1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 /* 3 * Copyright(c) 2016 - 2018 Intel Corporation. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include "cq.h" 9 #include "vt.h" 10 #include "trace.h" 11 12 static struct workqueue_struct *comp_vector_wq; 13 14 /** 15 * rvt_cq_enter - add a new entry to the completion queue 16 * @cq: completion queue 17 * @entry: work completion entry to add 18 * @solicited: true if @entry is solicited 19 * 20 * This may be called with qp->s_lock held. 21 * 22 * Return: return true on success, else return 23 * false if cq is full. 24 */ 25 bool rvt_cq_enter(struct rvt_cq *cq, struct ib_wc *entry, bool solicited) 26 { 27 struct ib_uverbs_wc *uqueue = NULL; 28 struct ib_wc *kqueue = NULL; 29 struct rvt_cq_wc *u_wc = NULL; 30 struct rvt_k_cq_wc *k_wc = NULL; 31 unsigned long flags; 32 u32 head; 33 u32 next; 34 u32 tail; 35 36 spin_lock_irqsave(&cq->lock, flags); 37 38 if (cq->ip) { 39 u_wc = cq->queue; 40 uqueue = &u_wc->uqueue[0]; 41 head = RDMA_READ_UAPI_ATOMIC(u_wc->head); 42 tail = RDMA_READ_UAPI_ATOMIC(u_wc->tail); 43 } else { 44 k_wc = cq->kqueue; 45 kqueue = &k_wc->kqueue[0]; 46 head = k_wc->head; 47 tail = k_wc->tail; 48 } 49 50 /* 51 * Note that the head pointer might be writable by 52 * user processes.Take care to verify it is a sane value. 53 */ 54 if (head >= (unsigned)cq->ibcq.cqe) { 55 head = cq->ibcq.cqe; 56 next = 0; 57 } else { 58 next = head + 1; 59 } 60 61 if (unlikely(next == tail || cq->cq_full)) { 62 struct rvt_dev_info *rdi = cq->rdi; 63 64 if (!cq->cq_full) 65 rvt_pr_err_ratelimited(rdi, "CQ is full!\n"); 66 cq->cq_full = true; 67 spin_unlock_irqrestore(&cq->lock, flags); 68 if (cq->ibcq.event_handler) { 69 struct ib_event ev; 70 71 ev.device = cq->ibcq.device; 72 ev.element.cq = &cq->ibcq; 73 ev.event = IB_EVENT_CQ_ERR; 74 cq->ibcq.event_handler(&ev, cq->ibcq.cq_context); 75 } 76 return false; 77 } 78 trace_rvt_cq_enter(cq, entry, head); 79 if (uqueue) { 80 uqueue[head].wr_id = entry->wr_id; 81 uqueue[head].status = entry->status; 82 uqueue[head].opcode = entry->opcode; 83 uqueue[head].vendor_err = entry->vendor_err; 84 uqueue[head].byte_len = entry->byte_len; 85 uqueue[head].ex.imm_data = entry->ex.imm_data; 86 uqueue[head].qp_num = entry->qp->qp_num; 87 uqueue[head].src_qp = entry->src_qp; 88 uqueue[head].wc_flags = entry->wc_flags; 89 uqueue[head].pkey_index = entry->pkey_index; 90 uqueue[head].slid = ib_lid_cpu16(entry->slid); 91 uqueue[head].sl = entry->sl; 92 uqueue[head].dlid_path_bits = entry->dlid_path_bits; 93 uqueue[head].port_num = entry->port_num; 94 /* Make sure entry is written before the head index. */ 95 RDMA_WRITE_UAPI_ATOMIC(u_wc->head, next); 96 } else { 97 kqueue[head] = *entry; 98 k_wc->head = next; 99 } 100 101 if (cq->notify == IB_CQ_NEXT_COMP || 102 (cq->notify == IB_CQ_SOLICITED && 103 (solicited || entry->status != IB_WC_SUCCESS))) { 104 /* 105 * This will cause send_complete() to be called in 106 * another thread. 107 */ 108 cq->notify = RVT_CQ_NONE; 109 cq->triggered++; 110 queue_work_on(cq->comp_vector_cpu, comp_vector_wq, 111 &cq->comptask); 112 } 113 114 spin_unlock_irqrestore(&cq->lock, flags); 115 return true; 116 } 117 EXPORT_SYMBOL(rvt_cq_enter); 118 119 static void send_complete(struct work_struct *work) 120 { 121 struct rvt_cq *cq = container_of(work, struct rvt_cq, comptask); 122 123 /* 124 * The completion handler will most likely rearm the notification 125 * and poll for all pending entries. If a new completion entry 126 * is added while we are in this routine, queue_work() 127 * won't call us again until we return so we check triggered to 128 * see if we need to call the handler again. 