xref: /openbmc/linux/drivers/infiniband/sw/rdmavt/mr.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright(c) 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54 #include "trace.h"
55 
56 /**
57  * rvt_driver_mr_init - Init MR resources per driver
58  * @rdi: rvt dev struct
59  *
60  * Do any intilization needed when a driver registers with rdmavt.
61  *
62  * Return: 0 on success or errno on failure
63  */
64 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65 {
66 	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67 	unsigned lk_tab_size;
68 	int i;
69 
70 	/*
71 	 * The top hfi1_lkey_table_size bits are used to index the
72 	 * table.  The lower 8 bits can be owned by the user (copied from
73 	 * the LKEY).  The remaining bits act as a generation number or tag.
74 	 */
75 	if (!lkey_table_size)
76 		return -EINVAL;
77 
78 	spin_lock_init(&rdi->lkey_table.lock);
79 
80 	/* ensure generation is at least 4 bits */
81 	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82 		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83 			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84 		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85 		lkey_table_size = rdi->dparms.lkey_table_size;
86 	}
87 	rdi->lkey_table.max = 1 << lkey_table_size;
88 	rdi->lkey_table.shift = 32 - lkey_table_size;
89 	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90 	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91 			       vmalloc_node(lk_tab_size, rdi->dparms.node);
92 	if (!rdi->lkey_table.table)
93 		return -ENOMEM;
94 
95 	RCU_INIT_POINTER(rdi->dma_mr, NULL);
96 	for (i = 0; i < rdi->lkey_table.max; i++)
97 		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98 
99 	return 0;
100 }
101 
102 /**
103  *rvt_mr_exit: clean up MR
104  *@rdi: rvt dev structure
105  *
106  * called when drivers have unregistered or perhaps failed to register with us
107  */
108 void rvt_mr_exit(struct rvt_dev_info *rdi)
109 {
110 	if (rdi->dma_mr)
111 		rvt_pr_err(rdi, "DMA MR not null!\n");
112 
113 	vfree(rdi->lkey_table.table);
114 }
115 
116 static void rvt_deinit_mregion(struct rvt_mregion *mr)
117 {
118 	int i = mr->mapsz;
119 
120 	mr->mapsz = 0;
121 	while (i)
122 		kfree(mr->map[--i]);
123 	percpu_ref_exit(&mr->refcount);
124 }
125 
126 static void __rvt_mregion_complete(struct percpu_ref *ref)
127 {
128 	struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
129 					      refcount);
130 
131 	complete(&mr->comp);
132 }
133 
134 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
135 			    int count, unsigned int percpu_flags)
136 {
137 	int m, i = 0;
138 	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
139 
140 	mr->mapsz = 0;
141 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
142 	for (; i < m; i++) {
143 		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
144 					  dev->dparms.node);
145 		if (!mr->map[i])
146 			goto bail;
147 		mr->mapsz++;
148 	}
149 	init_completion(&mr->comp);
150 	/* count returning the ptr to user */
151 	if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
152 			    percpu_flags, GFP_KERNEL))
153 		goto bail;
154 
155 	atomic_set(&mr->lkey_invalid, 0);
156 	mr->pd = pd;
157 	mr->max_segs = count;
158 	return 0;
159 bail:
160 	rvt_deinit_mregion(mr);
161 	return -ENOMEM;
162 }
163 
164 /**
165  * rvt_alloc_lkey - allocate an lkey
166  * @mr: memory region that this lkey protects
167  * @dma_region: 0->normal key, 1->restricted DMA key
168  *
169  * Returns 0 if successful, otherwise returns -errno.
170  *
171  * Increments mr reference count as required.
172  *
173  * Sets the lkey field mr for non-dma regions.
