1 /*
2  * Copyright (c) 2013 Intel Corporation. All rights reserved.
3  * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4  * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 /*
35  * This file contains all of the code that is specific to the SerDes
36  * on the QLogic_IB 7220 chip.
37  */
38 
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/firmware.h>
43 
44 #include "qib.h"
45 #include "qib_7220.h"
46 
47 #define SD7220_FW_NAME "qlogic/sd7220.fw"
48 MODULE_FIRMWARE(SD7220_FW_NAME);
49 
50 /*
51  * Same as in qib_iba7220.c, but just the registers needed here.
52  * Could move whole set to qib_7220.h, but decided better to keep
53  * local.
54  */
55 #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
56 #define kr_hwerrclear KREG_IDX(HwErrClear)
57 #define kr_hwerrmask KREG_IDX(HwErrMask)
58 #define kr_hwerrstatus KREG_IDX(HwErrStatus)
59 #define kr_ibcstatus KREG_IDX(IBCStatus)
60 #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
61 #define kr_scratch KREG_IDX(Scratch)
62 #define kr_xgxs_cfg KREG_IDX(XGXSCfg)
63 /* these are used only here, not in qib_iba7220.c */
64 #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
65 #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
66 #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
67 #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
68 #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
69 
70 /*
71  * The IBSerDesMappTable is a memory that holds values to be stored in
72  * various SerDes registers by IBC.
73  */
74 #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
75 
76 /*
77  * Below used for sdnum parameter, selecting one of the two sections
78  * used for PCIe, or the single SerDes used for IB.
79  */
80 #define PCIE_SERDES0 0
81 #define PCIE_SERDES1 1
82 
83 /*
84  * The EPB requires addressing in a particular form. EPB_LOC() is intended
85  * to make #definitions a little more readable.
86  */
87 #define EPB_ADDR_SHF 8
88 #define EPB_LOC(chn, elt, reg) \
89 	(((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
90 	 EPB_ADDR_SHF)
91 #define EPB_IB_QUAD0_CS_SHF (25)
92 #define EPB_IB_QUAD0_CS (1U <<  EPB_IB_QUAD0_CS_SHF)
93 #define EPB_IB_UC_CS_SHF (26)
94 #define EPB_PCIE_UC_CS_SHF (27)
95 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
96 
97 /* Forward declarations. */
98 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
99 			      u32 data, u32 mask);
100 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
101 			     int mask);
102 static int qib_sd_trimdone_poll(struct qib_devdata *dd);
103 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
104 static int qib_sd_setvals(struct qib_devdata *dd);
105 static int qib_sd_early(struct qib_devdata *dd);
106 static int qib_sd_dactrim(struct qib_devdata *dd);
107 static int qib_internal_presets(struct qib_devdata *dd);
108 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
109 static int qib_sd_trimself(struct qib_devdata *dd, int val);
110 static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
111 static int qib_sd7220_ib_load(struct qib_devdata *dd,
112 			      const struct firmware *fw);
113 static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
114 			     const struct firmware *fw);
115 
116 /*
117  * Below keeps track of whether the "once per power-on" initialization has
118  * been done, because uC code Version 1.32.17 or higher allows the uC to
119  * be reset at will, and Automatic Equalization may require it. So the
120  * state of the reset "pin", is no longer valid. Instead, we check for the
121  * actual uC code having been loaded.
122  */
123 static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
124 				 const struct firmware *fw)
125 {
126 	struct qib_devdata *dd = ppd->dd;
127 
128 	if (!dd->cspec->serdes_first_init_done &&
129 	    qib_sd7220_ib_vfy(dd, fw) > 0)
130 		dd->cspec->serdes_first_init_done = 1;
131 	return dd->cspec->serdes_first_init_done;
132 }
133 
134 /* repeat #define for local use. "Real" #define is in qib_iba7220.c */
135 #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR      0x0000004000000000ULL
136 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
137 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
138 #define UC_PAR_CLR_D 8
139 #define UC_PAR_CLR_M 0xC
140 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
141 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
142 
143 void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
144 {
145 	int ret;
146 
147 	/* clear, then re-enable parity errs */
148 	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
149 		UC_PAR_CLR_D, UC_PAR_CLR_M);
150 	if (ret < 0) {
151 		qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
152 		goto bail;
153 	}
154 	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
155 		UC_PAR_CLR_M);
156 
157 	qib_read_kreg32(dd, kr_scratch);
158 	udelay(4);
159 	qib_write_kreg(dd, kr_hwerrclear,
160 		QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
161 	qib_read_kreg32(dd, kr_scratch);
162 bail:
163 	return;
164 }
165 
166 /*
167  * After a reset or other unusual event, the epb interface may need
168  * to be re-synchronized, between the host and the uC.
169  * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
170  */
171 #define IBSD_RESYNC_TRIES 3
172 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
173 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
174 
175 static int qib_resync_ibepb(struct qib_devdata *dd)
176 {
177 	int ret, pat, tries, chn;
178 	u32 loc;
179 
180 	ret = -1;
181 	chn = 0;
182 	for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
183 		loc = IB_PGUDP(chn);
184 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
185 		if (ret < 0) {
186 			qib_dev_err(dd, "Failed read in resync\n");
187 			continue;
188 		}
189 		if (ret != 0xF0 && ret != 0x55 && tries == 0)
190 			qib_dev_err(dd, "unexpected pattern in resync\n");
191 		pat = ret ^ 0xA5; /* alternate F0 and 55 */
192 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
193 		if (ret < 0) {
194 			qib_dev_err(dd, "Failed write in resync\n");
195 			continue;
196 		}
197 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
198 		if (ret < 0) {
199 			qib_dev_err(dd, "Failed re-read in resync\n");
200 			continue;
201 		}
202 		if (ret != pat) {
203 			qib_dev_err(dd, "Failed compare1 in resync\n");
204 			continue;
205 		}
206 		loc = IB_CMUDONE(chn);
207 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
208 		if (ret < 0) {
209 			qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
210 			continue;
211 		}
212 		if ((ret & 0x70) != ((chn << 4) | 0x40)) {
213 			qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
214 				    ret, chn);
215 			continue;
216 		}
217 		if (++chn == 4)
218 			break;  /* Success */
219 	}
220 	return (ret > 0) ? 0 : ret;
221 }
222 
223 /*
224  * Localize the stuff that should be done to change IB uC reset
225  * returns <0 for errors.
