1 /* 2 * Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation. 3 * All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 /* 35 * This file contains all of the code that is specific to the SerDes 36 * on the QLogic_IB 7220 chip. 37 */ 38 39 #include <linux/pci.h> 40 #include <linux/delay.h> 41 #include <linux/firmware.h> 42 43 #include "qib.h" 44 #include "qib_7220.h" 45 46 #define SD7220_FW_NAME "qlogic/sd7220.fw" 47 MODULE_FIRMWARE(SD7220_FW_NAME); 48 49 /* 50 * Same as in qib_iba7220.c, but just the registers needed here. 51 * Could move whole set to qib_7220.h, but decided better to keep 52 * local. 53 */ 54 #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64)) 55 #define kr_hwerrclear KREG_IDX(HwErrClear) 56 #define kr_hwerrmask KREG_IDX(HwErrMask) 57 #define kr_hwerrstatus KREG_IDX(HwErrStatus) 58 #define kr_ibcstatus KREG_IDX(IBCStatus) 59 #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl) 60 #define kr_scratch KREG_IDX(Scratch) 61 #define kr_xgxs_cfg KREG_IDX(XGXSCfg) 62 /* these are used only here, not in qib_iba7220.c */ 63 #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl) 64 #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg) 65 #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg) 66 #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl) 67 #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0) 68 69 /* 70 * The IBSerDesMappTable is a memory that holds values to be stored in 71 * various SerDes registers by IBC. 72 */ 73 #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable) 74 75 /* 76 * Below used for sdnum parameter, selecting one of the two sections 77 * used for PCIe, or the single SerDes used for IB. 78 */ 79 #define PCIE_SERDES0 0 80 #define PCIE_SERDES1 1 81 82 /* 83 * The EPB requires addressing in a particular form. EPB_LOC() is intended 84 * to make #definitions a little more readable. 85 */ 86 #define EPB_ADDR_SHF 8 87 #define EPB_LOC(chn, elt, reg) \ 88 (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \ 89 EPB_ADDR_SHF) 90 #define EPB_IB_QUAD0_CS_SHF (25) 91 #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF) 92 #define EPB_IB_UC_CS_SHF (26) 93 #define EPB_PCIE_UC_CS_SHF (27) 94 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8)) 95 96 /* Forward declarations. */ 97 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc, 98 u32 data, u32 mask); 99 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val, 100 int mask); 101 static int qib_sd_trimdone_poll(struct qib_devdata *dd); 102 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where); 103 static int qib_sd_setvals(struct qib_devdata *dd); 104 static int qib_sd_early(struct qib_devdata *dd); 105 static int qib_sd_dactrim(struct qib_devdata *dd); 106 static int qib_internal_presets(struct qib_devdata *dd); 107 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */ 108 static int qib_sd_trimself(struct qib_devdata *dd, int val); 109 static int epb_access(struct qib_devdata *dd, int sdnum, int claim); 110 static int qib_sd7220_ib_load(struct qib_devdata *dd, 111 const struct firmware *fw); 112 static int qib_sd7220_ib_vfy(struct qib_devdata *dd, 113 const struct firmware *fw); 114 115 /* 116 * Below keeps track of whether the "once per power-on" initialization has 117 * been done, because uC code Version 1.32.17 or higher allows the uC to 118 * be reset at will, and Automatic Equalization may require it. So the 119 * state of the reset "pin", is no longer valid. Instead, we check for the 120 * actual uC code having been loaded. 121 */ 122 static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd, 123 const struct firmware *fw) 124 { 125 struct qib_devdata *dd = ppd->dd; 126 127 if (!dd->cspec->serdes_first_init_done && 128 qib_sd7220_ib_vfy(dd, fw) > 0) 129 dd->cspec->serdes_first_init_done = 1; 130 return dd->cspec->serdes_first_init_done; 131 } 132 133 /* repeat #define for local use. "Real" #define is in qib_iba7220.c */ 134 #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL 135 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF)) 136 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF)) 137 #define UC_PAR_CLR_D 8 138 #define UC_PAR_CLR_M 0xC 139 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS) 140 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27) 141 142 void qib_sd7220_clr_ibpar(struct qib_devdata *dd) 143 { 144 int ret; 145 146 /* clear, then re-enable parity errs */ 147 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 148 UC_PAR_CLR_D, UC_PAR_CLR_M); 149 if (ret < 0) { 150 qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n"); 151 goto bail; 152 } 153 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0, 154 UC_PAR_CLR_M); 155 156 qib_read_kreg32(dd, kr_scratch); 157 udelay(4); 158 qib_write_kreg(dd, kr_hwerrclear, 159 QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); 160 qib_read_kreg32(dd, kr_scratch); 161 bail: 162 return; 163 } 164 165 /* 166 * After a reset or other unusual event, the epb interface may need 167 * to be re-synchronized, between the host and the uC. 168 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected) 169 */ 170 #define IBSD_RESYNC_TRIES 3 171 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS) 172 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS) 173 174 static int qib_resync_ibepb(struct qib_devdata *dd) 175 { 176 int ret, pat, tries, chn; 177 u32 loc; 178 179 ret = -1; 180 chn = 0; 181 for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) { 182 loc = IB_PGUDP(chn); 183 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); 184 if (ret < 0) { 185 qib_dev_err(dd, "Failed read in resync\n"); 186 continue; 187 } 188 if (ret != 0xF0 && ret != 0x55 && tries == 0) 189 qib_dev_err(dd, "unexpected pattern in resync\n"); 190 pat = ret ^ 0xA5; /* alternate F0 and 55 */ 191 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF); 192 if (ret < 0) { 193 qib_dev_err(dd, "Failed write in resync\n"); 194 continue; 195 } 196 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); 197 if (ret < 0) { 198 qib_dev_err(dd, "Failed re-read in resync\n"); 199 continue; 200 } 201 if (ret != pat) { 202 qib_dev_err(dd, "Failed compare1 in resync\n"); 203 continue; 204 } 205 loc = IB_CMUDONE(chn); 206 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); 207 if (ret < 0) { 208 qib_dev_err(dd, "Failed CMUDONE rd in resync\n"); 209 continue; 210 } 211 if ((ret & 0x70) != ((chn << 4) | 0x40)) { 212 qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n", 213 ret, chn); 214 continue; 215 } 216 if (++chn == 4) 217 break; /* Success */ 218 } 219 return (ret > 0) ? 0 : ret; 220 } 221 222 /* 223 * Localize the stuff that should be done to change IB uC reset 224 * returns <0 for errors. 225 */ 226 static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst) 227 { 228 u64 rst_val; 229 int ret = 0; 230 unsigned long flags; 231 232 rst_val = qib_read_kreg64(dd, kr_ibserdesctrl); 233 if (assert_rst) { 234 /* 235 * Vendor recommends "interrupting" uC before reset, to 236 * minimize possible glitches. 237 */ 238 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); 239 epb_access(dd, IB_7220_SERDES, 1); 240 rst_val |= 1ULL; 241 /* Squelch possible parity error from _asserting_ reset */ 242 qib_write_kreg(dd, kr_hwerrmask, 243 dd->cspec->hwerrmask & 244 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); 245 qib_write_kreg(dd, kr_ibserdesctrl, rst_val); 246 /* flush write, delay to ensure it took effect */ 247 qib_read_kreg32(dd, kr_scratch); 248 udelay(2); 249 /* once it's reset, can remove interrupt */ 250 epb_access(dd, IB_7220_SERDES, -1); 251 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); 252 } else { 253 /* 254 * Before we de-assert reset, we need to deal with 255 * possible glitch on the Parity-error line. 256 * Suppress it around the reset, both in chip-level 257 * hwerrmask and in IB uC control reg. uC will allow 258 * it again during startup. 259 */ 260 u64 val; 261 rst_val &= ~(1ULL); 262 qib_write_kreg(dd, kr_hwerrmask, 263 dd->cspec->hwerrmask & 264 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); 265 266 ret = qib_resync_ibepb(dd); 267 if (ret < 0) 268 qib_dev_err(dd, "unable to re-sync IB EPB\n"); 269 270 /* set uC control regs to suppress parity errs */ 271 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1); 272 if (ret < 0) 273 goto bail; 274 /* IB uC code past Version 1.32.17 allow suppression of wdog */ 275 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 276 0x80); 277 if (ret < 0) { 278 qib_dev_err(dd, "Failed to set WDOG disable\n"); 279 goto bail; 280 } 281 qib_write_kreg(dd, kr_ibserdesctrl, rst_val); 282 /* flush write, delay for startup */ 283 qib_read_kreg32(dd, kr_scratch); 284 udelay(1); 285 /* clear, then re-enable parity errs */ 286 qib_sd7220_clr_ibpar(dd); 287 val = qib_read_kreg64(dd, kr_hwerrstatus); 288 if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) { 289 qib_dev_err(dd, "IBUC Parity still set after RST\n"); 290 dd->cspec->hwerrmask &= 291 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR; 292 } 293 qib_write_kreg(dd, kr_hwerrmask, 294 dd->cspec->hwerrmask); 295 } 296 297 bail: 298 return ret; 299 } 300 301 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, 302 const char *where) 303 { 304 int ret, chn, baduns; 305 u64 val; 306 307 if (!where) 308 where = "?"; 309 310 /* give time for reset to settle out in EPB */ 311 udelay(2); 312 313 ret = qib_resync_ibepb(dd); 314 if (ret < 0) 315 qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where); 316 317 /* Do "sacrificial read" to get EPB in sane state after reset */ 318 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0); 319 if (ret < 0) 320 qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where); 321 322 /* Check/show "summary" Trim-done bit in IBCStatus */ 323 val = qib_read_kreg64(dd, kr_ibcstatus); 324 if (!(val & (1ULL << 11))) 325 qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where); 326 /* 327 * Do "dummy read/mod/wr" to get EPB in sane state after reset 328 * The default value for MPREG6 is 0. 329 */ 330 udelay(2); 331 332 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80); 333 if (ret < 0) 334 qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where); 335 udelay(10); 336 337 baduns = 0; 338 339 for (chn = 3; chn >= 0; --chn) { 340 /* Read CTRL reg for each channel to check TRIMDONE */ 341 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 342 IB_CTRL2(chn), 0, 0); 343 if (ret < 0) 344 qib_dev_err(dd, "Failed checking TRIMDONE, chn %d" 345 " (%s)\n", chn, where); 346 347 if (!(ret & 0x10)) { 348 int probe; 349 350 baduns |= (1 << chn); 351 qib_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)." 