177 { 178 unsigned long flags; 179 u32 r; 180 u32 n; 181 int ret = 0; 182 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 183 struct rvt_lkey_table *rkt = &dev->lkey_table; 184 185 rvt_get_mr(mr); 186 spin_lock_irqsave(&rkt->lock, flags); 187 188 /* special case for dma_mr lkey == 0 */ 189 if (dma_region) { 190 struct rvt_mregion *tmr; 191 192 tmr = rcu_access_pointer(dev->dma_mr); 193 if (!tmr) { 194 mr->lkey_published = 1; 195 /* Insure published written first */ 196 rcu_assign_pointer(dev->dma_mr, mr); 197 rvt_get_mr(mr); 198 } 199 goto success; 200 } 201 202 /* Find the next available LKEY */ 203 r = rkt->next; 204 n = r; 205 for (;;) { 206 if (!rcu_access_pointer(rkt->table[r])) 207 break; 208 r = (r + 1) & (rkt->max - 1); 209 if (r == n) 210 goto bail; 211 } 212 rkt->next = (r + 1) & (rkt->max - 1); 213 /* 214 * Make sure lkey is never zero which is reserved to indicate an 215 * unrestricted LKEY. 216 */ 217 rkt->gen++; 218 /* 219 * bits are capped to ensure enough bits for generation number 220 */ 221 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) | 222 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen) 223 << 8); 224 if (mr->lkey == 0) { 225 mr->lkey |= 1 << 8; 226 rkt->gen++; 227 } 228 mr->lkey_published = 1; 229 /* Insure published written first */ 230 rcu_assign_pointer(rkt->table[r], mr); 231 success: 232 spin_unlock_irqrestore(&rkt->lock, flags); 233 out: 234 return ret; 235 bail: 236 rvt_put_mr(mr); 237 spin_unlock_irqrestore(&rkt->lock, flags); 238 ret = -ENOMEM; 239 goto out; 240 } 241 242 /** 243 * rvt_free_lkey - free an lkey 244 * @mr: mr to free from tables 245 */ 246 static void rvt_free_lkey(struct rvt_mregion *mr) 247 { 248 unsigned long flags; 249 u32 lkey = mr->lkey; 250 u32 r; 251 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 252 struct rvt_lkey_table *rkt = &dev->lkey_table; 253 int freed = 0; 254 255 spin_lock_irqsave(&rkt->lock, flags); 256 if (!lkey) { 257 if (mr->lkey_published) { 258 mr->lkey_published = 0; 259 /* insure published is written before pointer */ 260 rcu_assign_pointer(dev->dma_mr, NULL); 261 rvt_put_mr(mr); 262 } 263 } else { 264 if (!mr->lkey_published) 265 goto out; 266 r = lkey >> (32 - dev->dparms.lkey_table_size); 267 mr->lkey_published = 0; 268 /* insure published is written before pointer */ 269 rcu_assign_pointer(rkt->table[r], NULL); 270 } 271 freed++; 272 out: 273 spin_unlock_irqrestore(&rkt->lock, flags); 274 if (freed) 275 percpu_ref_kill(&mr->refcount); 276 } 277 278 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd) 279 { 280 struct rvt_mr *mr; 281 int rval = -ENOMEM; 282 int m; 283 284 /* Allocate struct plus pointers to first level page tables. */ 285 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 286 mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL); 287 if (!mr) 288 goto bail; 289 290 rval = rvt_init_mregion(&mr->mr, pd, count, 0); 291 if (rval) 292 goto bail; 293 /* 294 * ib_reg_phys_mr() will initialize mr->ibmr except for 295 * lkey and rkey. 296 */ 297 rval = rvt_alloc_lkey(&mr->mr, 0); 298 if (rval) 299 goto bail_mregion; 300 mr->ibmr.lkey = mr->mr.lkey; 301 mr->ibmr.rkey = mr->mr.lkey; 302 done: 303 return mr; 304 305 bail_mregion: 306 rvt_deinit_mregion(&mr->mr); 307 bail: 308 kfree(mr); 309 mr = ERR_PTR(rval); 310 goto done; 311 } 312 313 static void __rvt_free_mr(struct rvt_mr *mr) 314 { 315 rvt_free_lkey(&mr->mr); 316 rvt_deinit_mregion(&mr->mr); 317 kfree(mr); 318 } 319 320 /** 321 * rvt_get_dma_mr - get a DMA memory region 322 * @pd: protection domain for this memory region 323 * @acc: access flags 324 * 325 * Return: the memory region on success, otherwise returns an errno. 