1 /* 2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved. 3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/pci.h> 36 #include <linux/poll.h> 37 #include <linux/cdev.h> 38 #include <linux/swap.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/io.h> 42 #include <linux/jiffies.h> 43 #include <asm/pgtable.h> 44 #include <linux/delay.h> 45 #include <linux/export.h> 46 #include <linux/uio.h> 47 48 #include <rdma/ib.h> 49 50 #include "qib.h" 51 #include "qib_common.h" 52 #include "qib_user_sdma.h" 53 54 #undef pr_fmt 55 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt 56 57 static int qib_open(struct inode *, struct file *); 58 static int qib_close(struct inode *, struct file *); 59 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *); 60 static ssize_t qib_write_iter(struct kiocb *, struct iov_iter *); 61 static __poll_t qib_poll(struct file *, struct poll_table_struct *); 62 static int qib_mmapf(struct file *, struct vm_area_struct *); 63 64 /* 65 * This is really, really weird shit - write() and writev() here 66 * have completely unrelated semantics. Sucky userland ABI, 67 * film at 11. 68 */ 69 static const struct file_operations qib_file_ops = { 70 .owner = THIS_MODULE, 71 .write = qib_write, 72 .write_iter = qib_write_iter, 73 .open = qib_open, 74 .release = qib_close, 75 .poll = qib_poll, 76 .mmap = qib_mmapf, 77 .llseek = noop_llseek, 78 }; 79 80 /* 81 * Convert kernel virtual addresses to physical addresses so they don't 82 * potentially conflict with the chip addresses used as mmap offsets. 83 * It doesn't really matter what mmap offset we use as long as we can 84 * interpret it correctly. 85 */ 86 static u64 cvt_kvaddr(void *p) 87 { 88 struct page *page; 89 u64 paddr = 0; 90 91 page = vmalloc_to_page(p); 92 if (page) 93 paddr = page_to_pfn(page) << PAGE_SHIFT; 94 95 return paddr; 96 } 97 98 static int qib_get_base_info(struct file *fp, void __user *ubase, 99 size_t ubase_size) 100 { 101 struct qib_ctxtdata *rcd = ctxt_fp(fp); 102 int ret = 0; 103 struct qib_base_info *kinfo = NULL; 104 struct qib_devdata *dd = rcd->dd; 105 struct qib_pportdata *ppd = rcd->ppd; 106 unsigned subctxt_cnt; 107 int shared, master; 108 size_t sz; 109 110 subctxt_cnt = rcd->subctxt_cnt; 111 if (!subctxt_cnt) { 112 shared = 0; 113 master = 0; 114 subctxt_cnt = 1; 115 } else { 116 shared = 1; 117 master = !subctxt_fp(fp); 118 } 119 120 sz = sizeof(*kinfo); 121 /* If context sharing is not requested, allow the old size structure */ 122 if (!shared) 123 sz -= 7 * sizeof(u64); 124 if (ubase_size < sz) { 125 ret = -EINVAL; 126 goto bail; 127 } 128 129 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); 130 if (kinfo == NULL) { 131 ret = -ENOMEM; 132 goto bail; 133 } 134 135 ret = dd->f_get_base_info(rcd, kinfo); 136 if (ret < 0) 137 goto bail; 138 139 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt; 140 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize; 141 kinfo->spi_tidegrcnt = rcd->rcvegrcnt; 142 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize; 143 /* 144 * have to mmap whole thing 145 */ 146 kinfo->spi_rcv_egrbuftotlen = 147 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 148 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk; 149 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / 150 rcd->rcvegrbuf_chunks; 151 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt; 152 if (master) 153 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt; 154 /* 155 * for this use, may be cfgctxts summed over all chips that 156 * are are configured and present 157 */ 158 kinfo->spi_nctxts = dd->cfgctxts; 159 /* unit (chip/board) our context is on */ 160 kinfo->spi_unit = dd->unit; 161 kinfo->spi_port = ppd->port; 162 /* for now, only a single page */ 163 kinfo->spi_tid_maxsize = PAGE_SIZE; 164 165 /* 166 * Doing this per context, and based on the skip value, etc. This has 167 * to be the actual buffer size, since the protocol code treats it 168 * as an array. 169 * 170 * These have to be set to user addresses in the user code via mmap. 171 * These values are used on return to user code for the mmap target 172 * addresses only. For 32 bit, same 44 bit address problem, so use 173 * the physical address, not virtual. Before 2.6.11, using the 174 * page_address() macro worked, but in 2.6.11, even that returns the 175 * full 64 bit address (upper bits all 1's). So far, using the 176 * physical addresses (or chip offsets, for chip mapping) works, but 177 * no doubt some future kernel release will change that, and we'll be 178 * on to yet another method of dealing with this. 179 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful 180 * since the chips with non-zero rhf_offset don't normally 181 * enable tail register updates to host memory, but for testing, 182 * both can be enabled and used. 183 */ 184 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys; 185 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys; 186 kinfo->spi_rhf_offset = dd->rhf_offset; 187 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys; 188 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys; 189 /* setup per-unit (not port) status area for user programs */ 190 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + 191 (char *) ppd->statusp - 192 (char *) dd->pioavailregs_dma; 193 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt; 194 if (!shared) { 195 kinfo->spi_piocnt = rcd->piocnt; 196 kinfo->spi_piobufbase = (u64) rcd->piobufs; 197 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask); 198 } else if (master) { 199 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) + 200 (rcd->piocnt % subctxt_cnt); 201 /* Master's PIO buffers are after all the slave's */ 202 kinfo->spi_piobufbase = (u64) rcd->piobufs + 203 dd->palign * 204 (rcd->piocnt - kinfo->spi_piocnt); 205 } else { 206 unsigned slave = subctxt_fp(fp) - 1; 207 208 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt; 209 kinfo->spi_piobufbase = (u64) rcd->piobufs + 210 dd->palign * kinfo->spi_piocnt * slave; 211 } 212 213 if (shared) { 214 kinfo->spi_sendbuf_status = 215 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]); 216 /* only spi_subctxt_* fields should be set in this block! */ 217 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase); 218 219 kinfo->spi_subctxt_rcvegrbuf = 220 cvt_kvaddr(rcd->subctxt_rcvegrbuf); 221 kinfo->spi_subctxt_rcvhdr_base = 222 cvt_kvaddr(rcd->subctxt_rcvhdr_base); 223 } 224 225 /* 226 * All user buffers are 2KB buffers. If we ever support 227 * giving 4KB buffers to user processes, this will need some 228 * work. Can't use piobufbase directly, because it has 229 * both 2K and 4K buffer base values. 230 */ 231 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) / 232 dd->palign; 233 kinfo->spi_pioalign = dd->palign; 234 kinfo->spi_qpair = QIB_KD_QP; 235 /* 236 * user mode PIO buffers are always 2KB, even when 4KB can 237 * be received, and sent via the kernel; this is ibmaxlen 238 * for 2K MTU. 239 */ 240 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32); 241 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */ 242 kinfo->spi_ctxt = rcd->ctxt; 243 kinfo->spi_subctxt = subctxt_fp(fp); 244 kinfo->spi_sw_version = QIB_KERN_SWVERSION; 245 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */ 246 kinfo->spi_hw_version = dd->revision; 247 248 if (master) 249 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER; 250 251 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo); 252 if (copy_to_user(ubase, kinfo, sz)) 253 ret = -EFAULT; 254 bail: 255 kfree(kinfo); 256 return ret; 257 } 258 259 /** 260 * qib_tid_update - update a context TID 261 * @rcd: the context 262 * @fp: the qib device file 263 * @ti: the TID information 264 * 265 * The new implementation as of Oct 2004 is that the driver assigns 266 * the tid and returns it to the caller. To reduce search time, we 267 * keep a cursor for each context, walking the shadow tid array to find 268 * one that's not in use. 269 * 270 * For now, if we can't allocate the full list, we fail, although 271 * in the long run, we'll allocate as many as we can, and the 272 * caller will deal with that by trying the remaining pages later. 273 * That means that when we fail, we have to mark the tids as not in 274 * use again, in our shadow copy. 275 * 276 * It's up to the caller to free the tids when they are done. 277 * We'll unlock the pages as they free them. 278 * 279 * Also, right now we are locking one page at a time, but since 280 * the intended use of this routine is for a single group of 281 * virtually contiguous pages, that should change to improve 282 * performance. 