352 " (%s)\n", chn, ret, where); 353 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 354 IB_PGUDP(0), 0, 0); 355 qib_dev_err(dd, "probe is %d (%02X)\n", 356 probe, probe); 357 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 358 IB_CTRL2(chn), 0, 0); 359 qib_dev_err(dd, "re-read: %d (%02X)\n", 360 probe, probe); 361 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 362 IB_CTRL2(chn), 0x10, 0x10); 363 if (ret < 0) 364 qib_dev_err(dd, 365 "Err on TRIMDONE rewrite1\n"); 366 } 367 } 368 for (chn = 3; chn >= 0; --chn) { 369 /* Read CTRL reg for each channel to check TRIMDONE */ 370 if (baduns & (1 << chn)) { 371 qib_dev_err(dd, 372 "Reseting TRIMDONE on chn %d (%s)\n", 373 chn, where); 374 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 375 IB_CTRL2(chn), 0x10, 0x10); 376 if (ret < 0) 377 qib_dev_err(dd, "Failed re-setting " 378 "TRIMDONE, chn %d (%s)\n", 379 chn, where); 380 } 381 } 382 } 383 384 /* 385 * Below is portion of IBA7220-specific bringup_serdes() that actually 386 * deals with registers and memory within the SerDes itself. 387 * Post IB uC code version 1.32.17, was_reset being 1 is not really 388 * informative, so we double-check. 389 */ 390 int qib_sd7220_init(struct qib_devdata *dd) 391 { 392 const struct firmware *fw; 393 int ret = 1; /* default to failure */ 394 int first_reset, was_reset; 395 396 /* SERDES MPU reset recorded in D0 */ 397 was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1); 398 if (!was_reset) { 399 /* entered with reset not asserted, we need to do it */ 400 qib_ibsd_reset(dd, 1); 401 qib_sd_trimdone_monitor(dd, "Driver-reload"); 402 } 403 404 ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev); 405 if (ret) { 406 qib_dev_err(dd, "Failed to load IB SERDES image\n"); 407 goto done; 408 } 409 410 /* Substitute our deduced value for was_reset */ 411 ret = qib_ibsd_ucode_loaded(dd->pport, fw); 412 if (ret < 0) 413 goto bail; 414 415 first_reset = !ret; /* First reset if IBSD uCode not yet loaded */ 416 /* 417 * Alter some regs per vendor latest doc, reset-defaults 418 * are not right for IB. 419 */ 420 ret = qib_sd_early(dd); 421 if (ret < 0) { 422 qib_dev_err(dd, "Failed to set IB SERDES early defaults\n"); 423 goto bail; 424 } 425 /* 426 * Set DAC manual trim IB. 427 * We only do this once after chip has been reset (usually 428 * same as once per system boot). 429 */ 430 if (first_reset) { 431 ret = qib_sd_dactrim(dd); 432 if (ret < 0) { 433 qib_dev_err(dd, "Failed IB SERDES DAC trim\n"); 434 goto bail; 435 } 436 } 437 /* 438 * Set various registers (DDS and RXEQ) that will be 439 * controlled by IBC (in 1.2 mode) to reasonable preset values 440 * Calling the "internal" version avoids the "check for needed" 441 * and "trimdone monitor" that might be counter-productive. 442 */ 443 ret = qib_internal_presets(dd); 444 if (ret < 0) { 445 qib_dev_err(dd, "Failed to set IB SERDES presets\n"); 446 goto bail; 447 } 448 ret = qib_sd_trimself(dd, 0x80); 449 if (ret < 0) { 450 qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n"); 451 goto bail; 452 } 453 454 /* Load image, then try to verify */ 455 ret = 0; /* Assume success */ 456 if (first_reset) { 457 int vfy; 458 int trim_done; 459 460 ret = qib_sd7220_ib_load(dd, fw); 461 if (ret < 0) { 462 qib_dev_err(dd, "Failed to load IB SERDES image\n"); 463 goto bail; 464 } else { 465 /* Loaded image, try to verify */ 466 vfy = qib_sd7220_ib_vfy(dd, fw); 467 if (vfy != ret) { 468 qib_dev_err(dd, "SERDES PRAM VFY failed\n"); 469 goto bail; 470 } /* end if verified */ 471 } /* end if loaded */ 472 473 /* 474 * Loaded and verified. Almost good... 475 * hold "success" in ret 476 */ 477 ret = 0; 478 /* 479 * Prev steps all worked, continue bringup 480 * De-assert RESET to uC, only in first reset, to allow 481 * trimming. 482 * 483 * Since our default setup sets START_EQ1 to 484 * PRESET, we need to clear that for this very first run. 485 */ 486 ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38); 487 if (ret < 0) { 488 qib_dev_err(dd, "Failed clearing START_EQ1\n"); 489 goto bail; 490 } 491 492 qib_ibsd_reset(dd, 0); 493 /* 494 * If this is not the first reset, trimdone should be set 495 * already. We may need to check about this. 496 */ 497 trim_done = qib_sd_trimdone_poll(dd); 498 /* 499 * Whether or not trimdone succeeded, we need to put the 500 * uC back into reset to avoid a possible fight with the 501 * IBC state-machine. 502 */ 503 qib_ibsd_reset(dd, 1); 504 505 if (!trim_done) { 506 qib_dev_err(dd, "No TRIMDONE seen\n"); 507 goto bail; 508 } 509 /* 510 * DEBUG: check each time we reset if trimdone bits have 511 * gotten cleared, and re-set them. 512 */ 513 qib_sd_trimdone_monitor(dd, "First-reset"); 514 /* Remember so we do not re-do the load, dactrim, etc. */ 515 dd->cspec->serdes_first_init_done = 1; 516 } 517 /* 518 * setup for channel training and load values for 519 * RxEq and DDS in tables used by IBC in IB1.2 mode 520 */ 521 ret = 0; 522 if (qib_sd_setvals(dd) >= 0) 523 goto done; 524 bail: 525 ret = 1; 526 done: 527 /* start relock timer regardless, but start at 1 second */ 528 set_7220_relock_poll(dd, -1); 529 530 release_firmware(fw); 531 return ret; 532 } 533 534 #define EPB_ACC_REQ 1 535 #define EPB_ACC_GNT 0x100 536 #define EPB_DATA_MASK 0xFF 537 #define EPB_RD (1ULL << 24) 538 #define EPB_TRANS_RDY (1ULL << 31) 539 #define EPB_TRANS_ERR (1ULL << 30) 540 #define EPB_TRANS_TRIES 5 541 542 /* 543 * query, claim, release ownership of the EPB (External Parallel Bus) 544 * for a specified SERDES. 545 * the "claim" parameter is >0 to claim, <0 to release, 0 to query. 