326 * Note that all DMA addresses should be created via the functions in 327 * struct dma_virt_ops. 328 */ 329 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc) 330 { 331 struct rvt_mr *mr; 332 struct ib_mr *ret; 333 int rval; 334 335 if (ibpd_to_rvtpd(pd)->user) 336 return ERR_PTR(-EPERM); 337 338 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 339 if (!mr) { 340 ret = ERR_PTR(-ENOMEM); 341 goto bail; 342 } 343 344 rval = rvt_init_mregion(&mr->mr, pd, 0, 0); 345 if (rval) { 346 ret = ERR_PTR(rval); 347 goto bail; 348 } 349 350 rval = rvt_alloc_lkey(&mr->mr, 1); 351 if (rval) { 352 ret = ERR_PTR(rval); 353 goto bail_mregion; 354 } 355 356 mr->mr.access_flags = acc; 357 ret = &mr->ibmr; 358 done: 359 return ret; 360 361 bail_mregion: 362 rvt_deinit_mregion(&mr->mr); 363 bail: 364 kfree(mr); 365 goto done; 366 } 367 368 /** 369 * rvt_reg_user_mr - register a userspace memory region 370 * @pd: protection domain for this memory region 371 * @start: starting userspace address 372 * @length: length of region to register 373 * @mr_access_flags: access flags for this memory region 374 * @udata: unused by the driver 375 * 376 * Return: the memory region on success, otherwise returns an errno. 377 */ 378 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 379 u64 virt_addr, int mr_access_flags, 380 struct ib_udata *udata) 381 { 382 struct rvt_mr *mr; 383 struct ib_umem *umem; 384 struct scatterlist *sg; 385 int n, m, entry; 386 struct ib_mr *ret; 387 388 if (length == 0) 389 return ERR_PTR(-EINVAL); 390 391 umem = ib_umem_get(pd->uobject->context, start, length, 392 mr_access_flags, 0); 393 if (IS_ERR(umem)) 394 return (void *)umem; 395 396 n = umem->nmap; 397 398 mr = __rvt_alloc_mr(n, pd); 399 if (IS_ERR(mr)) { 400 ret = (struct ib_mr *)mr; 401 goto bail_umem; 402 } 403 404 mr->mr.user_base = start; 405 mr->mr.iova = virt_addr; 406 mr->mr.length = length; 407 mr->mr.offset = ib_umem_offset(umem); 408 mr->mr.access_flags = mr_access_flags; 409 mr->umem = umem; 410 411 mr->mr.page_shift = umem->page_shift; 412 m = 0; 413 n = 0; 414 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) { 415 void *vaddr; 416 417 vaddr = page_address(sg_page(sg)); 418 if (!vaddr) { 419 ret = ERR_PTR(-EINVAL); 420 goto bail_inval; 421 } 422 mr->mr.map[m]->segs[n].vaddr = vaddr; 423 mr->mr.map[m]->segs[n].length = BIT(umem->page_shift); 424 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, 425 BIT(umem->page_shift)); 426 n++; 427 if (n == RVT_SEGSZ) { 428 m++; 429 n = 0; 430 } 431 } 432 return &mr->ibmr; 433 434 bail_inval: 435 __rvt_free_mr(mr); 436 437 bail_umem: 438 ib_umem_release(umem); 439 440 return ret; 441 } 442 443 /** 444 * rvt_dereg_clean_qp_cb - callback from iterator 445 * @qp - the qp 446 * @v - the mregion (as u64) 447 * 448 * This routine fields the callback for all QPs and 449 * for QPs in the same PD as the MR will call the 450 * rvt_qp_mr_clean() to potentially cleanup references. 