1 /* 2 * Copyright (c) 2013 Intel Corporation. All rights reserved. 3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 /* 35 * This file contains all of the code that is specific to the SerDes 36 * on the QLogic_IB 7220 chip. 37 */ 38 39 #include <linux/pci.h> 40 #include <linux/delay.h> 41 #include <linux/module.h> 42 #include <linux/firmware.h> 43 44 #include "qib.h" 45 #include "qib_7220.h" 46 47 #define SD7220_FW_NAME "qlogic/sd7220.fw" 48 MODULE_FIRMWARE(SD7220_FW_NAME); 49 50 /* 51 * Same as in qib_iba7220.c, but just the registers needed here. 52 * Could move whole set to qib_7220.h, but decided better to keep 53 * local. 54 */ 55 #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64)) 56 #define kr_hwerrclear KREG_IDX(HwErrClear) 57 #define kr_hwerrmask KREG_IDX(HwErrMask) 58 #define kr_hwerrstatus KREG_IDX(HwErrStatus) 59 #define kr_ibcstatus KREG_IDX(IBCStatus) 60 #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl) 61 #define kr_scratch KREG_IDX(Scratch) 62 #define kr_xgxs_cfg KREG_IDX(XGXSCfg) 63 /* these are used only here, not in qib_iba7220.c */ 64 #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl) 65 #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg) 66 #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg) 67 #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl) 68 #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0) 69 70 /* 71 * The IBSerDesMappTable is a memory that holds values to be stored in 72 * various SerDes registers by IBC. 73 */ 74 #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable) 75 76 /* 77 * Below used for sdnum parameter, selecting one of the two sections 78 * used for PCIe, or the single SerDes used for IB. 79 */ 80 #define PCIE_SERDES0 0 81 #define PCIE_SERDES1 1 82 83 /* 84 * The EPB requires addressing in a particular form. EPB_LOC() is intended 85 * to make #definitions a little more readable. 86 */ 87 #define EPB_ADDR_SHF 8 88 #define EPB_LOC(chn, elt, reg) \ 89 (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \ 90 EPB_ADDR_SHF) 91 #define EPB_IB_QUAD0_CS_SHF (25) 92 #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF) 93 #define EPB_IB_UC_CS_SHF (26) 94 #define EPB_PCIE_UC_CS_SHF (27) 95 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8)) 96 97 /* Forward declarations. */ 98 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc, 99 u32 data, u32 mask); 100 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val, 101 int mask); 102 static int qib_sd_trimdone_poll(struct qib_devdata *dd); 103 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where); 104 static int qib_sd_setvals(struct qib_devdata *dd); 105 static int qib_sd_early(struct qib_devdata *dd); 106 static int qib_sd_dactrim(struct qib_devdata *dd); 107 static int qib_internal_presets(struct qib_devdata *dd); 108 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */ 109 static int qib_sd_trimself(struct qib_devdata *dd, int val); 110 static int epb_access(struct qib_devdata *dd, int sdnum, int claim); 111 static int qib_sd7220_ib_load(struct qib_devdata *dd, 112 const struct firmware *fw); 113 static int qib_sd7220_ib_vfy(struct qib_devdata *dd, 114 const struct firmware *fw); 115 116 /* 117 * Below keeps track of whether the "once per power-on" initialization has 118 * been done, because uC code Version 1.32.17 or higher allows the uC to 119 * be reset at will, and Automatic Equalization may require it. So the 120 * state of the reset "pin", is no longer valid. Instead, we check for the 121 * actual uC code having been loaded. 122 */ 123 static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd, 124 const struct firmware *fw) 125 { 126 struct qib_devdata *dd = ppd->dd; 127 128 if (!dd->cspec->serdes_first_init_done && 129 qib_sd7220_ib_vfy(dd, fw) > 0) 130 dd->cspec->serdes_first_init_done = 1; 131 return dd->cspec->serdes_first_init_done; 132 } 133 134 /* repeat #define for local use. "Real" #define is in qib_iba7220.c */ 135 #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL 136 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF)) 137 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF)) 138 #define UC_PAR_CLR_D 8 139 #define UC_PAR_CLR_M 0xC 140 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS) 141 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27) 142 143 void qib_sd7220_clr_ibpar(struct qib_devdata *dd) 144 { 145 int ret; 146 147 /* clear, then re-enable parity errs */ 148 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 149 UC_PAR_CLR_D, UC_PAR_CLR_M); 150 if (ret < 0) { 151 qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n"); 152 goto bail; 153 } 154 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0, 155 UC_PAR_CLR_M); 156 157 qib_read_kreg32(dd, kr_scratch); 158 udelay(4); 159 qib_write_kreg(dd, kr_hwerrclear, 160 QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); 161 qib_read_kreg32(dd, kr_scratch); 162 bail: 163 return; 164 } 165 166 /* 167 * After a reset or other unusual event, the epb interface may need 168 * to be re-synchronized, between the host and the uC. 169 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected) 170 */ 171 #define IBSD_RESYNC_TRIES 3 172 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS) 173 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS) 174 175 static int qib_resync_ibepb(struct qib_devdata *dd) 176 { 177 int ret, pat, tries, chn; 178 u32 loc; 