546 * Returns <0 for errors, >0 if we had ownership, else 0. 547 */ 548 static int epb_access(struct qib_devdata *dd, int sdnum, int claim) 549 { 550 u16 acc; 551 u64 accval; 552 int owned = 0; 553 u64 oct_sel = 0; 554 555 switch (sdnum) { 556 case IB_7220_SERDES: 557 /* 558 * The IB SERDES "ownership" is fairly simple. A single each 559 * request/grant. 560 */ 561 acc = kr_ibsd_epb_access_ctrl; 562 break; 563 564 case PCIE_SERDES0: 565 case PCIE_SERDES1: 566 /* PCIe SERDES has two "octants", need to select which */ 567 acc = kr_pciesd_epb_access_ctrl; 568 oct_sel = (2 << (sdnum - PCIE_SERDES0)); 569 break; 570 571 default: 572 return 0; 573 } 574 575 /* Make sure any outstanding transaction was seen */ 576 qib_read_kreg32(dd, kr_scratch); 577 udelay(15); 578 579 accval = qib_read_kreg32(dd, acc); 580 581 owned = !!(accval & EPB_ACC_GNT); 582 if (claim < 0) { 583 /* Need to release */ 584 u64 pollval; 585 /* 586 * The only writeable bits are the request and CS. 587 * Both should be clear 588 */ 589 u64 newval = 0; 590 qib_write_kreg(dd, acc, newval); 591 /* First read after write is not trustworthy */ 592 pollval = qib_read_kreg32(dd, acc); 593 udelay(5); 594 pollval = qib_read_kreg32(dd, acc); 595 if (pollval & EPB_ACC_GNT) 596 owned = -1; 597 } else if (claim > 0) { 598 /* Need to claim */ 599 u64 pollval; 600 u64 newval = EPB_ACC_REQ | oct_sel; 601 qib_write_kreg(dd, acc, newval); 602 /* First read after write is not trustworthy */ 603 pollval = qib_read_kreg32(dd, acc); 604 udelay(5); 605 pollval = qib_read_kreg32(dd, acc); 606 if (!(pollval & EPB_ACC_GNT)) 607 owned = -1; 608 } 609 return owned; 610 } 611 612 /* 613 * Lemma to deal with race condition of write..read to epb regs 614 */ 615 static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp) 616 { 617 int tries; 618 u64 transval; 619 620 qib_write_kreg(dd, reg, i_val); 621 /* Throw away first read, as RDY bit may be stale */ 622 transval = qib_read_kreg64(dd, reg); 623 624 for (tries = EPB_TRANS_TRIES; tries; --tries) { 625 transval = qib_read_kreg32(dd, reg); 626 if (transval & EPB_TRANS_RDY) 627 break; 628 udelay(5); 629 } 630 if (transval & EPB_TRANS_ERR) 631 return -1; 632 if (tries > 0 && o_vp) 633 *o_vp = transval; 634 return tries; 635 } 636 637 /** 638 * qib_sd7220_reg_mod - modify SERDES register 639 * @dd: the qlogic_ib device 640 * @sdnum: which SERDES to access 641 * @loc: location - channel, element, register, as packed by EPB_LOC() macro. 642 * @wd: Write Data - value to set in register 643 * @mask: ones where data should be spliced into reg. 644 * 645 * Basic register read/modify/write, with un-needed acesses elided. That is, 646 * a mask of zero will prevent write, while a mask of 0xFF will prevent read. 647 * returns current (presumed, if a write was done) contents of selected 648 * register, or <0 if errors. 649 */ 650 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc, 651 u32 wd, u32 mask) 652 { 653 u16 trans; 654 u64 transval; 655 int owned; 656 int tries, ret; 657 unsigned long flags; 658 659 switch (sdnum) { 660 case IB_7220_SERDES: 661 trans = kr_ibsd_epb_transaction_reg; 662 break; 663 664 case PCIE_SERDES0: 665 case PCIE_SERDES1: 666 trans = kr_pciesd_epb_transaction_reg; 667 break; 668 669 default: 670 return -1; 671 } 672 673 /* 674 * All access is locked in software (vs other host threads) and 675 * hardware (vs uC access). 676 */ 677 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); 678 679 owned = epb_access(dd, sdnum, 1); 680 if (owned < 0) { 681 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); 682 return -1; 683 } 684 ret = 0; 685 for (tries = EPB_TRANS_TRIES; tries; --tries) { 686 transval = qib_read_kreg32(dd, trans); 687 if (transval & EPB_TRANS_RDY) 688 break; 689 udelay(5); 690 } 691 692 if (tries > 0) { 693 tries = 1; /* to make read-skip work */ 694 if (mask != 0xFF) { 695 /* 696 * Not a pure write, so need to read. 697 * loc encodes chip-select as well as address 698 */ 699 transval = loc | EPB_RD; 700 tries = epb_trans(dd, trans, transval, &transval); 701 } 702 if (tries > 0 && mask != 0) { 703 /* 704 * Not a pure read, so need to write. 705 */ 706 wd = (wd & mask) | (transval & ~mask); 707 transval = loc | (wd & EPB_DATA_MASK); 708 tries = epb_trans(dd, trans, transval, &transval); 709 } 710 } 711 /* else, failed to see ready, what error-handling? */ 712 713 /* 714 * Release bus. Failure is an error. 715 */ 716 if (epb_access(dd, sdnum, -1) < 0) 717 ret = -1; 718 else 719 ret = transval & EPB_DATA_MASK; 720 721 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); 722 if (tries <= 0) 723 ret = -1; 724 return ret; 725 } 726 727 #define EPB_ROM_R (2) 728 #define EPB_ROM_W (1) 729 /* 730 * Below, all uC-related, use appropriate UC_CS, depending 731 * on which SerDes is used. 732 */ 733 #define EPB_UC_CTL EPB_LOC(6, 0, 0) 734 #define EPB_MADDRL EPB_LOC(6, 0, 2) 735 #define EPB_MADDRH EPB_LOC(6, 0, 3) 736 #define EPB_ROMDATA EPB_LOC(6, 0, 4) 737 #define EPB_RAMDATA EPB_LOC(6, 0, 5) 738 739 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */ 740 static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc, 741 u8 *buf, int cnt, int rd_notwr) 742 { 743 u16 trans; 744 u64 transval; 745 u64 csbit; 746 int owned; 747 int tries; 748 int sofar; 749 int addr; 750 int ret; 751 unsigned long flags; 752 const char *op; 753 754 /* Pick appropriate transaction reg and "Chip