1 /* 2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved. 3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/pci.h> 36 #include <linux/poll.h> 37 #include <linux/cdev.h> 38 #include <linux/swap.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/io.h> 42 #include <linux/aio.h> 43 #include <linux/jiffies.h> 44 #include <asm/pgtable.h> 45 #include <linux/delay.h> 46 #include <linux/export.h> 47 48 #include "qib.h" 49 #include "qib_common.h" 50 #include "qib_user_sdma.h" 51 52 #undef pr_fmt 53 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt 54 55 static int qib_open(struct inode *, struct file *); 56 static int qib_close(struct inode *, struct file *); 57 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *); 58 static ssize_t qib_aio_write(struct kiocb *, const struct iovec *, 59 unsigned long, loff_t); 60 static unsigned int qib_poll(struct file *, struct poll_table_struct *); 61 static int qib_mmapf(struct file *, struct vm_area_struct *); 62 63 static const struct file_operations qib_file_ops = { 64 .owner = THIS_MODULE, 65 .write = qib_write, 66 .aio_write = qib_aio_write, 67 .open = qib_open, 68 .release = qib_close, 69 .poll = qib_poll, 70 .mmap = qib_mmapf, 71 .llseek = noop_llseek, 72 }; 73 74 /* 75 * Convert kernel virtual addresses to physical addresses so they don't 76 * potentially conflict with the chip addresses used as mmap offsets. 77 * It doesn't really matter what mmap offset we use as long as we can 78 * interpret it correctly. 79 */ 80 static u64 cvt_kvaddr(void *p) 81 { 82 struct page *page; 83 u64 paddr = 0; 84 85 page = vmalloc_to_page(p); 86 if (page) 87 paddr = page_to_pfn(page) << PAGE_SHIFT; 88 89 return paddr; 90 } 91 92 static int qib_get_base_info(struct file *fp, void __user *ubase, 93 size_t ubase_size) 94 { 95 struct qib_ctxtdata *rcd = ctxt_fp(fp); 96 int ret = 0; 97 struct qib_base_info *kinfo = NULL; 98 struct qib_devdata *dd = rcd->dd; 99 struct qib_pportdata *ppd = rcd->ppd; 100 unsigned subctxt_cnt; 101 int shared, master; 102 size_t sz; 103 104 subctxt_cnt = rcd->subctxt_cnt; 105 if (!subctxt_cnt) { 106 shared = 0; 107 master = 0; 108 subctxt_cnt = 1; 109 } else { 110 shared = 1; 111 master = !subctxt_fp(fp); 112 } 113 114 sz = sizeof(*kinfo); 115 /* If context sharing is not requested, allow the old size structure */ 116 if (!shared) 117 sz -= 7 * sizeof(u64); 118 if (ubase_size < sz) { 119 ret = -EINVAL; 120 goto bail; 121 } 122 123 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); 124 if (kinfo == NULL) { 125 ret = -ENOMEM; 126 goto bail; 127 } 128 129 ret = dd->f_get_base_info(rcd, kinfo); 130 if (ret < 0) 131 goto bail; 132 133 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt; 134 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize; 135 kinfo->spi_tidegrcnt = rcd->rcvegrcnt; 136 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize; 137 /* 138 * have to mmap whole thing 139 */ 140 kinfo->spi_rcv_egrbuftotlen = 141 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 142 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk; 143 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / 144 rcd->rcvegrbuf_chunks; 145 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt; 146 if (master) 147 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt; 148 /* 149 * for this use, may be cfgctxts summed over all chips that 150 * are are configured and present 151 */ 152 kinfo->spi_nctxts = dd->cfgctxts; 153 /* unit (chip/board) our context is on */ 154 kinfo->spi_unit = dd->unit; 155 kinfo->spi_port = ppd->port; 156 /* for now, only a single page */ 157 kinfo->spi_tid_maxsize = PAGE_SIZE; 158 159 /* 160 * Doing this per context, and based on the skip value, etc. This has 161 * to be the actual buffer size, since the protocol code treats it 162 * as an array. 163 * 164 * These have to be set to user addresses in the user code via mmap. 165 * These values are used on return to user code for the mmap target 166 * addresses only. For 32 bit, same 44 bit address problem, so use 167 * the physical address, not virtual. Before 2.6.11, using the 168 * page_address() macro worked, but in 2.6.11, even that returns the 169 * full 64 bit address (upper bits all 1's). So far, using the 170 * physical addresses (or chip offsets, for chip mapping) works, but 171 * no doubt some future kernel release will change that, and we'll be 172 * on to yet another method of dealing with this. 173 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful 174 * since the chips with non-zero rhf_offset don't normally 175 * enable tail register updates to host memory, but for testing, 176 * both can be enabled and used. 177 */ 178 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys; 179 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys; 180 kinfo->spi_rhf_offset = dd->rhf_offset; 181 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys; 182 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys; 183 /* setup per-unit (not port) status area for user programs */ 184 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + 185 (char *) ppd->statusp - 186 (char *) dd->pioavailregs_dma; 187 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt; 188 if (!shared) { 189 kinfo->spi_piocnt = rcd->piocnt; 190 kinfo->spi_piobufbase = (u64) rcd->piobufs; 191 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask); 192 } else if (master) { 193 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) + 194 (rcd->piocnt % subctxt_cnt); 195 /* Master's PIO buffers are after all the slave's */ 196 kinfo->spi_piobufbase = (u64) rcd->piobufs + 197 dd->palign * 198 (rcd->piocnt - kinfo->spi_piocnt); 199 } else { 200 unsigned slave = subctxt_fp(fp) - 1; 201 202 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt; 203 kinfo->spi_piobufbase = (u64) rcd->piobufs + 204 dd->palign * kinfo->spi_piocnt * slave; 205 } 206 207 if (shared) { 208 kinfo->spi_sendbuf_status = 209 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]); 210 /* only spi_subctxt_* fields should be set in this block! */ 211 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase); 212 213 kinfo->spi_subctxt_rcvegrbuf = 214 cvt_kvaddr(rcd->subctxt_rcvegrbuf); 215 kinfo->spi_subctxt_rcvhdr_base = 216 cvt_kvaddr(rcd->subctxt_rcvhdr_base); 217 } 218 219 /* 220 * All user buffers are 2KB buffers. If we ever support 221 * giving 4KB buffers to user processes, this will need some 222 * work. Can't use piobufbase directly, because it has 223 * both 2K and 4K buffer base values. 