174  *
175  */
176 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
177 {
178 	unsigned long flags;
179 	u32 r;
180 	u32 n;
181 	int ret = 0;
182 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
183 	struct rvt_lkey_table *rkt = &dev->lkey_table;
184 
185 	rvt_get_mr(mr);
186 	spin_lock_irqsave(&rkt->lock, flags);
187 
188 	/* special case for dma_mr lkey == 0 */
189 	if (dma_region) {
190 		struct rvt_mregion *tmr;
191 
192 		tmr = rcu_access_pointer(dev->dma_mr);
193 		if (!tmr) {
194 			mr->lkey_published = 1;
195 			/* Insure published written first */
196 			rcu_assign_pointer(dev->dma_mr, mr);
197 			rvt_get_mr(mr);
198 		}
199 		goto success;
200 	}
201 
202 	/* Find the next available LKEY */
203 	r = rkt->next;
204 	n = r;
205 	for (;;) {
206 		if (!rcu_access_pointer(rkt->table[r]))
207 			break;
208 		r = (r + 1) & (rkt->max - 1);
209 		if (r == n)
210 			goto bail;
211 	}
212 	rkt->next = (r + 1) & (rkt->max - 1);
213 	/*
214 	 * Make sure lkey is never zero which is reserved to indicate an
215 	 * unrestricted LKEY.
216 	 */
217 	rkt->gen++;
218 	/*
219 	 * bits are capped to ensure enough bits for generation number
220 	 */
221 	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
222 		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
223 		 << 8);
224 	if (mr->lkey == 0) {
225 		mr->lkey |= 1 << 8;
226 		rkt->gen++;
227 	}
228 	mr->lkey_published = 1;
229 	/* Insure published written first */
230 	rcu_assign_pointer(rkt->table[r], mr);
231 success:
232 	spin_unlock_irqrestore(&rkt->lock, flags);
233 out:
234 	return ret;
235 bail:
236 	rvt_put_mr(mr);
237 	spin_unlock_irqrestore(&rkt->lock, flags);
238 	ret = -ENOMEM;
239 	goto out;
240 }
241 
242 /**
243  * rvt_free_lkey - free an lkey
244  * @mr: mr to free from tables
245  */
246 static void rvt_free_lkey(struct rvt_mregion *mr)
247 {
248 	unsigned long flags;
249 	u32 lkey = mr->lkey;
250 	u32 r;
251 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
252 	struct rvt_lkey_table *rkt = &dev->lkey_table;
253 	int freed = 0;
254 
255 	spin_lock_irqsave(&rkt->lock, flags);
256 	if (!lkey) {
257 		if (mr->lkey_published) {
258 			mr->lkey_published = 0;
259 			/* insure published is written before pointer */
260 			rcu_assign_pointer(dev->dma_mr, NULL);
261 			rvt_put_mr(mr);
262 		}
263 	} else {
264 		if (!mr->lkey_published)
265 			goto out;
266 		r = lkey >> (32 - dev->dparms.lkey_table_size);
267 		mr->lkey_published = 0;
268 		/* insure published is written before pointer */
269 		rcu_assign_pointer(rkt->table[r], NULL);
270 	}
271 	freed++;
272 out:
273 	spin_unlock_irqrestore(&rkt->lock, flags);
274 	if (freed)
275 		percpu_ref_kill(&mr->refcount);
276 }
277 
278 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
279 {
280 	struct rvt_mr *mr;
281 	int rval = -ENOMEM;
282 	int m;
283 
284 	/* Allocate struct plus pointers to first level page tables. */
285 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
286 	mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
287 	if (!mr)
288 		goto bail;
289 
290 	rval = rvt_init_mregion(&mr->mr, pd, count, 0);
291 	if (rval)
292 		goto bail;
293 	/*
294 	 * ib_reg_phys_mr() will initialize mr->ibmr except for
295 	 * lkey and rkey.
296 	 */
297 	rval = rvt_alloc_lkey(&mr->mr, 0);
298 	if (rval)
299 		goto bail_mregion;
300 	mr->ibmr.lkey = mr->mr.lkey;
301 	mr->ibmr.rkey = mr->mr.lkey;
302 done:
303 	return mr;
304 
305 bail_mregion:
306 	rvt_deinit_mregion(&mr->mr);
307 bail:
308 	kfree(mr);
309 	mr = ERR_PTR(rval);
310 	goto done;
311 }
312 
313 static void __rvt_free_mr(struct rvt_mr *mr)
314 {
315 	rvt_free_lkey(&mr->mr);
316 	rvt_deinit_mregion(&mr->mr);
317 	kfree(mr);
318 }
319 
320 /**
321  * rvt_get_dma_mr - get a DMA memory region
322  * @pd: protection domain for this memory region
323  * @acc: access flags
324  *
325  * Return: the memory region on success, otherwise returns an errno.