226  */
227 static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
228 {
229 	u64 rst_val;
230 	int ret = 0;
231 	unsigned long flags;
232 
233 	rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
234 	if (assert_rst) {
235 		/*
236 		 * Vendor recommends "interrupting" uC before reset, to
237 		 * minimize possible glitches.
238 		 */
239 		spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
240 		epb_access(dd, IB_7220_SERDES, 1);
241 		rst_val |= 1ULL;
242 		/* Squelch possible parity error from _asserting_ reset */
243 		qib_write_kreg(dd, kr_hwerrmask,
244 			       dd->cspec->hwerrmask &
245 			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
246 		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
247 		/* flush write, delay to ensure it took effect */
248 		qib_read_kreg32(dd, kr_scratch);
249 		udelay(2);
250 		/* once it's reset, can remove interrupt */
251 		epb_access(dd, IB_7220_SERDES, -1);
252 		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
253 	} else {
254 		/*
255 		 * Before we de-assert reset, we need to deal with
256 		 * possible glitch on the Parity-error line.
257 		 * Suppress it around the reset, both in chip-level
258 		 * hwerrmask and in IB uC control reg. uC will allow
259 		 * it again during startup.
260 		 */
261 		u64 val;
262 		rst_val &= ~(1ULL);
263 		qib_write_kreg(dd, kr_hwerrmask,
264 			       dd->cspec->hwerrmask &
265 			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
266 
267 		ret = qib_resync_ibepb(dd);
268 		if (ret < 0)
269 			qib_dev_err(dd, "unable to re-sync IB EPB\n");
270 
271 		/* set uC control regs to suppress parity errs */
272 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
273 		if (ret < 0)
274 			goto bail;
275 		/* IB uC code past Version 1.32.17 allow suppression of wdog */
276 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
277 			0x80);
278 		if (ret < 0) {
279 			qib_dev_err(dd, "Failed to set WDOG disable\n");
280 			goto bail;
281 		}
282 		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
283 		/* flush write, delay for startup */
284 		qib_read_kreg32(dd, kr_scratch);
285 		udelay(1);
286 		/* clear, then re-enable parity errs */
287 		qib_sd7220_clr_ibpar(dd);
288 		val = qib_read_kreg64(dd, kr_hwerrstatus);
289 		if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
290 			qib_dev_err(dd, "IBUC Parity still set after RST\n");
291 			dd->cspec->hwerrmask &=
292 				~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
293 		}
294 		qib_write_kreg(dd, kr_hwerrmask,
295 			dd->cspec->hwerrmask);
296 	}
297 
298 bail:
299 	return ret;
300 }
301 
302 static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
303 	const char *where)
304 {
305 	int ret, chn, baduns;
306 	u64 val;
307 
308 	if (!where)
309 		where = "?";
310 
311 	/* give time for reset to settle out in EPB */
312 	udelay(2);
313 
314 	ret = qib_resync_ibepb(dd);
315 	if (ret < 0)
316 		qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
317 
318 	/* Do "sacrificial read" to get EPB in sane state after reset */
319 	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
320 	if (ret < 0)
321 		qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
322 
323 	/* Check/show "summary" Trim-done bit in IBCStatus */
324 	val = qib_read_kreg64(dd, kr_ibcstatus);
325 	if (!(val & (1ULL << 11)))
326 		qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
327 	/*
328 	 * Do "dummy read/mod/wr" to get EPB in sane state after reset
329 	 * The default value for MPREG6 is 0.
330 	 */
331 	udelay(2);
332 
333 	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
334 	if (ret < 0)
335 		qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
336 	udelay(10);
337 
338 	baduns = 0;
339 
340 	for (chn = 3; chn >= 0; --chn) {
341 		/* Read CTRL reg for each channel to check TRIMDONE */
342 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
343 			IB_CTRL2(chn), 0, 0);
344 		if (ret < 0)
345 			qib_dev_err(dd,
346 				"Failed checking TRIMDONE, chn %d (%s)\n",
347 				chn, where);
348 
349 		if (!(ret & 0x10)) {
350 			int probe;
351 
352 			baduns |= (1 << chn);
353 			qib_dev_err(dd,
354 				"TRIMDONE cleared on chn %d (%02X). (%s)\n",
355 				chn, ret, where);
356 			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
357 				IB_PGUDP(0), 0, 0);
358 			qib_dev_err(dd, "probe is %d (%02X)\n",
359 				probe, probe);
360 			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
361 				IB_CTRL2(chn), 0, 0);
362 			qib_dev_err(dd, "re-read: %d (%02X)\n",
363 				probe, probe);
364 			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
365 				IB_CTRL2(chn), 0x10, 0x10);
366 			if (ret < 0)
367 				qib_dev_err(dd,
368 					"Err on TRIMDONE rewrite1\n");
369 		}
370 	}
371 	for (chn = 3; chn >= 0; --chn) {
372 		/* Read CTRL reg for each channel to check TRIMDONE */
373 		if (baduns & (1 << chn)) {
374 			qib_dev_err(dd,
375 				"Resetting TRIMDONE on chn %d (%s)\n",
376 				chn, where);
377 			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
378 				IB_CTRL2(chn), 0x10, 0x10);
379 			if (ret < 0)
380 				qib_dev_err(dd,
381 					"Failed re-setting TRIMDONE, chn %d (%s)\n",
382 					chn, where);
383 		}
384 	}
385 }
386 
387 /*
388  * Below is portion of IBA7220-specific bringup_serdes() that actually
389  * deals with registers and memory within the SerDes itself.