224 */ 225 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) / 226 dd->palign; 227 kinfo->spi_pioalign = dd->palign; 228 kinfo->spi_qpair = QIB_KD_QP; 229 /* 230 * user mode PIO buffers are always 2KB, even when 4KB can 231 * be received, and sent via the kernel; this is ibmaxlen 232 * for 2K MTU. 233 */ 234 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32); 235 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */ 236 kinfo->spi_ctxt = rcd->ctxt; 237 kinfo->spi_subctxt = subctxt_fp(fp); 238 kinfo->spi_sw_version = QIB_KERN_SWVERSION; 239 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */ 240 kinfo->spi_hw_version = dd->revision; 241 242 if (master) 243 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER; 244 245 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo); 246 if (copy_to_user(ubase, kinfo, sz)) 247 ret = -EFAULT; 248 bail: 249 kfree(kinfo); 250 return ret; 251 } 252 253 /** 254 * qib_tid_update - update a context TID 255 * @rcd: the context 256 * @fp: the qib device file 257 * @ti: the TID information 258 * 259 * The new implementation as of Oct 2004 is that the driver assigns 260 * the tid and returns it to the caller. To reduce search time, we 261 * keep a cursor for each context, walking the shadow tid array to find 262 * one that's not in use. 263 * 264 * For now, if we can't allocate the full list, we fail, although 265 * in the long run, we'll allocate as many as we can, and the 266 * caller will deal with that by trying the remaining pages later. 267 * That means that when we fail, we have to mark the tids as not in 268 * use again, in our shadow copy. 269 * 270 * It's up to the caller to free the tids when they are done. 271 * We'll unlock the pages as they free them. 272 * 273 * Also, right now we are locking one page at a time, but since 274 * the intended use of this routine is for a single group of 275 * virtually contiguous pages, that should change to improve 276 * performance. 277 */ 278 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp, 279 const struct qib_tid_info *ti) 280 { 281 int ret = 0, ntids; 282 u32 tid, ctxttid, cnt, i, tidcnt, tidoff; 283 u16 *tidlist; 284 struct qib_devdata *dd = rcd->dd; 285 u64 physaddr; 286 unsigned long vaddr; 287 u64 __iomem *tidbase; 288 unsigned long tidmap[8]; 289 struct page **pagep = NULL; 290 unsigned subctxt = subctxt_fp(fp); 291 292 if (!dd->pageshadow) { 293 ret = -ENOMEM; 294 goto done; 295 } 296 297 cnt = ti->tidcnt; 298 if (!cnt) { 299 ret = -EFAULT; 300 goto done; 301 } 302 ctxttid = rcd->ctxt * dd->rcvtidcnt; 303 if (!rcd->subctxt_cnt) { 304 tidcnt = dd->rcvtidcnt; 305 tid = rcd->tidcursor; 306 tidoff = 0; 307 } else if (!subctxt) { 308 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 309 (dd->rcvtidcnt % rcd->subctxt_cnt); 310 tidoff = dd->rcvtidcnt - tidcnt; 311 ctxttid += tidoff; 312 tid = tidcursor_fp(fp); 313 } else { 314 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 315 tidoff = tidcnt * (subctxt - 1); 316 ctxttid += tidoff; 317 tid = tidcursor_fp(fp); 318 } 319 if (cnt > tidcnt) { 320 /* make sure it all fits in tid_pg_list */ 321 qib_devinfo(dd->pcidev, 322 "Process tried to allocate %u TIDs, only trying max (%u)\n", 323 cnt, tidcnt); 324 cnt = tidcnt; 325 } 326 pagep = (struct page **) rcd->tid_pg_list; 327 tidlist = (u16 *) &pagep[dd->rcvtidcnt]; 328 pagep += tidoff; 329 tidlist += tidoff; 330 331 memset(tidmap, 0, sizeof(tidmap)); 332 /* before decrement; chip actual # */ 333 ntids = tidcnt; 334 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) + 335 dd->rcvtidbase + 336 ctxttid * sizeof(*tidbase)); 337 338 /* virtual address of first page in transfer */ 339 vaddr = ti->tidvaddr; 340 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr, 341 cnt * PAGE_SIZE)) { 342 ret = -EFAULT; 343 goto done; 344 } 345 ret = qib_get_user_pages(vaddr, cnt, pagep); 346 if (ret) { 347 /* 348 * if (ret == -EBUSY) 349 * We can't continue because the pagep array won't be 350 * initialized. This should never happen, 351 * unless perhaps the user has mpin'ed the pages 352 * themselves. 