179 180 ret = -1; 181 chn = 0; 182 for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) { 183 loc = IB_PGUDP(chn); 184 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); 185 if (ret < 0) { 186 qib_dev_err(dd, "Failed read in resync\n"); 187 continue; 188 } 189 if (ret != 0xF0 && ret != 0x55 && tries == 0) 190 qib_dev_err(dd, "unexpected pattern in resync\n"); 191 pat = ret ^ 0xA5; /* alternate F0 and 55 */ 192 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF); 193 if (ret < 0) { 194 qib_dev_err(dd, "Failed write in resync\n"); 195 continue; 196 } 197 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); 198 if (ret < 0) { 199 qib_dev_err(dd, "Failed re-read in resync\n"); 200 continue; 201 } 202 if (ret != pat) { 203 qib_dev_err(dd, "Failed compare1 in resync\n"); 204 continue; 205 } 206 loc = IB_CMUDONE(chn); 207 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); 208 if (ret < 0) { 209 qib_dev_err(dd, "Failed CMUDONE rd in resync\n"); 210 continue; 211 } 212 if ((ret & 0x70) != ((chn << 4) | 0x40)) { 213 qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n", 214 ret, chn); 215 continue; 216 } 217 if (++chn == 4) 218 break; /* Success */ 219 } 220 return (ret > 0) ? 0 : ret; 221 } 222 223 /* 224 * Localize the stuff that should be done to change IB uC reset 225 * returns <0 for errors. 226 */ 227 static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst) 228 { 229 u64 rst_val; 230 int ret = 0; 231 unsigned long flags; 232 233 rst_val = qib_read_kreg64(dd, kr_ibserdesctrl); 234 if (assert_rst) { 235 /* 236 * Vendor recommends "interrupting" uC before reset, to 237 * minimize possible glitches. 238 */ 239 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); 240 epb_access(dd, IB_7220_SERDES, 1); 241 rst_val |= 1ULL; 242 /* Squelch possible parity error from _asserting_ reset */ 243 qib_write_kreg(dd, kr_hwerrmask, 244 dd->cspec->hwerrmask & 245 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); 246 qib_write_kreg(dd, kr_ibserdesctrl, rst_val); 247 /* flush write, delay to ensure it took effect */ 248 qib_read_kreg32(dd, kr_scratch); 249 udelay(2); 250 /* once it's reset, can remove interrupt */ 251 epb_access(dd, IB_7220_SERDES, -1); 252 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); 253 } else { 254 /* 255 * Before we de-assert reset, we need to deal with 256 * possible glitch on the Parity-error line. 257 * Suppress it around the reset, both in chip-level 258 * hwerrmask and in IB uC control reg. uC will allow 259 * it again during startup. 260 */ 261 u64 val; 262 rst_val &= ~(1ULL); 263 qib_write_kreg(dd, kr_hwerrmask, 264 dd->cspec->hwerrmask & 265 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); 266 267 ret = qib_resync_ibepb(dd); 268 if (ret < 0) 269 qib_dev_err(dd, "unable to re-sync IB EPB\n"); 270 271 /* set uC control regs to suppress parity errs */ 272 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1); 273 if (ret < 0) 274 goto bail; 275 /* IB uC code past Version 1.32.17 allow suppression of wdog */ 276 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 277 0x80); 278 if (ret < 0) { 279 qib_dev_err(dd, "Failed to set WDOG disable\n"); 280 goto bail; 281 } 282 qib_write_kreg(dd, kr_ibserdesctrl, rst_val); 283 /* flush write, delay for startup */ 284 qib_read_kreg32(dd, kr_scratch); 285 udelay(1); 286 /* clear, then re-enable parity errs */ 287 qib_sd7220_clr_ibpar(dd); 288 val = qib_read_kreg64(dd, kr_hwerrstatus); 289 if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) { 290 qib_dev_err(dd, "IBUC Parity still set after RST\n"); 291 dd->cspec->hwerrmask &= 292 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR; 293 } 294 qib_write_kreg(dd, kr_hwerrmask, 295 dd->cspec->hwerrmask); 296 } 297 298 bail: 299 return ret; 300 } 301 302 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, 303 const char *where) 304 { 305 int ret, chn, baduns; 306 u64 val; 307 308 if (!where) 309 where = "?"; 310 311 /* give time for reset to settle out in EPB */ 312 udelay(2); 313 314 ret = qib_resync_ibepb(dd); 315 if (ret < 0) 316 qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where); 317 318 /* Do "sacrificial read" to get EPB in sane state after reset */ 319 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0); 320 if (ret < 0) 321 qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where); 322 323 /* Check/show "summary" Trim-done bit in IBCStatus */ 324 val = qib_read_kreg64(dd, kr_ibcstatus); 325 if (!(val & (1ULL << 11))) 326 qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where); 327 /* 328 * Do "dummy read/mod/wr" to get EPB in sane state after reset 329 * The default value for MPREG6 is 0. 330 */ 331 udelay(2); 332 333 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80); 334 if (ret < 0) 335 qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where); 336 udelay(10); 337 338 baduns = 0; 339 340 for (chn = 3; chn >= 0; --chn) { 341 /* Read CTRL reg for each channel to check TRIMDONE */ 342 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 343 IB_CTRL2(chn), 0, 0); 344 if (ret < 0) 345 qib_dev_err(dd, 346 "Failed checking TRIMDONE, chn %d (%s)\n", 347 chn, where); 348 349 if (!