326  * Note that all DMA addresses should be created via the functions in
327  * struct dma_virt_ops.
328  */
329 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
330 {
331 	struct rvt_mr *mr;
332 	struct ib_mr *ret;
333 	int rval;
334 
335 	if (ibpd_to_rvtpd(pd)->user)
336 		return ERR_PTR(-EPERM);
337 
338 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
339 	if (!mr) {
340 		ret = ERR_PTR(-ENOMEM);
341 		goto bail;
342 	}
343 
344 	rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
345 	if (rval) {
346 		ret = ERR_PTR(rval);
347 		goto bail;
348 	}
349 
350 	rval = rvt_alloc_lkey(&mr->mr, 1);
351 	if (rval) {
352 		ret = ERR_PTR(rval);
353 		goto bail_mregion;
354 	}
355 
356 	mr->mr.access_flags = acc;
357 	ret = &mr->ibmr;
358 done:
359 	return ret;
360 
361 bail_mregion:
362 	rvt_deinit_mregion(&mr->mr);
363 bail:
364 	kfree(mr);
365 	goto done;
366 }
367 
368 /**
369  * rvt_reg_user_mr - register a userspace memory region
370  * @pd: protection domain for this memory region
371  * @start: starting userspace address
372  * @length: length of region to register
373  * @mr_access_flags: access flags for this memory region
374  * @udata: unused by the driver
375  *
376  * Return: the memory region on success, otherwise returns an errno.
377  */
378 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
379 			      u64 virt_addr, int mr_access_flags,
380 			      struct ib_udata *udata)
381 {
382 	struct rvt_mr *mr;
383 	struct ib_umem *umem;
384 	struct scatterlist *sg;
385 	int n, m, entry;
386 	struct ib_mr *ret;
387 
388 	if (length == 0)
389 		return ERR_PTR(-EINVAL);
390 
391 	umem = ib_umem_get(pd->uobject->context, start, length,
392 			   mr_access_flags, 0);
393 	if (IS_ERR(umem))
394 		return (void *)umem;
395 
396 	n = umem->nmap;
397 
398 	mr = __rvt_alloc_mr(n, pd);
399 	if (IS_ERR(mr)) {
400 		ret = (struct ib_mr *)mr;
401 		goto bail_umem;
402 	}
403 
404 	mr->mr.user_base = start;
405 	mr->mr.iova = virt_addr;
406 	mr->mr.length = length;
407 	mr->mr.offset = ib_umem_offset(umem);
408 	mr->mr.access_flags = mr_access_flags;
409 	mr->umem = umem;
410 
411 	mr->mr.page_shift = umem->page_shift;
412 	m = 0;
413 	n = 0;
414 	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
415 		void *vaddr;
416 
417 		vaddr = page_address(sg_page(sg));
418 		if (!vaddr) {
419 			ret = ERR_PTR(-EINVAL);
420 			goto bail_inval;
421 		}
422 		mr->mr.map[m]->segs[n].vaddr = vaddr;
423 		mr->mr.map[m]->segs[n].length = BIT(umem->page_shift);
424 		trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr,
425 				      BIT(umem->page_shift));
426 		n++;
427 		if (n == RVT_SEGSZ) {
428 			m++;
429 			n = 0;
430 		}
431 	}
432 	return &mr->ibmr;
433 
434 bail_inval:
435 	__rvt_free_mr(mr);
436 
437 bail_umem:
438 	ib_umem_release(umem);
439 
440 	return ret;
441 }
442 
443 /**
444  * rvt_dereg_clean_qp_cb - callback from iterator
445  * @qp - the qp
446  * @v - the mregion (as u64)
447  *
448  * This routine fields the callback for all QPs and
449  * for QPs in the same PD as the MR will call the
450  * rvt_qp_mr_clean() to potentially cleanup references.