283 */ 284 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp, 285 const struct qib_tid_info *ti) 286 { 287 int ret = 0, ntids; 288 u32 tid, ctxttid, cnt, i, tidcnt, tidoff; 289 u16 *tidlist; 290 struct qib_devdata *dd = rcd->dd; 291 u64 physaddr; 292 unsigned long vaddr; 293 u64 __iomem *tidbase; 294 unsigned long tidmap[8]; 295 struct page **pagep = NULL; 296 unsigned subctxt = subctxt_fp(fp); 297 298 if (!dd->pageshadow) { 299 ret = -ENOMEM; 300 goto done; 301 } 302 303 cnt = ti->tidcnt; 304 if (!cnt) { 305 ret = -EFAULT; 306 goto done; 307 } 308 ctxttid = rcd->ctxt * dd->rcvtidcnt; 309 if (!rcd->subctxt_cnt) { 310 tidcnt = dd->rcvtidcnt; 311 tid = rcd->tidcursor; 312 tidoff = 0; 313 } else if (!subctxt) { 314 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 315 (dd->rcvtidcnt % rcd->subctxt_cnt); 316 tidoff = dd->rcvtidcnt - tidcnt; 317 ctxttid += tidoff; 318 tid = tidcursor_fp(fp); 319 } else { 320 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 321 tidoff = tidcnt * (subctxt - 1); 322 ctxttid += tidoff; 323 tid = tidcursor_fp(fp); 324 } 325 if (cnt > tidcnt) { 326 /* make sure it all fits in tid_pg_list */ 327 qib_devinfo(dd->pcidev, 328 "Process tried to allocate %u TIDs, only trying max (%u)\n", 329 cnt, tidcnt); 330 cnt = tidcnt; 331 } 332 pagep = (struct page **) rcd->tid_pg_list; 333 tidlist = (u16 *) &pagep[dd->rcvtidcnt]; 334 pagep += tidoff; 335 tidlist += tidoff; 336 337 memset(tidmap, 0, sizeof(tidmap)); 338 /* before decrement; chip actual # */ 339 ntids = tidcnt; 340 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) + 341 dd->rcvtidbase + 342 ctxttid * sizeof(*tidbase)); 343 344 /* virtual address of first page in transfer */ 345 vaddr = ti->tidvaddr; 346 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr, 347 cnt * PAGE_SIZE)) { 348 ret = -EFAULT; 349 goto done; 350 } 351 ret = qib_get_user_pages(vaddr, cnt, pagep); 352 if (ret) { 353 /* 354 * if (ret == -EBUSY) 355 * We can't continue because the pagep array won't be 356 * initialized. This should never happen, 357 * unless perhaps the user has mpin'ed the pages 358 * themselves. 359 */ 360 qib_devinfo( 361 dd->pcidev, 362 "Failed to lock addr %p, %u pages: errno %d\n", 363 (void *) vaddr, cnt, -ret); 364 goto done; 365 } 366 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { 367 for (; ntids--; tid++) { 368 if (tid == tidcnt) 369 tid = 0; 370 if (!dd->pageshadow[ctxttid + tid]) 371 break; 372 } 373 if (ntids < 0) { 374 /* 375 * Oops, wrapped all the way through their TIDs, 376 * and didn't have enough free; see comments at 377 * start of routine 378 */ 379 i--; /* last tidlist[i] not filled in */ 380 ret = -ENOMEM; 381 break; 382 } 383 tidlist[i] = tid + tidoff; 384 /* we "know" system pages and TID pages are same size */ 385 dd->pageshadow[ctxttid + tid] = pagep[i]; 386 dd->physshadow[ctxttid + tid] = 387 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE, 388 PCI_DMA_FROMDEVICE); 389 /* 390 * don't need atomic or it's overhead 391 */ 392 __set_bit(tid, tidmap); 393 physaddr = dd->physshadow[ctxttid + tid]; 394 /* PERFORMANCE: below should almost certainly be cached */ 395 dd->f_put_tid(dd, &tidbase[tid], 396 RCVHQ_RCV_TYPE_EXPECTED, physaddr); 397 /* 398 * don't check this tid in qib_ctxtshadow, since we 399 * just filled it in; start with the next one. 400 */ 401 tid++; 402 } 403 404 if (ret) { 405 u32 limit; 406 cleanup: 407 /* jump here if copy out of updated info failed... */ 408 /* same code that's in qib_free_tid() */ 409 limit = sizeof(tidmap) * BITS_PER_BYTE; 410 if (limit > tidcnt) 411 /* just in case size changes in future */ 412 limit = tidcnt; 413 tid = find_first_bit((const unsigned long *)tidmap, limit); 414 for (; tid < limit; tid++) { 415 if (!test_bit(tid, tidmap)) 416 continue; 417 if (dd->pageshadow[ctxttid + tid]) { 418 dma_addr_t phys; 419 420 phys = dd->physshadow[ctxttid + tid]; 421 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 422 /* PERFORMANCE: below should almost certainly 423 * be cached 424 */ 425 dd->f_put_tid(dd, &tidbase[tid], 426 RCVHQ_RCV_TYPE_EXPECTED, 427 dd->tidinvalid); 428 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 429 PCI_DMA_FROMDEVICE); 430 dd->pageshadow[ctxttid + tid] = NULL; 431 } 432 } 433 qib_release_user_pages(pagep, cnt); 434 } else { 435 /* 436 * Copy the updated array, with qib_tid's filled in, back 437 * to user. Since we did the copy in already, this "should 438 * never fail" If it does, we have to clean up... 439 */ 440 if (copy_to_user((void __user *) 441 (unsigned long) ti->tidlist, 442 tidlist, cnt * sizeof(*tidlist))) { 443 ret = -EFAULT; 444 goto cleanup; 445 } 446 if (copy_to_user(u64_to_user_ptr(ti->tidmap), 447 tidmap, sizeof(tidmap))) { 448 ret = -EFAULT; 449 goto cleanup; 450 } 451 if (tid == tidcnt) 452 tid = 0; 453 if (!rcd->subctxt_cnt) 454 rcd->tidcursor = tid; 455 else 456 tidcursor_fp(fp) = tid; 457 } 458 459 done: 460 return ret; 461 } 462 463 /** 464 * qib_tid_free - free a context TID 465 * @rcd: the context 466 * @subctxt: the subcontext 467 * @ti: the TID info 468 * 469 * right now we are unlocking one page at a time, but since 470 * the intended use of this routine is for a single group of 471 * virtually contiguous pages, that should change to improve 472 * performance. We check that the TID is in range for this context 473 * but otherwise don't check validity; if user has an error and 474 * frees the wrong tid, it's only their own data that can thereby 475 * be corrupted. We do check that the TID was in use, for sanity 476 * We always use our idea of the saved address, not the address that 477 * they pass in to us. 478 */ 479 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt, 480 const struct qib_tid_info *ti) 481 { 482 int ret = 0; 483 u32 tid, ctxttid, cnt, limit, tidcnt; 484 struct qib_devdata *dd = rcd->dd; 485 u64 __iomem *tidbase; 486 unsigned long tidmap[8]; 487 488 if (!dd->pageshadow) { 489 ret = -ENOMEM; 490 goto done; 491 } 492 493 if (copy_from_user(tidmap, u64_to_user_ptr(ti->tidmap), 494 sizeof(tidmap))) { 495 ret = -EFAULT; 496 goto done; 497 } 498 499 ctxttid = rcd->ctxt * dd->rcvtidcnt; 500 if (!rcd->subctxt_cnt) 501 tidcnt = dd->rcvtidcnt; 502 else if (!subctxt) { 503 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 504 (dd->rcvtidcnt % rcd->subctxt_cnt); 505 ctxttid += dd->rcvtidcnt - tidcnt; 506 } else { 507 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 508 ctxttid += tidcnt * (subctxt - 1); 509 } 510 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) + 511 dd->rcvtidbase + 512 ctxttid * sizeof(*tidbase)); 513 514 limit = sizeof(tidmap) * BITS_PER_BYTE; 515 if (limit > tidcnt) 516 /* just in case size changes in future */ 517 limit = tidcnt; 518 tid = find_first_bit(tidmap, limit); 519 for (cnt = 0; tid < limit; tid++) { 520 /* 521 * small optimization; if we detect a run of 3 or so without 522 * any set, use find_first_bit again. That's mainly to 523 * accelerate the case where we wrapped, so we have some at 524 * the beginning, and some at the end, and a big gap 525 * in the middle. 526 */ 527 if (!test_bit(tid, tidmap)) 528 continue; 529 cnt++; 530 if (dd->pageshadow[ctxttid + tid]) { 531 struct page *p; 532 dma_addr_t phys; 533 534 p = dd->pageshadow[ctxttid + tid]; 535 dd->pageshadow[ctxttid + tid] = NULL; 536 phys = dd->physshadow[ctxttid + tid]; 537 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 538 /* PERFORMANCE: below should almost certainly be 539 * cached 540 */ 541 dd->f_put_tid(dd, &tidbase[tid], 542 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); 543 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 544 PCI_DMA_FROMDEVICE); 545 qib_release_user_pages(&p, 1); 546 } 547 } 548 done: 549 return ret; 550 } 551 552 /** 553 * qib_set_part_key - set a partition key 554 * @rcd: the context 555 * @key: the key 556 * 557 * We can have up to 4 active at a time (other than the default, which is 558 * always allowed). This is somewhat tricky, since multiple contexts may set 559 * the same key, so we reference count them, and clean up at exit. All 4 560 * partition keys are packed into a single qlogic_ib register. It's an 561 * error for a process to set the same pkey multiple times. We provide no 562 * mechanism to de-allocate a pkey at this time, we may eventually need to 563 * do that. I've used the atomic operations, and no locking, and only make 564 * a single pass through what's available. This should be more than 565 * adequate for some time. I'll think about spinlocks or the like if and as 566 * it's necessary. 