select" for this serdes */ 755 switch (sdnum) { 756 case IB_7220_SERDES: 757 csbit = 1ULL << EPB_IB_UC_CS_SHF; 758 trans = kr_ibsd_epb_transaction_reg; 759 break; 760 761 case PCIE_SERDES0: 762 case PCIE_SERDES1: 763 /* PCIe SERDES has uC "chip select" in different bit, too */ 764 csbit = 1ULL << EPB_PCIE_UC_CS_SHF; 765 trans = kr_pciesd_epb_transaction_reg; 766 break; 767 768 default: 769 return -1; 770 } 771 772 op = rd_notwr ? "Rd" : "Wr"; 773 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); 774 775 owned = epb_access(dd, sdnum, 1); 776 if (owned < 0) { 777 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); 778 return -1; 779 } 780 781 /* 782 * In future code, we may need to distinguish several address ranges, 783 * and select various memories based on this. For now, just trim 784 * "loc" (location including address and memory select) to 785 * "addr" (address within memory). we will only support PRAM 786 * The memory is 8KB. 787 */ 788 addr = loc & 0x1FFF; 789 for (tries = EPB_TRANS_TRIES; tries; --tries) { 790 transval = qib_read_kreg32(dd, trans); 791 if (transval & EPB_TRANS_RDY) 792 break; 793 udelay(5); 794 } 795 796 sofar = 0; 797 if (tries > 0) { 798 /* 799 * Every "memory" access is doubly-indirect. 800 * We set two bytes of address, then read/write 801 * one or mores bytes of data. 802 */ 803 804 /* First, we set control to "Read" or "Write" */ 805 transval = csbit | EPB_UC_CTL | 806 (rd_notwr ? EPB_ROM_R : EPB_ROM_W); 807 tries = epb_trans(dd, trans, transval, &transval); 808 while (tries > 0 && sofar < cnt) { 809 if (!sofar) { 810 /* Only set address at start of chunk */ 811 int addrbyte = (addr + sofar) >> 8; 812 transval = csbit | EPB_MADDRH | addrbyte; 813 tries = epb_trans(dd, trans, transval, 814 &transval); 815 if (tries <= 0) 816 break; 817 addrbyte = (addr + sofar) & 0xFF; 818 transval = csbit | EPB_MADDRL | addrbyte; 819 tries = epb_trans(dd, trans, transval, 820 &transval); 821 if (tries <= 0) 822 break; 823 } 824 825 if (rd_notwr) 826 transval = csbit | EPB_ROMDATA | EPB_RD; 827 else 828 transval = csbit | EPB_ROMDATA | buf[sofar]; 829 tries = epb_trans(dd, trans, transval, &transval); 830 if (tries <= 0) 831 break; 832 if (rd_notwr) 833 buf[sofar] = transval & EPB_DATA_MASK; 834 ++sofar; 835 } 836 /* Finally, clear control-bit for Read or Write */ 837 transval = csbit | EPB_UC_CTL; 838 tries = epb_trans(dd, trans, transval, &transval); 839 } 840 841 ret = sofar; 842 /* Release bus. Failure is an error */ 843 if (epb_access(dd, sdnum, -1) < 0) 844 ret = -1; 845 846 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); 847 if (tries <= 0) 848 ret = -1; 849 return ret; 850 } 851 852 #define PROG_CHUNK 64 853 854 static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum, 855 const u8 *img, int len, int offset) 856 { 857 int cnt, sofar, req; 858 859 sofar = 0; 860 while (sofar < len) { 861 req = len - sofar; 862 if (req > PROG_CHUNK) 863 req = PROG_CHUNK; 864 cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar, 865 (u8 *)img + sofar, req, 0); 866 if (cnt < req) { 867 sofar = -1; 868 break; 869 } 870 sofar += req; 871 } 872 return sofar; 873 } 874 875 #define VFY_CHUNK 64 876 #define SD_PRAM_ERROR_LIMIT 42 877 878 static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum, 879 const u8 *img, int len, int offset) 880 { 881 int cnt, sofar, req, idx, errors; 882 unsigned char readback[VFY_CHUNK]; 883 884 errors = 0; 885 sofar = 0; 886 while (sofar < len) { 887 req = len - sofar; 888 if (req > VFY_CHUNK) 889 req = VFY_CHUNK; 890 cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset, 891 readback, req, 1); 892 if (cnt < req) { 893 /* failed in read itself */ 894 sofar = -1; 895 break; 896 } 897 for (idx = 0; idx < cnt; ++idx) { 898 if (readback[idx] != img[idx+sofar]) 899 ++errors; 900 } 901 sofar += cnt; 902 } 903 return errors ? -errors : sofar; 904 } 905 906 static int 907 qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw) 908 { 909 return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0); 910 } 911 912 static int 913 qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw) 914 { 915 return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0); 916 } 917 918 /* 919 * IRQ not set up at this point in init, so we poll. 920 */ 921 #define IB_SERDES_TRIM_DONE (1ULL << 11) 922 #define TRIM_TMO (30) 923 924 static int qib_sd_trimdone_poll(struct qib_devdata *dd) 925 { 926 int trim_tmo, ret; 927 uint64_t val; 928 929 /* 930 * Default to failure, so IBC will not start 931 * without IB_SERDES_TRIM_DONE. 932 */ 933 ret = 0; 934 for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) { 935 val = qib_read_kreg64(dd, kr_ibcstatus); 936 if (val & IB_SERDES_TRIM_DONE) { 937 ret = 1; 938 break; 939 } 940 msleep(10); 941 } 942 if (trim_tmo >= TRIM_TMO) { 943 qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo); 944 ret = 0; 945 } 946 return ret; 947 } 948 949 #define TX_FAST_ELT (9) 950 951 /* 952 * Set the "negotiation" values for SERDES. These are used by the IB1.2 953 * link negotiation. Macros below are attempt to keep the values a 954 * little more human-editable. 955 * First, values related to Drive De-emphasis Settings. 