451  */
452 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
453 {
454 	struct rvt_mregion *mr = (struct rvt_mregion *)v;
455 
456 	/* skip PDs that are not ours */
457 	if (mr->pd != qp->ibqp.pd)
458 		return;
459 	rvt_qp_mr_clean(qp, mr->lkey);
460 }
461 
462 /**
463  * rvt_dereg_clean_qps - find QPs for reference cleanup
464  * @mr - the MR that is being deregistered
465  *
466  * This routine iterates RC QPs looking for references
467  * to the lkey noted in mr.
468  */
469 static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
470 {
471 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
472 
473 	rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
474 }
475 
476 /**
477  * rvt_check_refs - check references
478  * @mr - the megion
479  * @t - the caller identification
480  *
481  * This routine checks MRs holding a reference during
482  * when being de-registered.
483  *
484  * If the count is non-zero, the code calls a clean routine then
485  * waits for the timeout for the count to zero.
486  */
487 static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
488 {
489 	unsigned long timeout;
490 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
491 
492 	if (mr->lkey) {
493 		/* avoid dma mr */
494 		rvt_dereg_clean_qps(mr);
495 		/* @mr was indexed on rcu protected @lkey_table */
496 		synchronize_rcu();
497 	}
498 
499 	timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
500 	if (!timeout) {
501 		rvt_pr_err(rdi,
502 			   "%s timeout mr %p pd %p lkey %x refcount %ld\n",
503 			   t, mr, mr->pd, mr->lkey,
504 			   atomic_long_read(&mr->refcount.count));
505 		rvt_get_mr(mr);
506 		return -EBUSY;
507 	}
508 	return 0;
509 }
510 
511 /**
512  * rvt_mr_has_lkey - is MR
513  * @mr - the mregion
514  * @lkey - the lkey
515  */
516 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
517 {
518 	return mr && lkey == mr->lkey;
519 }
520 
521 /**
522  * rvt_ss_has_lkey - is mr in sge tests
523  * @ss - the sge state
524  * @lkey
525  *
526  * This code tests for an MR in the indicated
527  * sge state.
528  */
529 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
530 {
531 	int i;
532 	bool rval = false;
533 
534 	if (!ss->num_sge)
535 		return rval;
536 	/* first one */
537 	rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
538 	/* any others */
539 	for (i = 0; !rval && i < ss->num_sge - 1; i++)
540 		rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
541 	return rval;
542 }
543 
544 /**
545  * rvt_dereg_mr - unregister and free a memory region
546  * @ibmr: the memory region to free
547  *
548  *
549  * Note that this is called to free MRs created by rvt_get_dma_mr()
550  * or rvt_reg_user_mr().
551  *
552  * Returns 0 on success.
553  */
554 int rvt_dereg_mr(struct ib_mr *ibmr)
555 {
556 	struct rvt_mr *mr = to_imr(ibmr);
557 	int ret;
558 
559 	rvt_free_lkey(&mr->mr);
560 
561 	rvt_put_mr(&mr->mr); /* will set completion if last */
562 	ret = rvt_check_refs(&mr->mr, __func__);
563 	if (ret)
564 		goto out;
565 	rvt_deinit_mregion(&mr->mr);
566 	if (mr->umem)
567 		ib_umem_release(mr->umem);
568 	kfree(mr);
569 out:
570 	return ret;
571 }
572 
573 /**
574  * rvt_alloc_mr - Allocate a memory region usable with the
575  * @pd: protection domain for this memory region
576  * @mr_type: mem region type
577  * @max_num_sg: Max number of segments allowed
578  *
579  * Return: the memory region on success, otherwise return an errno.