567 */ 568 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key) 569 { 570 struct qib_pportdata *ppd = rcd->ppd; 571 int i, pidx = -1; 572 bool any = false; 573 u16 lkey = key & 0x7FFF; 574 575 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) 576 /* nothing to do; this key always valid */ 577 return 0; 578 579 if (!lkey) 580 return -EINVAL; 581 582 /* 583 * Set the full membership bit, because it has to be 584 * set in the register or the packet, and it seems 585 * cleaner to set in the register than to force all 586 * callers to set it. 587 */ 588 key |= 0x8000; 589 590 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 591 if (!rcd->pkeys[i] && pidx == -1) 592 pidx = i; 593 if (rcd->pkeys[i] == key) 594 return -EEXIST; 595 } 596 if (pidx == -1) 597 return -EBUSY; 598 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 599 if (!ppd->pkeys[i]) { 600 any = true; 601 continue; 602 } 603 if (ppd->pkeys[i] == key) { 604 atomic_t *pkrefs = &ppd->pkeyrefs[i]; 605 606 if (atomic_inc_return(pkrefs) > 1) { 607 rcd->pkeys[pidx] = key; 608 return 0; 609 } 610 /* 611 * lost race, decrement count, catch below 612 */ 613 atomic_dec(pkrefs); 614 any = true; 615 } 616 if ((ppd->pkeys[i] & 0x7FFF) == lkey) 617 /* 618 * It makes no sense to have both the limited and 619 * full membership PKEY set at the same time since 620 * the unlimited one will disable the limited one. 621 */ 622 return -EEXIST; 623 } 624 if (!any) 625 return -EBUSY; 626 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 627 if (!ppd->pkeys[i] && 628 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) { 629 rcd->pkeys[pidx] = key; 630 ppd->pkeys[i] = key; 631 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 632 return 0; 633 } 634 } 635 return -EBUSY; 636 } 637 638 /** 639 * qib_manage_rcvq - manage a context's receive queue 640 * @rcd: the context 641 * @subctxt: the subcontext 642 * @start_stop: action to carry out 643 * 644 * start_stop == 0 disables receive on the context, for use in queue 645 * overflow conditions. start_stop==1 re-enables, to be used to 646 * re-init the software copy of the head register 647 */ 648 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt, 649 int start_stop) 650 { 651 struct qib_devdata *dd = rcd->dd; 652 unsigned int rcvctrl_op; 653 654 if (subctxt) 655 goto bail; 656 /* atomically clear receive enable ctxt. */ 657 if (start_stop) { 658 /* 659 * On enable, force in-memory copy of the tail register to 660 * 0, so that protocol code doesn't have to worry about 661 * whether or not the chip has yet updated the in-memory 662 * copy or not on return from the system call. The chip 663 * always resets it's tail register back to 0 on a 664 * transition from disabled to enabled. 665 */ 666 if (rcd->rcvhdrtail_kvaddr) 667 qib_clear_rcvhdrtail(rcd); 668 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB; 669 } else 670 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS; 671 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt); 672 /* always; new head should be equal to new tail; see above */ 673 bail: 674 return 0; 675 } 676 677 static void qib_clean_part_key(struct qib_ctxtdata *rcd, 678 struct qib_devdata *dd) 679 { 680 int i, j, pchanged = 0; 681 struct qib_pportdata *ppd = rcd->ppd; 682 683 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 684 if (!rcd->pkeys[i]) 685 continue; 686 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) { 687 /* check for match independent of the global bit */ 688 if ((ppd->pkeys[j] & 0x7fff) != 689 (rcd->pkeys[i] & 0x7fff)) 690 continue; 691 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) { 692 ppd->pkeys[j] = 0; 693 pchanged++; 694 } 695 break; 696 } 697 rcd->pkeys[i] = 0; 698 } 699 if (pchanged) 700 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 701 } 702 703 /* common code for the mappings on dma_alloc_coherent mem */ 704 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd, 705 unsigned len, void *kvaddr, u32 write_ok, char *what) 706 { 707 struct qib_devdata *dd = rcd->dd; 708 unsigned long pfn; 709 int ret; 710 711 if ((vma->vm_end - vma->vm_start) > len) { 712 qib_devinfo(dd->pcidev, 713 "FAIL on %s: len %lx > %x\n", what, 714 vma->vm_end - vma->vm_start, len); 715 ret = -EFAULT; 716 goto bail; 717 } 718 719 /* 720 * shared context user code requires rcvhdrq mapped r/w, others 721 * only allowed readonly mapping. 722 */ 723 if (!write_ok) { 724 if (vma->vm_flags & VM_WRITE) { 725 qib_devinfo(dd->pcidev, 726 "%s must be mapped readonly\n", what); 727 ret = -EPERM; 728 goto bail; 729 } 730 731 /* don't allow them to later change with mprotect */ 732 vma->vm_flags &= ~VM_MAYWRITE; 733 } 734 735 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT; 736 ret = remap_pfn_range(vma, vma->vm_start, pfn, 737 len, vma->vm_page_prot); 738 if (ret) 739 qib_devinfo(dd->pcidev, 740 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n", 741 what, rcd->ctxt, pfn, len, ret); 742 bail: 743 return ret; 744 } 745 746 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd, 747 u64 ureg) 748 { 749 unsigned long phys; 750 unsigned long sz; 751 int ret; 752 753 /* 754 * This is real hardware, so use io_remap. This is the mechanism 755 * for the user process to update the head registers for their ctxt 756 * in the chip. 757 */ 758 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE; 759 if ((vma->vm_end - vma->vm_start) > sz) { 760 qib_devinfo(dd->pcidev, 761 "FAIL mmap userreg: reqlen %lx > PAGE\n", 762 vma->vm_end - vma->vm_start); 763 ret = -EFAULT; 764 } else { 765 phys = dd->physaddr + ureg; 766 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 767 768 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 769 ret = io_remap_pfn_range(vma, vma->vm_start, 770 phys >> PAGE_SHIFT, 771 vma->vm_end - vma->vm_start, 772 vma->vm_page_prot); 773 } 774 return ret; 775 } 776 777 static int mmap_piobufs(struct vm_area_struct *vma, 778 struct qib_devdata *dd, 779 struct qib_ctxtdata *rcd, 780 unsigned piobufs, unsigned piocnt) 781 { 782 unsigned long phys; 783 int ret; 784 785 /* 786 * When we map the PIO buffers in the chip, we want to map them as 787 * writeonly, no read possible; unfortunately, x86 doesn't allow 788 * for this in hardware, but we still prevent users from asking 789 * for it. 790 */ 791 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) { 792 qib_devinfo(dd->pcidev, 793 "FAIL mmap piobufs: reqlen %lx > PAGE\n", 794 vma->vm_end - vma->vm_start); 795 ret = -EINVAL; 796 goto bail; 797 } 798 799 phys = dd->physaddr + piobufs; 800 801 #if defined(__powerpc__) 802 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 803 #endif 804 805 /* 806 * don't allow them to later change to readable with mprotect (for when 807 * not initially mapped readable, as is normally the case) 808 */ 809 vma->vm_flags &= ~VM_MAYREAD; 810 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 811 812 /* We used PAT if wc_cookie == 0 */ 813 if (!dd->wc_cookie) 814 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 815 816 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, 817 vma->vm_end - vma->vm_start, 818 vma->vm_page_prot); 819 bail: 820 return ret; 821 } 822 823 static int mmap_rcvegrbufs(struct vm_area_struct *vma, 824 struct qib_ctxtdata *rcd) 825 { 826 struct qib_devdata *dd = rcd->dd; 827 unsigned long start, size; 828 size_t total_size, i; 829 unsigned long pfn; 830 int ret; 831 832 size = rcd->rcvegrbuf_size; 833 total_size = rcd->rcvegrbuf_chunks * size; 834 if ((vma->vm_end - vma->vm_start) > total_size) { 835 qib_devinfo(dd->pcidev, 836 "FAIL on egr bufs: reqlen %lx > actual %lx\n", 837 vma->vm_end - vma->vm_start, 838 (unsigned long) total_size); 839 ret = -EINVAL; 840 goto bail; 841 } 842 843 if (vma->vm_flags & VM_WRITE) { 844 qib_devinfo(dd->pcidev, 845 "Can't map eager buffers as writable (flags=%lx)\n", 846 vma->vm_flags); 847 ret = -EPERM; 848 goto bail; 849 } 850 /* don't allow them to later change to writeable with mprotect */ 851 vma->vm_flags &= ~VM_MAYWRITE; 852 853 start = vma->vm_start; 854 855 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) { 856 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT; 857 ret = remap_pfn_range(vma, start, pfn, size, 858 vma->vm_page_prot); 859 if (ret < 0) 860 goto bail; 861 } 862 ret = 0; 863 864 bail: 865 return ret; 866 } 867 868 /* 869 * qib_file_vma_fault - handle a VMA page fault. 