(ret & 0x10)) { 350 int probe; 351 352 baduns |= (1 << chn); 353 qib_dev_err(dd, 354 "TRIMDONE cleared on chn %d (%02X). (%s)\n", 355 chn, ret, where); 356 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 357 IB_PGUDP(0), 0, 0); 358 qib_dev_err(dd, "probe is %d (%02X)\n", 359 probe, probe); 360 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 361 IB_CTRL2(chn), 0, 0); 362 qib_dev_err(dd, "re-read: %d (%02X)\n", 363 probe, probe); 364 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 365 IB_CTRL2(chn), 0x10, 0x10); 366 if (ret < 0) 367 qib_dev_err(dd, 368 "Err on TRIMDONE rewrite1\n"); 369 } 370 } 371 for (chn = 3; chn >= 0; --chn) { 372 /* Read CTRL reg for each channel to check TRIMDONE */ 373 if (baduns & (1 << chn)) { 374 qib_dev_err(dd, 375 "Resetting TRIMDONE on chn %d (%s)\n", 376 chn, where); 377 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 378 IB_CTRL2(chn), 0x10, 0x10); 379 if (ret < 0) 380 qib_dev_err(dd, 381 "Failed re-setting TRIMDONE, chn %d (%s)\n", 382 chn, where); 383 } 384 } 385 } 386 387 /* 388 * Below is portion of IBA7220-specific bringup_serdes() that actually 389 * deals with registers and memory within the SerDes itself. 390 * Post IB uC code version 1.32.17, was_reset being 1 is not really 391 * informative, so we double-check. 392 */ 393 int qib_sd7220_init(struct qib_devdata *dd) 394 { 395 const struct firmware *fw; 396 int ret = 1; /* default to failure */ 397 int first_reset, was_reset; 398 399 /* SERDES MPU reset recorded in D0 */ 400 was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1); 401 if (!was_reset) { 402 /* entered with reset not asserted, we need to do it */ 403 qib_ibsd_reset(dd, 1); 404 qib_sd_trimdone_monitor(dd, "Driver-reload"); 405 } 406 407 ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev); 408 if (ret) { 409 qib_dev_err(dd, "Failed to load IB SERDES image\n"); 410 goto done; 411 } 412 413 /* Substitute our deduced value for was_reset */ 414 ret = qib_ibsd_ucode_loaded(dd->pport, fw); 415 if (ret < 0) 416 goto bail; 417 418 first_reset = !ret; /* First reset if IBSD uCode not yet loaded */ 419 /* 420 * Alter some regs per vendor latest doc, reset-defaults 421 * are not right for IB. 422 */ 423 ret = qib_sd_early(dd); 424 if (ret < 0) { 425 qib_dev_err(dd, "Failed to set IB SERDES early defaults\n"); 426 goto bail; 427 } 428 /* 429 * Set DAC manual trim IB. 430 * We only do this once after chip has been reset (usually 431 * same as once per system boot). 432 */ 433 if (first_reset) { 434 ret = qib_sd_dactrim(dd); 435 if (ret < 0) { 436 qib_dev_err(dd, "Failed IB SERDES DAC trim\n"); 437 goto bail; 438 } 439 } 440 /* 441 * Set various registers (DDS and RXEQ) that will be 442 * controlled by IBC (in 1.2 mode) to reasonable preset values 443 * Calling the "internal" version avoids the "check for needed" 444 * and "trimdone monitor" that might be counter-productive. 445 */ 446 ret = qib_internal_presets(dd); 447 if (ret < 0) { 448 qib_dev_err(dd, "Failed to set IB SERDES presets\n"); 449 goto bail; 450 } 451 ret = qib_sd_trimself(dd, 0x80); 452 if (ret < 0) { 453 qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n"); 454 goto bail; 455 } 456 457 /* Load image, then try to verify */ 458 ret = 0; /* Assume success */ 459 if (first_reset) { 460 int vfy; 461 int trim_done; 462 463 ret = qib_sd7220_ib_load(dd, fw); 464 if (ret < 0) { 465 qib_dev_err(dd, "Failed to load IB SERDES image\n"); 466 goto bail; 467 } else { 468 /* Loaded image, try to verify */ 469 vfy = qib_sd7220_ib_vfy(dd, fw); 470 if (vfy != ret) { 471 qib_dev_err(dd, "SERDES PRAM VFY failed\n"); 472 goto bail; 473 } /* end if verified */ 474 } /* end if loaded */ 475 476 /* 477 * Loaded and verified. Almost good... 478 * hold "success" in ret 479 */ 480 ret = 0; 481 /* 482 * Prev steps all worked, continue bringup 483 * De-assert RESET to uC, only in first reset, to allow 484 * trimming. 485 * 486 * Since our default setup sets START_EQ1 to 487 * PRESET, we need to clear that for this very first run. 488 */ 489 ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38); 490 if (ret < 0) { 491 qib_dev_err(dd, "Failed clearing START_EQ1\n"); 492 goto bail; 493 } 494 495 qib_ibsd_reset(dd, 0); 496 /* 497 * If this is not the first reset, trimdone should be set 498 * already. We may need to check about this. 499 */ 500 trim_done = qib_sd_trimdone_poll(dd); 501 /* 502 * Whether or not trimdone succeeded, we need to put the 503 * uC back into reset to avoid a possible fight with the 504 * IBC state-machine. 505 */ 506 qib_ibsd_reset(dd, 1); 507 508 if (!trim_done) { 509 qib_dev_err(dd, "No TRIMDONE seen\n"); 510 goto bail; 511 } 512 /* 513 * DEBUG: check each time we reset if trimdone bits have 514 * gotten cleared, and re-set them. 515 */ 516 qib_sd_trimdone_monitor(dd, "First-reset"); 517 /* Remember so we do not re-do the load, dactrim, etc. */ 518 dd->cspec->serdes_first_init_done = 1; 519 } 520 /* 521 * setup for channel training and load values for 522 * RxEq and DDS in tables used by IBC in IB1.2 mode 523 */ 524 ret = 0; 525 if (qib_sd_setvals(dd) >= 0) 526 goto done; 527 bail: 528 ret = 1; 529 done: 530 /* start relock timer regardless, but start at 1 second */ 531 set_7220_relock_poll(dd, -1); 532 533 release_firmware(fw); 534 return ret; 535 } 536 537 #define EPB_ACC_REQ 1 538 #define EPB_ACC_GNT 0x100 539 #define EPB_DATA_MASK 0xFF 540 #define EPB_RD (1ULL << 24) 541 #define EPB_TRANS_RDY (1ULL << 31) 542 #define EPB_TRANS_ERR (1ULL << 30) 543 #define EPB_TRANS_TRIES 5 544 545 /* 546 * query, claim, release ownership of the EPB (External Parallel Bus) 547 * for a specified SERDES. 