956 */ 957 958 #define NUM_DDS_REGS 6 959 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */ 960 961 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \ 962 { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \ 963 (main_d << 3) | 4 | (ipre_d >> 2), \ 964 (main_s << 3) | 4 | (ipre_s >> 2), \ 965 ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \ 966 ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } } 967 968 static struct dds_init { 969 uint8_t reg_vals[NUM_DDS_REGS]; 970 } dds_init_vals[] = { 971 /* DDR(FDR) SDR(HDR) */ 972 /* Vendor recommends below for 3m cable */ 973 #define DDS_3M 0 974 DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0), 975 DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1), 976 DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0), 977 DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0), 978 DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0), 979 DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0), 980 DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0), 981 DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0), 982 DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0), 983 DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0), 984 DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0), 985 DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0), 986 DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0), 987 /* Vendor recommends below for 1m cable */ 988 #define DDS_1M 13 989 DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0), 990 DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0), 991 DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0) 992 }; 993 994 /* 995 * Now the RXEQ section of the table. 996 */ 997 /* Hardware packs an element number and register address thus: */ 998 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4)) 999 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \ 1000 {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} } 1001 1002 #define RXEQ_VAL_ALL(elt, adr, val) \ 1003 {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} } 1004 1005 #define RXEQ_SDR_DFELTH 0 1006 #define RXEQ_SDR_TLTH 0 1007 #define RXEQ_SDR_G1CNT_Z1CNT 0x11 1008 #define RXEQ_SDR_ZCNT 23 1009 1010 static struct rxeq_init { 1011 u16 rdesc; /* in form used in SerDesDDSRXEQ */ 1012 u8 rdata[4]; 1013 } rxeq_init_vals[] = { 1014 /* Set Rcv Eq. to Preset node */ 1015 RXEQ_VAL_ALL(7, 0x27, 0x10), 1016 /* Set DFELTHFDR/HDR thresholds */ 1017 RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */ 1018 RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */ 1019 /* Set TLTHFDR/HDR theshold */ 1020 RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */ 1021 RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */ 1022 /* Set Preamp setting 2 (ZFR/ZCNT) */ 1023 RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */ 1024 RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */ 1025 /* Set Preamp DC gain and Setting 1 (GFR/GHR) */ 1026 RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */ 1027 RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */ 1028 /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */ 1029 RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */ 1030 RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */ 1031 }; 1032 1033 /* There are 17 values from vendor, but IBC only accesses the first 16 */ 1034 #define DDS_ROWS (16) 1035 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals) 1036 1037 static int qib_sd_setvals(struct qib_devdata *dd) 1038 { 1039 int idx, midx; 1040 int min_idx; /* Minimum index for this portion of table */ 1041 uint32_t dds_reg_map; 1042 u64 __iomem *taddr, *iaddr; 1043 uint64_t data; 1044 uint64_t sdctl; 1045 1046 taddr = dd->kregbase + kr_serdes_maptable; 1047 iaddr = dd->kregbase + kr_serdes_ddsrxeq0; 1048 1049 /* 1050 * Init the DDS section of the table. 1051 * Each "row" of the table provokes NUM_DDS_REG writes, to the 1052 * registers indicated in DDS_REG_MAP. 1053 */ 1054 sdctl = qib_read_kreg64(dd, kr_ibserdesctrl); 1055 sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8); 1056 sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13); 1057 qib_write_kreg(dd, kr_ibserdesctrl, sdctl); 1058 1059 /* 1060 * Iterate down table within loop for each register to store. 1061 */ 1062 dds_reg_map = DDS_REG_MAP; 1063 for (idx = 0; idx < NUM_DDS_REGS; ++idx) { 1064 data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT; 1065 writeq(data, iaddr + idx); 1066 mmiowb(); 1067 qib_read_kreg32(dd, kr_scratch); 1068 dds_reg_map >>= 4; 1069 for (midx = 0; midx < DDS_ROWS; ++midx) { 1070 u64 __iomem *daddr = taddr + ((midx << 4) + idx); 1071 data = dds_init_vals[midx].reg_vals[idx]; 1072 writeq(data, daddr); 1073 mmiowb(); 1074 qib_read_kreg32(dd, kr_scratch); 1075 } /* End inner for (vals for this reg, each row) */ 1076 } /* end outer for (regs to be stored) */ 1077 1078 /* 1079 * Init the RXEQ section of the table. 1080 * This runs in a different order, as the pattern of 1081 * register references is more complex, but there are only 1082 * four "data" values per register. 