451 */ 452 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v) 453 { 454 struct rvt_mregion *mr = (struct rvt_mregion *)v; 455 456 /* skip PDs that are not ours */ 457 if (mr->pd != qp->ibqp.pd) 458 return; 459 rvt_qp_mr_clean(qp, mr->lkey); 460 } 461 462 /** 463 * rvt_dereg_clean_qps - find QPs for reference cleanup 464 * @mr - the MR that is being deregistered 465 * 466 * This routine iterates RC QPs looking for references 467 * to the lkey noted in mr. 468 */ 469 static void rvt_dereg_clean_qps(struct rvt_mregion *mr) 470 { 471 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 472 473 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb); 474 } 475 476 /** 477 * rvt_check_refs - check references 478 * @mr - the megion 479 * @t - the caller identification 480 * 481 * This routine checks MRs holding a reference during 482 * when being de-registered. 483 * 484 * If the count is non-zero, the code calls a clean routine then 485 * waits for the timeout for the count to zero. 486 */ 487 static int rvt_check_refs(struct rvt_mregion *mr, const char *t) 488 { 489 unsigned long timeout; 490 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 491 492 if (mr->lkey) { 493 /* avoid dma mr */ 494 rvt_dereg_clean_qps(mr); 495 /* @mr was indexed on rcu protected @lkey_table */ 496 synchronize_rcu(); 497 } 498 499 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ); 500 if (!timeout) { 501 rvt_pr_err(rdi, 502 "%s timeout mr %p pd %p lkey %x refcount %ld\n", 503 t, mr, mr->pd, mr->lkey, 504 atomic_long_read(&mr->refcount.count)); 505 rvt_get_mr(mr); 506 return -EBUSY; 507 } 508 return 0; 509 } 510 511 /** 512 * rvt_mr_has_lkey - is MR 513 * @mr - the mregion 514 * @lkey - the lkey 515 */ 516 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey) 517 { 518 return mr && lkey == mr->lkey; 519 } 520 521 /** 522 * rvt_ss_has_lkey - is mr in sge tests 523 * @ss - the sge state 524 * @lkey 525 * 526 * This code tests for an MR in the indicated 527 * sge state. 528 */ 529 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey) 530 { 531 int i; 532 bool rval = false; 533 534 if (!ss->num_sge) 535 return rval; 536 /* first one */ 537 rval = rvt_mr_has_lkey(ss->sge.mr, lkey); 538 /* any others */ 539 for (i = 0; !rval && i < ss->num_sge - 1; i++) 540 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey); 541 return rval; 542 } 543 544 /** 545 * rvt_dereg_mr - unregister and free a memory region 546 * @ibmr: the memory region to free 547 * 548 * 549 * Note that this is called to free MRs created by rvt_get_dma_mr() 550 * or rvt_reg_user_mr(). 551 * 552 * Returns 0 on success. 553 */ 554 int rvt_dereg_mr(struct ib_mr *ibmr) 555 { 556 struct rvt_mr *mr = to_imr(ibmr); 557 int ret; 558 559 rvt_free_lkey(&mr->mr); 560 561 rvt_put_mr(&mr->mr); /* will set completion if last */ 562 ret = rvt_check_refs(&mr->mr, __func__); 563 if (ret) 564 goto out; 565 rvt_deinit_mregion(&mr->mr); 566 if (mr->umem) 567 ib_umem_release(mr->umem); 568 kfree(mr); 569 out: 570 return ret; 571 } 572 573 /** 574 * rvt_alloc_mr - Allocate a memory region usable with the 575 * @pd: protection domain for this memory region 576 * @mr_type: mem region type 577 * @max_num_sg: Max number of segments allowed 578 * 579 * Return: the memory region on success, otherwise return an errno. 