129 */ 130 for (;;) { 131 u8 triggered = cq->triggered; 132 133 /* 134 * IPoIB connected mode assumes the callback is from a 135 * soft IRQ. We simulate this by blocking "bottom halves". 136 * See the implementation for ipoib_cm_handle_tx_wc(), 137 * netif_tx_lock_bh() and netif_tx_lock(). 138 */ 139 local_bh_disable(); 140 cq->ibcq.comp_handler(&cq->ibcq, cq->ibcq.cq_context); 141 local_bh_enable(); 142 143 if (cq->triggered == triggered) 144 return; 145 } 146 } 147 148 /** 149 * rvt_create_cq - create a completion queue 150 * @ibcq: Allocated CQ 151 * @attr: creation attributes 152 * @udata: user data for libibverbs.so 153 * 154 * Called by ib_create_cq() in the generic verbs code. 155 * 156 * Return: 0 on success 157 */ 158 int rvt_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr, 159 struct ib_udata *udata) 160 { 161 struct ib_device *ibdev = ibcq->device; 162 struct rvt_dev_info *rdi = ib_to_rvt(ibdev); 163 struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); 164 struct rvt_cq_wc *u_wc = NULL; 165 struct rvt_k_cq_wc *k_wc = NULL; 166 u32 sz; 167 unsigned int entries = attr->cqe; 168 int comp_vector = attr->comp_vector; 169 int err; 170 171 if (attr->flags) 172 return -EOPNOTSUPP; 173 174 if (entries < 1 || entries > rdi->dparms.props.max_cqe) 175 return -EINVAL; 176 177 if (comp_vector < 0) 178 comp_vector = 0; 179 180 comp_vector = comp_vector % rdi->ibdev.num_comp_vectors; 181 182 /* 183 * Allocate the completion queue entries and head/tail pointers. 184 * This is allocated separately so that it can be resized and 185 * also mapped into user space. 186 * We need to use vmalloc() in order to support mmap and large 187 * numbers of entries. 188 */ 189 if (udata && udata->outlen >= sizeof(__u64)) { 190 sz = sizeof(struct ib_uverbs_wc) * (entries + 1); 191 sz += sizeof(*u_wc); 192 u_wc = vmalloc_user(sz); 193 if (!u_wc) 194 return -ENOMEM; 195 } else { 196 sz = sizeof(struct ib_wc) * (entries + 1); 197 sz += sizeof(*k_wc); 198 k_wc = vzalloc_node(sz, rdi->dparms.node); 199 if (!k_wc) 200 return -ENOMEM; 201 } 202 203 /* 204 * Return the address of the WC as the offset to mmap. 205 * See rvt_mmap() for details. 206 */ 207 if (udata && udata->outlen >= sizeof(__u64)) { 208 cq->ip = rvt_create_mmap_info(rdi, sz, udata, u_wc); 209 if (IS_ERR(cq->ip)) { 210 err = PTR_ERR(cq->ip); 211 goto bail_wc; 212 } 213 214 err = ib_copy_to_udata(udata, &cq->ip->offset, 215 sizeof(cq->ip->offset)); 216 if (err) 217 goto bail_ip; 218 } 219 220 spin_lock_irq(&rdi->n_cqs_lock); 221 if (rdi->n_cqs_allocated == rdi->dparms.props.max_cq) { 222 spin_unlock_irq(&rdi->n_cqs_lock); 223 err = -ENOMEM; 224 goto bail_ip; 225 } 226 227 rdi->n_cqs_allocated++; 228 spin_unlock_irq(&rdi->n_cqs_lock); 229 230 if (cq->ip) { 231 spin_lock_irq(&rdi->pending_lock); 232 list_add(&cq->ip->pending_mmaps, &rdi->pending_mmaps); 233 spin_unlock_irq(&rdi->pending_lock); 234 } 235 236 /* 237 * ib_create_cq() will initialize cq->ibcq except for cq->ibcq.cqe. 238 * The number of entries should be >= the number requested or return 239 * an error. 240 */ 241 cq->rdi = rdi; 242 if (rdi->driver_f.comp_vect_cpu_lookup) 243 cq->comp_vector_cpu = 244 rdi->driver_f.comp_vect_cpu_lookup(rdi, comp_vector); 245 else 246 cq->comp_vector_cpu = 247 cpumask_first(cpumask_of_node(rdi->dparms.node)); 248 249 cq->ibcq.cqe = entries; 250 cq->notify = RVT_CQ_NONE; 251 spin_lock_init(&cq->lock); 252 INIT_WORK(&cq->comptask, send_complete); 253 if (u_wc) 254 cq->queue = u_wc; 255 else 256 cq->kqueue = k_wc; 257 258 trace_rvt_create_cq(cq, attr); 259 return 0; 260 261 bail_ip: 262 kfree(cq->ip); 263 bail_wc: 264 vfree(u_wc); 265 vfree(k_wc); 266 return err; 267 } 268 269 /** 270 * rvt_destroy_cq - destroy a completion queue 271 * @ibcq: the completion queue to destroy. 