353 */ 354 qib_devinfo( 355 dd->pcidev, 356 "Failed to lock addr %p, %u pages: errno %d\n", 357 (void *) vaddr, cnt, -ret); 358 goto done; 359 } 360 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { 361 for (; ntids--; tid++) { 362 if (tid == tidcnt) 363 tid = 0; 364 if (!dd->pageshadow[ctxttid + tid]) 365 break; 366 } 367 if (ntids < 0) { 368 /* 369 * Oops, wrapped all the way through their TIDs, 370 * and didn't have enough free; see comments at 371 * start of routine 372 */ 373 i--; /* last tidlist[i] not filled in */ 374 ret = -ENOMEM; 375 break; 376 } 377 tidlist[i] = tid + tidoff; 378 /* we "know" system pages and TID pages are same size */ 379 dd->pageshadow[ctxttid + tid] = pagep[i]; 380 dd->physshadow[ctxttid + tid] = 381 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE, 382 PCI_DMA_FROMDEVICE); 383 /* 384 * don't need atomic or it's overhead 385 */ 386 __set_bit(tid, tidmap); 387 physaddr = dd->physshadow[ctxttid + tid]; 388 /* PERFORMANCE: below should almost certainly be cached */ 389 dd->f_put_tid(dd, &tidbase[tid], 390 RCVHQ_RCV_TYPE_EXPECTED, physaddr); 391 /* 392 * don't check this tid in qib_ctxtshadow, since we 393 * just filled it in; start with the next one. 394 */ 395 tid++; 396 } 397 398 if (ret) { 399 u32 limit; 400 cleanup: 401 /* jump here if copy out of updated info failed... */ 402 /* same code that's in qib_free_tid() */ 403 limit = sizeof(tidmap) * BITS_PER_BYTE; 404 if (limit > tidcnt) 405 /* just in case size changes in future */ 406 limit = tidcnt; 407 tid = find_first_bit((const unsigned long *)tidmap, limit); 408 for (; tid < limit; tid++) { 409 if (!test_bit(tid, tidmap)) 410 continue; 411 if (dd->pageshadow[ctxttid + tid]) { 412 dma_addr_t phys; 413 414 phys = dd->physshadow[ctxttid + tid]; 415 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 416 /* PERFORMANCE: below should almost certainly 417 * be cached 418 */ 419 dd->f_put_tid(dd, &tidbase[tid], 420 RCVHQ_RCV_TYPE_EXPECTED, 421 dd->tidinvalid); 422 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 423 PCI_DMA_FROMDEVICE); 424 dd->pageshadow[ctxttid + tid] = NULL; 425 } 426 } 427 qib_release_user_pages(pagep, cnt); 428 } else { 429 /* 430 * Copy the updated array, with qib_tid's filled in, back 431 * to user. Since we did the copy in already, this "should 432 * never fail" If it does, we have to clean up... 433 */ 434 if (copy_to_user((void __user *) 435 (unsigned long) ti->tidlist, 436 tidlist, cnt * sizeof(*tidlist))) { 437 ret = -EFAULT; 438 goto cleanup; 439 } 440 if (copy_to_user((void __user *) (unsigned long) ti->tidmap, 441 tidmap, sizeof(tidmap))) { 442 ret = -EFAULT; 443 goto cleanup; 444 } 445 if (tid == tidcnt) 446 tid = 0; 447 if (!rcd->subctxt_cnt) 448 rcd->tidcursor = tid; 449 else 450 tidcursor_fp(fp) = tid; 451 } 452 453 done: 454 return ret; 455 } 456 457 /** 458 * qib_tid_free - free a context TID 459 * @rcd: the context 460 * @subctxt: the subcontext 461 * @ti: the TID info 462 * 463 * right now we are unlocking one page at a time, but since 464 * the intended use of this routine is for a single group of 465 * virtually contiguous pages, that should change to improve 466 * performance. We check that the TID is in range for this context 467 * but otherwise don't check validity; if user has an error and 468 * frees the wrong tid, it's only their own data that can thereby 469 * be corrupted. We do check that the TID was in use, for sanity 470 * We always use our idea of the saved address, not the address that 471 * they pass in to us. 472 */ 473 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt, 474 const struct qib_tid_info *ti) 475 { 476 int ret = 0; 477 u32 tid, ctxttid, cnt, limit, tidcnt; 478 struct qib_devdata *dd = rcd->dd; 479 u64 __iomem *tidbase; 480 unsigned long tidmap[8]; 481 482 if (!dd->pageshadow) { 483 ret = -ENOMEM; 484 goto done; 485 } 486 487 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap, 488 sizeof(tidmap))) { 489 ret = -EFAULT; 490 goto done; 491 } 492 493 ctxttid = rcd->ctxt * dd->rcvtidcnt; 494 if (!rcd->subctxt_cnt) 495 tidcnt = dd->rcvtidcnt; 496 else if (!subctxt) { 497 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 498 (dd->rcvtidcnt % rcd->subctxt_cnt); 499 ctxttid += dd->rcvtidcnt - tidcnt; 500 } else { 501 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 502 ctxttid += tidcnt * (subctxt - 1); 503 } 504 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) + 505 dd->rcvtidbase + 506 ctxttid * sizeof(*tidbase)); 507 508 limit = sizeof(tidmap) * BITS_PER_BYTE; 509 if (limit > tidcnt) 510 /* just in case size changes in future */ 511 limit = tidcnt; 512 tid = find_first_bit(tidmap, limit); 513 for (cnt = 0; tid < limit; tid++) { 514 /* 515 * small optimization; if we detect a run of 3 or so without 516 * any set, use find_first_bit again. That's mainly to 517 * accelerate the case where we wrapped, so we have some at 518 * the beginning, and some at the end, and a big gap 519 * in the middle. 520 */ 521 if (!test_bit(tid, tidmap)) 522 continue; 523 cnt++; 524 if (dd->pageshadow[ctxttid + tid]) { 525 struct page *p; 526 dma_addr_t phys; 527 528 p = dd->pageshadow[ctxttid + tid]; 529 dd->pageshadow[ctxttid + tid] = NULL; 530 phys = dd->physshadow[ctxttid + tid]; 531 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 532 /* PERFORMANCE: below should almost certainly be 533 * cached 534 */ 535 dd->f_put_tid(dd, &tidbase[tid], 536 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); 537 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 538 PCI_DMA_FROMDEVICE); 539 qib_release_user_pages(&p, 1); 540 } 541 } 542 done: 543 return ret; 544 } 545 546 /** 547 * qib_set_part_key - set a partition key 548 * @rcd: the context 549 * @key: the key 550 * 551 * We can have up to 4 active at a time (other than the default, which is 552 * always allowed). This is somewhat tricky, since multiple contexts may set 553 * the same key, so we reference count them, and clean up at exit. All 4 554 * partition keys are packed into a single qlogic_ib register. It's an 555 * error for a process to set the same pkey multiple times. We provide no 556 * mechanism to de-allocate a pkey at this time, we may eventually need to 557 * do that. I've used the atomic operations, and no locking, and only make 558 * a single pass through what's available. This should be more than 559 * adequate for some time. I'll think about spinlocks or the like if and as 560 * it's necessary. 