1083 */ 1084 min_idx = idx; /* RXEQ indices pick up where DDS left off */ 1085 taddr += 0x100; /* RXEQ data is in second half of table */ 1086 /* Iterate through RXEQ register addresses */ 1087 for (idx = 0; idx < RXEQ_ROWS; ++idx) { 1088 int didx; /* "destination" */ 1089 int vidx; 1090 1091 /* didx is offset by min_idx to address RXEQ range of regs */ 1092 didx = idx + min_idx; 1093 /* Store the next RXEQ register address */ 1094 writeq(rxeq_init_vals[idx].rdesc, iaddr + didx); 1095 mmiowb(); 1096 qib_read_kreg32(dd, kr_scratch); 1097 /* Iterate through RXEQ values */ 1098 for (vidx = 0; vidx < 4; vidx++) { 1099 data = rxeq_init_vals[idx].rdata[vidx]; 1100 writeq(data, taddr + (vidx << 6) + idx); 1101 mmiowb(); 1102 qib_read_kreg32(dd, kr_scratch); 1103 } 1104 } /* end outer for (Reg-writes for RXEQ) */ 1105 return 0; 1106 } 1107 1108 #define CMUCTRL5 EPB_LOC(7, 0, 0x15) 1109 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0) 1110 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5) 1111 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6) 1112 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8) 1113 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28) 1114 1115 /* 1116 * Repeat a "store" across all channels of the IB SerDes. 1117 * Although nominally it inherits the "read value" of the last 1118 * channel it modified, the only really useful return is <0 for 1119 * failure, >= 0 for success. The parameter 'loc' is assumed to 1120 * be the location in some channel of the register to be modified 1121 * The caller can specify use of the "gang write" option of EPB, 1122 * in which case we use the specified channel data for any fields 1123 * not explicitely written. 1124 */ 1125 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val, 1126 int mask) 1127 { 1128 int ret = -1; 1129 int chnl; 1130 1131 if (loc & EPB_GLOBAL_WR) { 1132 /* 1133 * Our caller has assured us that we can set all four 1134 * channels at once. Trust that. If mask is not 0xFF, 1135 * we will read the _specified_ channel for our starting 1136 * value. 1137 */ 1138 loc |= (1U << EPB_IB_QUAD0_CS_SHF); 1139 chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7; 1140 if (mask != 0xFF) { 1141 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 1142 loc & ~EPB_GLOBAL_WR, 0, 0); 1143 if (ret < 0) { 1144 int sloc = loc >> EPB_ADDR_SHF; 1145 1146 qib_dev_err(dd, "pre-read failed: elt %d," 1147 " addr 0x%X, chnl %d\n", 1148 (sloc & 0xF), 1149 (sloc >> 9) & 0x3f, chnl); 1150 return ret; 1151 } 1152 val = (ret & ~mask) | (val & mask); 1153 } 1154 loc &= ~(7 << (4+EPB_ADDR_SHF)); 1155 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF); 1156 if (ret < 0) { 1157 int sloc = loc >> EPB_ADDR_SHF; 1158 1159 qib_dev_err(dd, "Global WR failed: elt %d," 1160 " addr 0x%X, val %02X\n", 1161 (sloc & 0xF), (sloc >> 9) & 0x3f, val); 1162 } 1163 return ret; 1164 } 1165 /* Clear "channel" and set CS so we can simply iterate */ 1166 loc &= ~(7 << (4+EPB_ADDR_SHF)); 1167 loc |= (1U << EPB_IB_QUAD0_CS_SHF); 1168 for (chnl = 0; chnl < 4; ++chnl) { 1169 int cloc = loc | (chnl << (4+EPB_ADDR_SHF)); 1170 1171 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask); 1172 if (ret < 0) { 1173 int sloc = loc >> EPB_ADDR_SHF; 1174 1175 qib_dev_err(dd, "Write failed: elt %d," 1176 " addr 0x%X, chnl %d, val 0x%02X," 1177 " mask 0x%02X\n", 1178 (sloc & 0xF), (sloc >> 9) & 0x3f, chnl, 1179 val & 0xFF, mask & 0xFF); 1180 break; 1181 } 1182 } 1183 return ret; 1184 } 1185 1186 /* 1187 * Set the Tx values normally modified by IBC in IB1.2 mode to default 1188 * values, as gotten from first row of init table. 1189 */ 1190 static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi) 1191 { 1192 int ret; 1193 int idx, reg, data; 1194 uint32_t regmap; 1195 1196 regmap = DDS_REG_MAP; 1197 for (idx = 0; idx < NUM_DDS_REGS; ++idx) { 1198 reg = (regmap & 0xF); 1199 regmap >>= 4; 1200 data = ddi->reg_vals[idx]; 1201 /* Vendor says RMW not needed for these regs, use 0xFF mask */ 1202 ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF); 1203 if (ret < 0) 1204 break; 1205 } 1206 return ret; 1207 } 1208 1209 /* 1210 * Set the Rx values normally modified by IBC in IB1.2 mode to default 1211 * values, as gotten from selected column of init table. 1212 */ 1213 static int set_rxeq_vals(struct qib_devdata *dd, int vsel) 1214 { 1215 int ret; 1216 int ridx; 1217 int cnt = ARRAY_SIZE(rxeq_init_vals); 1218 1219 for (ridx = 0; ridx < cnt; ++ridx) { 1220 int elt, reg, val, loc; 1221 1222 elt = rxeq_init_vals[ridx].rdesc & 0xF; 1223 reg = rxeq_init_vals[ridx].rdesc >> 4; 1224 loc = EPB_LOC(0, elt, reg); 1225 val = rxeq_init_vals[ridx].rdata[vsel]; 1226 /* mask of 0xFF, because hardware does full-byte store. */ 1227 ret = ibsd_mod_allchnls(dd, loc, val, 0xFF); 1228 if (ret < 0) 1229 break; 1230 } 1231 return ret; 1232 } 1233 1234 /* 1235 * Set the default values (row 0) for DDR Driver Demphasis. 1236 * we do this initially and whenever we turn off IB-1.2 1237 * 1238 * The "default" values for Rx equalization are also stored to 1239 * SerDes registers. Formerly (and still default), we used set 2. 1240 * For experimenting with cables and link-partners, we allow changing 1241 * that via a module parameter. 