390  * Post IB uC code version 1.32.17, was_reset being 1 is not really
391  * informative, so we double-check.
392  */
393 int qib_sd7220_init(struct qib_devdata *dd)
394 {
395 	const struct firmware *fw;
396 	int ret = 1; /* default to failure */
397 	int first_reset, was_reset;
398 
399 	/* SERDES MPU reset recorded in D0 */
400 	was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
401 	if (!was_reset) {
402 		/* entered with reset not asserted, we need to do it */
403 		qib_ibsd_reset(dd, 1);
404 		qib_sd_trimdone_monitor(dd, "Driver-reload");
405 	}
406 
407 	ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
408 	if (ret) {
409 		qib_dev_err(dd, "Failed to load IB SERDES image\n");
410 		goto done;
411 	}
412 
413 	/* Substitute our deduced value for was_reset */
414 	ret = qib_ibsd_ucode_loaded(dd->pport, fw);
415 	if (ret < 0)
416 		goto bail;
417 
418 	first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
419 	/*
420 	 * Alter some regs per vendor latest doc, reset-defaults
421 	 * are not right for IB.
422 	 */
423 	ret = qib_sd_early(dd);
424 	if (ret < 0) {
425 		qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
426 		goto bail;
427 	}
428 	/*
429 	 * Set DAC manual trim IB.
430 	 * We only do this once after chip has been reset (usually
431 	 * same as once per system boot).
432 	 */
433 	if (first_reset) {
434 		ret = qib_sd_dactrim(dd);
435 		if (ret < 0) {
436 			qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
437 			goto bail;
438 		}
439 	}
440 	/*
441 	 * Set various registers (DDS and RXEQ) that will be
442 	 * controlled by IBC (in 1.2 mode) to reasonable preset values
443 	 * Calling the "internal" version avoids the "check for needed"
444 	 * and "trimdone monitor" that might be counter-productive.
445 	 */
446 	ret = qib_internal_presets(dd);
447 	if (ret < 0) {
448 		qib_dev_err(dd, "Failed to set IB SERDES presets\n");
449 		goto bail;
450 	}
451 	ret = qib_sd_trimself(dd, 0x80);
452 	if (ret < 0) {
453 		qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
454 		goto bail;
455 	}
456 
457 	/* Load image, then try to verify */
458 	ret = 0;        /* Assume success */
459 	if (first_reset) {
460 		int vfy;
461 		int trim_done;
462 
463 		ret = qib_sd7220_ib_load(dd, fw);
464 		if (ret < 0) {
465 			qib_dev_err(dd, "Failed to load IB SERDES image\n");
466 			goto bail;
467 		} else {
468 			/* Loaded image, try to verify */
469 			vfy = qib_sd7220_ib_vfy(dd, fw);
470 			if (vfy != ret) {
471 				qib_dev_err(dd, "SERDES PRAM VFY failed\n");
472 				goto bail;
473 			} /* end if verified */
474 		} /* end if loaded */
475 
476 		/*
477 		 * Loaded and verified. Almost good...
478 		 * hold "success" in ret
479 		 */
480 		ret = 0;
481 		/*
482 		 * Prev steps all worked, continue bringup
483 		 * De-assert RESET to uC, only in first reset, to allow
484 		 * trimming.
485 		 *
486 		 * Since our default setup sets START_EQ1 to
487 		 * PRESET, we need to clear that for this very first run.
488 		 */
489 		ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
490 		if (ret < 0) {
491 			qib_dev_err(dd, "Failed clearing START_EQ1\n");
492 			goto bail;
493 		}
494 
495 		qib_ibsd_reset(dd, 0);
496 		/*
497 		 * If this is not the first reset, trimdone should be set
498 		 * already. We may need to check about this.
499 		 */
500 		trim_done = qib_sd_trimdone_poll(dd);
501 		/*
502 		 * Whether or not trimdone succeeded, we need to put the
503 		 * uC back into reset to avoid a possible fight with the
504 		 * IBC state-machine.
505 		 */
506 		qib_ibsd_reset(dd, 1);
507 
508 		if (!trim_done) {
509 			qib_dev_err(dd, "No TRIMDONE seen\n");
510 			goto bail;
511 		}
512 		/*
513 		 * DEBUG: check each time we reset if trimdone bits have
514 		 * gotten cleared, and re-set them.
515 		 */
516 		qib_sd_trimdone_monitor(dd, "First-reset");
517 		/* Remember so we do not re-do the load, dactrim, etc. */
518 		dd->cspec->serdes_first_init_done = 1;
519 	}
520 	/*
521 	 * setup for channel training and load values for
522 	 * RxEq and DDS in tables used by IBC in IB1.2 mode
523 	 */
524 	ret = 0;
525 	if (qib_sd_setvals(dd) >= 0)
526 		goto done;
527 bail:
528 	ret = 1;
529 done:
530 	/* start relock timer regardless, but start at 1 second */
531 	set_7220_relock_poll(dd, -1);
532 
533 	release_firmware(fw);
534 	return ret;
535 }
536 
537 #define EPB_ACC_REQ 1
538 #define EPB_ACC_GNT 0x100
539 #define EPB_DATA_MASK 0xFF
540 #define EPB_RD (1ULL << 24)
541 #define EPB_TRANS_RDY (1ULL << 31)
542 #define EPB_TRANS_ERR (1ULL << 30)
543 #define EPB_TRANS_TRIES 5
544 
545 /*
546  * query, claim, release ownership of the EPB (External Parallel Bus)
547  * for a specified SERDES.
548  * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
549  * Returns <0 for errors, >0 if we had ownership, else 0.