548 * the "claim" parameter is >0 to claim, <0 to release, 0 to query. 549 * Returns <0 for errors, >0 if we had ownership, else 0. 550 */ 551 static int epb_access(struct qib_devdata *dd, int sdnum, int claim) 552 { 553 u16 acc; 554 u64 accval; 555 int owned = 0; 556 u64 oct_sel = 0; 557 558 switch (sdnum) { 559 case IB_7220_SERDES: 560 /* 561 * The IB SERDES "ownership" is fairly simple. A single each 562 * request/grant. 563 */ 564 acc = kr_ibsd_epb_access_ctrl; 565 break; 566 567 case PCIE_SERDES0: 568 case PCIE_SERDES1: 569 /* PCIe SERDES has two "octants", need to select which */ 570 acc = kr_pciesd_epb_access_ctrl; 571 oct_sel = (2 << (sdnum - PCIE_SERDES0)); 572 break; 573 574 default: 575 return 0; 576 } 577 578 /* Make sure any outstanding transaction was seen */ 579 qib_read_kreg32(dd, kr_scratch); 580 udelay(15); 581 582 accval = qib_read_kreg32(dd, acc); 583 584 owned = !!(accval & EPB_ACC_GNT); 585 if (claim < 0) { 586 /* Need to release */ 587 u64 pollval; 588 /* 589 * The only writeable bits are the request and CS. 590 * Both should be clear 591 */ 592 u64 newval = 0; 593 qib_write_kreg(dd, acc, newval); 594 /* First read after write is not trustworthy */ 595 pollval = qib_read_kreg32(dd, acc); 596 udelay(5); 597 pollval = qib_read_kreg32(dd, acc); 598 if (pollval & EPB_ACC_GNT) 599 owned = -1; 600 } else if (claim > 0) { 601 /* Need to claim */ 602 u64 pollval; 603 u64 newval = EPB_ACC_REQ | oct_sel; 604 qib_write_kreg(dd, acc, newval); 605 /* First read after write is not trustworthy */ 606 pollval = qib_read_kreg32(dd, acc); 607 udelay(5); 608 pollval = qib_read_kreg32(dd, acc); 609 if (!(pollval & EPB_ACC_GNT)) 610 owned = -1; 611 } 612 return owned; 613 } 614 615 /* 616 * Lemma to deal with race condition of write..read to epb regs 617 */ 618 static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp) 619 { 620 int tries; 621 u64 transval; 622 623 qib_write_kreg(dd, reg, i_val); 624 /* Throw away first read, as RDY bit may be stale */ 625 transval = qib_read_kreg64(dd, reg); 626 627 for (tries = EPB_TRANS_TRIES; tries; --tries) { 628 transval = qib_read_kreg32(dd, reg); 629 if (transval & EPB_TRANS_RDY) 630 break; 631 udelay(5); 632 } 633 if (transval & EPB_TRANS_ERR) 634 return -1; 635 if (tries > 0 && o_vp) 636 *o_vp = transval; 637 return tries; 638 } 639 640 /** 641 * qib_sd7220_reg_mod - modify SERDES register 642 * @dd: the qlogic_ib device 643 * @sdnum: which SERDES to access 644 * @loc: location - channel, element, register, as packed by EPB_LOC() macro. 645 * @wd: Write Data - value to set in register 646 * @mask: ones where data should be spliced into reg. 647 * 648 * Basic register read/modify/write, with un-needed acesses elided. That is, 649 * a mask of zero will prevent write, while a mask of 0xFF will prevent read. 650 * returns current (presumed, if a write was done) contents of selected 651 * register, or <0 if errors. 652 */ 653 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc, 654 u32 wd, u32 mask) 655 { 656 u16 trans; 657 u64 transval; 658 int owned; 659 int tries, ret; 660 unsigned long flags; 661 662 switch (sdnum) { 663 case IB_7220_SERDES: 664 trans = kr_ibsd_epb_transaction_reg; 665 break; 666 667 case PCIE_SERDES0: 668 case PCIE_SERDES1: 669 trans = kr_pciesd_epb_transaction_reg; 670 break; 671 672 default: 673 return -1; 674 } 675 676 /* 677 * All access is locked in software (vs other host threads) and 678 * hardware (vs uC access). 679 */ 680 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); 681 682 owned = epb_access(dd, sdnum, 1); 683 if (owned < 0) { 684 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); 685 return -1; 686 } 687 ret = 0; 688 for (tries = EPB_TRANS_TRIES; tries; --tries) { 689 transval = qib_read_kreg32(dd, trans); 690 if (transval & EPB_TRANS_RDY) 691 break; 692 udelay(5); 693 } 694 695 if (tries > 0) { 696 tries = 1; /* to make read-skip work */ 697 if (mask != 0xFF) { 698 /* 699 * Not a pure write, so need to read. 700 * loc encodes chip-select as well as address 701 */ 702 transval = loc | EPB_RD; 703 tries = epb_trans(dd, trans, transval, &transval); 704 } 705 if (tries > 0 && mask != 0) { 706 /* 707 * Not a pure read, so need to write. 708 */ 709 wd = (wd & mask) | (transval & ~mask); 710 transval = loc | (wd & EPB_DATA_MASK); 711 tries = epb_trans(dd, trans, transval, &transval); 712 } 713 } 714 /* else, failed to see ready, what error-handling? */ 715 716 /* 717 * Release bus. Failure is an error. 718 */ 719 if (epb_access(dd, sdnum, -1) < 0) 720 ret = -1; 721 else 722 ret = transval & EPB_DATA_MASK; 723 724 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); 725 if (tries <= 0) 726 ret = -1; 727 return ret; 728 } 729 730 #define EPB_ROM_R (2) 731 #define EPB_ROM_W (1) 732 /* 733 * Below, all uC-related, use appropriate UC_CS, depending 734 * on which SerDes is used. 735 */ 736 #define EPB_UC_CTL EPB_LOC(6, 0, 0) 737 #define EPB_MADDRL EPB_LOC(6, 0, 2) 738 #define EPB_MADDRH EPB_LOC(6, 0, 3) 739 #define EPB_ROMDATA EPB_LOC(6, 0, 4) 740 #define EPB_RAMDATA EPB_LOC(6, 0, 5) 741 742 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */ 743 static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc, 744 u8 *buf, int cnt, int rd_notwr) 745 { 746 u16 trans; 747 u64 transval; 748 u64 csbit; 749 int owned; 750 int tries; 751 int sofar; 752 int addr; 753 int ret; 754 unsigned long flags; 755 const char *op; 756 757 /* Pick appropriate