580  */
581 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
582 			   enum ib_mr_type mr_type,
583 			   u32 max_num_sg)
584 {
585 	struct rvt_mr *mr;
586 
587 	if (mr_type != IB_MR_TYPE_MEM_REG)
588 		return ERR_PTR(-EINVAL);
589 
590 	mr = __rvt_alloc_mr(max_num_sg, pd);
591 	if (IS_ERR(mr))
592 		return (struct ib_mr *)mr;
593 
594 	return &mr->ibmr;
595 }
596 
597 /**
598  * rvt_set_page - page assignment function called by ib_sg_to_pages
599  * @ibmr: memory region
600  * @addr: dma address of mapped page
601  *
602  * Return: 0 on success
603  */
604 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
605 {
606 	struct rvt_mr *mr = to_imr(ibmr);
607 	u32 ps = 1 << mr->mr.page_shift;
608 	u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
609 	int m, n;
610 
611 	if (unlikely(mapped_segs == mr->mr.max_segs))
612 		return -ENOMEM;
613 
614 	if (mr->mr.length == 0) {
615 		mr->mr.user_base = addr;
616 		mr->mr.iova = addr;
617 	}
618 
619 	m = mapped_segs / RVT_SEGSZ;
620 	n = mapped_segs % RVT_SEGSZ;
621 	mr->mr.map[m]->segs[n].vaddr = (void *)addr;
622 	mr->mr.map[m]->segs[n].length = ps;
623 	trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
624 	mr->mr.length += ps;
625 
626 	return 0;
627 }
628 
629 /**
630  * rvt_map_mr_sg - map sg list and set it the memory region
631  * @ibmr: memory region
632  * @sg: dma mapped scatterlist
633  * @sg_nents: number of entries in sg
634  * @sg_offset: offset in bytes into sg
635  *
636  * Return: number of sg elements mapped to the memory region
637  */
638 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
639 		  int sg_nents, unsigned int *sg_offset)
640 {
641 	struct rvt_mr *mr = to_imr(ibmr);
642 
643 	mr->mr.length = 0;
644 	mr->mr.page_shift = PAGE_SHIFT;
645 	return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
646 			      rvt_set_page);
647 }
648 
649 /**
650  * rvt_fast_reg_mr - fast register physical MR
651  * @qp: the queue pair where the work request comes from
652  * @ibmr: the memory region to be registered
653  * @key: updated key for this memory region
654  * @access: access flags for this memory region
655  *
656  * Returns 0 on success.
657  */
658 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
659 		    int access)
660 {
661 	struct rvt_mr *mr = to_imr(ibmr);
662 
663 	if (qp->ibqp.pd != mr->mr.pd)
664 		return -EACCES;
665 
666 	/* not applicable to dma MR or user MR */
667 	if (!mr->mr.lkey || mr->umem)
668 		return -EINVAL;
669 
670 	if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
671 		return -EINVAL;
672 
673 	ibmr->lkey = key;
674 	ibmr->rkey = key;
675 	mr->mr.lkey = key;
676 	mr->mr.access_flags = access;
677 	atomic_set(&mr->mr.lkey_invalid, 0);
678 
679 	return 0;
680 }
681 EXPORT_SYMBOL(rvt_fast_reg_mr);
682 
683 /**
684  * rvt_invalidate_rkey - invalidate an MR rkey
685  * @qp: queue pair associated with the invalidate op
686  * @rkey: rkey to invalidate
687  *
688  * Returns 0 on success.
689  */
690 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
691 {
692 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
693 	struct rvt_lkey_table *rkt = &dev->lkey_table;
694 	struct rvt_mregion *mr;
695 
696 	if (rkey == 0)
697 		return -EINVAL;
698 
699 	rcu_read_lock();
700 	mr = rcu_dereference(
701 		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
702 	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
703 		goto bail;
704 
705 	atomic_set(&mr->lkey_invalid, 1);
706 	rcu_read_unlock();
707 	return 0;
708 
709 bail:
710 	rcu_read_unlock();
711 	return -EINVAL;
712 }
713 EXPORT_SYMBOL(rvt_invalidate_rkey);
714 
715 /**
716  * rvt_alloc_fmr - allocate a fast memory region
717  * @pd: the protection domain for this memory region
718  * @mr_access_flags: access flags for this memory region
719  * @fmr_attr: fast memory region attributes
720  *
721  * Return: the memory region on success, otherwise returns an errno.
722  */
723 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
724 			     struct ib_fmr_attr *fmr_attr)
725 {
726 	struct rvt_fmr *fmr;
727 	int m;
728 	struct ib_fmr *ret;
729 	int rval = -ENOMEM;
730 
731 	/* Allocate struct plus pointers to first level page tables. */
732 	m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
733 	fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL);
734 	if (!fmr)
735 		goto bail;
736 
737 	rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
738 				PERCPU_REF_INIT_ATOMIC);
739 	if (rval)
740 		goto bail;
741 
742 	/*
743 	 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
744 	 * rkey.