550  */
551 static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
552 {
553 	u16 acc;
554 	u64 accval;
555 	int owned = 0;
556 	u64 oct_sel = 0;
557 
558 	switch (sdnum) {
559 	case IB_7220_SERDES:
560 		/*
561 		 * The IB SERDES "ownership" is fairly simple. A single each
562 		 * request/grant.
563 		 */
564 		acc = kr_ibsd_epb_access_ctrl;
565 		break;
566 
567 	case PCIE_SERDES0:
568 	case PCIE_SERDES1:
569 		/* PCIe SERDES has two "octants", need to select which */
570 		acc = kr_pciesd_epb_access_ctrl;
571 		oct_sel = (2 << (sdnum - PCIE_SERDES0));
572 		break;
573 
574 	default:
575 		return 0;
576 	}
577 
578 	/* Make sure any outstanding transaction was seen */
579 	qib_read_kreg32(dd, kr_scratch);
580 	udelay(15);
581 
582 	accval = qib_read_kreg32(dd, acc);
583 
584 	owned = !!(accval & EPB_ACC_GNT);
585 	if (claim < 0) {
586 		/* Need to release */
587 		u64 pollval;
588 		/*
589 		 * The only writeable bits are the request and CS.
590 		 * Both should be clear
591 		 */
592 		u64 newval = 0;
593 		qib_write_kreg(dd, acc, newval);
594 		/* First read after write is not trustworthy */
595 		pollval = qib_read_kreg32(dd, acc);
596 		udelay(5);
597 		pollval = qib_read_kreg32(dd, acc);
598 		if (pollval & EPB_ACC_GNT)
599 			owned = -1;
600 	} else if (claim > 0) {
601 		/* Need to claim */
602 		u64 pollval;
603 		u64 newval = EPB_ACC_REQ | oct_sel;
604 		qib_write_kreg(dd, acc, newval);
605 		/* First read after write is not trustworthy */
606 		pollval = qib_read_kreg32(dd, acc);
607 		udelay(5);
608 		pollval = qib_read_kreg32(dd, acc);
609 		if (!(pollval & EPB_ACC_GNT))
610 			owned = -1;
611 	}
612 	return owned;
613 }
614 
615 /*
616  * Lemma to deal with race condition of write..read to epb regs
617  */
618 static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
619 {
620 	int tries;
621 	u64 transval;
622 
623 	qib_write_kreg(dd, reg, i_val);
624 	/* Throw away first read, as RDY bit may be stale */
625 	transval = qib_read_kreg64(dd, reg);
626 
627 	for (tries = EPB_TRANS_TRIES; tries; --tries) {
628 		transval = qib_read_kreg32(dd, reg);
629 		if (transval & EPB_TRANS_RDY)
630 			break;
631 		udelay(5);
632 	}
633 	if (transval & EPB_TRANS_ERR)
634 		return -1;
635 	if (tries > 0 && o_vp)
636 		*o_vp = transval;
637 	return tries;
638 }
639 
640 /**
641  * qib_sd7220_reg_mod - modify SERDES register
642  * @dd: the qlogic_ib device
643  * @sdnum: which SERDES to access
644  * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
645  * @wd: Write Data - value to set in register
646  * @mask: ones where data should be spliced into reg.
647  *
648  * Basic register read/modify/write, with un-needed acesses elided. That is,
649  * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
650  * returns current (presumed, if a write was done) contents of selected
651  * register, or <0 if errors.
652  */
653 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
654 			      u32 wd, u32 mask)
655 {
656 	u16 trans;
657 	u64 transval;
658 	int owned;
659 	int tries, ret;
660 	unsigned long flags;
661 
662 	switch (sdnum) {
663 	case IB_7220_SERDES:
664 		trans = kr_ibsd_epb_transaction_reg;
665 		break;
666 
667 	case PCIE_SERDES0:
668 	case PCIE_SERDES1:
669 		trans = kr_pciesd_epb_transaction_reg;
670 		break;
671 
672 	default:
673 		return -1;
674 	}
675 
676 	/*
677 	 * All access is locked in software (vs other host threads) and
678 	 * hardware (vs uC access).
679 	 */
680 	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
681 
682 	owned = epb_access(dd, sdnum, 1);
683 	if (owned < 0) {
684 		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
685 		return -1;
686 	}
687 	ret = 0;
688 	for (tries = EPB_TRANS_TRIES; tries; --tries) {
689 		transval = qib_read_kreg32(dd, trans);
690 		if (transval & EPB_TRANS_RDY)
691 			break;
692 		udelay(5);
693 	}
694 
695 	if (tries > 0) {
696 		tries = 1;      /* to make read-skip work */
697 		if (mask != 0xFF) {
698 			/*
699 			 * Not a pure write, so need to read.
700 			 * loc encodes chip-select as well as address
701 			 */
702 			transval = loc | EPB_RD;
703 			tries = epb_trans(dd, trans, transval, &transval);
704 		}
705 		if (tries > 0 && mask != 0) {
706 			/*
707 			 * Not a pure read, so need to write.
708 			 */
709 			wd = (wd & mask) | (transval & ~mask);
710 			transval = loc | (wd & EPB_DATA_MASK);
711 			tries = epb_trans(dd, trans, transval, &transval);
712 		}
713 	}
714 	/* else, failed to see ready, what error-handling? */
715 
716 	/*
717 	 * Release bus. Failure is an error.
718 	 */
719 	if (epb_access(dd, sdnum, -1) < 0)
720 		ret = -1;
721 	else
722 		ret = transval & EPB_DATA_MASK;
723 
724 	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
725 	if (tries <= 0)
726 		ret = -1;
727 	return ret;
728 }
729 
730 #define EPB_ROM_R (2)
731 #define EPB_ROM_W (1)
732 /*
733  * Below, all uC-related, use appropriate UC_CS, depending
734  * on which SerDes is used.