580 */ 581 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, 582 enum ib_mr_type mr_type, 583 u32 max_num_sg) 584 { 585 struct rvt_mr *mr; 586 587 if (mr_type != IB_MR_TYPE_MEM_REG) 588 return ERR_PTR(-EINVAL); 589 590 mr = __rvt_alloc_mr(max_num_sg, pd); 591 if (IS_ERR(mr)) 592 return (struct ib_mr *)mr; 593 594 return &mr->ibmr; 595 } 596 597 /** 598 * rvt_set_page - page assignment function called by ib_sg_to_pages 599 * @ibmr: memory region 600 * @addr: dma address of mapped page 601 * 602 * Return: 0 on success 603 */ 604 static int rvt_set_page(struct ib_mr *ibmr, u64 addr) 605 { 606 struct rvt_mr *mr = to_imr(ibmr); 607 u32 ps = 1 << mr->mr.page_shift; 608 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift; 609 int m, n; 610 611 if (unlikely(mapped_segs == mr->mr.max_segs)) 612 return -ENOMEM; 613 614 if (mr->mr.length == 0) { 615 mr->mr.user_base = addr; 616 mr->mr.iova = addr; 617 } 618 619 m = mapped_segs / RVT_SEGSZ; 620 n = mapped_segs % RVT_SEGSZ; 621 mr->mr.map[m]->segs[n].vaddr = (void *)addr; 622 mr->mr.map[m]->segs[n].length = ps; 623 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps); 624 mr->mr.length += ps; 625 626 return 0; 627 } 628 629 /** 630 * rvt_map_mr_sg - map sg list and set it the memory region 631 * @ibmr: memory region 632 * @sg: dma mapped scatterlist 633 * @sg_nents: number of entries in sg 634 * @sg_offset: offset in bytes into sg 635 * 636 * Return: number of sg elements mapped to the memory region 637 */ 638 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, 639 int sg_nents, unsigned int *sg_offset) 640 { 641 struct rvt_mr *mr = to_imr(ibmr); 642 643 mr->mr.length = 0; 644 mr->mr.page_shift = PAGE_SHIFT; 645 return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 646 rvt_set_page); 647 } 648 649 /** 650 * rvt_fast_reg_mr - fast register physical MR 651 * @qp: the queue pair where the work request comes from 652 * @ibmr: the memory region to be registered 653 * @key: updated key for this memory region 654 * @access: access flags for this memory region 655 * 656 * Returns 0 on success. 657 */ 658 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key, 659 int access) 660 { 661 struct rvt_mr *mr = to_imr(ibmr); 662 663 if (qp->ibqp.pd != mr->mr.pd) 664 return -EACCES; 665 666 /* not applicable to dma MR or user MR */ 667 if (!mr->mr.lkey || mr->umem) 668 return -EINVAL; 669 670 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00)) 671 return -EINVAL; 672 673 ibmr->lkey = key; 674 ibmr->rkey = key; 675 mr->mr.lkey = key; 676 mr->mr.access_flags = access; 677 atomic_set(&mr->mr.lkey_invalid, 0); 678 679 return 0; 680 } 681 EXPORT_SYMBOL(rvt_fast_reg_mr); 682 683 /** 684 * rvt_invalidate_rkey - invalidate an MR rkey 685 * @qp: queue pair associated with the invalidate op 686 * @rkey: rkey to invalidate 687 * 688 * Returns 0 on success. 689 */ 690 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey) 691 { 692 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 693 struct rvt_lkey_table *rkt = &dev->lkey_table; 694 struct rvt_mregion *mr; 695 696 if (rkey == 0) 697 return -EINVAL; 698 699 rcu_read_lock(); 700 mr = rcu_dereference( 701 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]); 702 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 703 goto bail; 704 705 atomic_set(&mr->lkey_invalid, 1); 706 rcu_read_unlock(); 707 return 0; 708 709 bail: 710 rcu_read_unlock(); 711 return -EINVAL; 712 } 713 EXPORT_SYMBOL(rvt_invalidate_rkey); 714 715 /** 716 * rvt_alloc_fmr - allocate a fast memory region 717 * @pd: the protection domain for this memory region 718 * @mr_access_flags: access flags for this memory region 719 * @fmr_attr: fast memory region attributes 720 * 721 * Return: the memory region on success, otherwise returns an errno. 