870 */ 871 static int qib_file_vma_fault(struct vm_fault *vmf) 872 { 873 struct page *page; 874 875 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 876 if (!page) 877 return VM_FAULT_SIGBUS; 878 879 get_page(page); 880 vmf->page = page; 881 882 return 0; 883 } 884 885 static const struct vm_operations_struct qib_file_vm_ops = { 886 .fault = qib_file_vma_fault, 887 }; 888 889 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr, 890 struct qib_ctxtdata *rcd, unsigned subctxt) 891 { 892 struct qib_devdata *dd = rcd->dd; 893 unsigned subctxt_cnt; 894 unsigned long len; 895 void *addr; 896 size_t size; 897 int ret = 0; 898 899 subctxt_cnt = rcd->subctxt_cnt; 900 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 901 902 /* 903 * Each process has all the subctxt uregbase, rcvhdrq, and 904 * rcvegrbufs mmapped - as an array for all the processes, 905 * and also separately for this process. 906 */ 907 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) { 908 addr = rcd->subctxt_uregbase; 909 size = PAGE_SIZE * subctxt_cnt; 910 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) { 911 addr = rcd->subctxt_rcvhdr_base; 912 size = rcd->rcvhdrq_size * subctxt_cnt; 913 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) { 914 addr = rcd->subctxt_rcvegrbuf; 915 size *= subctxt_cnt; 916 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase + 917 PAGE_SIZE * subctxt)) { 918 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt; 919 size = PAGE_SIZE; 920 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base + 921 rcd->rcvhdrq_size * subctxt)) { 922 addr = rcd->subctxt_rcvhdr_base + 923 rcd->rcvhdrq_size * subctxt; 924 size = rcd->rcvhdrq_size; 925 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) { 926 addr = rcd->user_event_mask; 927 size = PAGE_SIZE; 928 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf + 929 size * subctxt)) { 930 addr = rcd->subctxt_rcvegrbuf + size * subctxt; 931 /* rcvegrbufs are read-only on the slave */ 932 if (vma->vm_flags & VM_WRITE) { 933 qib_devinfo(dd->pcidev, 934 "Can't map eager buffers as writable (flags=%lx)\n", 935 vma->vm_flags); 936 ret = -EPERM; 937 goto bail; 938 } 939 /* 940 * Don't allow permission to later change to writeable 941 * with mprotect. 942 */ 943 vma->vm_flags &= ~VM_MAYWRITE; 944 } else 945 goto bail; 946 len = vma->vm_end - vma->vm_start; 947 if (len > size) { 948 ret = -EINVAL; 949 goto bail; 950 } 951 952 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT; 953 vma->vm_ops = &qib_file_vm_ops; 954 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 955 ret = 1; 956 957 bail: 958 return ret; 959 } 960 961 /** 962 * qib_mmapf - mmap various structures into user space 963 * @fp: the file pointer 964 * @vma: the VM area 965 * 966 * We use this to have a shared buffer between the kernel and the user code 967 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio 968 * buffers in the chip. We have the open and close entries so we can bump 969 * the ref count and keep the driver from being unloaded while still mapped. 970 */ 971 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma) 972 { 973 struct qib_ctxtdata *rcd; 974 struct qib_devdata *dd; 975 u64 pgaddr, ureg; 976 unsigned piobufs, piocnt; 977 int ret, match = 1; 978 979 rcd = ctxt_fp(fp); 980 if (!rcd || !(vma->vm_flags & VM_SHARED)) { 981 ret = -EINVAL; 982 goto bail; 983 } 984 dd = rcd->dd; 985 986 /* 987 * This is the qib_do_user_init() code, mapping the shared buffers 988 * and per-context user registers into the user process. The address 989 * referred to by vm_pgoff is the file offset passed via mmap(). 990 * For shared contexts, this is the kernel vmalloc() address of the 991 * pages to share with the master. 992 * For non-shared or master ctxts, this is a physical address. 993 * We only do one mmap for each space mapped. 994 */ 995 pgaddr = vma->vm_pgoff << PAGE_SHIFT; 996 997 /* 998 * Check for 0 in case one of the allocations failed, but user 999 * called mmap anyway. 1000 */ 1001 if (!pgaddr) { 1002 ret = -EINVAL; 1003 goto bail; 1004 } 1005 1006 /* 1007 * Physical addresses must fit in 40 bits for our hardware. 1008 * Check for kernel virtual addresses first, anything else must 1009 * match a HW or memory address. 1010 */ 1011 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp)); 1012 if (ret) { 1013 if (ret > 0) 1014 ret = 0; 1015 goto bail; 1016 } 1017 1018 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt; 1019 if (!rcd->subctxt_cnt) { 1020 /* ctxt is not shared */ 1021 piocnt = rcd->piocnt; 1022 piobufs = rcd->piobufs; 1023 } else if (!subctxt_fp(fp)) { 1024 /* caller is the master */ 1025 piocnt = (rcd->piocnt / rcd->subctxt_cnt) + 1026 (rcd->piocnt % rcd->subctxt_cnt); 1027 piobufs = rcd->piobufs + 1028 dd->palign * (rcd->piocnt - piocnt); 1029 } else { 1030 unsigned slave = subctxt_fp(fp) - 1; 1031 1032 /* caller is a slave */ 1033 piocnt = rcd->piocnt / rcd->subctxt_cnt; 1034 piobufs = rcd->piobufs + dd->palign * piocnt * slave; 1035 } 1036 1037 if (pgaddr == ureg) 1038 ret = mmap_ureg(vma, dd, ureg); 1039 else if (pgaddr == piobufs) 1040 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt); 1041 else if (pgaddr == dd->pioavailregs_phys) 1042 /* in-memory copy of pioavail registers */ 1043 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1044 (void *) dd->pioavailregs_dma, 0, 1045 "pioavail registers"); 1046 else if (pgaddr == rcd->rcvegr_phys) 1047 ret = mmap_rcvegrbufs(vma, rcd); 1048 else if (pgaddr == (u64) rcd->rcvhdrq_phys) 1049 /* 1050 * The rcvhdrq itself; multiple pages, contiguous 1051 * from an i/o perspective. Shared contexts need 1052 * to map r/w, so we allow writing. 1053 */ 1054 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size, 1055 rcd->rcvhdrq, 1, "rcvhdrq"); 1056 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys) 1057 /* in-memory copy of rcvhdrq tail register */ 1058 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1059 rcd->rcvhdrtail_kvaddr, 0, 1060 "rcvhdrq tail"); 1061 else 1062 match = 0; 1063 if (!match) 1064 ret = -EINVAL; 1065 1066 vma->vm_private_data = NULL; 1067 1068 if (ret < 0) 1069 qib_devinfo(dd->pcidev, 1070 "mmap Failure %d: off %llx len %lx\n", 1071 -ret, (unsigned long long)pgaddr, 1072 vma->vm_end - vma->vm_start); 1073 bail: 1074 return ret; 1075 } 1076 1077 static __poll_t qib_poll_urgent(struct qib_ctxtdata *rcd, 1078 struct file *fp, 1079 struct poll_table_struct *pt) 1080 { 1081 struct qib_devdata *dd = rcd->dd; 1082 __poll_t pollflag; 1083 1084 poll_wait(fp, &rcd->wait, pt); 1085 1086 spin_lock_irq(&dd->uctxt_lock); 1087 if (rcd->urgent != rcd->urgent_poll) { 1088 pollflag = EPOLLIN | EPOLLRDNORM; 1089 rcd->urgent_poll = rcd->urgent; 1090 } else { 1091 pollflag = 0; 1092 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag); 1093 } 1094 spin_unlock_irq(&dd->uctxt_lock); 1095 1096 return pollflag; 1097 } 1098 1099 static __poll_t qib_poll_next(struct qib_ctxtdata *rcd, 1100 struct file *fp, 1101 struct poll_table_struct *pt) 1102 { 1103 struct qib_devdata *dd = rcd->dd; 1104 __poll_t pollflag; 1105 1106 poll_wait(fp, &rcd->wait, pt); 1107 1108 spin_lock_irq(&dd->uctxt_lock); 1109 if (dd->f_hdrqempty(rcd)) { 1110 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag); 1111 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt); 1112 pollflag = 0; 1113 } else 1114 pollflag = EPOLLIN | EPOLLRDNORM; 1115 spin_unlock_irq(&dd->uctxt_lock); 1116 1117 return pollflag; 1118 } 1119 1120 static __poll_t qib_poll(struct file *fp, struct poll_table_struct *pt) 1121 { 1122 struct qib_ctxtdata *rcd; 1123 __poll_t pollflag; 1124 1125 rcd = ctxt_fp(fp); 1126 if (!rcd) 1127 pollflag = EPOLLERR; 1128 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT) 1129 pollflag = qib_poll_urgent(rcd, fp, pt); 1130 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV) 1131 pollflag = qib_poll_next(rcd, fp, pt); 1132 else /* invalid */ 1133 pollflag = EPOLLERR; 1134 1135 return pollflag; 1136 } 1137 1138 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd) 1139 { 1140 struct qib_filedata *fd = fp->private_data; 1141 const unsigned int weight = cpumask_weight(¤t->cpus_allowed); 1142 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus); 1143 int local_cpu; 1144 1145 /* 1146 * If process has NOT already set it's affinity, select and 1147 * reserve a processor for it on the local NUMA node. 1148 */ 1149 if ((weight >= qib_cpulist_count) && 1150 (cpumask_weight(local_mask) <= qib_cpulist_count)) { 1151 for_each_cpu(local_cpu, local_mask) 1152 if (!test_and_set_bit(local_cpu, qib_cpulist)) { 1153 fd->rec_cpu_num = local_cpu; 1154 return; 1155 } 1156 } 1157 1158 /* 1159 * If process has NOT already set it's affinity, select and 1160 * reserve a processor for it, as a rendevous for all 1161 * users of the driver. If they don't actually later 1162 * set affinity to this cpu, or set it to some other cpu, 1163 * it just means that sooner or later we don't recommend 1164 * a cpu, and let the scheduler do it's best. 1165 */ 1166 if (weight >= qib_cpulist_count) { 1167 int cpu; 1168 1169 cpu = find_first_zero_bit(qib_cpulist, 1170 qib_cpulist_count); 1171 if (cpu == qib_cpulist_count) 1172 qib_dev_err(dd, 1173 "no cpus avail for affinity PID %u\n", 1174 current->pid); 1175 else { 1176 __set_bit(cpu, qib_cpulist); 1177 fd->rec_cpu_num = cpu; 1178 } 1179 } 1180 } 1181 1182 /* 1183 * Check that userland and driver are compatible for subcontexts. 