transaction reg and "Chip select" for this serdes */ 758 switch (sdnum) { 759 case IB_7220_SERDES: 760 csbit = 1ULL << EPB_IB_UC_CS_SHF; 761 trans = kr_ibsd_epb_transaction_reg; 762 break; 763 764 case PCIE_SERDES0: 765 case PCIE_SERDES1: 766 /* PCIe SERDES has uC "chip select" in different bit, too */ 767 csbit = 1ULL << EPB_PCIE_UC_CS_SHF; 768 trans = kr_pciesd_epb_transaction_reg; 769 break; 770 771 default: 772 return -1; 773 } 774 775 op = rd_notwr ? "Rd" : "Wr"; 776 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); 777 778 owned = epb_access(dd, sdnum, 1); 779 if (owned < 0) { 780 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); 781 return -1; 782 } 783 784 /* 785 * In future code, we may need to distinguish several address ranges, 786 * and select various memories based on this. For now, just trim 787 * "loc" (location including address and memory select) to 788 * "addr" (address within memory). we will only support PRAM 789 * The memory is 8KB. 790 */ 791 addr = loc & 0x1FFF; 792 for (tries = EPB_TRANS_TRIES; tries; --tries) { 793 transval = qib_read_kreg32(dd, trans); 794 if (transval & EPB_TRANS_RDY) 795 break; 796 udelay(5); 797 } 798 799 sofar = 0; 800 if (tries > 0) { 801 /* 802 * Every "memory" access is doubly-indirect. 803 * We set two bytes of address, then read/write 804 * one or mores bytes of data. 805 */ 806 807 /* First, we set control to "Read" or "Write" */ 808 transval = csbit | EPB_UC_CTL | 809 (rd_notwr ? EPB_ROM_R : EPB_ROM_W); 810 tries = epb_trans(dd, trans, transval, &transval); 811 while (tries > 0 && sofar < cnt) { 812 if (!sofar) { 813 /* Only set address at start of chunk */ 814 int addrbyte = (addr + sofar) >> 8; 815 transval = csbit | EPB_MADDRH | addrbyte; 816 tries = epb_trans(dd, trans, transval, 817 &transval); 818 if (tries <= 0) 819 break; 820 addrbyte = (addr + sofar) & 0xFF; 821 transval = csbit | EPB_MADDRL | addrbyte; 822 tries = epb_trans(dd, trans, transval, 823 &transval); 824 if (tries <= 0) 825 break; 826 } 827 828 if (rd_notwr) 829 transval = csbit | EPB_ROMDATA | EPB_RD; 830 else 831 transval = csbit | EPB_ROMDATA | buf[sofar]; 832 tries = epb_trans(dd, trans, transval, &transval); 833 if (tries <= 0) 834 break; 835 if (rd_notwr) 836 buf[sofar] = transval & EPB_DATA_MASK; 837 ++sofar; 838 } 839 /* Finally, clear control-bit for Read or Write */ 840 transval = csbit | EPB_UC_CTL; 841 tries = epb_trans(dd, trans, transval, &transval); 842 } 843 844 ret = sofar; 845 /* Release bus. Failure is an error */ 846 if (epb_access(dd, sdnum, -1) < 0) 847 ret = -1; 848 849 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); 850 if (tries <= 0) 851 ret = -1; 852 return ret; 853 } 854 855 #define PROG_CHUNK 64 856 857 static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum, 858 const u8 *img, int len, int offset) 859 { 860 int cnt, sofar, req; 861 862 sofar = 0; 863 while (sofar < len) { 864 req = len - sofar; 865 if (req > PROG_CHUNK) 866 req = PROG_CHUNK; 867 cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar, 868 (u8 *)img + sofar, req, 0); 869 if (cnt < req) { 870 sofar = -1; 871 break; 872 } 873 sofar += req; 874 } 875 return sofar; 876 } 877 878 #define VFY_CHUNK 64 879 #define SD_PRAM_ERROR_LIMIT 42 880 881 static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum, 882 const u8 *img, int len, int offset) 883 { 884 int cnt, sofar, req, idx, errors; 885 unsigned char readback[VFY_CHUNK]; 886 887 errors = 0; 888 sofar = 0; 889 while (sofar < len) { 890 req = len - sofar; 891 if (req > VFY_CHUNK) 892 req = VFY_CHUNK; 893 cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset, 894 readback, req, 1); 895 if (cnt < req) { 896 /* failed in read itself */ 897 sofar = -1; 898 break; 899 } 900 for (idx = 0; idx < cnt; ++idx) { 901 if (readback[idx] != img[idx+sofar]) 902 ++errors; 903 } 904 sofar += cnt; 905 } 906 return errors ? -errors : sofar; 907 } 908 909 static int 910 qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw) 911 { 912 return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0); 913 } 914 915 static int 916 qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw) 917 { 918 return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0); 919 } 920 921 /* 922 * IRQ not set up at this point in init, so we poll. 923 */ 924 #define IB_SERDES_TRIM_DONE (1ULL << 11) 925 #define TRIM_TMO (30) 926 927 static int qib_sd_trimdone_poll(struct qib_devdata *dd) 928 { 929 int trim_tmo, ret; 930 uint64_t val; 931 932 /* 933 * Default to failure, so IBC will not start 934 * without IB_SERDES_TRIM_DONE. 935 */ 936 ret = 0; 937 for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) { 938 val = qib_read_kreg64(dd, kr_ibcstatus); 939 if (val & IB_SERDES_TRIM_DONE) { 940 ret = 1; 941 break; 942 } 943 msleep(10); 944 } 945 if (trim_tmo >= TRIM_TMO) { 946 qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo); 947 ret = 0; 948 } 949 return ret; 950 } 951 952 #define TX_FAST_ELT (9) 953 954 /* 955 * Set the "negotiation" values for SERDES. These are used by the IB1.2 956 * link negotiation. Macros below are attempt to keep the values a 957 * little more human-editable. 958 * First, values related to Drive De-emphasis Settings. 