735  */
736 #define EPB_UC_CTL EPB_LOC(6, 0, 0)
737 #define EPB_MADDRL EPB_LOC(6, 0, 2)
738 #define EPB_MADDRH EPB_LOC(6, 0, 3)
739 #define EPB_ROMDATA EPB_LOC(6, 0, 4)
740 #define EPB_RAMDATA EPB_LOC(6, 0, 5)
741 
742 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
743 static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
744 			       u8 *buf, int cnt, int rd_notwr)
745 {
746 	u16 trans;
747 	u64 transval;
748 	u64 csbit;
749 	int owned;
750 	int tries;
751 	int sofar;
752 	int addr;
753 	int ret;
754 	unsigned long flags;
755 	const char *op;
756 
757 	/* Pick appropriate transaction reg and "Chip select" for this serdes */
758 	switch (sdnum) {
759 	case IB_7220_SERDES:
760 		csbit = 1ULL << EPB_IB_UC_CS_SHF;
761 		trans = kr_ibsd_epb_transaction_reg;
762 		break;
763 
764 	case PCIE_SERDES0:
765 	case PCIE_SERDES1:
766 		/* PCIe SERDES has uC "chip select" in different bit, too */
767 		csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
768 		trans = kr_pciesd_epb_transaction_reg;
769 		break;
770 
771 	default:
772 		return -1;
773 	}
774 
775 	op = rd_notwr ? "Rd" : "Wr";
776 	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
777 
778 	owned = epb_access(dd, sdnum, 1);
779 	if (owned < 0) {
780 		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
781 		return -1;
782 	}
783 
784 	/*
785 	 * In future code, we may need to distinguish several address ranges,
786 	 * and select various memories based on this. For now, just trim
787 	 * "loc" (location including address and memory select) to
788 	 * "addr" (address within memory). we will only support PRAM
789 	 * The memory is 8KB.
790 	 */
791 	addr = loc & 0x1FFF;
792 	for (tries = EPB_TRANS_TRIES; tries; --tries) {
793 		transval = qib_read_kreg32(dd, trans);
794 		if (transval & EPB_TRANS_RDY)
795 			break;
796 		udelay(5);
797 	}
798 
799 	sofar = 0;
800 	if (tries > 0) {
801 		/*
802 		 * Every "memory" access is doubly-indirect.
803 		 * We set two bytes of address, then read/write
804 		 * one or mores bytes of data.
805 		 */
806 
807 		/* First, we set control to "Read" or "Write" */
808 		transval = csbit | EPB_UC_CTL |
809 			(rd_notwr ? EPB_ROM_R : EPB_ROM_W);
810 		tries = epb_trans(dd, trans, transval, &transval);
811 		while (tries > 0 && sofar < cnt) {
812 			if (!sofar) {
813 				/* Only set address at start of chunk */
814 				int addrbyte = (addr + sofar) >> 8;
815 				transval = csbit | EPB_MADDRH | addrbyte;
816 				tries = epb_trans(dd, trans, transval,
817 						  &transval);
818 				if (tries <= 0)
819 					break;
820 				addrbyte = (addr + sofar) & 0xFF;
821 				transval = csbit | EPB_MADDRL | addrbyte;
822 				tries = epb_trans(dd, trans, transval,
823 						 &transval);
824 				if (tries <= 0)
825 					break;
826 			}
827 
828 			if (rd_notwr)
829 				transval = csbit | EPB_ROMDATA | EPB_RD;
830 			else
831 				transval = csbit | EPB_ROMDATA | buf[sofar];
832 			tries = epb_trans(dd, trans, transval, &transval);
833 			if (tries <= 0)
834 				break;
835 			if (rd_notwr)
836 				buf[sofar] = transval & EPB_DATA_MASK;
837 			++sofar;
838 		}
839 		/* Finally, clear control-bit for Read or Write */
840 		transval = csbit | EPB_UC_CTL;
841 		tries = epb_trans(dd, trans, transval, &transval);
842 	}
843 
844 	ret = sofar;
845 	/* Release bus. Failure is an error */
846 	if (epb_access(dd, sdnum, -1) < 0)
847 		ret = -1;
848 
849 	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
850 	if (tries <= 0)
851 		ret = -1;
852 	return ret;
853 }
854 
855 #define PROG_CHUNK 64
856 
857 static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
858 			      const u8 *img, int len, int offset)
859 {
860 	int cnt, sofar, req;
861 
862 	sofar = 0;
863 	while (sofar < len) {
864 		req = len - sofar;
865 		if (req > PROG_CHUNK)
866 			req = PROG_CHUNK;
867 		cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
868 					  (u8 *)img + sofar, req, 0);
869 		if (cnt < req) {
870 			sofar = -1;
871 			break;
872 		}
873 		sofar += req;
874 	}
875 	return sofar;
876 }
877 
878 #define VFY_CHUNK 64
879 #define SD_PRAM_ERROR_LIMIT 42
880 
881 static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
882 			       const u8 *img, int len, int offset)
883 {
884 	int cnt, sofar, req, idx, errors;
885 	unsigned char readback[VFY_CHUNK];
886 
887 	errors = 0;
888 	sofar = 0;
889 	while (sofar < len) {
890 		req = len - sofar;
891 		if (req > VFY_CHUNK)
892 			req = VFY_CHUNK;
893 		cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
894 					  readback, req, 1);
895 		if (cnt < req) {
896 			/* failed in read itself */
897 			sofar = -1;
898 			break;
899 		}
900 		for (idx = 0; idx < cnt; ++idx) {
901 			if (readback[idx] != img[idx+sofar])
902 				++errors;
903 		}
904 		sofar += cnt;
905 	}
906 	return errors ? -errors : sofar;
907 }
908 
909 static int
910 qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
911 {
912 	return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
913 }
914 
915 static int
916 qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
917 {
918 	return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
919 }
920 
921 /*
922  * IRQ not set up at this point in init, so we poll.