561 */ 562 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key) 563 { 564 struct qib_pportdata *ppd = rcd->ppd; 565 int i, any = 0, pidx = -1; 566 u16 lkey = key & 0x7FFF; 567 int ret; 568 569 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) { 570 /* nothing to do; this key always valid */ 571 ret = 0; 572 goto bail; 573 } 574 575 if (!lkey) { 576 ret = -EINVAL; 577 goto bail; 578 } 579 580 /* 581 * Set the full membership bit, because it has to be 582 * set in the register or the packet, and it seems 583 * cleaner to set in the register than to force all 584 * callers to set it. 585 */ 586 key |= 0x8000; 587 588 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 589 if (!rcd->pkeys[i] && pidx == -1) 590 pidx = i; 591 if (rcd->pkeys[i] == key) { 592 ret = -EEXIST; 593 goto bail; 594 } 595 } 596 if (pidx == -1) { 597 ret = -EBUSY; 598 goto bail; 599 } 600 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 601 if (!ppd->pkeys[i]) { 602 any++; 603 continue; 604 } 605 if (ppd->pkeys[i] == key) { 606 atomic_t *pkrefs = &ppd->pkeyrefs[i]; 607 608 if (atomic_inc_return(pkrefs) > 1) { 609 rcd->pkeys[pidx] = key; 610 ret = 0; 611 goto bail; 612 } else { 613 /* 614 * lost race, decrement count, catch below 615 */ 616 atomic_dec(pkrefs); 617 any++; 618 } 619 } 620 if ((ppd->pkeys[i] & 0x7FFF) == lkey) { 621 /* 622 * It makes no sense to have both the limited and 623 * full membership PKEY set at the same time since 624 * the unlimited one will disable the limited one. 625 */ 626 ret = -EEXIST; 627 goto bail; 628 } 629 } 630 if (!any) { 631 ret = -EBUSY; 632 goto bail; 633 } 634 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 635 if (!ppd->pkeys[i] && 636 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) { 637 rcd->pkeys[pidx] = key; 638 ppd->pkeys[i] = key; 639 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 640 ret = 0; 641 goto bail; 642 } 643 } 644 ret = -EBUSY; 645 646 bail: 647 return ret; 648 } 649 650 /** 651 * qib_manage_rcvq - manage a context's receive queue 652 * @rcd: the context 653 * @subctxt: the subcontext 654 * @start_stop: action to carry out 655 * 656 * start_stop == 0 disables receive on the context, for use in queue 657 * overflow conditions. start_stop==1 re-enables, to be used to 658 * re-init the software copy of the head register 659 */ 660 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt, 661 int start_stop) 662 { 663 struct qib_devdata *dd = rcd->dd; 664 unsigned int rcvctrl_op; 665 666 if (subctxt) 667 goto bail; 668 /* atomically clear receive enable ctxt. */ 669 if (start_stop) { 670 /* 671 * On enable, force in-memory copy of the tail register to 672 * 0, so that protocol code doesn't have to worry about 673 * whether or not the chip has yet updated the in-memory 674 * copy or not on return from the system call. The chip 675 * always resets it's tail register back to 0 on a 676 * transition from disabled to enabled. 677 */ 678 if (rcd->rcvhdrtail_kvaddr) 679 qib_clear_rcvhdrtail(rcd); 680 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB; 681 } else 682 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS; 683 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt); 684 /* always; new head should be equal to new tail; see above */ 685 bail: 686 return 0; 687 } 688 689 static void qib_clean_part_key(struct qib_ctxtdata *rcd, 690 struct qib_devdata *dd) 691 { 692 int i, j, pchanged = 0; 693 u64 oldpkey; 694 struct qib_pportdata *ppd = rcd->ppd; 695 696 /* for debugging only */ 697 oldpkey = (u64) ppd->pkeys[0] | 698 ((u64) ppd->pkeys[1] << 16) | 699 ((u64) ppd->pkeys[2] << 32) | 700 ((u64) ppd->pkeys[3] << 48); 701 702 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 703 if (!rcd->pkeys[i]) 704 continue; 705 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) { 706 /* check for match independent of the global bit */ 707 if ((ppd->pkeys[j] & 0x7fff) != 708 (rcd->pkeys[i] & 0x7fff)) 709 continue; 710 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) { 711 ppd->pkeys[j] = 0; 712 pchanged++; 713 } 714 break; 715 } 716 rcd->pkeys[i] = 0; 717 } 718 if (pchanged) 719 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 720 } 721 722 /* common code for the mappings on dma_alloc_coherent mem */ 723 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd, 724 unsigned len, void *kvaddr, u32 write_ok, char *what) 725 { 726 struct qib_devdata *dd = rcd->dd; 727 unsigned long pfn; 728 int ret; 729 730 if ((vma->vm_end - vma->vm_start) > len) { 731 qib_devinfo(dd->pcidev, 732 "FAIL on %s: len %lx > %x\n", what, 733 vma->vm_end - vma->vm_start, len); 734 ret = -EFAULT; 735 goto bail; 736 } 737 738 /* 739 * shared context user code requires rcvhdrq mapped r/w, others 740 * only allowed readonly mapping. 741 */ 742 if (!write_ok) { 743 if (vma->vm_flags & VM_WRITE) { 744 qib_devinfo(dd->pcidev, 745 "%s must be mapped readonly\n", what); 746 ret = -EPERM; 747 goto bail; 748 } 749 750 /* don't allow them to later change with mprotect */ 751 vma->vm_flags &= ~VM_MAYWRITE; 752 } 753 754 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT; 755 ret = remap_pfn_range(vma, vma->vm_start, pfn, 756 len, vma->vm_page_prot); 757 if (ret) 758 qib_devinfo(dd->pcidev, 759 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n", 760 what, rcd->ctxt, pfn, len, ret); 761 bail: 762 return ret; 763 } 764 765 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd, 766 u64 ureg) 767 { 768 unsigned long phys; 769 unsigned long sz; 770 int ret; 771 772 /* 773 * This is real hardware, so use io_remap. This is the mechanism 774 * for the user process to update the head registers for their