745 	 */
746 	rval = rvt_alloc_lkey(&fmr->mr, 0);
747 	if (rval)
748 		goto bail_mregion;
749 	fmr->ibfmr.rkey = fmr->mr.lkey;
750 	fmr->ibfmr.lkey = fmr->mr.lkey;
751 	/*
752 	 * Resources are allocated but no valid mapping (RKEY can't be
753 	 * used).
754 	 */
755 	fmr->mr.access_flags = mr_access_flags;
756 	fmr->mr.max_segs = fmr_attr->max_pages;
757 	fmr->mr.page_shift = fmr_attr->page_shift;
758 
759 	ret = &fmr->ibfmr;
760 done:
761 	return ret;
762 
763 bail_mregion:
764 	rvt_deinit_mregion(&fmr->mr);
765 bail:
766 	kfree(fmr);
767 	ret = ERR_PTR(rval);
768 	goto done;
769 }
770 
771 /**
772  * rvt_map_phys_fmr - set up a fast memory region
773  * @ibfmr: the fast memory region to set up
774  * @page_list: the list of pages to associate with the fast memory region
775  * @list_len: the number of pages to associate with the fast memory region
776  * @iova: the virtual address of the start of the fast memory region
777  *
778  * This may be called from interrupt context.
779  *
780  * Return: 0 on success
781  */
782 
783 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
784 		     int list_len, u64 iova)
785 {
786 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
787 	struct rvt_lkey_table *rkt;
788 	unsigned long flags;
789 	int m, n;
790 	unsigned long i;
791 	u32 ps;
792 	struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
793 
794 	i = atomic_long_read(&fmr->mr.refcount.count);
795 	if (i > 2)
796 		return -EBUSY;
797 
798 	if (list_len > fmr->mr.max_segs)
799 		return -EINVAL;
800 
801 	rkt = &rdi->lkey_table;
802 	spin_lock_irqsave(&rkt->lock, flags);
803 	fmr->mr.user_base = iova;
804 	fmr->mr.iova = iova;
805 	ps = 1 << fmr->mr.page_shift;
806 	fmr->mr.length = list_len * ps;
807 	m = 0;
808 	n = 0;
809 	for (i = 0; i < list_len; i++) {
810 		fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
811 		fmr->mr.map[m]->segs[n].length = ps;
812 		trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
813 		if (++n == RVT_SEGSZ) {
814 			m++;
815 			n = 0;
816 		}
817 	}
818 	spin_unlock_irqrestore(&rkt->lock, flags);
819 	return 0;
820 }
821 
822 /**
823  * rvt_unmap_fmr - unmap fast memory regions
824  * @fmr_list: the list of fast memory regions to unmap
825  *
826  * Return: 0 on success.
827  */
828 int rvt_unmap_fmr(struct list_head *fmr_list)
829 {
830 	struct rvt_fmr *fmr;
831 	struct rvt_lkey_table *rkt;
832 	unsigned long flags;
833 	struct rvt_dev_info *rdi;
834 
835 	list_for_each_entry(fmr, fmr_list, ibfmr.list) {
836 		rdi = ib_to_rvt(fmr->ibfmr.device);
837 		rkt = &rdi->lkey_table;
838 		spin_lock_irqsave(&rkt->lock, flags);
839 		fmr->mr.user_base = 0;
840 		fmr->mr.iova = 0;
841 		fmr->mr.length = 0;
842 		spin_unlock_irqrestore(&rkt->lock, flags);
843 	}
844 	return 0;
845 }
846 
847 /**
848  * rvt_dealloc_fmr - deallocate a fast memory region
849  * @ibfmr: the fast memory region to deallocate
850  *
851  * Return: 0 on success.
852  */
853 int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
854 {
855 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
856 	int ret = 0;
857 
858 	rvt_free_lkey(&fmr->mr);
859 	rvt_put_mr(&fmr->mr); /* will set completion if last */
860 	ret = rvt_check_refs(&fmr->mr, __func__);
861 	if (ret)
862 		goto out;
863 	rvt_deinit_mregion(&fmr->mr);
864 	kfree(fmr);
865 out:
866 	return ret;
867 }
868 
869 /**
870  * rvt_sge_adjacent - is isge compressible
871  * @last_sge: last outgoing SGE written
872  * @sge: SGE to check
873  *
874  * If adjacent will update last_sge to add length.