959 */ 960 961 #define NUM_DDS_REGS 6 962 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */ 963 964 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \ 965 { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \ 966 (main_d << 3) | 4 | (ipre_d >> 2), \ 967 (main_s << 3) | 4 | (ipre_s >> 2), \ 968 ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \ 969 ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } } 970 971 static struct dds_init { 972 uint8_t reg_vals[NUM_DDS_REGS]; 973 } dds_init_vals[] = { 974 /* DDR(FDR) SDR(HDR) */ 975 /* Vendor recommends below for 3m cable */ 976 #define DDS_3M 0 977 DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0), 978 DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1), 979 DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0), 980 DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0), 981 DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0), 982 DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0), 983 DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0), 984 DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0), 985 DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0), 986 DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0), 987 DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0), 988 DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0), 989 DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0), 990 /* Vendor recommends below for 1m cable */ 991 #define DDS_1M 13 992 DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0), 993 DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0), 994 DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0) 995 }; 996 997 /* 998 * Now the RXEQ section of the table. 999 */ 1000 /* Hardware packs an element number and register address thus: */ 1001 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4)) 1002 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \ 1003 {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} } 1004 1005 #define RXEQ_VAL_ALL(elt, adr, val) \ 1006 {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} } 1007 1008 #define RXEQ_SDR_DFELTH 0 1009 #define RXEQ_SDR_TLTH 0 1010 #define RXEQ_SDR_G1CNT_Z1CNT 0x11 1011 #define RXEQ_SDR_ZCNT 23 1012 1013 static struct rxeq_init { 1014 u16 rdesc; /* in form used in SerDesDDSRXEQ */ 1015 u8 rdata[4]; 1016 } rxeq_init_vals[] = { 1017 /* Set Rcv Eq. to Preset node */ 1018 RXEQ_VAL_ALL(7, 0x27, 0x10), 1019 /* Set DFELTHFDR/HDR thresholds */ 1020 RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */ 1021 RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */ 1022 /* Set TLTHFDR/HDR theshold */ 1023 RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */ 1024 RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */ 1025 /* Set Preamp setting 2 (ZFR/ZCNT) */ 1026 RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */ 1027 RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */ 1028 /* Set Preamp DC gain and Setting 1 (GFR/GHR) */ 1029 RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */ 1030 RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */ 1031 /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */ 1032 RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */ 1033 RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */ 1034 }; 1035 1036 /* There are 17 values from vendor, but IBC only accesses the first 16 */ 1037 #define DDS_ROWS (16) 1038 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals) 1039 1040 static int qib_sd_setvals(struct qib_devdata *dd) 1041 { 1042 int idx, midx; 1043 int min_idx; /* Minimum index for this portion of table */ 1044 uint32_t dds_reg_map; 1045 u64 __iomem *taddr, *iaddr; 1046 uint64_t data; 1047 uint64_t sdctl; 1048 1049 taddr = dd->kregbase + kr_serdes_maptable; 1050 iaddr = dd->kregbase + kr_serdes_ddsrxeq0; 1051 1052 /* 1053 * Init the DDS section of the table. 1054 * Each "row" of the table provokes NUM_DDS_REG writes, to the 1055 * registers indicated in DDS_REG_MAP. 1056 */ 1057 sdctl = qib_read_kreg64(dd, kr_ibserdesctrl); 1058 sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8); 1059 sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13); 1060 qib_write_kreg(dd, kr_ibserdesctrl, sdctl); 1061 1062 /* 1063 * Iterate down table within loop for each register to store. 1064 */ 1065 dds_reg_map = DDS_REG_MAP; 1066 for (idx = 0; idx < NUM_DDS_REGS; ++idx) { 1067 data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT; 1068 writeq(data, iaddr + idx); 1069 mmiowb(); 1070 qib_read_kreg32(dd, kr_scratch); 1071 dds_reg_map >>= 4; 1072 for (midx = 0; midx < DDS_ROWS; ++midx) { 1073 u64 __iomem *daddr = taddr + ((midx << 4) + idx); 1074 data = dds_init_vals[midx].reg_vals[idx]; 1075 writeq(data, daddr); 1076 mmiowb(); 1077 qib_read_kreg32(dd, kr_scratch); 1078 } /* End inner for (vals for this reg, each row) */ 1079 } /* end outer for (regs to be stored) */ 1080 1081 /* 1082 * Init the RXEQ section of the table. 1083 * This runs in a different order, as the pattern of 1084 * register references is more complex, but there are only 1085 * four "data" values per register. 