923  */
924 #define IB_SERDES_TRIM_DONE (1ULL << 11)
925 #define TRIM_TMO (30)
926 
927 static int qib_sd_trimdone_poll(struct qib_devdata *dd)
928 {
929 	int trim_tmo, ret;
930 	uint64_t val;
931 
932 	/*
933 	 * Default to failure, so IBC will not start
934 	 * without IB_SERDES_TRIM_DONE.
935 	 */
936 	ret = 0;
937 	for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
938 		val = qib_read_kreg64(dd, kr_ibcstatus);
939 		if (val & IB_SERDES_TRIM_DONE) {
940 			ret = 1;
941 			break;
942 		}
943 		msleep(10);
944 	}
945 	if (trim_tmo >= TRIM_TMO) {
946 		qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
947 		ret = 0;
948 	}
949 	return ret;
950 }
951 
952 #define TX_FAST_ELT (9)
953 
954 /*
955  * Set the "negotiation" values for SERDES. These are used by the IB1.2
956  * link negotiation. Macros below are attempt to keep the values a
957  * little more human-editable.
958  * First, values related to Drive De-emphasis Settings.
959  */
960 
961 #define NUM_DDS_REGS 6
962 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
963 
964 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
965 	{ { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
966 	  (main_d << 3) | 4 | (ipre_d >> 2), \
967 	  (main_s << 3) | 4 | (ipre_s >> 2), \
968 	  ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
969 	  ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
970 
971 static struct dds_init {
972 	uint8_t reg_vals[NUM_DDS_REGS];
973 } dds_init_vals[] = {
974 	/*       DDR(FDR)       SDR(HDR)   */
975 	/* Vendor recommends below for 3m cable */
976 #define DDS_3M 0
977 	DDS_VAL(31, 19, 12, 0, 29, 22,  9, 0),
978 	DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
979 	DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
980 	DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
981 	DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
982 	DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
983 	DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
984 	DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
985 	DDS_VAL(31, 20, 11, 0, 28, 23,  8, 0),
986 	DDS_VAL(31, 21, 10, 0, 27, 24,  7, 0),
987 	DDS_VAL(31, 22,  9, 0, 26, 25,  6, 0),
988 	DDS_VAL(30, 23,  8, 0, 25, 26,  5, 0),
989 	DDS_VAL(29, 24,  7, 0, 23, 27,  4, 0),
990 	/* Vendor recommends below for 1m cable */
991 #define DDS_1M 13
992 	DDS_VAL(28, 25,  6, 0, 21, 28,  3, 0),
993 	DDS_VAL(27, 26,  5, 0, 19, 29,  2, 0),
994 	DDS_VAL(25, 27,  4, 0, 17, 30,  1, 0)
995 };
996 
997 /*
998  * Now the RXEQ section of the table.
999  */
1000 /* Hardware packs an element number and register address thus: */
1001 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
1002 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1003 	{RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1004 
1005 #define RXEQ_VAL_ALL(elt, adr, val)  \
1006 	{RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1007 
1008 #define RXEQ_SDR_DFELTH 0
1009 #define RXEQ_SDR_TLTH 0
1010 #define RXEQ_SDR_G1CNT_Z1CNT 0x11
1011 #define RXEQ_SDR_ZCNT 23
1012 
1013 static struct rxeq_init {
1014 	u16 rdesc;      /* in form used in SerDesDDSRXEQ */
1015 	u8  rdata[4];
1016 } rxeq_init_vals[] = {
1017 	/* Set Rcv Eq. to Preset node */
1018 	RXEQ_VAL_ALL(7, 0x27, 0x10),
1019 	/* Set DFELTHFDR/HDR thresholds */
1020 	RXEQ_VAL(7, 8,    0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1021 	RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1022 	/* Set TLTHFDR/HDR theshold */
1023 	RXEQ_VAL(7, 9,    2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1024 	RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was  0, 1, 2, 3 */
1025 	/* Set Preamp setting 2 (ZFR/ZCNT) */
1026 	RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1027 	RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1028 	/* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1029 	RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1030 	RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1031 	/* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1032 	RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1033 	RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1034 };
1035 
1036 /* There are 17 values from vendor, but IBC only accesses the first 16 */
1037 #define DDS_ROWS (16)
1038 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1039 
1040 static int qib_sd_setvals(struct qib_devdata *dd)
1041 {
1042 	int idx, midx;
1043 	int min_idx;     /* Minimum index for this portion of table */
1044 	uint32_t dds_reg_map;
1045 	u64 __iomem *taddr, *iaddr;
1046 	uint64_t data;
1047 	uint64_t sdctl;
1048 
1049 	taddr = dd->kregbase + kr_serdes_maptable;
1050 	iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1051 
1052 	/*
1053 	 * Init the DDS section of the table.
1054 	 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1055 	 * registers indicated in DDS_REG_MAP.
1056 	 */
1057 	sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1058 	sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1059 	sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1060 	qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1061 
1062 	/*
1063 	 * Iterate down table within loop for each register to store.
1064 	 */
1065 	dds_reg_map = DDS_REG_MAP;
1066 	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1067 		data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1068 		writeq(data, iaddr + idx);
1069 		mmiowb();
1070 		qib_read_kreg32(dd, kr_scratch);
1071 		dds_reg_map >>= 4;
1072 		for (midx = 0; midx < DDS_ROWS; ++midx) {
1073 			u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1074 			data = dds_init_vals[midx].reg_vals[idx];
1075 			writeq(data, daddr);
1076 			mmiowb();
1077 			qib_read_kreg32(dd, kr_scratch);
1078 		} /* End inner for (vals for this reg, each row) */
1079 	} /* end outer for (regs to be stored) */
1080 
1081 	/*
1082 	 * Init the RXEQ section of the table.
1083 	 * This runs in a different order, as the pattern of
1084 	 * register references is more complex, but there are only
1085 	 * four "data" values per register.