875  *
876  * Return: true if isge is adjacent to last sge
877  */
878 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
879 				    struct ib_sge *sge)
880 {
881 	if (last_sge && sge->lkey == last_sge->mr->lkey &&
882 	    ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
883 		if (sge->lkey) {
884 			if (unlikely((sge->addr - last_sge->mr->user_base +
885 			      sge->length > last_sge->mr->length)))
886 				return false; /* overrun, caller will catch */
887 		} else {
888 			last_sge->length += sge->length;
889 		}
890 		last_sge->sge_length += sge->length;
891 		trace_rvt_sge_adjacent(last_sge, sge);
892 		return true;
893 	}
894 	return false;
895 }
896 
897 /**
898  * rvt_lkey_ok - check IB SGE for validity and initialize
899  * @rkt: table containing lkey to check SGE against
900  * @pd: protection domain
901  * @isge: outgoing internal SGE
902  * @last_sge: last outgoing SGE written
903  * @sge: SGE to check
904  * @acc: access flags
905  *
906  * Check the IB SGE for validity and initialize our internal version
907  * of it.
908  *
909  * Increments the reference count when a new sge is stored.
910  *
911  * Return: 0 if compressed, 1 if added , otherwise returns -errno.
912  */
913 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
914 		struct rvt_sge *isge, struct rvt_sge *last_sge,
915 		struct ib_sge *sge, int acc)
916 {
917 	struct rvt_mregion *mr;
918 	unsigned n, m;
919 	size_t off;
920 
921 	/*
922 	 * We use LKEY == zero for kernel virtual addresses
923 	 * (see rvt_get_dma_mr() and dma_virt_ops).
924 	 */
925 	if (sge->lkey == 0) {
926 		struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
927 
928 		if (pd->user)
929 			return -EINVAL;
930 		if (rvt_sge_adjacent(last_sge, sge))
931 			return 0;
932 		rcu_read_lock();
933 		mr = rcu_dereference(dev->dma_mr);
934 		if (!mr)
935 			goto bail;
936 		rvt_get_mr(mr);
937 		rcu_read_unlock();
938 
939 		isge->mr = mr;
940 		isge->vaddr = (void *)sge->addr;
941 		isge->length = sge->length;
942 		isge->sge_length = sge->length;
943 		isge->m = 0;
944 		isge->n = 0;
945 		goto ok;
946 	}
947 	if (rvt_sge_adjacent(last_sge, sge))
948 		return 0;
949 	rcu_read_lock();
950 	mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
951 	if (!mr)
952 		goto bail;
953 	rvt_get_mr(mr);
954 	if (!READ_ONCE(mr->lkey_published))
955 		goto bail_unref;
956 
957 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
958 		     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
959 		goto bail_unref;
960 
961 	off = sge->addr - mr->user_base;
962 	if (unlikely(sge->addr < mr->user_base ||
963 		     off + sge->length > mr->length ||
964 		     (mr->access_flags & acc) != acc))
965 		goto bail_unref;
966 	rcu_read_unlock();
967 
968 	off += mr->offset;
969 	if (mr->page_shift) {
970 		/*
971 		 * page sizes are uniform power of 2 so no loop is necessary
972 		 * entries_spanned_by_off is the number of times the loop below
973 		 * would have executed.