1184 */ 1185 static int qib_compatible_subctxts(int user_swmajor, int user_swminor) 1186 { 1187 /* this code is written long-hand for clarity */ 1188 if (QIB_USER_SWMAJOR != user_swmajor) { 1189 /* no promise of compatibility if major mismatch */ 1190 return 0; 1191 } 1192 if (QIB_USER_SWMAJOR == 1) { 1193 switch (QIB_USER_SWMINOR) { 1194 case 0: 1195 case 1: 1196 case 2: 1197 /* no subctxt implementation so cannot be compatible */ 1198 return 0; 1199 case 3: 1200 /* 3 is only compatible with itself */ 1201 return user_swminor == 3; 1202 default: 1203 /* >= 4 are compatible (or are expected to be) */ 1204 return user_swminor <= QIB_USER_SWMINOR; 1205 } 1206 } 1207 /* make no promises yet for future major versions */ 1208 return 0; 1209 } 1210 1211 static int init_subctxts(struct qib_devdata *dd, 1212 struct qib_ctxtdata *rcd, 1213 const struct qib_user_info *uinfo) 1214 { 1215 int ret = 0; 1216 unsigned num_subctxts; 1217 size_t size; 1218 1219 /* 1220 * If the user is requesting zero subctxts, 1221 * skip the subctxt allocation. 1222 */ 1223 if (uinfo->spu_subctxt_cnt <= 0) 1224 goto bail; 1225 num_subctxts = uinfo->spu_subctxt_cnt; 1226 1227 /* Check for subctxt compatibility */ 1228 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16, 1229 uinfo->spu_userversion & 0xffff)) { 1230 qib_devinfo(dd->pcidev, 1231 "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n", 1232 (int) (uinfo->spu_userversion >> 16), 1233 (int) (uinfo->spu_userversion & 0xffff), 1234 QIB_USER_SWMAJOR, QIB_USER_SWMINOR); 1235 goto bail; 1236 } 1237 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) { 1238 ret = -EINVAL; 1239 goto bail; 1240 } 1241 1242 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts); 1243 if (!rcd->subctxt_uregbase) { 1244 ret = -ENOMEM; 1245 goto bail; 1246 } 1247 /* Note: rcd->rcvhdrq_size isn't initialized yet. */ 1248 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * 1249 sizeof(u32), PAGE_SIZE) * num_subctxts; 1250 rcd->subctxt_rcvhdr_base = vmalloc_user(size); 1251 if (!rcd->subctxt_rcvhdr_base) { 1252 ret = -ENOMEM; 1253 goto bail_ureg; 1254 } 1255 1256 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks * 1257 rcd->rcvegrbuf_size * 1258 num_subctxts); 1259 if (!rcd->subctxt_rcvegrbuf) { 1260 ret = -ENOMEM; 1261 goto bail_rhdr; 1262 } 1263 1264 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt; 1265 rcd->subctxt_id = uinfo->spu_subctxt_id; 1266 rcd->active_slaves = 1; 1267 rcd->redirect_seq_cnt = 1; 1268 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1269 goto bail; 1270 1271 bail_rhdr: 1272 vfree(rcd->subctxt_rcvhdr_base); 1273 bail_ureg: 1274 vfree(rcd->subctxt_uregbase); 1275 rcd->subctxt_uregbase = NULL; 1276 bail: 1277 return ret; 1278 } 1279 1280 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt, 1281 struct file *fp, const struct qib_user_info *uinfo) 1282 { 1283 struct qib_filedata *fd = fp->private_data; 1284 struct qib_devdata *dd = ppd->dd; 1285 struct qib_ctxtdata *rcd; 1286 void *ptmp = NULL; 1287 int ret; 1288 int numa_id; 1289 1290 assign_ctxt_affinity(fp, dd); 1291 1292 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ? 1293 cpu_to_node(fd->rec_cpu_num) : 1294 numa_node_id()) : dd->assigned_node_id; 1295 1296 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id); 1297 1298 /* 1299 * Allocate memory for use in qib_tid_update() at open to 1300 * reduce cost of expected send setup per message segment 1301 */ 1302 if (rcd) 1303 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) + 1304 dd->rcvtidcnt * sizeof(struct page **), 1305 GFP_KERNEL); 1306 1307 if (!rcd || !ptmp) { 1308 qib_dev_err(dd, 1309 "Unable to allocate ctxtdata memory, failing open\n"); 1310 ret = -ENOMEM; 1311 goto bailerr; 1312 } 1313 rcd->userversion = uinfo->spu_userversion; 1314 ret = init_subctxts(dd, rcd, uinfo); 1315 if (ret) 1316 goto bailerr; 1317 rcd->tid_pg_list = ptmp; 1318 rcd->pid = current->pid; 1319 init_waitqueue_head(&dd->rcd[ctxt]->wait); 1320 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm)); 1321 ctxt_fp(fp) = rcd; 1322 qib_stats.sps_ctxts++; 1323 dd->freectxts--; 1324 ret = 0; 1325 goto bail; 1326 1327 bailerr: 1328 if (fd->rec_cpu_num != -1) 1329 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1330 1331 dd->rcd[ctxt] = NULL; 1332 kfree(rcd); 1333 kfree(ptmp); 1334 bail: 1335 return ret; 1336 } 1337 1338 static inline int usable(struct qib_pportdata *ppd) 1339 { 1340 struct qib_devdata *dd = ppd->dd; 1341 1342 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid && 1343 (ppd->lflags & QIBL_LINKACTIVE); 1344 } 1345 1346 /* 1347 * Select a context on the given device, either using a requested port 1348 * or the port based on the context number. 1349 */ 1350 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port, 1351 const struct qib_user_info *uinfo) 1352 { 1353 struct qib_pportdata *ppd = NULL; 1354 int ret, ctxt; 1355 1356 if (port) { 1357 if (!usable(dd->pport + port - 1)) { 1358 ret = -ENETDOWN; 1359 goto done; 1360 } else 1361 ppd = dd->pport + port - 1; 1362 } 1363 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt]; 1364 ctxt++) 1365 ; 1366 if (ctxt == dd->cfgctxts) { 1367 ret = -EBUSY; 1368 goto done; 1369 } 1370 if (!ppd) { 1371 u32 pidx = ctxt % dd->num_pports; 1372 1373 if (usable(dd->pport + pidx)) 1374 ppd = dd->pport + pidx; 1375 else { 1376 for (pidx = 0; pidx < dd->num_pports && !ppd; 1377 pidx++) 1378 if (usable(dd->pport + pidx)) 1379 ppd = dd->pport + pidx; 1380 } 1381 } 1382 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN; 1383 done: 1384 return ret; 1385 } 1386 1387 static int find_free_ctxt(int unit, struct file *fp, 1388 const struct qib_user_info *uinfo) 1389 { 1390 struct qib_devdata *dd = qib_lookup(unit); 1391 int ret; 1392 1393 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports)) 1394 ret = -ENODEV; 1395 else 1396 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo); 1397 1398 return ret; 1399 } 1400 1401 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo, 1402 unsigned alg) 1403 { 1404 struct qib_devdata *udd = NULL; 1405 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i; 1406 u32 port = uinfo->spu_port, ctxt; 1407 1408 devmax = qib_count_units(&npresent, &nup); 1409 if (!npresent) { 1410 ret = -ENXIO; 1411 goto done; 1412 } 1413 if (nup == 0) { 1414 ret = -ENETDOWN; 1415 goto done; 1416 } 1417 1418 if (alg == QIB_PORT_ALG_ACROSS) { 1419 unsigned inuse = ~0U; 1420 1421 /* find device (with ACTIVE ports) with fewest ctxts in use */ 1422 for (ndev = 0; ndev < devmax; ndev++) { 1423 struct qib_devdata *dd = qib_lookup(ndev); 1424 unsigned cused = 0, cfree = 0, pusable = 0; 1425 1426 if (!dd) 1427 continue; 1428 if (port && port <= dd->num_pports && 1429 usable(dd->pport + port - 1)) 1430 pusable = 1; 1431 else 1432 for (i = 0; i < dd->num_pports; i++) 1433 if (usable(dd->pport + i)) 1434 pusable++; 1435 if (!pusable) 1436 continue; 1437 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; 1438 ctxt++) 1439 if (dd->rcd[ctxt]) 1440 cused++; 1441 else 1442 cfree++; 1443 if (cfree && cused < inuse) { 1444 udd = dd; 1445 inuse = cused; 1446 } 1447 } 1448 if (udd) { 1449 ret = choose_port_ctxt(fp, udd, port, uinfo); 1450 goto done; 1451 } 1452 } else { 1453 for (ndev = 0; ndev < devmax; ndev++) { 1454 struct qib_devdata *dd = qib_lookup(ndev); 1455 1456 if (dd) { 1457 ret = choose_port_ctxt(fp, dd, port, uinfo); 1458 if (!ret) 1459 goto done; 1460 if (ret == -EBUSY) 1461 dusable++; 1462 } 1463 } 1464 } 1465 ret = dusable ? -EBUSY : -ENETDOWN; 1466 1467 done: 1468 return ret; 1469 } 1470 1471 static int find_shared_ctxt(struct file *fp, 1472 const struct qib_user_info *uinfo) 1473 { 1474 int devmax, ndev, i; 1475 int ret = 0; 1476 1477 devmax = qib_count_units(NULL, NULL); 1478 1479 for (ndev = 0; ndev < devmax; ndev++) { 1480 struct qib_devdata *dd = qib_lookup(ndev); 1481 1482 /* device portion of usable() */ 1483 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase)) 1484 continue; 1485 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) { 1486 struct qib_ctxtdata *rcd = dd->rcd[i]; 1487 1488 /* Skip ctxts which are not yet open */ 1489 if (!rcd || !rcd->cnt) 1490 continue; 1491 /* Skip ctxt if it doesn't match the requested one */ 1492 if (rcd->subctxt_id != uinfo->spu_subctxt_id) 1493 continue; 1494 /* Verify the sharing process matches the master */ 1495 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt || 1496 rcd->userversion != uinfo->spu_userversion || 1497 rcd->cnt >= rcd->subctxt_cnt) { 1498 ret = -EINVAL; 1499 goto done; 1500 } 1501 ctxt_fp(fp) = rcd; 1502 subctxt_fp(fp) = rcd->cnt++; 1503 rcd->subpid[subctxt_fp(fp)] = current->pid; 1504 tidcursor_fp(fp) = 0; 1505 rcd->active_slaves |= 1 << subctxt_fp(fp); 1506 ret = 1; 1507 goto done; 1508 } 1509 } 1510 1511 done: 1512 return ret; 1513 } 1514 1515 static int qib_open(struct inode *in, struct file *fp) 1516 { 1517 /* The real work is performed later in qib_assign_ctxt() */ 1518 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL); 1519 if (fp->private_data) /* no cpu affinity by default */ 1520 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1; 1521 return fp->private_data ? 0 : -ENOMEM; 1522 } 1523 1524 static int find_hca(unsigned int cpu, int *unit) 1525 { 1526 int ret = 0, devmax, npresent, nup, ndev; 1527 1528 *unit = -1; 1529 1530 devmax = qib_count_units(&npresent, &nup); 1531 if (!npresent) { 1532 ret = -ENXIO; 1533 goto done; 1534 } 1535 if (!nup) { 1536 ret = -ENETDOWN; 1537 goto done; 1538 } 1539 for (ndev = 0; ndev < devmax; ndev++) { 1540 struct qib_devdata *dd = qib_lookup(ndev); 1541 1542 if (dd) { 1543 if (pcibus_to_node(dd->pcidev->bus) < 0) { 1544 ret = -EINVAL; 1545 goto done; 1546 } 1547 if (cpu_to_node(cpu) == 1548 pcibus_to_node(dd->pcidev->bus)) { 1549 *unit = ndev; 1550 goto done; 1551 } 1552 } 1553 } 1554 done: 1555 return ret; 1556 } 1557 1558 static int do_qib_user_sdma_queue_create(struct file *fp) 1559 { 1560 struct qib_filedata *fd = fp->private_data; 1561 struct qib_ctxtdata *rcd = fd->rcd; 1562 struct qib_devdata *dd = rcd->dd; 1563 1564 if (dd->flags & QIB_HAS_SEND_DMA) { 1565 1566 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev, 1567 dd->unit, 1568 rcd->ctxt, 1569 fd->subctxt); 1570 if (!fd->pq) 1571 return -ENOMEM; 1572 } 1573 1574 return 0; 1575 } 1576 1577 /* 1578 * Get ctxt early, so can set affinity prior to memory allocation. 1579 */ 1580 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo) 1581 { 1582 int ret; 1583 int i_minor; 1584 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS; 1585 1586 /* Check to be sure we haven't already initialized this file */ 1587 if (ctxt_fp(fp)) { 1588 ret = -EINVAL; 1589 goto done; 1590 } 1591 1592 /* for now, if major version is different, bail */ 1593 swmajor = uinfo->spu_userversion >> 16; 1594 if (swmajor != QIB_USER_SWMAJOR) { 1595 ret = -ENODEV; 1596 goto done; 1597 } 1598 1599 swminor = uinfo->spu_userversion & 0xffff; 1600 1601 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT) 1602 alg = uinfo->spu_port_alg; 1603 1604 mutex_lock(&qib_mutex); 1605 1606 if (qib_compatible_subctxts(swmajor, swminor) && 1607 uinfo->spu_subctxt_cnt) { 1608 ret = find_shared_ctxt(fp, uinfo); 1609 if (ret > 0) { 1610 ret = do_qib_user_sdma_queue_create(fp); 1611 if (!ret) 1612 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd); 1613 goto done_ok; 1614 } 1615 } 1616 1617 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE; 1618 if (i_minor) 1619 ret = find_free_ctxt(i_minor - 1, fp, uinfo); 1620 else { 1621 int unit; 1622 const unsigned int cpu = cpumask_first(¤t->cpus_allowed); 1623 const unsigned int weight = 1624 cpumask_weight(¤t->cpus_allowed); 1625 1626 if (weight == 1 && !test_bit(cpu, qib_cpulist)) 1627 if (!find_hca(cpu, &unit) && unit >= 0) 1628 if (!find_free_ctxt(unit, fp, uinfo)) { 1629 ret = 0; 1630 goto done_chk_sdma; 1631 } 1632 ret = get_a_ctxt(fp, uinfo, alg); 1633 } 1634 1635 done_chk_sdma: 1636 if (!ret) 1637 ret = do_qib_user_sdma_queue_create(fp); 1638 done_ok: 1639 mutex_unlock(&qib_mutex); 1640 1641 done: 1642 return ret; 1643 } 1644 1645 1646 static int qib_do_user_init(struct file *fp, 1647 const struct qib_user_info *uinfo) 1648 { 1649 int ret; 1650 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1651 struct qib_devdata *dd; 1652 unsigned uctxt; 1653 1654 /* Subctxts don't need to initialize anything since master did it. */ 1655 if (subctxt_fp(fp)) { 1656 ret = wait_event_interruptible(rcd->wait, 1657 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag)); 1658 goto bail; 1659 } 1660 1661 dd = rcd->dd; 1662 1663 /* some ctxts may get extra buffers, calculate that here */ 1664 uctxt = rcd->ctxt - dd->first_user_ctxt; 1665 if (uctxt < dd->ctxts_extrabuf) { 1666 rcd->piocnt = dd->pbufsctxt + 1; 1667 rcd->pio_base = rcd->piocnt * uctxt; 1668 } else { 1669 rcd->piocnt = dd->pbufsctxt; 1670 rcd->pio_base = rcd->piocnt * uctxt + 1671 dd->ctxts_extrabuf; 1672 } 1673 1674 /* 1675 * All user buffers are 2KB buffers. If we ever support 1676 * giving 4KB buffers to user processes, this will need some 1677 * work. Can't use piobufbase directly, because it has 1678 * both 2K and 4K buffer base values. So check and handle. 1679 */ 1680 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) { 1681 if (rcd->pio_base >= dd->piobcnt2k) { 1682 qib_dev_err(dd, 1683 "%u:ctxt%u: no 2KB buffers available\n", 1684 dd->unit, rcd->ctxt); 1685 ret = -ENOBUFS; 1686 goto bail; 1687 } 1688 rcd->piocnt = dd->piobcnt2k - rcd->pio_base; 1689 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n", 1690 rcd->ctxt, rcd->piocnt); 1691 } 1692 1693 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign; 1694 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1695 TXCHK_CHG_TYPE_USER, rcd); 1696 /* 1697 * try to ensure that processes start up with consistent avail update 1698 * for their own range, at least. If system very quiet, it might 1699 * have the in-memory copy out of date at startup for this range of 1700 * buffers, when a context gets re-used. Do after the chg_pioavail 1701 * and before the rest of setup, so it's "almost certain" the dma 1702 * will have occurred (can't 100% guarantee, but should be many 1703 * decimals of 9s, with this ordering), given how much else happens 1704 * after this. 1705 */ 1706 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP); 1707 1708 /* 1709 * Now allocate the rcvhdr Q and eager TIDs; skip the TID 1710 * array for time being. If rcd->ctxt > chip-supported, 1711 * we need to do extra stuff here to handle by handling overflow 1712 * through ctxt 0, someday 1713 */ 1714 ret = qib_create_rcvhdrq(dd, rcd); 1715 if (!ret) 1716 ret = qib_setup_eagerbufs(rcd); 1717 if (ret) 1718 goto bail_pio; 1719 1720 rcd->tidcursor = 0; /* start at beginning after open */ 1721 1722 /* initialize poll variables... */ 1723 rcd->urgent = 0; 1724 rcd->urgent_poll = 0; 1725 1726 /* 1727 * Now enable the ctxt for receive. 1728 * For chips that are set to DMA the tail register to memory 1729 * when they change (and when the update bit transitions from 1730 * 0 to 1. So for those chips, we turn it off and then back on. 1731 * This will (very briefly) affect any other open ctxts, but the 1732 * duration is very short, and therefore isn't an issue. We 1733 * explicitly set the in-memory tail copy to 0 beforehand, so we 1734 * don't have to wait to be sure the DMA update has happened 1735 * (chip resets head/tail to 0 on transition to enable). 