722 */ 723 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags, 724 struct ib_fmr_attr *fmr_attr) 725 { 726 struct rvt_fmr *fmr; 727 int m; 728 struct ib_fmr *ret; 729 int rval = -ENOMEM; 730 731 /* Allocate struct plus pointers to first level page tables. */ 732 m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ; 733 fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL); 734 if (!fmr) 735 goto bail; 736 737 rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages, 738 PERCPU_REF_INIT_ATOMIC); 739 if (rval) 740 goto bail; 741 742 /* 743 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey & 744 * rkey. 745 */ 746 rval = rvt_alloc_lkey(&fmr->mr, 0); 747 if (rval) 748 goto bail_mregion; 749 fmr->ibfmr.rkey = fmr->mr.lkey; 750 fmr->ibfmr.lkey = fmr->mr.lkey; 751 /* 752 * Resources are allocated but no valid mapping (RKEY can't be 753 * used). 754 */ 755 fmr->mr.access_flags = mr_access_flags; 756 fmr->mr.max_segs = fmr_attr->max_pages; 757 fmr->mr.page_shift = fmr_attr->page_shift; 758 759 ret = &fmr->ibfmr; 760 done: 761 return ret; 762 763 bail_mregion: 764 rvt_deinit_mregion(&fmr->mr); 765 bail: 766 kfree(fmr); 767 ret = ERR_PTR(rval); 768 goto done; 769 } 770 771 /** 772 * rvt_map_phys_fmr - set up a fast memory region 773 * @ibfmr: the fast memory region to set up 774 * @page_list: the list of pages to associate with the fast memory region 775 * @list_len: the number of pages to associate with the fast memory region 776 * @iova: the virtual address of the start of the fast memory region 777 * 778 * This may be called from interrupt context. 779 * 780 * Return: 0 on success 781 */ 782 783 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, 784 int list_len, u64 iova) 785 { 786 struct rvt_fmr *fmr = to_ifmr(ibfmr); 787 struct rvt_lkey_table *rkt; 788 unsigned long flags; 789 int m, n; 790 unsigned long i; 791 u32 ps; 792 struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device); 793 794 i = atomic_long_read(&fmr->mr.refcount.count); 795 if (i > 2) 796 return -EBUSY; 797 798 if (list_len > fmr->mr.max_segs) 799 return -EINVAL; 800 801 rkt = &rdi->lkey_table; 802 spin_lock_irqsave(&rkt->lock, flags); 803 fmr->mr.user_base = iova; 804 fmr->mr.iova = iova; 805 ps = 1 << fmr->mr.page_shift; 806 fmr->mr.length = list_len * ps; 807 m = 0; 808 n = 0; 809 for (i = 0; i < list_len; i++) { 810 fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i]; 811 fmr->mr.map[m]->segs[n].length = ps; 812 trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps); 813 if (++n == RVT_SEGSZ) { 814 m++; 815 n = 0; 816 } 817 } 818 spin_unlock_irqrestore(&rkt->lock, flags); 819 return 0; 820 } 821 822 /** 823 * rvt_unmap_fmr - unmap fast memory regions 824 * @fmr_list: the list of fast memory regions to unmap 825 * 826 * Return: 0 on success. 827 */ 828 int rvt_unmap_fmr(struct list_head *fmr_list) 829 { 830 struct rvt_fmr *fmr; 831 struct rvt_lkey_table *rkt; 832 unsigned long flags; 833 struct rvt_dev_info *rdi; 834 835 list_for_each_entry(fmr, fmr_list, ibfmr.list) { 836 rdi = ib_to_rvt(fmr->ibfmr.device); 837 rkt = &rdi->lkey_table; 838 spin_lock_irqsave(&rkt->lock, flags); 839 fmr->mr.user_base = 0; 840 fmr->mr.iova = 0; 841 fmr->mr.length = 0; 842 spin_unlock_irqrestore(&rkt->lock, flags); 843 } 844 return 0; 845 } 846 847 /** 848 * rvt_dealloc_fmr - deallocate a fast memory region 849 * @ibfmr: the fast memory region to deallocate 850 * 851 * Return: 0 on success. 