974 		*/
975 		size_t entries_spanned_by_off;
976 
977 		entries_spanned_by_off = off >> mr->page_shift;
978 		off -= (entries_spanned_by_off << mr->page_shift);
979 		m = entries_spanned_by_off / RVT_SEGSZ;
980 		n = entries_spanned_by_off % RVT_SEGSZ;
981 	} else {
982 		m = 0;
983 		n = 0;
984 		while (off >= mr->map[m]->segs[n].length) {
985 			off -= mr->map[m]->segs[n].length;
986 			n++;
987 			if (n >= RVT_SEGSZ) {
988 				m++;
989 				n = 0;
990 			}
991 		}
992 	}
993 	isge->mr = mr;
994 	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
995 	isge->length = mr->map[m]->segs[n].length - off;
996 	isge->sge_length = sge->length;
997 	isge->m = m;
998 	isge->n = n;
999 ok:
1000 	trace_rvt_sge_new(isge, sge);
1001 	return 1;
1002 bail_unref:
1003 	rvt_put_mr(mr);
1004 bail:
1005 	rcu_read_unlock();
1006 	return -EINVAL;
1007 }
1008 EXPORT_SYMBOL(rvt_lkey_ok);
1009 
1010 /**
1011  * rvt_rkey_ok - check the IB virtual address, length, and RKEY
1012  * @qp: qp for validation
1013  * @sge: SGE state
1014  * @len: length of data
1015  * @vaddr: virtual address to place data
1016  * @rkey: rkey to check
1017  * @acc: access flags
1018  *
1019  * Return: 1 if successful, otherwise 0.
1020  *
1021  * increments the reference count upon success
1022  */
1023 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
1024 		u32 len, u64 vaddr, u32 rkey, int acc)
1025 {
1026 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
1027 	struct rvt_lkey_table *rkt = &dev->lkey_table;
1028 	struct rvt_mregion *mr;
1029 	unsigned n, m;
1030 	size_t off;
1031 
1032 	/*
1033 	 * We use RKEY == zero for kernel virtual addresses
1034 	 * (see rvt_get_dma_mr() and dma_virt_ops).
1035 	 */
1036 	rcu_read_lock();
1037 	if (rkey == 0) {
1038 		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
1039 		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
1040 
1041 		if (pd->user)
1042 			goto bail;
1043 		mr = rcu_dereference(rdi->dma_mr);
1044 		if (!mr)
1045 			goto bail;
1046 		rvt_get_mr(mr);
1047 		rcu_read_unlock();
1048 
1049 		sge->mr = mr;
1050 		sge->vaddr = (void *)vaddr;
1051 		sge->length = len;
1052 		sge->sge_length = len;
1053 		sge->m = 0;
1054 		sge->n = 0;
1055 		goto ok;
1056 	}
1057 
1058 	mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
1059 	if (!mr)
1060 		goto bail;
1061 	rvt_get_mr(mr);
1062 	/* insure mr read is before test */
1063 	if (!READ_ONCE(mr->lkey_published))
1064 		goto bail_unref;
1065 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
1066 		     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
1067 		goto bail_unref;
1068 
1069 	off = vaddr - mr->iova;
1070 	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
1071 		     (mr->access_flags & acc) == 0))
1072 		goto bail_unref;
1073 	rcu_read_unlock();
1074 
1075 	off += mr->offset;
1076 	if (mr->page_shift) {
1077 		/*
1078 		 * page sizes are uniform power of 2 so no loop is necessary
1079 		 * entries_spanned_by_off is the number of times the loop below
1080 		 * would have executed.
1081 		*/
1082 		size_t entries_spanned_by_off;
1083 
1084 		entries_spanned_by_off = off >> mr->page_shift;
1085 		off -= (entries_spanned_by_off << mr->page_shift);
1086 		m = entries_spanned_by_off / RVT_SEGSZ;
1087 		n = entries_spanned_by_off % RVT_SEGSZ;
1088 	} else {
1089 		m = 0;
1090 		n = 0;
1091 		while (off >= mr->map[m]->segs[n].length) {
1092 			off -= mr->map[m]->segs[n].length;
1093 			n++;
1094 			if (n >= RVT_SEGSZ) {
1095 				m++;
1096 				n = 0;
1097 			}
1098 		}
1099 	}
1100 	sge->mr = mr;
1101 	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
1102 	sge->length = mr->map[m]->segs[n].length - off;
1103 	sge->sge_length = len;
1104 	sge->m = m;
1105 	sge->n = n;
1106 ok:
1107 	return 1;
1108 bail_unref:
1109 	rvt_put_mr(mr);
1110 bail:
1111 	rcu_read_unlock();
1112 	return 0;
1113 }
1114 EXPORT_SYMBOL(rvt_rkey_ok);
1115