1736 */ 1737 if (rcd->rcvhdrtail_kvaddr) 1738 qib_clear_rcvhdrtail(rcd); 1739 1740 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB, 1741 rcd->ctxt); 1742 1743 /* Notify any waiting slaves */ 1744 if (rcd->subctxt_cnt) { 1745 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1746 wake_up(&rcd->wait); 1747 } 1748 return 0; 1749 1750 bail_pio: 1751 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1752 TXCHK_CHG_TYPE_KERN, rcd); 1753 bail: 1754 return ret; 1755 } 1756 1757 /** 1758 * unlock_exptid - unlock any expected TID entries context still had in use 1759 * @rcd: ctxt 1760 * 1761 * We don't actually update the chip here, because we do a bulk update 1762 * below, using f_clear_tids. 1763 */ 1764 static void unlock_expected_tids(struct qib_ctxtdata *rcd) 1765 { 1766 struct qib_devdata *dd = rcd->dd; 1767 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt; 1768 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt; 1769 1770 for (i = ctxt_tidbase; i < maxtid; i++) { 1771 struct page *p = dd->pageshadow[i]; 1772 dma_addr_t phys; 1773 1774 if (!p) 1775 continue; 1776 1777 phys = dd->physshadow[i]; 1778 dd->physshadow[i] = dd->tidinvalid; 1779 dd->pageshadow[i] = NULL; 1780 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 1781 PCI_DMA_FROMDEVICE); 1782 qib_release_user_pages(&p, 1); 1783 cnt++; 1784 } 1785 } 1786 1787 static int qib_close(struct inode *in, struct file *fp) 1788 { 1789 int ret = 0; 1790 struct qib_filedata *fd; 1791 struct qib_ctxtdata *rcd; 1792 struct qib_devdata *dd; 1793 unsigned long flags; 1794 unsigned ctxt; 1795 1796 mutex_lock(&qib_mutex); 1797 1798 fd = fp->private_data; 1799 fp->private_data = NULL; 1800 rcd = fd->rcd; 1801 if (!rcd) { 1802 mutex_unlock(&qib_mutex); 1803 goto bail; 1804 } 1805 1806 dd = rcd->dd; 1807 1808 /* ensure all pio buffer writes in progress are flushed */ 1809 qib_flush_wc(); 1810 1811 /* drain user sdma queue */ 1812 if (fd->pq) { 1813 qib_user_sdma_queue_drain(rcd->ppd, fd->pq); 1814 qib_user_sdma_queue_destroy(fd->pq); 1815 } 1816 1817 if (fd->rec_cpu_num != -1) 1818 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1819 1820 if (--rcd->cnt) { 1821 /* 1822 * XXX If the master closes the context before the slave(s), 1823 * revoke the mmap for the eager receive queue so 1824 * the slave(s) don't wait for receive data forever. 1825 */ 1826 rcd->active_slaves &= ~(1 << fd->subctxt); 1827 rcd->subpid[fd->subctxt] = 0; 1828 mutex_unlock(&qib_mutex); 1829 goto bail; 1830 } 1831 1832 /* early; no interrupt users after this */ 1833 spin_lock_irqsave(&dd->uctxt_lock, flags); 1834 ctxt = rcd->ctxt; 1835 dd->rcd[ctxt] = NULL; 1836 rcd->pid = 0; 1837 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1838 1839 if (rcd->rcvwait_to || rcd->piowait_to || 1840 rcd->rcvnowait || rcd->pionowait) { 1841 rcd->rcvwait_to = 0; 1842 rcd->piowait_to = 0; 1843 rcd->rcvnowait = 0; 1844 rcd->pionowait = 0; 1845 } 1846 if (rcd->flag) 1847 rcd->flag = 0; 1848 1849 if (dd->kregbase) { 1850 /* atomically clear receive enable ctxt and intr avail. */ 1851 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS | 1852 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt); 1853 1854 /* clean up the pkeys for this ctxt user */ 1855 qib_clean_part_key(rcd, dd); 1856 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt); 1857 qib_chg_pioavailkernel(dd, rcd->pio_base, 1858 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL); 1859 1860 dd->f_clear_tids(dd, rcd); 1861 1862 if (dd->pageshadow) 1863 unlock_expected_tids(rcd); 1864 qib_stats.sps_ctxts--; 1865 dd->freectxts++; 1866 } 1867 1868 mutex_unlock(&qib_mutex); 1869 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */ 1870 1871 bail: 1872 kfree(fd); 1873 return ret; 1874 } 1875 1876 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo) 1877 { 1878 struct qib_ctxt_info info; 1879 int ret; 1880 size_t sz; 1881 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1882 struct qib_filedata *fd; 1883 1884 fd = fp->private_data; 1885 1886 info.num_active = qib_count_active_units(); 1887 info.unit = rcd->dd->unit; 1888 info.port = rcd->ppd->port; 1889 info.ctxt = rcd->ctxt; 1890 info.subctxt = subctxt_fp(fp); 1891 /* Number of user ctxts available for this device. */ 1892 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt; 1893 info.num_subctxts = rcd->subctxt_cnt; 1894 info.rec_cpu = fd->rec_cpu_num; 1895 sz = sizeof(info); 1896 1897 if (copy_to_user(uinfo, &info, sz)) { 1898 ret = -EFAULT; 1899 goto bail; 1900 } 1901 ret = 0; 1902 1903 bail: 1904 return ret; 1905 } 1906 1907 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq, 1908 u32 __user *inflightp) 1909 { 1910 const u32 val = qib_user_sdma_inflight_counter(pq); 1911 1912 if (put_user(val, inflightp)) 1913 return -EFAULT; 1914 1915 return 0; 1916 } 1917 1918 static int qib_sdma_get_complete(struct qib_pportdata *ppd, 1919 struct qib_user_sdma_queue *pq, 1920 u32 __user *completep) 1921 { 1922 u32 val; 1923 int err; 1924 1925 if (!pq) 1926 return -EINVAL; 1927 1928 err = qib_user_sdma_make_progress(ppd, pq); 1929 if (err < 0) 1930 return err; 1931 1932 val = qib_user_sdma_complete_counter(pq); 1933 if (put_user(val, completep)) 1934 return -EFAULT; 1935 1936 return 0; 1937 } 1938 1939 static int disarm_req_delay(struct qib_ctxtdata *rcd) 1940 { 1941 int ret = 0; 1942 1943 if (!usable(rcd->ppd)) { 1944 int i; 1945 /* 1946 * if link is down, or otherwise not usable, delay 1947 * the caller up to 30 seconds, so we don't thrash 1948 * in trying to get the chip back to ACTIVE, and 1949 * set flag so they make the call again. 1950 */ 1951 if (rcd->user_event_mask) { 1952 /* 1953 * subctxt_cnt is 0 if not shared, so do base 1954 * separately, first, then remaining subctxt, if any 1955 */ 1956 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1957 &rcd->user_event_mask[0]); 1958 for (i = 1; i < rcd->subctxt_cnt; i++) 1959 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1960 &rcd->user_event_mask[i]); 1961 } 1962 for (i = 0; !usable(rcd->ppd) && i < 300; i++) 1963 msleep(100); 1964 ret = -ENETDOWN; 1965 } 1966 return ret; 1967 } 1968 1969 /* 1970 * Find all user contexts in use, and set the specified bit in their 1971 * event mask. 1972 * See also find_ctxt() for a similar use, that is specific to send buffers. 1973 */ 1974 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit) 1975 { 1976 struct qib_ctxtdata *rcd; 1977 unsigned ctxt; 1978 int ret = 0; 1979 unsigned long flags; 1980 1981 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags); 1982 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts; 1983 ctxt++) { 1984 rcd = ppd->dd->rcd[ctxt]; 1985 if (!rcd) 1986 continue; 1987 if (rcd->user_event_mask) { 1988 int i; 1989 /* 1990 * subctxt_cnt is 0 if not shared, so do base 1991 * separately, first, then remaining subctxt, if any 1992 */ 1993 set_bit(evtbit, &rcd->user_event_mask[0]); 1994 for (i = 1; i < rcd->subctxt_cnt; i++) 1995 set_bit(evtbit, &rcd->user_event_mask[i]); 1996 } 1997 ret = 1; 1998 break; 1999 } 2000 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags); 2001 2002 return ret; 2003 } 2004 2005 /* 2006 * clear the event notifier events for this context. 2007 * For the DISARM_BUFS case, we also take action (this obsoletes 2008 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards 2009 * compatibility. 2010 * Other bits don't currently require actions, just atomically clear. 2011 * User process then performs actions appropriate to bit having been 2012 * set, if desired, and checks again in future. 2013 */ 2014 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt, 2015 unsigned long events) 2016 { 2017 int ret = 0, i; 2018 2019 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) { 2020 if (!test_bit(i, &events)) 2021 continue; 2022 if (i == _QIB_EVENT_DISARM_BUFS_BIT) { 2023 (void)qib_disarm_piobufs_ifneeded(rcd); 2024 ret = disarm_req_delay(rcd); 2025 } else 2026 clear_bit(i, &rcd->user_event_mask[subctxt]); 2027 } 2028 return ret; 2029 } 2030 2031 static ssize_t qib_write(struct file *fp, const char __user *data, 2032 size_t count, loff_t *off) 2033 { 2034 const struct qib_cmd __user *ucmd; 2035 struct qib_ctxtdata *rcd; 2036 const void __user *src; 2037 size_t consumed, copy = 0; 2038 struct qib_cmd cmd; 2039 ssize_t ret = 0; 2040 void *dest; 2041 2042 if (!ib_safe_file_access(fp)) { 2043 pr_err_once("qib_write: process %d (%s) changed security contexts after opening file descriptor, this is not allowed.