852 */ 853 int rvt_dealloc_fmr(struct ib_fmr *ibfmr) 854 { 855 struct rvt_fmr *fmr = to_ifmr(ibfmr); 856 int ret = 0; 857 858 rvt_free_lkey(&fmr->mr); 859 rvt_put_mr(&fmr->mr); /* will set completion if last */ 860 ret = rvt_check_refs(&fmr->mr, __func__); 861 if (ret) 862 goto out; 863 rvt_deinit_mregion(&fmr->mr); 864 kfree(fmr); 865 out: 866 return ret; 867 } 868 869 /** 870 * rvt_sge_adjacent - is isge compressible 871 * @last_sge: last outgoing SGE written 872 * @sge: SGE to check 873 * 874 * If adjacent will update last_sge to add length. 875 * 876 * Return: true if isge is adjacent to last sge 877 */ 878 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge, 879 struct ib_sge *sge) 880 { 881 if (last_sge && sge->lkey == last_sge->mr->lkey && 882 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) { 883 if (sge->lkey) { 884 if (unlikely((sge->addr - last_sge->mr->user_base + 885 sge->length > last_sge->mr->length))) 886 return false; /* overrun, caller will catch */ 887 } else { 888 last_sge->length += sge->length; 889 } 890 last_sge->sge_length += sge->length; 891 trace_rvt_sge_adjacent(last_sge, sge); 892 return true; 893 } 894 return false; 895 } 896 897 /** 898 * rvt_lkey_ok - check IB SGE for validity and initialize 899 * @rkt: table containing lkey to check SGE against 900 * @pd: protection domain 901 * @isge: outgoing internal SGE 902 * @last_sge: last outgoing SGE written 903 * @sge: SGE to check 904 * @acc: access flags 905 * 906 * Check the IB SGE for validity and initialize our internal version 907 * of it. 908 * 909 * Increments the reference count when a new sge is stored. 910 * 911 * Return: 0 if compressed, 1 if added , otherwise returns -errno. 912 */ 913 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd, 914 struct rvt_sge *isge, struct rvt_sge *last_sge, 915 struct ib_sge *sge, int acc) 916 { 917 struct rvt_mregion *mr; 918 unsigned n, m; 919 size_t off; 920 921 /* 922 * We use LKEY == zero for kernel virtual addresses 923 * (see rvt_get_dma_mr() and dma_virt_ops). 924 */ 925 if (sge->lkey == 0) { 926 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device); 927 928 if (pd->user) 929 return -EINVAL; 930 if (rvt_sge_adjacent(last_sge, sge)) 931 return 0; 932 rcu_read_lock(); 933 mr = rcu_dereference(dev->dma_mr); 934 if (!mr) 935 goto bail; 936 rvt_get_mr(mr); 937 rcu_read_unlock(); 938 939 isge->mr = mr; 940 isge->vaddr = (void *)sge->addr; 941 isge->length = sge->length; 942 isge->sge_length = sge->length; 943 isge->m = 0; 944 isge->n = 0; 945 goto ok; 946 } 947 if (rvt_sge_adjacent(last_sge, sge)) 948 return 0; 949 rcu_read_lock(); 950 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]); 951 if (!mr) 952 goto bail; 953 rvt_get_mr(mr); 954 if (!READ_ONCE(mr->lkey_published)) 955 goto bail_unref; 956 957 if (unlikely(atomic_read(&mr->lkey_invalid) || 958 mr->lkey != sge->lkey || mr->pd != &pd->ibpd)) 959 goto bail_unref; 960 961 off = sge->addr - mr->user_base; 962 if (unlikely(sge->addr < mr->user_base || 963 off + sge->length > mr->length || 964 (mr->access_flags & acc) != acc)) 965 goto bail_unref; 966 rcu_read_unlock(); 967 968 off += mr->offset; 969 if (mr->page_shift) { 970 /* 971 * page sizes are uniform power of 2 so no loop is necessary 972 * entries_spanned_by_off is the number of times the loop below 973 * would have executed. 