1086 */ 1087 min_idx = idx; /* RXEQ indices pick up where DDS left off */ 1088 taddr += 0x100; /* RXEQ data is in second half of table */ 1089 /* Iterate through RXEQ register addresses */ 1090 for (idx = 0; idx < RXEQ_ROWS; ++idx) { 1091 int didx; /* "destination" */ 1092 int vidx; 1093 1094 /* didx is offset by min_idx to address RXEQ range of regs */ 1095 didx = idx + min_idx; 1096 /* Store the next RXEQ register address */ 1097 writeq(rxeq_init_vals[idx].rdesc, iaddr + didx); 1098 mmiowb(); 1099 qib_read_kreg32(dd, kr_scratch); 1100 /* Iterate through RXEQ values */ 1101 for (vidx = 0; vidx < 4; vidx++) { 1102 data = rxeq_init_vals[idx].rdata[vidx]; 1103 writeq(data, taddr + (vidx << 6) + idx); 1104 mmiowb(); 1105 qib_read_kreg32(dd, kr_scratch); 1106 } 1107 } /* end outer for (Reg-writes for RXEQ) */ 1108 return 0; 1109 } 1110 1111 #define CMUCTRL5 EPB_LOC(7, 0, 0x15) 1112 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0) 1113 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5) 1114 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6) 1115 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8) 1116 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28) 1117 1118 /* 1119 * Repeat a "store" across all channels of the IB SerDes. 1120 * Although nominally it inherits the "read value" of the last 1121 * channel it modified, the only really useful return is <0 for 1122 * failure, >= 0 for success. The parameter 'loc' is assumed to 1123 * be the location in some channel of the register to be modified 1124 * The caller can specify use of the "gang write" option of EPB, 1125 * in which case we use the specified channel data for any fields 1126 * not explicitely written. 1127 */ 1128 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val, 1129 int mask) 1130 { 1131 int ret = -1; 1132 int chnl; 1133 1134 if (loc & EPB_GLOBAL_WR) { 1135 /* 1136 * Our caller has assured us that we can set all four 1137 * channels at once. Trust that. If mask is not 0xFF, 1138 * we will read the _specified_ channel for our starting 1139 * value. 1140 */ 1141 loc |= (1U << EPB_IB_QUAD0_CS_SHF); 1142 chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7; 1143 if (mask != 0xFF) { 1144 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, 1145 loc & ~EPB_GLOBAL_WR, 0, 0); 1146 if (ret < 0) { 1147 int sloc = loc >> EPB_ADDR_SHF; 1148 1149 qib_dev_err(dd, 1150 "pre-read failed: elt %d, addr 0x%X, chnl %d\n", 1151 (sloc & 0xF), 1152 (sloc >> 9) & 0x3f, chnl); 1153 return ret; 1154 } 1155 val = (ret & ~mask) | (val & mask); 1156 } 1157 loc &= ~(7 << (4+EPB_ADDR_SHF)); 1158 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF); 1159 if (ret < 0) { 1160 int sloc = loc >> EPB_ADDR_SHF; 1161 1162 qib_dev_err(dd, 1163 "Global WR failed: elt %d, addr 0x%X, val %02X\n", 1164 (sloc & 0xF), (sloc >> 9) & 0x3f, val); 1165 } 1166 return ret; 1167 } 1168 /* Clear "channel" and set CS so we can simply iterate */ 1169 loc &= ~(7 << (4+EPB_ADDR_SHF)); 1170 loc |= (1U << EPB_IB_QUAD0_CS_SHF); 1171 for (chnl = 0; chnl < 4; ++chnl) { 1172 int cloc = loc | (chnl << (4+EPB_ADDR_SHF)); 1173 1174 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask); 1175 if (ret < 0) { 1176 int sloc = loc >> EPB_ADDR_SHF; 1177 1178 qib_dev_err(dd, 1179 "Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n", 1180 (sloc & 0xF), (sloc >> 9) & 0x3f, chnl, 1181 val & 0xFF, mask & 0xFF); 1182 break; 1183 } 1184 } 1185 return ret; 1186 } 1187 1188 /* 1189 * Set the Tx values normally modified by IBC in IB1.2 mode to default 1190 * values, as gotten from first row of init table. 1191 */ 1192 static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi) 1193 { 1194 int ret; 1195 int idx, reg, data; 1196 uint32_t regmap; 1197 1198 regmap = DDS_REG_MAP; 1199 for (idx = 0; idx < NUM_DDS_REGS; ++idx) { 1200 reg = (regmap & 0xF); 1201 regmap >>= 4; 1202 data = ddi->reg_vals[idx]; 1203 /* Vendor says RMW not needed for these regs, use 0xFF mask */ 1204 ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF); 1205 if (ret < 0) 1206 break; 1207 } 1208 return ret; 1209 } 1210 1211 /* 1212 * Set the Rx values normally modified by IBC in IB1.2 mode to default 1213 * values, as gotten from selected column of init table. 1214 */ 1215 static int set_rxeq_vals(struct qib_devdata *dd, int vsel) 1216 { 1217 int ret; 1218 int ridx; 1219 int cnt = ARRAY_SIZE(rxeq_init_vals); 1220 1221 for (ridx = 0; ridx < cnt; ++ridx) { 1222 int elt, reg, val, loc; 1223 1224 elt = rxeq_init_vals[ridx].rdesc & 0xF; 1225 reg = rxeq_init_vals[ridx].rdesc >> 4; 1226 loc = EPB_LOC(0, elt, reg); 1227 val = rxeq_init_vals[ridx].rdata[vsel]; 1228 /* mask of 0xFF, because hardware does full-byte store. */ 1229 ret = ibsd_mod_allchnls(dd, loc, val, 0xFF); 1230 if (ret < 0) 1231 break; 1232 } 1233 return ret; 1234 } 1235 1236 /* 1237 * Set the default values (row 0) for DDR Driver Demphasis. 1238 * we do this initially and whenever we turn off IB-1.2 1239 * 1240 * The "default" values for Rx equalization are also stored to 1241 * SerDes registers. Formerly (and still default), we used set 2. 1242 * For experimenting with cables and link-partners, we allow changing 1243 * that via a module parameter. 