\n", 2044 task_tgid_vnr(current), current->comm); 2045 return -EACCES; 2046 } 2047 2048 if (count < sizeof(cmd.type)) { 2049 ret = -EINVAL; 2050 goto bail; 2051 } 2052 2053 ucmd = (const struct qib_cmd __user *) data; 2054 2055 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { 2056 ret = -EFAULT; 2057 goto bail; 2058 } 2059 2060 consumed = sizeof(cmd.type); 2061 2062 switch (cmd.type) { 2063 case QIB_CMD_ASSIGN_CTXT: 2064 case QIB_CMD_USER_INIT: 2065 copy = sizeof(cmd.cmd.user_info); 2066 dest = &cmd.cmd.user_info; 2067 src = &ucmd->cmd.user_info; 2068 break; 2069 2070 case QIB_CMD_RECV_CTRL: 2071 copy = sizeof(cmd.cmd.recv_ctrl); 2072 dest = &cmd.cmd.recv_ctrl; 2073 src = &ucmd->cmd.recv_ctrl; 2074 break; 2075 2076 case QIB_CMD_CTXT_INFO: 2077 copy = sizeof(cmd.cmd.ctxt_info); 2078 dest = &cmd.cmd.ctxt_info; 2079 src = &ucmd->cmd.ctxt_info; 2080 break; 2081 2082 case QIB_CMD_TID_UPDATE: 2083 case QIB_CMD_TID_FREE: 2084 copy = sizeof(cmd.cmd.tid_info); 2085 dest = &cmd.cmd.tid_info; 2086 src = &ucmd->cmd.tid_info; 2087 break; 2088 2089 case QIB_CMD_SET_PART_KEY: 2090 copy = sizeof(cmd.cmd.part_key); 2091 dest = &cmd.cmd.part_key; 2092 src = &ucmd->cmd.part_key; 2093 break; 2094 2095 case QIB_CMD_DISARM_BUFS: 2096 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */ 2097 copy = 0; 2098 src = NULL; 2099 dest = NULL; 2100 break; 2101 2102 case QIB_CMD_POLL_TYPE: 2103 copy = sizeof(cmd.cmd.poll_type); 2104 dest = &cmd.cmd.poll_type; 2105 src = &ucmd->cmd.poll_type; 2106 break; 2107 2108 case QIB_CMD_ARMLAUNCH_CTRL: 2109 copy = sizeof(cmd.cmd.armlaunch_ctrl); 2110 dest = &cmd.cmd.armlaunch_ctrl; 2111 src = &ucmd->cmd.armlaunch_ctrl; 2112 break; 2113 2114 case QIB_CMD_SDMA_INFLIGHT: 2115 copy = sizeof(cmd.cmd.sdma_inflight); 2116 dest = &cmd.cmd.sdma_inflight; 2117 src = &ucmd->cmd.sdma_inflight; 2118 break; 2119 2120 case QIB_CMD_SDMA_COMPLETE: 2121 copy = sizeof(cmd.cmd.sdma_complete); 2122 dest = &cmd.cmd.sdma_complete; 2123 src = &ucmd->cmd.sdma_complete; 2124 break; 2125 2126 case QIB_CMD_ACK_EVENT: 2127 copy = sizeof(cmd.cmd.event_mask); 2128 dest = &cmd.cmd.event_mask; 2129 src = &ucmd->cmd.event_mask; 2130 break; 2131 2132 default: 2133 ret = -EINVAL; 2134 goto bail; 2135 } 2136 2137 if (copy) { 2138 if ((count - consumed) < copy) { 2139 ret = -EINVAL; 2140 goto bail; 2141 } 2142 if (copy_from_user(dest, src, copy)) { 2143 ret = -EFAULT; 2144 goto bail; 2145 } 2146 consumed += copy; 2147 } 2148 2149 rcd = ctxt_fp(fp); 2150 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) { 2151 ret = -EINVAL; 2152 goto bail; 2153 } 2154 2155 switch (cmd.type) { 2156 case QIB_CMD_ASSIGN_CTXT: 2157 if (rcd) { 2158 ret = -EINVAL; 2159 goto bail; 2160 } 2161 2162 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info); 2163 if (ret) 2164 goto bail; 2165 break; 2166 2167 case QIB_CMD_USER_INIT: 2168 ret = qib_do_user_init(fp, &cmd.cmd.user_info); 2169 if (ret) 2170 goto bail; 2171 ret = qib_get_base_info(fp, u64_to_user_ptr( 2172 cmd.cmd.user_info.spu_base_info), 2173 cmd.cmd.user_info.spu_base_info_size); 2174 break; 2175 2176 case QIB_CMD_RECV_CTRL: 2177 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl); 2178 break; 2179 2180 case QIB_CMD_CTXT_INFO: 2181 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *) 2182 (unsigned long) cmd.cmd.ctxt_info); 2183 break; 2184 2185 case QIB_CMD_TID_UPDATE: 2186 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info); 2187 break; 2188 2189 case QIB_CMD_TID_FREE: 2190 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info); 2191 break; 2192 2193 case QIB_CMD_SET_PART_KEY: 2194 ret = qib_set_part_key(rcd, cmd.cmd.part_key); 2195 break; 2196 2197 case QIB_CMD_DISARM_BUFS: 2198 (void)qib_disarm_piobufs_ifneeded(rcd); 2199 ret = disarm_req_delay(rcd); 2200 break; 2201 2202 case QIB_CMD_PIOAVAILUPD: 2203 qib_force_pio_avail_update(rcd->dd); 2204 break; 2205 2206 case QIB_CMD_POLL_TYPE: 2207 rcd->poll_type = cmd.cmd.poll_type; 2208 break; 2209 2210 case QIB_CMD_ARMLAUNCH_CTRL: 2211 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl); 2212 break; 2213 2214 case QIB_CMD_SDMA_INFLIGHT: 2215 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp), 2216 (u32 __user *) (unsigned long) 2217 cmd.cmd.sdma_inflight); 2218 break; 2219 2220 case QIB_CMD_SDMA_COMPLETE: 2221 ret = qib_sdma_get_complete(rcd->ppd, 2222 user_sdma_queue_fp(fp), 2223 (u32 __user *) (unsigned long) 2224 cmd.cmd.sdma_complete); 2225 break; 2226 2227 case QIB_CMD_ACK_EVENT: 2228 ret = qib_user_event_ack(rcd, subctxt_fp(fp), 2229 cmd.cmd.event_mask); 2230 break; 2231 } 2232 2233 if (ret >= 0) 2234 ret = consumed; 2235 2236 bail: 2237 return ret; 2238 } 2239 2240 static ssize_t qib_write_iter(struct kiocb *iocb, struct iov_iter *from) 2241 { 2242 struct qib_filedata *fp = iocb->ki_filp->private_data; 2243 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp); 2244 struct qib_user_sdma_queue *pq = fp->pq; 2245 2246 if (!iter_is_iovec(from) || !from->nr_segs || !pq) 2247 return -EINVAL; 2248 2249 return qib_user_sdma_writev(rcd, pq, from->iov, from->nr_segs); 2250 } 2251 2252 static struct class *qib_class; 2253 static dev_t qib_dev; 2254 2255 int qib_cdev_init(int minor, const char *name, 2256 const struct file_operations *fops, 2257 struct cdev **cdevp, struct device **devp) 2258 { 2259 const dev_t dev = MKDEV(MAJOR(qib_dev), minor); 2260 struct cdev *cdev; 2261 struct device *device = NULL; 2262 int ret; 2263 2264 cdev = cdev_alloc(); 2265 if (!cdev) { 2266 pr_err("Could not allocate cdev for minor %d, %s\n", 2267 minor, name); 2268 ret = -ENOMEM; 2269 goto done; 2270 } 2271 2272 cdev->owner = THIS_MODULE; 2273 cdev->ops = fops; 2274 kobject_set_name(&cdev->kobj, name); 2275 2276 ret = cdev_add(cdev, dev, 1); 2277 if (ret < 0) { 2278 pr_err("Could not add cdev for minor %d, %s (err %d)\n", 2279 minor, name, -ret); 2280 goto err_cdev; 2281 } 2282 2283 device = device_create(qib_class, NULL, dev, NULL, "%s", name); 2284 if (!IS_ERR(device)) 2285 goto done; 2286 ret = PTR_ERR(device); 2287 device = NULL; 2288 pr_err("Could not create device for minor %d, %s (err %d)\n", 2289 minor, name, -ret); 2290 err_cdev: 2291 cdev_del(cdev); 2292 cdev = NULL; 2293 done: 2294 *cdevp = cdev; 2295 *devp = device; 2296 return ret; 2297 } 2298 2299 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp) 2300 { 2301 struct device *device = *devp; 2302 2303 if (device) { 2304 device_unregister(device); 2305 *devp = NULL; 2306 } 2307 2308 if (*cdevp) { 2309 cdev_del(*cdevp); 2310 *cdevp = NULL; 2311 } 2312 } 2313 2314 static struct cdev *wildcard_cdev; 2315 static struct device *wildcard_device; 2316 2317 int __init qib_dev_init(void) 2318 { 2319 int ret; 2320 2321 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME); 2322 if (ret < 0) { 2323 pr_err("Could not allocate chrdev region (err %d)\n", -ret); 2324 goto done; 2325 } 2326 2327 qib_class = class_create(THIS_MODULE, "ipath"); 2328 if (IS_ERR(qib_class)) { 2329 ret = PTR_ERR(qib_class); 2330 pr_err("Could not create device class (err %d)\n", -ret); 2331 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2332 } 2333 2334 done: 2335 return ret; 2336 } 2337 2338 void qib_dev_cleanup(void) 2339 { 2340 if (qib_class) { 2341 class_destroy(qib_class); 2342 qib_class = NULL; 2343 } 2344 2345 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2346 } 2347 2348 static atomic_t user_count = ATOMIC_INIT(0); 2349 2350 static void qib_user_remove(struct qib_devdata *dd) 2351 { 2352 if (atomic_dec_return(&user_count) == 0) 2353 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device); 2354 2355 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device); 2356 } 2357 2358 static int qib_user_add(struct qib_devdata *dd) 2359 { 2360 char name[10]; 2361 int ret; 2362 2363 if (atomic_inc_return(&user_count) == 1) { 2364 ret = qib_cdev_init(0, "ipath", &qib_file_ops, 2365 &wildcard_cdev, &wildcard_device); 2366 if (ret) 2367 goto done; 2368 } 2369 2370 snprintf(name, sizeof(name), "ipath%d", dd->unit); 2371 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops, 2372 &dd->user_cdev, &dd->user_device); 2373 if (ret) 2374 qib_user_remove(dd); 2375 done: 2376 return ret; 2377 } 2378 2379 /* 2380 * Create per-unit files in /dev 2381 */ 2382 int qib_device_create(struct qib_devdata *dd) 2383 { 2384 int r, ret; 2385 2386 r = qib_user_add(dd); 2387 ret = qib_diag_add(dd); 2388 if (r && !ret) 2389 ret = r; 2390 return ret; 2391 } 2392 2393 /* 2394 * Remove per-unit files in /dev 2395 * void, core kernel returns no errors for this stuff 2396 */ 2397 void qib_device_remove(struct qib_devdata *dd) 2398 { 2399 qib_user_remove(dd); 2400 qib_diag_remove(dd); 2401 } 2402