974 */ 975 size_t entries_spanned_by_off; 976 977 entries_spanned_by_off = off >> mr->page_shift; 978 off -= (entries_spanned_by_off << mr->page_shift); 979 m = entries_spanned_by_off / RVT_SEGSZ; 980 n = entries_spanned_by_off % RVT_SEGSZ; 981 } else { 982 m = 0; 983 n = 0; 984 while (off >= mr->map[m]->segs[n].length) { 985 off -= mr->map[m]->segs[n].length; 986 n++; 987 if (n >= RVT_SEGSZ) { 988 m++; 989 n = 0; 990 } 991 } 992 } 993 isge->mr = mr; 994 isge->vaddr = mr->map[m]->segs[n].vaddr + off; 995 isge->length = mr->map[m]->segs[n].length - off; 996 isge->sge_length = sge->length; 997 isge->m = m; 998 isge->n = n; 999 ok: 1000 trace_rvt_sge_new(isge, sge); 1001 return 1; 1002 bail_unref: 1003 rvt_put_mr(mr); 1004 bail: 1005 rcu_read_unlock(); 1006 return -EINVAL; 1007 } 1008 EXPORT_SYMBOL(rvt_lkey_ok); 1009 1010 /** 1011 * rvt_rkey_ok - check the IB virtual address, length, and RKEY 1012 * @qp: qp for validation 1013 * @sge: SGE state 1014 * @len: length of data 1015 * @vaddr: virtual address to place data 1016 * @rkey: rkey to check 1017 * @acc: access flags 1018 * 1019 * Return: 1 if successful, otherwise 0. 1020 * 1021 * increments the reference count upon success 1022 */ 1023 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge, 1024 u32 len, u64 vaddr, u32 rkey, int acc) 1025 { 1026 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 1027 struct rvt_lkey_table *rkt = &dev->lkey_table; 1028 struct rvt_mregion *mr; 1029 unsigned n, m; 1030 size_t off; 1031 1032 /* 1033 * We use RKEY == zero for kernel virtual addresses 1034 * (see rvt_get_dma_mr() and dma_virt_ops). 1035 */ 1036 rcu_read_lock(); 1037 if (rkey == 0) { 1038 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd); 1039 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device); 1040 1041 if (pd->user) 1042 goto bail; 1043 mr = rcu_dereference(rdi->dma_mr); 1044 if (!mr) 1045 goto bail; 1046 rvt_get_mr(mr); 1047 rcu_read_unlock(); 1048 1049 sge->mr = mr; 1050 sge->vaddr = (void *)vaddr; 1051 sge->length = len; 1052 sge->sge_length = len; 1053 sge->m = 0; 1054 sge->n = 0; 1055 goto ok; 1056 } 1057 1058 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]); 1059 if (!mr) 1060 goto bail; 1061 rvt_get_mr(mr); 1062 /* insure mr read is before test */ 1063 if (!READ_ONCE(mr->lkey_published)) 1064 goto bail_unref; 1065 if (unlikely(atomic_read(&mr->lkey_invalid) || 1066 mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 1067 goto bail_unref; 1068 1069 off = vaddr - mr->iova; 1070 if (unlikely(vaddr < mr->iova || off + len > mr->length || 1071 (mr->access_flags & acc) == 0)) 1072 goto bail_unref; 1073 rcu_read_unlock(); 1074 1075 off += mr->offset; 1076 if (mr->page_shift) { 1077 /* 1078 * page sizes are uniform power of 2 so no loop is necessary 1079 * entries_spanned_by_off is the number of times the loop below 1080 * would have executed. 1081 */ 1082 size_t entries_spanned_by_off; 1083 1084 entries_spanned_by_off = off >> mr->page_shift; 1085 off -= (entries_spanned_by_off << mr->page_shift); 1086 m = entries_spanned_by_off / RVT_SEGSZ; 1087 n = entries_spanned_by_off % RVT_SEGSZ; 1088 } else { 1089 m = 0; 1090 n = 0; 1091 while (off >= mr->map[m]->segs[n].length) { 1092 off -= mr->map[m]->segs[n].length; 1093 n++; 1094 if (n >= RVT_SEGSZ) { 1095 m++; 1096 n = 0; 1097 } 1098 } 1099 } 1100 sge->mr = mr; 1101 sge->vaddr = mr->map[m]->segs[n].vaddr + off; 1102 sge->length = mr->map[m]->segs[n].length - off; 1103 sge->sge_length = len; 1104 sge->m = m; 1105 sge->n = n; 1106 ok: 1107 return 1; 1108 bail_unref: 1109 rvt_put_mr(mr); 1110 bail: 1111 rcu_read_unlock(); 1112 return 0; 1113 } 1114 EXPORT_SYMBOL(rvt_rkey_ok); 1115