1086 	 */
1087 	min_idx = idx; /* RXEQ indices pick up where DDS left off */
1088 	taddr += 0x100; /* RXEQ data is in second half of table */
1089 	/* Iterate through RXEQ register addresses */
1090 	for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1091 		int didx; /* "destination" */
1092 		int vidx;
1093 
1094 		/* didx is offset by min_idx to address RXEQ range of regs */
1095 		didx = idx + min_idx;
1096 		/* Store the next RXEQ register address */
1097 		writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1098 		mmiowb();
1099 		qib_read_kreg32(dd, kr_scratch);
1100 		/* Iterate through RXEQ values */
1101 		for (vidx = 0; vidx < 4; vidx++) {
1102 			data = rxeq_init_vals[idx].rdata[vidx];
1103 			writeq(data, taddr + (vidx << 6) + idx);
1104 			mmiowb();
1105 			qib_read_kreg32(dd, kr_scratch);
1106 		}
1107 	} /* end outer for (Reg-writes for RXEQ) */
1108 	return 0;
1109 }
1110 
1111 #define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1112 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1113 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1114 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1115 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1116 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1117 
1118 /*
1119  * Repeat a "store" across all channels of the IB SerDes.
1120  * Although nominally it inherits the "read value" of the last
1121  * channel it modified, the only really useful return is <0 for
1122  * failure, >= 0 for success. The parameter 'loc' is assumed to
1123  * be the location in some channel of the register to be modified
1124  * The caller can specify use of the "gang write" option of EPB,
1125  * in which case we use the specified channel data for any fields
1126  * not explicitely written.
1127  */
1128 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1129 			     int mask)
1130 {
1131 	int ret = -1;
1132 	int chnl;
1133 
1134 	if (loc & EPB_GLOBAL_WR) {
1135 		/*
1136 		 * Our caller has assured us that we can set all four
1137 		 * channels at once. Trust that. If mask is not 0xFF,
1138 		 * we will read the _specified_ channel for our starting
1139 		 * value.
1140 		 */
1141 		loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1142 		chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1143 		if (mask != 0xFF) {
1144 			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1145 						 loc & ~EPB_GLOBAL_WR, 0, 0);
1146 			if (ret < 0) {
1147 				int sloc = loc >> EPB_ADDR_SHF;
1148 
1149 				qib_dev_err(dd,
1150 					"pre-read failed: elt %d, addr 0x%X, chnl %d\n",
1151 					(sloc & 0xF),
1152 					(sloc >> 9) & 0x3f, chnl);
1153 				return ret;
1154 			}
1155 			val = (ret & ~mask) | (val & mask);
1156 		}
1157 		loc &=  ~(7 << (4+EPB_ADDR_SHF));
1158 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1159 		if (ret < 0) {
1160 			int sloc = loc >> EPB_ADDR_SHF;
1161 
1162 			qib_dev_err(dd,
1163 				"Global WR failed: elt %d, addr 0x%X, val %02X\n",
1164 				(sloc & 0xF), (sloc >> 9) & 0x3f, val);
1165 		}
1166 		return ret;
1167 	}
1168 	/* Clear "channel" and set CS so we can simply iterate */
1169 	loc &=  ~(7 << (4+EPB_ADDR_SHF));
1170 	loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1171 	for (chnl = 0; chnl < 4; ++chnl) {
1172 		int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1173 
1174 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1175 		if (ret < 0) {
1176 			int sloc = loc >> EPB_ADDR_SHF;
1177 
1178 			qib_dev_err(dd,
1179 				"Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n",
1180 				(sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1181 				val & 0xFF, mask & 0xFF);
1182 			break;
1183 		}
1184 	}
1185 	return ret;
1186 }
1187 
1188 /*
1189  * Set the Tx values normally modified by IBC in IB1.2 mode to default
1190  * values, as gotten from first row of init table.
1191  */
1192 static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1193 {
1194 	int ret;
1195 	int idx, reg, data;
1196 	uint32_t regmap;
1197 
1198 	regmap = DDS_REG_MAP;
1199 	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1200 		reg = (regmap & 0xF);
1201 		regmap >>= 4;
1202 		data = ddi->reg_vals[idx];
1203 		/* Vendor says RMW not needed for these regs, use 0xFF mask */
1204 		ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1205 		if (ret < 0)
1206 			break;
1207 	}
1208 	return ret;
1209 }
1210 
1211 /*
1212  * Set the Rx values normally modified by IBC in IB1.2 mode to default
1213  * values, as gotten from selected column of init table.
1214  */
1215 static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1216 {
1217 	int ret;
1218 	int ridx;
1219 	int cnt = ARRAY_SIZE(rxeq_init_vals);
1220 
1221 	for (ridx = 0; ridx < cnt; ++ridx) {
1222 		int elt, reg, val, loc;
1223 
1224 		elt = rxeq_init_vals[ridx].rdesc & 0xF;
1225 		reg = rxeq_init_vals[ridx].rdesc >> 4;
1226 		loc = EPB_LOC(0, elt, reg);
1227 		val = rxeq_init_vals[ridx].rdata[vsel];
1228 		/* mask of 0xFF, because hardware does full-byte store. */
1229 		ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1230 		if (ret < 0)
1231 			break;
1232 	}
1233 	return ret;
1234 }
1235 
1236 /*
1237  * Set the default values (row 0) for DDR Driver Demphasis.
1238  * we do this initially and whenever we turn off IB-1.2
1239  *
1240  * The "default" values for Rx equalization are also stored to
1241  * SerDes registers. Formerly (and still default), we used set 2.
1242  * For experimenting with cables and link-partners, we allow changing
1243  * that via a module parameter.