272 * @udata: user data or NULL for kernel object 273 * 274 * Called by ib_destroy_cq() in the generic verbs code. 275 */ 276 int rvt_destroy_cq(struct ib_cq *ibcq, struct ib_udata *udata) 277 { 278 struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); 279 struct rvt_dev_info *rdi = cq->rdi; 280 281 flush_work(&cq->comptask); 282 spin_lock_irq(&rdi->n_cqs_lock); 283 rdi->n_cqs_allocated--; 284 spin_unlock_irq(&rdi->n_cqs_lock); 285 if (cq->ip) 286 kref_put(&cq->ip->ref, rvt_release_mmap_info); 287 else 288 vfree(cq->kqueue); 289 return 0; 290 } 291 292 /** 293 * rvt_req_notify_cq - change the notification type for a completion queue 294 * @ibcq: the completion queue 295 * @notify_flags: the type of notification to request 296 * 297 * This may be called from interrupt context. Also called by 298 * ib_req_notify_cq() in the generic verbs code. 299 * 300 * Return: 0 for success. 301 */ 302 int rvt_req_notify_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags notify_flags) 303 { 304 struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); 305 unsigned long flags; 306 int ret = 0; 307 308 spin_lock_irqsave(&cq->lock, flags); 309 /* 310 * Don't change IB_CQ_NEXT_COMP to IB_CQ_SOLICITED but allow 311 * any other transitions (see C11-31 and C11-32 in ch. 11.4.2.2). 312 */ 313 if (cq->notify != IB_CQ_NEXT_COMP) 314 cq->notify = notify_flags & IB_CQ_SOLICITED_MASK; 315 316 if (notify_flags & IB_CQ_REPORT_MISSED_EVENTS) { 317 if (cq->queue) { 318 if (RDMA_READ_UAPI_ATOMIC(cq->queue->head) != 319 RDMA_READ_UAPI_ATOMIC(cq->queue->tail)) 320 ret = 1; 321 } else { 322 if (cq->kqueue->head != cq->kqueue->tail) 323 ret = 1; 324 } 325 } 326 327 spin_unlock_irqrestore(&cq->lock, flags); 328 329 return ret; 330 } 331 332 /* 333 * rvt_resize_cq - change the size of the CQ 334 * @ibcq: the completion queue 335 * 336 * Return: 0 for success. 337 */ 338 int rvt_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata) 339 { 340 struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); 341 u32 head, tail, n; 342 int ret; 343 u32 sz; 344 struct rvt_dev_info *rdi = cq->rdi; 345 struct rvt_cq_wc *u_wc = NULL; 346 struct rvt_cq_wc *old_u_wc = NULL; 347 struct rvt_k_cq_wc *k_wc = NULL; 348 struct rvt_k_cq_wc *old_k_wc = NULL; 349 350 if (cqe < 1 || cqe > rdi->dparms.props.max_cqe) 351 return -EINVAL; 352 353 /* 354 * Need to use vmalloc() if we want to support large #s of entries. 355 */ 356 if (udata && udata->outlen >= sizeof(__u64)) { 357 sz = sizeof(struct ib_uverbs_wc) * (cqe + 1); 358 sz += sizeof(*u_wc); 359 u_wc = vmalloc_user(sz); 360 if (!u_wc) 361 return -ENOMEM; 362 } else { 363 sz = sizeof(struct ib_wc) * (cqe + 1); 364 sz += sizeof(*k_wc); 365 k_wc = vzalloc_node(sz, rdi->dparms.node); 366 if (!k_wc) 367 return -ENOMEM; 368 } 369 /* Check that we can write the offset to mmap. */ 370 if (udata && udata->outlen >= sizeof(__u64)) { 371 __u64 offset = 0; 372 373 ret = ib_copy_to_udata(udata, &offset, sizeof(offset)); 374 if (ret) 375 goto bail_free; 376 } 377 378 spin_lock_irq(&cq->lock); 379 /* 380 * Make sure head and tail are sane since they 381 * might be user writable. 