ctxt 775 * in the chip. 776 */ 777 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE; 778 if ((vma->vm_end - vma->vm_start) > sz) { 779 qib_devinfo(dd->pcidev, 780 "FAIL mmap userreg: reqlen %lx > PAGE\n", 781 vma->vm_end - vma->vm_start); 782 ret = -EFAULT; 783 } else { 784 phys = dd->physaddr + ureg; 785 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 786 787 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 788 ret = io_remap_pfn_range(vma, vma->vm_start, 789 phys >> PAGE_SHIFT, 790 vma->vm_end - vma->vm_start, 791 vma->vm_page_prot); 792 } 793 return ret; 794 } 795 796 static int mmap_piobufs(struct vm_area_struct *vma, 797 struct qib_devdata *dd, 798 struct qib_ctxtdata *rcd, 799 unsigned piobufs, unsigned piocnt) 800 { 801 unsigned long phys; 802 int ret; 803 804 /* 805 * When we map the PIO buffers in the chip, we want to map them as 806 * writeonly, no read possible; unfortunately, x86 doesn't allow 807 * for this in hardware, but we still prevent users from asking 808 * for it. 809 */ 810 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) { 811 qib_devinfo(dd->pcidev, 812 "FAIL mmap piobufs: reqlen %lx > PAGE\n", 813 vma->vm_end - vma->vm_start); 814 ret = -EINVAL; 815 goto bail; 816 } 817 818 phys = dd->physaddr + piobufs; 819 820 #if defined(__powerpc__) 821 /* There isn't a generic way to specify writethrough mappings */ 822 pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE; 823 pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU; 824 pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED; 825 #endif 826 827 /* 828 * don't allow them to later change to readable with mprotect (for when 829 * not initially mapped readable, as is normally the case) 830 */ 831 vma->vm_flags &= ~VM_MAYREAD; 832 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 833 834 if (qib_wc_pat) 835 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 836 837 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, 838 vma->vm_end - vma->vm_start, 839 vma->vm_page_prot); 840 bail: 841 return ret; 842 } 843 844 static int mmap_rcvegrbufs(struct vm_area_struct *vma, 845 struct qib_ctxtdata *rcd) 846 { 847 struct qib_devdata *dd = rcd->dd; 848 unsigned long start, size; 849 size_t total_size, i; 850 unsigned long pfn; 851 int ret; 852 853 size = rcd->rcvegrbuf_size; 854 total_size = rcd->rcvegrbuf_chunks * size; 855 if ((vma->vm_end - vma->vm_start) > total_size) { 856 qib_devinfo(dd->pcidev, 857 "FAIL on egr bufs: reqlen %lx > actual %lx\n", 858 vma->vm_end - vma->vm_start, 859 (unsigned long) total_size); 860 ret = -EINVAL; 861 goto bail; 862 } 863 864 if (vma->vm_flags & VM_WRITE) { 865 qib_devinfo(dd->pcidev, 866 "Can't map eager buffers as writable (flags=%lx)\n", 867 vma->vm_flags); 868 ret = -EPERM; 869 goto bail; 870 } 871 /* don't allow them to later change to writeable with mprotect */ 872 vma->vm_flags &= ~VM_MAYWRITE; 873 874 start = vma->vm_start; 875 876 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) { 877 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT; 878 ret = remap_pfn_range(vma, start, pfn, size, 879 vma->vm_page_prot); 880 if (ret < 0) 881 goto bail; 882 } 883 ret = 0; 884 885 bail: 886 return ret; 887 } 888 889 /* 890 * qib_file_vma_fault - handle a VMA page fault. 891 */ 892 static int qib_file_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 893 { 894 struct page *page; 895 896 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 897 if (!page) 898 return VM_FAULT_SIGBUS; 899 900 get_page(page); 901 vmf->page = page; 902 903 return 0; 904 } 905 906 static struct vm_operations_struct qib_file_vm_ops = { 907 .fault = qib_file_vma_fault, 908 }; 909 910 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr, 911 struct qib_ctxtdata *rcd, unsigned subctxt) 912 { 913 struct qib_devdata *dd = rcd->dd; 914 unsigned subctxt_cnt; 915 unsigned long len; 916 void *addr; 917 size_t size; 918 int ret = 0; 919 920 subctxt_cnt = rcd->subctxt_cnt; 921 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 922 923 /* 924 * Each process has all the subctxt uregbase, rcvhdrq, and 925 * rcvegrbufs mmapped - as an array for all the processes, 926 * and also separately for this process. 927 */ 928 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) { 929 addr = rcd->subctxt_uregbase; 930 size = PAGE_SIZE * subctxt_cnt; 931 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) { 932 addr = rcd->subctxt_rcvhdr_base; 933 size = rcd->rcvhdrq_size * subctxt_cnt; 934 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) { 935 addr = rcd->subctxt_rcvegrbuf; 936 size *= subctxt_cnt; 937 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase + 938 PAGE_SIZE * subctxt)) { 939 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt; 940 size = PAGE_SIZE; 941 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base + 942 rcd->rcvhdrq_size * subctxt)) { 943 addr = rcd->subctxt_rcvhdr_base + 944 rcd->rcvhdrq_size * subctxt; 945 size = rcd->rcvhdrq_size; 946 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) { 947 addr = rcd->user_event_mask; 948 size = PAGE_SIZE; 949 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf + 950 size * subctxt)) { 951 addr = rcd->subctxt_rcvegrbuf + size * subctxt; 952 /* rcvegrbufs are read-only on the slave */ 953 if (vma->vm_flags & VM_WRITE) { 954 qib_devinfo(dd->pcidev, 955 "Can't map eager buffers as writable (flags=%lx)\n", 956 vma->vm_flags); 957 ret = -EPERM; 958 goto bail; 959 } 960 /* 961 * Don't allow permission to later change to writeable 962 * with mprotect. 