1242 */ 1243 static unsigned qib_rxeq_set = 2; 1244 module_param_named(rxeq_default_set, qib_rxeq_set, uint, 1245 S_IWUSR | S_IRUGO); 1246 MODULE_PARM_DESC(rxeq_default_set, 1247 "Which set [0..3] of Rx Equalization values is default"); 1248 1249 static int qib_internal_presets(struct qib_devdata *dd) 1250 { 1251 int ret = 0; 1252 1253 ret = set_dds_vals(dd, dds_init_vals + DDS_3M); 1254 1255 if (ret < 0) 1256 qib_dev_err(dd, "Failed to set default DDS values\n"); 1257 ret = set_rxeq_vals(dd, qib_rxeq_set & 3); 1258 if (ret < 0) 1259 qib_dev_err(dd, "Failed to set default RXEQ values\n"); 1260 return ret; 1261 } 1262 1263 int qib_sd7220_presets(struct qib_devdata *dd) 1264 { 1265 int ret = 0; 1266 1267 if (!dd->cspec->presets_needed) 1268 return ret; 1269 dd->cspec->presets_needed = 0; 1270 /* Assert uC reset, so we don't clash with it. */ 1271 qib_ibsd_reset(dd, 1); 1272 udelay(2); 1273 qib_sd_trimdone_monitor(dd, "link-down"); 1274 1275 ret = qib_internal_presets(dd); 1276 return ret; 1277 } 1278 1279 static int qib_sd_trimself(struct qib_devdata *dd, int val) 1280 { 1281 int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF); 1282 1283 return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF); 1284 } 1285 1286 static int qib_sd_early(struct qib_devdata *dd) 1287 { 1288 int ret; 1289 1290 ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF); 1291 if (ret < 0) 1292 goto bail; 1293 ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF); 1294 if (ret < 0) 1295 goto bail; 1296 ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF); 1297 bail: 1298 return ret; 1299 } 1300 1301 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E) 1302 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6) 1303 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF) 1304 1305 static int qib_sd_dactrim(struct qib_devdata *dd) 1306 { 1307 int ret; 1308 1309 ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF); 1310 if (ret < 0) 1311 goto bail; 1312 1313 /* more fine-tuning of what will be default */ 1314 ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF); 1315 if (ret < 0) 1316 goto bail; 1317 1318 ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF); 1319 if (ret < 0) 1320 goto bail; 1321 1322 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF); 1323 if (ret < 0) 1324 goto bail; 1325 1326 ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF); 1327 if (ret < 0) 1328 goto bail; 1329 1330 /* 1331 * Delay for max possible number of steps, with slop. 1332 * Each step is about 4usec. 1333 */ 1334 udelay(415); 1335 1336 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF); 1337 1338 bail: 1339 return ret; 1340 } 1341 1342 #define RELOCK_FIRST_MS 3 1343 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2) 1344 void toggle_7220_rclkrls(struct qib_devdata *dd) 1345 { 1346 int loc = RXLSPPM(0) | EPB_GLOBAL_WR; 1347 int ret; 1348 1349 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); 1350 if (ret < 0) 1351 qib_dev_err(dd, "RCLKRLS failed to clear D7\n"); 1352 else { 1353 udelay(1); 1354 ibsd_mod_allchnls(dd, loc, 0x80, 0x80); 1355 } 1356 /* And again for good measure */ 1357 udelay(1); 1358 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); 1359 if (ret < 0) 1360 qib_dev_err(dd, "RCLKRLS failed to clear D7\n"); 1361 else { 1362 udelay(1); 1363 ibsd_mod_allchnls(dd, loc, 0x80, 0x80); 1364 } 1365 /* Now reset xgxs and IBC to complete the recovery */ 1366 dd->f_xgxs_reset(dd->pport); 1367 } 1368 1369 /* 1370 * Shut down the timer that polls for relock occasions, if needed 1371 * this is "hooked" from qib_7220_quiet_serdes(), which is called 1372 * just before qib_shutdown_device() in qib_driver.c shuts down all 1373 * the other timers 1374 */ 1375 void shutdown_7220_relock_poll(struct qib_devdata *dd) 1376 { 1377 if (dd->cspec->relock_timer_active) 1378 del_timer_sync(&dd->cspec->relock_timer); 1379 } 1380 1381 static unsigned qib_relock_by_timer = 1; 1382 module_param_named(relock_by_timer, qib_relock_by_timer, uint, 1383 S_IWUSR | S_IRUGO); 1384 MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up"); 1385 1386 static void qib_run_relock(unsigned long opaque) 1387 { 1388 struct qib_devdata *dd = (struct qib_devdata *)opaque; 1389 struct qib_pportdata *ppd = dd->pport; 1390 struct qib_chip_specific *cs = dd->cspec; 1391 int timeoff; 1392 1393 /* 1394 * Check link-training state for "stuck" state, when down. 1395 * if found, try relock and schedule another try at 1396 * exponentially growing delay, maxed at one second. 1397 * if not stuck, our work is done. 1398 */ 1399 if ((dd->flags & QIB_INITTED) && !(ppd->lflags & 1400 (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED | 1401 QIBL_LINKACTIVE))) { 1402 if (qib_relock_by_timer) { 1403 if (!(ppd->lflags & QIBL_IB_LINK_DISABLED)) 1404 toggle_7220_rclkrls(dd); 1405 } 1406 /* re-set timer for next check */ 1407 timeoff = cs->relock_interval << 1; 1408 if (timeoff > HZ) 1409 timeoff = HZ; 1410 cs->relock_interval = timeoff; 1411 } else 1412 timeoff = HZ; 1413 mod_timer(&cs->relock_timer, jiffies + timeoff); 1414 } 1415 1416 void set_7220_relock_poll(struct qib_devdata *dd, int ibup) 1417 { 1418 struct qib_chip_specific *cs = dd->cspec; 1419 1420 if (ibup) { 1421 /* We are now up, relax timer to 1 second interval */ 1422 if (cs->relock_timer_active) { 1423 cs->relock_interval = HZ; 1424 mod_timer(&cs->relock_timer, jiffies + HZ); 1425 } 1426 } else { 1427 /* Transition to down, (re-)set timer to short interval. */ 1428 unsigned int timeout; 1429 1430 timeout = msecs_to_jiffies(RELOCK_FIRST_MS); 1431 if (timeout == 0) 1432 timeout = 1; 1433 /* If timer has not yet been started, do so. */ 1434 if (!cs->relock_timer_active) { 1435 cs->relock_timer_active = 1; 1436 init_timer(&cs->relock_timer); 1437 cs->relock_timer.function = qib_run_relock; 1438 cs->relock_timer.data = (unsigned long) dd; 1439 cs->relock_interval = timeout; 1440 cs->relock_timer.expires = jiffies + timeout; 1441 add_timer(&cs->relock_timer); 1442 } else { 1443 cs->relock_interval = timeout; 1444 mod_timer(&cs->relock_timer, jiffies + timeout); 1445 } 1446 } 1447 } 1448