382 */ 383 if (u_wc) { 384 old_u_wc = cq->queue; 385 head = RDMA_READ_UAPI_ATOMIC(old_u_wc->head); 386 tail = RDMA_READ_UAPI_ATOMIC(old_u_wc->tail); 387 } else { 388 old_k_wc = cq->kqueue; 389 head = old_k_wc->head; 390 tail = old_k_wc->tail; 391 } 392 393 if (head > (u32)cq->ibcq.cqe) 394 head = (u32)cq->ibcq.cqe; 395 if (tail > (u32)cq->ibcq.cqe) 396 tail = (u32)cq->ibcq.cqe; 397 if (head < tail) 398 n = cq->ibcq.cqe + 1 + head - tail; 399 else 400 n = head - tail; 401 if (unlikely((u32)cqe < n)) { 402 ret = -EINVAL; 403 goto bail_unlock; 404 } 405 for (n = 0; tail != head; n++) { 406 if (u_wc) 407 u_wc->uqueue[n] = old_u_wc->uqueue[tail]; 408 else 409 k_wc->kqueue[n] = old_k_wc->kqueue[tail]; 410 if (tail == (u32)cq->ibcq.cqe) 411 tail = 0; 412 else 413 tail++; 414 } 415 cq->ibcq.cqe = cqe; 416 if (u_wc) { 417 RDMA_WRITE_UAPI_ATOMIC(u_wc->head, n); 418 RDMA_WRITE_UAPI_ATOMIC(u_wc->tail, 0); 419 cq->queue = u_wc; 420 } else { 421 k_wc->head = n; 422 k_wc->tail = 0; 423 cq->kqueue = k_wc; 424 } 425 spin_unlock_irq(&cq->lock); 426 427 if (u_wc) 428 vfree(old_u_wc); 429 else 430 vfree(old_k_wc); 431 432 if (cq->ip) { 433 struct rvt_mmap_info *ip = cq->ip; 434 435 rvt_update_mmap_info(rdi, ip, sz, u_wc); 436 437 /* 438 * Return the offset to mmap. 439 * See rvt_mmap() for details. 440 */ 441 if (udata && udata->outlen >= sizeof(__u64)) { 442 ret = ib_copy_to_udata(udata, &ip->offset, 443 sizeof(ip->offset)); 444 if (ret) 445 return ret; 446 } 447 448 spin_lock_irq(&rdi->pending_lock); 449 if (list_empty(&ip->pending_mmaps)) 450 list_add(&ip->pending_mmaps, &rdi->pending_mmaps); 451 spin_unlock_irq(&rdi->pending_lock); 452 } 453 454 return 0; 455 456 bail_unlock: 457 spin_unlock_irq(&cq->lock); 458 bail_free: 459 vfree(u_wc); 460 vfree(k_wc); 461 462 return ret; 463 } 464 465 /** 466 * rvt_poll_cq - poll for work completion entries 467 * @ibcq: the completion queue to poll 468 * @num_entries: the maximum number of entries to return 469 * @entry: pointer to array where work completions are placed 470 * 471 * This may be called from interrupt context. Also called by ib_poll_cq() 472 * in the generic verbs code. 473 * 474 * Return: the number of completion entries polled. 475 */ 476 int rvt_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *entry) 477 { 478 struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); 479 struct rvt_k_cq_wc *wc; 480 unsigned long flags; 481 int npolled; 482 u32 tail; 483 484 /* The kernel can only poll a kernel completion queue */ 485 if (cq->ip) 486 return -EINVAL; 487 488 spin_lock_irqsave(&cq->lock, flags); 489 490 wc = cq->kqueue; 491 tail = wc->tail; 492 if (tail > (u32)cq->ibcq.cqe) 493 tail = (u32)cq->ibcq.cqe; 494 for (npolled = 0; npolled < num_entries; ++npolled, ++entry) { 495 if (tail == wc->head) 496 break; 497 /* The kernel doesn't need a RMB since it has the lock. */ 498 trace_rvt_cq_poll(cq, &wc->kqueue[tail], npolled); 499 *entry = wc->kqueue[tail]; 500 if (tail >= cq->ibcq.cqe) 501 tail = 0; 502 else 503 tail++; 504 } 505 wc->tail = tail; 506 507 spin_unlock_irqrestore(&cq->lock, flags); 508 509 return npolled; 510 } 511 512 /** 513 * rvt_driver_cq_init - Init cq resources on behalf of driver 514 * 515 * Return: 0 on success 516 */ 517 int rvt_driver_cq_init(void) 518 { 519 comp_vector_wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_CPU_INTENSIVE, 520 0, "rdmavt_cq"); 521 if (!comp_vector_wq) 522 return -ENOMEM; 523 524 return 0; 525 } 526 527 /** 528 * rvt_cq_exit - tear down cq reources 529 */ 530 void rvt_cq_exit(void) 531 { 532 destroy_workqueue(comp_vector_wq); 533 comp_vector_wq = NULL; 534 } 535