963 */ 964 vma->vm_flags &= ~VM_MAYWRITE; 965 } else 966 goto bail; 967 len = vma->vm_end - vma->vm_start; 968 if (len > size) { 969 ret = -EINVAL; 970 goto bail; 971 } 972 973 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT; 974 vma->vm_ops = &qib_file_vm_ops; 975 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 976 ret = 1; 977 978 bail: 979 return ret; 980 } 981 982 /** 983 * qib_mmapf - mmap various structures into user space 984 * @fp: the file pointer 985 * @vma: the VM area 986 * 987 * We use this to have a shared buffer between the kernel and the user code 988 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio 989 * buffers in the chip. We have the open and close entries so we can bump 990 * the ref count and keep the driver from being unloaded while still mapped. 991 */ 992 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma) 993 { 994 struct qib_ctxtdata *rcd; 995 struct qib_devdata *dd; 996 u64 pgaddr, ureg; 997 unsigned piobufs, piocnt; 998 int ret, match = 1; 999 1000 rcd = ctxt_fp(fp); 1001 if (!rcd || !(vma->vm_flags & VM_SHARED)) { 1002 ret = -EINVAL; 1003 goto bail; 1004 } 1005 dd = rcd->dd; 1006 1007 /* 1008 * This is the qib_do_user_init() code, mapping the shared buffers 1009 * and per-context user registers into the user process. The address 1010 * referred to by vm_pgoff is the file offset passed via mmap(). 1011 * For shared contexts, this is the kernel vmalloc() address of the 1012 * pages to share with the master. 1013 * For non-shared or master ctxts, this is a physical address. 1014 * We only do one mmap for each space mapped. 1015 */ 1016 pgaddr = vma->vm_pgoff << PAGE_SHIFT; 1017 1018 /* 1019 * Check for 0 in case one of the allocations failed, but user 1020 * called mmap anyway. 1021 */ 1022 if (!pgaddr) { 1023 ret = -EINVAL; 1024 goto bail; 1025 } 1026 1027 /* 1028 * Physical addresses must fit in 40 bits for our hardware. 1029 * Check for kernel virtual addresses first, anything else must 1030 * match a HW or memory address. 1031 */ 1032 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp)); 1033 if (ret) { 1034 if (ret > 0) 1035 ret = 0; 1036 goto bail; 1037 } 1038 1039 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt; 1040 if (!rcd->subctxt_cnt) { 1041 /* ctxt is not shared */ 1042 piocnt = rcd->piocnt; 1043 piobufs = rcd->piobufs; 1044 } else if (!subctxt_fp(fp)) { 1045 /* caller is the master */ 1046 piocnt = (rcd->piocnt / rcd->subctxt_cnt) + 1047 (rcd->piocnt % rcd->subctxt_cnt); 1048 piobufs = rcd->piobufs + 1049 dd->palign * (rcd->piocnt - piocnt); 1050 } else { 1051 unsigned slave = subctxt_fp(fp) - 1; 1052 1053 /* caller is a slave */ 1054 piocnt = rcd->piocnt / rcd->subctxt_cnt; 1055 piobufs = rcd->piobufs + dd->palign * piocnt * slave; 1056 } 1057 1058 if (pgaddr == ureg) 1059 ret = mmap_ureg(vma, dd, ureg); 1060 else if (pgaddr == piobufs) 1061 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt); 1062 else if (pgaddr == dd->pioavailregs_phys) 1063 /* in-memory copy of pioavail registers */ 1064 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1065 (void *) dd->pioavailregs_dma, 0, 1066 "pioavail registers"); 1067 else if (pgaddr == rcd->rcvegr_phys) 1068 ret = mmap_rcvegrbufs(vma, rcd); 1069 else if (pgaddr == (u64) rcd->rcvhdrq_phys) 1070 /* 1071 * The rcvhdrq itself; multiple pages, contiguous 1072 * from an i/o perspective. Shared contexts need 1073 * to map r/w, so we allow writing. 1074 */ 1075 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size, 1076 rcd->rcvhdrq, 1, "rcvhdrq"); 1077 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys) 1078 /* in-memory copy of rcvhdrq tail register */ 1079 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1080 rcd->rcvhdrtail_kvaddr, 0, 1081 "rcvhdrq tail"); 1082 else 1083 match = 0; 1084 if (!match) 1085 ret = -EINVAL; 1086 1087 vma->vm_private_data = NULL; 1088 1089 if (ret < 0) 1090 qib_devinfo(dd->pcidev, 1091 "mmap Failure %d: off %llx len %lx\n", 1092 -ret, (unsigned long long)pgaddr, 1093 vma->vm_end - vma->vm_start); 1094 bail: 1095 return ret; 1096 } 1097 1098 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd, 1099 struct file *fp, 1100 struct poll_table_struct *pt) 1101 { 1102 struct qib_devdata *dd = rcd->dd; 1103 unsigned pollflag; 1104 1105 poll_wait(fp, &rcd->wait, pt); 1106 1107 spin_lock_irq(&dd->uctxt_lock); 1108 if (rcd->urgent != rcd->urgent_poll) { 1109 pollflag = POLLIN | POLLRDNORM; 1110 rcd->urgent_poll = rcd->urgent; 1111 } else { 1112 pollflag = 0; 1113 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag); 1114 } 1115 spin_unlock_irq(&dd->uctxt_lock); 1116 1117 return pollflag; 1118 } 1119 1120 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd, 1121 struct file *fp, 1122 struct poll_table_struct *pt) 1123 { 1124 struct qib_devdata *dd = rcd->dd; 1125 unsigned pollflag; 1126 1127 poll_wait(fp, &rcd->wait, pt); 1128 1129 spin_lock_irq(&dd->uctxt_lock); 1130 if (dd->f_hdrqempty(rcd)) { 1131 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag); 1132 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt); 1133 pollflag = 0; 1134 } else 1135 pollflag = POLLIN | POLLRDNORM; 1136 spin_unlock_irq(&dd->uctxt_lock); 1137 1138 return pollflag; 1139 } 1140 1141 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt) 1142 { 1143 struct qib_ctxtdata *rcd; 1144 unsigned pollflag; 1145 1146 rcd = ctxt_fp(fp); 1147 if (!rcd) 1148 pollflag = POLLERR; 1149 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT) 1150 pollflag = qib_poll_urgent(rcd, fp, pt); 1151 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV) 1152 pollflag = qib_poll_next(rcd, fp, pt); 1153 else /* invalid */ 1154 pollflag = POLLERR; 1155 1156 return pollflag; 1157 } 1158 1159 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd) 1160 { 1161 struct