1244 */ 1245 static unsigned qib_rxeq_set = 2; 1246 module_param_named(rxeq_default_set, qib_rxeq_set, uint, 1247 S_IWUSR | S_IRUGO); 1248 MODULE_PARM_DESC(rxeq_default_set, 1249 "Which set [0..3] of Rx Equalization values is default"); 1250 1251 static int qib_internal_presets(struct qib_devdata *dd) 1252 { 1253 int ret = 0; 1254 1255 ret = set_dds_vals(dd, dds_init_vals + DDS_3M); 1256 1257 if (ret < 0) 1258 qib_dev_err(dd, "Failed to set default DDS values\n"); 1259 ret = set_rxeq_vals(dd, qib_rxeq_set & 3); 1260 if (ret < 0) 1261 qib_dev_err(dd, "Failed to set default RXEQ values\n"); 1262 return ret; 1263 } 1264 1265 int qib_sd7220_presets(struct qib_devdata *dd) 1266 { 1267 int ret = 0; 1268 1269 if (!dd->cspec->presets_needed) 1270 return ret; 1271 dd->cspec->presets_needed = 0; 1272 /* Assert uC reset, so we don't clash with it. */ 1273 qib_ibsd_reset(dd, 1); 1274 udelay(2); 1275 qib_sd_trimdone_monitor(dd, "link-down"); 1276 1277 ret = qib_internal_presets(dd); 1278 return ret; 1279 } 1280 1281 static int qib_sd_trimself(struct qib_devdata *dd, int val) 1282 { 1283 int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF); 1284 1285 return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF); 1286 } 1287 1288 static int qib_sd_early(struct qib_devdata *dd) 1289 { 1290 int ret; 1291 1292 ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF); 1293 if (ret < 0) 1294 goto bail; 1295 ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF); 1296 if (ret < 0) 1297 goto bail; 1298 ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF); 1299 bail: 1300 return ret; 1301 } 1302 1303 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E) 1304 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6) 1305 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF) 1306 1307 static int qib_sd_dactrim(struct qib_devdata *dd) 1308 { 1309 int ret; 1310 1311 ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF); 1312 if (ret < 0) 1313 goto bail; 1314 1315 /* more fine-tuning of what will be default */ 1316 ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF); 1317 if (ret < 0) 1318 goto bail; 1319 1320 ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF); 1321 if (ret < 0) 1322 goto bail; 1323 1324 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF); 1325 if (ret < 0) 1326 goto bail; 1327 1328 ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF); 1329 if (ret < 0) 1330 goto bail; 1331 1332 /* 1333 * Delay for max possible number of steps, with slop. 1334 * Each step is about 4usec. 1335 */ 1336 udelay(415); 1337 1338 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF); 1339 1340 bail: 1341 return ret; 1342 } 1343 1344 #define RELOCK_FIRST_MS 3 1345 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2) 1346 void toggle_7220_rclkrls(struct qib_devdata *dd) 1347 { 1348 int loc = RXLSPPM(0) | EPB_GLOBAL_WR; 1349 int ret; 1350 1351 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); 1352 if (ret < 0) 1353 qib_dev_err(dd, "RCLKRLS failed to clear D7\n"); 1354 else { 1355 udelay(1); 1356 ibsd_mod_allchnls(dd, loc, 0x80, 0x80); 1357 } 1358 /* And again for good measure */ 1359 udelay(1); 1360 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); 1361 if (ret < 0) 1362 qib_dev_err(dd, "RCLKRLS failed to clear D7\n"); 1363 else { 1364 udelay(1); 1365 ibsd_mod_allchnls(dd, loc, 0x80, 0x80); 1366 } 1367 /* Now reset xgxs and IBC to complete the recovery */ 1368 dd->f_xgxs_reset(dd->pport); 1369 } 1370 1371 /* 1372 * Shut down the timer that polls for relock occasions, if needed 1373 * this is "hooked" from qib_7220_quiet_serdes(), which is called 1374 * just before qib_shutdown_device() in qib_driver.c shuts down all 1375 * the other timers 1376 */ 1377 void shutdown_7220_relock_poll(struct qib_devdata *dd) 1378 { 1379 if (dd->cspec->relock_timer_active) 1380 del_timer_sync(&dd->cspec->relock_timer); 1381 } 1382 1383 static unsigned qib_relock_by_timer = 1; 1384 module_param_named(relock_by_timer, qib_relock_by_timer, uint, 1385 S_IWUSR | S_IRUGO); 1386 MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up"); 1387 1388 static void qib_run_relock(unsigned long opaque) 1389 { 1390 struct qib_devdata *dd = (struct qib_devdata *)opaque; 1391 struct qib_pportdata *ppd = dd->pport; 1392 struct qib_chip_specific *cs = dd->cspec; 1393 int timeoff; 1394 1395 /* 1396 * Check link-training state for "stuck" state, when down. 1397 * if found, try relock and schedule another try at 1398 * exponentially growing delay, maxed at one second. 1399 * if not stuck, our work is done. 1400 */ 1401 if ((dd->flags & QIB_INITTED) && !(ppd->lflags & 1402 (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED | 1403 QIBL_LINKACTIVE))) { 1404 if (qib_relock_by_timer) { 1405 if (!(ppd->lflags & QIBL_IB_LINK_DISABLED)) 1406 toggle_7220_rclkrls(dd); 1407 } 1408 /* re-set timer for next check */ 1409 timeoff = cs->relock_interval << 1; 1410 if (timeoff > HZ) 1411 timeoff = HZ; 1412 cs->relock_interval = timeoff; 1413 } else 1414 timeoff = HZ; 1415 mod_timer(&cs->relock_timer, jiffies + timeoff); 1416 } 1417 1418 void set_7220_relock_poll(struct qib_devdata *dd, int ibup) 1419 { 1420 struct qib_chip_specific *cs = dd->cspec; 1421 1422 if (ibup) { 1423 /* We are now up, relax timer to 1 second interval */ 1424 if (cs->relock_timer_active) { 1425 cs->relock_interval = HZ; 1426 mod_timer(&cs->relock_timer, jiffies + HZ); 1427 } 1428 } else { 1429 /* Transition to down, (re-)set timer to short interval. */ 1430 unsigned int timeout; 1431 1432 timeout = msecs_to_jiffies(RELOCK_FIRST_MS); 1433 if (timeout == 0) 1434 timeout = 1; 1435 /* If timer has not yet been started, do so. */ 1436 if (!cs->relock_timer_active) { 1437 cs->relock_timer_active = 1; 1438 init_timer(&cs->relock_timer); 1439 cs->relock_timer.function = qib_run_relock; 1440 cs->relock_timer.data = (unsigned long) dd; 1441 cs->relock_interval = timeout; 1442 cs->relock_timer.expires = jiffies + timeout; 1443 add_timer(&cs->relock_timer); 1444 } else { 1445 cs->relock_interval = timeout; 1446 mod_timer(&cs->relock_timer, jiffies + timeout); 1447 } 1448 } 1449 } 1450