1244  */
1245 static unsigned qib_rxeq_set = 2;
1246 module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1247 		   S_IWUSR | S_IRUGO);
1248 MODULE_PARM_DESC(rxeq_default_set,
1249 		 "Which set [0..3] of Rx Equalization values is default");
1250 
1251 static int qib_internal_presets(struct qib_devdata *dd)
1252 {
1253 	int ret = 0;
1254 
1255 	ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1256 
1257 	if (ret < 0)
1258 		qib_dev_err(dd, "Failed to set default DDS values\n");
1259 	ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1260 	if (ret < 0)
1261 		qib_dev_err(dd, "Failed to set default RXEQ values\n");
1262 	return ret;
1263 }
1264 
1265 int qib_sd7220_presets(struct qib_devdata *dd)
1266 {
1267 	int ret = 0;
1268 
1269 	if (!dd->cspec->presets_needed)
1270 		return ret;
1271 	dd->cspec->presets_needed = 0;
1272 	/* Assert uC reset, so we don't clash with it. */
1273 	qib_ibsd_reset(dd, 1);
1274 	udelay(2);
1275 	qib_sd_trimdone_monitor(dd, "link-down");
1276 
1277 	ret = qib_internal_presets(dd);
1278 	return ret;
1279 }
1280 
1281 static int qib_sd_trimself(struct qib_devdata *dd, int val)
1282 {
1283 	int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1284 
1285 	return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1286 }
1287 
1288 static int qib_sd_early(struct qib_devdata *dd)
1289 {
1290 	int ret;
1291 
1292 	ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1293 	if (ret < 0)
1294 		goto bail;
1295 	ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1296 	if (ret < 0)
1297 		goto bail;
1298 	ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1299 bail:
1300 	return ret;
1301 }
1302 
1303 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1304 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1305 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1306 
1307 static int qib_sd_dactrim(struct qib_devdata *dd)
1308 {
1309 	int ret;
1310 
1311 	ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1312 	if (ret < 0)
1313 		goto bail;
1314 
1315 	/* more fine-tuning of what will be default */
1316 	ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1317 	if (ret < 0)
1318 		goto bail;
1319 
1320 	ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1321 	if (ret < 0)
1322 		goto bail;
1323 
1324 	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1325 	if (ret < 0)
1326 		goto bail;
1327 
1328 	ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1329 	if (ret < 0)
1330 		goto bail;
1331 
1332 	/*
1333 	 * Delay for max possible number of steps, with slop.
1334 	 * Each step is about 4usec.
1335 	 */
1336 	udelay(415);
1337 
1338 	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1339 
1340 bail:
1341 	return ret;
1342 }
1343 
1344 #define RELOCK_FIRST_MS 3
1345 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1346 void toggle_7220_rclkrls(struct qib_devdata *dd)
1347 {
1348 	int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1349 	int ret;
1350 
1351 	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1352 	if (ret < 0)
1353 		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1354 	else {
1355 		udelay(1);
1356 		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1357 	}
1358 	/* And again for good measure */
1359 	udelay(1);
1360 	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1361 	if (ret < 0)
1362 		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1363 	else {
1364 		udelay(1);
1365 		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1366 	}
1367 	/* Now reset xgxs and IBC to complete the recovery */
1368 	dd->f_xgxs_reset(dd->pport);
1369 }
1370 
1371 /*
1372  * Shut down the timer that polls for relock occasions, if needed
1373  * this is "hooked" from qib_7220_quiet_serdes(), which is called
1374  * just before qib_shutdown_device() in qib_driver.c shuts down all
1375  * the other timers
1376  */
1377 void shutdown_7220_relock_poll(struct qib_devdata *dd)
1378 {
1379 	if (dd->cspec->relock_timer_active)
1380 		del_timer_sync(&dd->cspec->relock_timer);
1381 }
1382 
1383 static unsigned qib_relock_by_timer = 1;
1384 module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1385 		   S_IWUSR | S_IRUGO);
1386 MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1387 
1388 static void qib_run_relock(unsigned long opaque)
1389 {
1390 	struct qib_devdata *dd = (struct qib_devdata *)opaque;
1391 	struct qib_pportdata *ppd = dd->pport;
1392 	struct qib_chip_specific *cs = dd->cspec;
1393 	int timeoff;
1394 
1395 	/*
1396 	 * Check link-training state for "stuck" state, when down.
1397 	 * if found, try relock and schedule another try at
1398 	 * exponentially growing delay, maxed at one second.
1399 	 * if not stuck, our work is done.
1400 	 */
1401 	if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1402 	    (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1403 	     QIBL_LINKACTIVE))) {
1404 		if (qib_relock_by_timer) {
1405 			if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1406 				toggle_7220_rclkrls(dd);
1407 		}
1408 		/* re-set timer for next check */
1409 		timeoff = cs->relock_interval << 1;
1410 		if (timeoff > HZ)
1411 			timeoff = HZ;
1412 		cs->relock_interval = timeoff;
1413 	} else
1414 		timeoff = HZ;
1415 	mod_timer(&cs->relock_timer, jiffies + timeoff);
1416 }
1417 
1418 void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1419 {
1420 	struct qib_chip_specific *cs = dd->cspec;
1421 
1422 	if (ibup) {
1423 		/* We are now up, relax timer to 1 second interval */
1424 		if (cs->relock_timer_active) {
1425 			cs->relock_interval = HZ;
1426 			mod_timer(&cs->relock_timer, jiffies + HZ);
1427 		}
1428 	} else {
1429 		/* Transition to down, (re-)set timer to short interval. */
1430 		unsigned int timeout;
1431 
1432 		timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1433 		if (timeout == 0)
1434 			timeout = 1;
1435 		/* If timer has not yet been started, do so. */
1436 		if (!cs->relock_timer_active) {
1437 			cs->relock_timer_active = 1;
1438 			init_timer(&cs->relock_timer);
1439 			cs->relock_timer.function = qib_run_relock;
1440 			cs->relock_timer.data = (unsigned long) dd;
1441 			cs->relock_interval = timeout;
1442 			cs->relock_timer.expires = jiffies + timeout;
1443 			add_timer(&cs->relock_timer);
1444 		} else {
1445 			cs->relock_interval = timeout;
1446 			mod_timer(&cs->relock_timer, jiffies + timeout);
1447 		}
1448 	}
1449 }
1450