qib_filedata *fd = fp->private_data; 1162 const unsigned int weight = cpumask_weight(¤t->cpus_allowed); 1163 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus); 1164 int local_cpu; 1165 1166 /* 1167 * If process has NOT already set it's affinity, select and 1168 * reserve a processor for it on the local NUMA node. 1169 */ 1170 if ((weight >= qib_cpulist_count) && 1171 (cpumask_weight(local_mask) <= qib_cpulist_count)) { 1172 for_each_cpu(local_cpu, local_mask) 1173 if (!test_and_set_bit(local_cpu, qib_cpulist)) { 1174 fd->rec_cpu_num = local_cpu; 1175 return; 1176 } 1177 } 1178 1179 /* 1180 * If process has NOT already set it's affinity, select and 1181 * reserve a processor for it, as a rendevous for all 1182 * users of the driver. If they don't actually later 1183 * set affinity to this cpu, or set it to some other cpu, 1184 * it just means that sooner or later we don't recommend 1185 * a cpu, and let the scheduler do it's best. 1186 */ 1187 if (weight >= qib_cpulist_count) { 1188 int cpu; 1189 1190 cpu = find_first_zero_bit(qib_cpulist, 1191 qib_cpulist_count); 1192 if (cpu == qib_cpulist_count) 1193 qib_dev_err(dd, 1194 "no cpus avail for affinity PID %u\n", 1195 current->pid); 1196 else { 1197 __set_bit(cpu, qib_cpulist); 1198 fd->rec_cpu_num = cpu; 1199 } 1200 } 1201 } 1202 1203 /* 1204 * Check that userland and driver are compatible for subcontexts. 1205 */ 1206 static int qib_compatible_subctxts(int user_swmajor, int user_swminor) 1207 { 1208 /* this code is written long-hand for clarity */ 1209 if (QIB_USER_SWMAJOR != user_swmajor) { 1210 /* no promise of compatibility if major mismatch */ 1211 return 0; 1212 } 1213 if (QIB_USER_SWMAJOR == 1) { 1214 switch (QIB_USER_SWMINOR) { 1215 case 0: 1216 case 1: 1217 case 2: 1218 /* no subctxt implementation so cannot be compatible */ 1219 return 0; 1220 case 3: 1221 /* 3 is only compatible with itself */ 1222 return user_swminor == 3; 1223 default: 1224 /* >= 4 are compatible (or are expected to be) */ 1225 return user_swminor <= QIB_USER_SWMINOR; 1226 } 1227 } 1228 /* make no promises yet for future major versions */ 1229 return 0; 1230 } 1231 1232 static int init_subctxts(struct qib_devdata *dd, 1233 struct qib_ctxtdata *rcd, 1234 const struct qib_user_info *uinfo) 1235 { 1236 int ret = 0; 1237 unsigned num_subctxts; 1238 size_t size; 1239 1240 /* 1241 * If the user is requesting zero subctxts, 1242 * skip the subctxt allocation. 1243 */ 1244 if (uinfo->spu_subctxt_cnt <= 0) 1245 goto bail; 1246 num_subctxts = uinfo->spu_subctxt_cnt; 1247 1248 /* Check for subctxt compatibility */ 1249 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16, 1250 uinfo->spu_userversion & 0xffff)) { 1251 qib_devinfo(dd->pcidev, 1252 "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n", 1253 (int) (uinfo->spu_userversion >> 16), 1254 (int) (uinfo->spu_userversion & 0xffff), 1255 QIB_USER_SWMAJOR, QIB_USER_SWMINOR); 1256 goto bail; 1257 } 1258 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) { 1259 ret = -EINVAL; 1260 goto bail; 1261 } 1262 1263 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts); 1264 if (!rcd->subctxt_uregbase) { 1265 ret = -ENOMEM; 1266 goto bail; 1267 } 1268 /* Note: rcd->rcvhdrq_size isn't initialized yet. */ 1269 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * 1270 sizeof(u32), PAGE_SIZE) * num_subctxts; 1271 rcd->subctxt_rcvhdr_base = vmalloc_user(size); 1272 if (!rcd->subctxt_rcvhdr_base) { 1273 ret = -ENOMEM; 1274 goto bail_ureg; 1275 } 1276 1277 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks * 1278 rcd->rcvegrbuf_size * 1279 num_subctxts); 1280 if (!rcd->subctxt_rcvegrbuf) { 1281 ret = -ENOMEM; 1282 goto bail_rhdr; 1283 } 1284 1285 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt; 1286 rcd->subctxt_id = uinfo->spu_subctxt_id; 1287 rcd->active_slaves = 1; 1288 rcd->redirect_seq_cnt = 1; 1289 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1290 goto bail; 1291 1292 bail_rhdr: 1293 vfree(rcd->subctxt_rcvhdr_base); 1294 bail_ureg: 1295 vfree(rcd->subctxt_uregbase); 1296 rcd->subctxt_uregbase = NULL; 1297 bail: 1298 return ret; 1299 } 1300 1301 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt, 1302 struct file *fp, const struct qib_user_info *uinfo) 1303 { 1304 struct qib_filedata *fd = fp->private_data; 1305 struct qib_devdata *dd = ppd->dd; 1306 struct qib_ctxtdata *rcd; 1307 void *ptmp = NULL; 1308 int ret; 1309 int numa_id; 1310 1311 assign_ctxt_affinity(fp, dd); 1312 1313 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ? 1314 cpu_to_node(fd->rec_cpu_num) : 1315 numa_node_id()) : dd->assigned_node_id; 1316 1317 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id); 1318 1319 /* 1320 * Allocate memory for use in qib_tid_update() at open to 1321 * reduce cost of expected send setup per message segment 1322 */ 1323 if (rcd) 1324 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) + 1325 dd->rcvtidcnt * sizeof(struct page **), 1326 GFP_KERNEL); 1327 1328 if (!rcd || !ptmp) { 1329 qib_dev_err(dd, 1330 "Unable to allocate ctxtdata memory, failing open\n"); 1331 ret = -ENOMEM; 1332 goto bailerr; 1333 } 1334 rcd->userversion = uinfo->spu_userversion; 1335 ret = init_subctxts(dd, rcd, uinfo); 1336 if (ret) 1337 goto bailerr; 1338 rcd->tid_pg_list = ptmp; 1339 rcd->pid = current->pid; 1340 init_waitqueue_head(&dd->rcd[ctxt]->wait); 1341 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm)); 1342 ctxt_fp(fp) = rcd; 1343 qib_stats.sps_ctxts++; 1344 dd->freectxts--; 1345 ret = 0; 1346 goto bail; 1347 1348 bailerr: 1349 if (fd->rec_cpu_num != -1) 1350 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1351 1352 dd->rcd[ctxt] = NULL; 1353 kfree(rcd); 1354 kfree(ptmp); 1355 bail: 1356 return ret; 1357 } 1358 1359 static inline int usable(struct qib_pportdata *ppd) 1360 { 1361 struct qib_devdata *dd = ppd->dd; 1362 1363 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid && 1364 (ppd->lflags & QIBL_LINKACTIVE); 1365 } 1366 1367 /* 1368 * Select a context on the given device, either using a requested port 1369 * or the port based on the context number. 1370 */ 1371 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port, 1372 const struct qib_user_info *uinfo) 1373 { 1374 struct qib_pportdata *ppd = NULL; 1375 int ret, ctxt; 1376 1377 if (port) { 1378 if (!usable(dd->pport + port - 1)) { 1379 ret = -ENETDOWN; 1380 goto done; 1381 } else 1382 ppd = dd->pport + port - 1; 1383 } 1384 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt]; 1385 ctxt++) 1386 ; 1387 if (ctxt == dd->cfgctxts) { 1388 ret = -EBUSY; 1389 goto done; 1390 } 1391 if (!ppd) { 1392 u32 pidx = ctxt % dd->num_pports; 1393 1394 if (usable(dd->pport + pidx)) 1395 ppd = dd->pport + pidx; 1396 else { 1397 for (pidx = 0; pidx < dd->num_pports && !ppd; 1398 pidx++) 1399 if (usable(dd->pport + pidx)) 1400 ppd = dd->pport + pidx; 1401 } 1402 } 1403 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN; 1404 done: 1405 return ret; 1406 } 1407 1408 static int find_free_ctxt(int unit, struct file *fp, 1409 const struct qib_user_info *uinfo) 1410 { 1411 struct qib_devdata *dd = qib_lookup(unit); 1412 int ret; 1413 1414 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports)) 1415 ret = -ENODEV; 1416 else 1417 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo); 1418 1419 return ret; 1420 } 1421 1422 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo, 1423 unsigned alg) 1424 { 1425 struct qib_devdata *udd = NULL; 1426 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i; 1427 u32 port = uinfo->spu_port, ctxt; 1428 1429 devmax = qib_count_units(&npresent, &nup); 1430 if (!npresent) { 1431 ret = -ENXIO; 1432 goto done; 1433 } 1434 if (nup == 0) { 1435 ret = -ENETDOWN; 1436 goto done; 1437 } 1438 1439 if (alg == QIB_PORT_ALG_ACROSS) { 1440 unsigned inuse = ~0U; 1441 1442 /* find device (with ACTIVE ports) with fewest ctxts in use */ 1443 for (ndev = 0; ndev < devmax; ndev++) { 1444 struct qib_devdata *dd = qib_lookup(ndev); 1445 unsigned cused = 0, cfree = 0, pusable = 0; 1446 1447 if (!dd) 1448 continue; 1449 if (port && port <= dd->num_pports && 1450 usable(dd->pport + port - 1)) 1451 pusable = 1; 1452 else 1453 for (i = 0; i < dd->num_pports; i++) 1454 if (usable(dd->pport + i)) 1455 pusable++; 1456 if (!pusable) 1457 continue; 1458 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; 1459 ctxt++) 1460 if (dd->rcd[ctxt]) 1461 cused++; 1462 else 1463 cfree++; 1464 if (cfree && cused < inuse) { 1465 udd = dd; 1466 inuse = cused; 1467 } 1468 } 1469 if (udd) { 1470 ret = choose_port_ctxt(fp, udd, port, uinfo); 1471 goto done; 1472 } 1473 } else { 1474 for (ndev = 0; ndev < devmax; ndev++) { 1475 struct qib_devdata *dd = qib_lookup(ndev); 1476 1477 if (dd) { 1478 ret = choose_port_ctxt(fp, dd, port, uinfo); 1479 if (!ret) 1480 goto done; 1481 if (ret == -EBUSY) 1482 dusable++; 1483 } 1484 } 1485 } 1486 ret = dusable ? -EBUSY : -ENETDOWN; 1487 1488 done: 1489 return ret; 1490 } 1491 1492 static int find_shared_ctxt(struct file *fp, 1493 const struct qib_user_info *uinfo) 1494 { 1495 int devmax, ndev, i; 1496 int ret = 0; 1497 1498 devmax = qib_count_units(NULL, NULL); 1499 1500 for (ndev = 0; ndev < devmax; ndev++) { 1501 struct qib_devdata *dd = qib_lookup(ndev); 1502 1503 /* device portion of usable() */ 1504 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase)) 1505 continue; 1506 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) { 1507 struct qib_ctxtdata *rcd = dd->rcd[i]; 1508 1509 /* Skip ctxts which are not yet open */ 1510 if (!rcd || !rcd->cnt) 1511 continue; 1512 /* Skip ctxt if it doesn't match the requested one */ 1513 if (rcd->subctxt_id != uinfo->spu_subctxt_id) 1514 continue; 1515 /* Verify the sharing process matches the master */ 1516 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt || 1517 rcd->userversion != uinfo->spu_userversion || 1518 rcd->cnt >= rcd->subctxt_cnt) { 1519 ret = -EINVAL; 1520 goto done; 1521 } 1522 ctxt_fp(fp) = rcd; 1523 subctxt_fp(fp) = rcd->cnt++; 1524 rcd->subpid[subctxt_fp(fp)] = current->pid; 1525 tidcursor_fp(fp) = 0; 1526 rcd->active_slaves |= 1 << subctxt_fp(fp); 1527 ret = 1; 1528 goto done; 1529 } 1530 } 1531 1532 done: 1533 return ret; 1534 } 1535 1536 static int qib_open(struct inode *in, struct file *fp) 1537 { 1538 /* The real work is performed later in qib_assign_ctxt() */ 1539 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL); 1540 if (fp->private_data) /* no cpu affinity by default */ 1541 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1; 1542 return fp->private_data ? 0 : -ENOMEM; 1543 } 1544 1545 static int find_hca(unsigned int cpu, int *unit) 1546 { 1547 int ret = 0, devmax, npresent, nup, ndev; 1548 1549 *unit = -1; 1550 1551 devmax = qib_count_units(&npresent, &nup); 1552 if (!npresent) { 1553 ret = -ENXIO; 1554 goto done; 1555 } 1556 if (!nup) { 1557 ret = -ENETDOWN; 1558 goto done; 1559 } 1560 for (ndev = 0; ndev < devmax; ndev++) { 1561 struct qib_devdata *dd = qib_lookup(ndev); 1562 1563 if (dd) { 1564 if (pcibus_to_node(dd->pcidev->bus) < 0) { 1565 ret = -EINVAL; 1566 goto done; 1567 } 1568 if (cpu_to_node(cpu) == 1569 pcibus_to_node(dd->pcidev->bus)) { 1570 *unit = ndev; 1571 goto done; 1572 } 1573 } 1574 } 1575 done: 1576 return ret; 1577 } 1578 1579 static int do_qib_user_sdma_queue_create(struct file *fp) 1580 { 1581 struct qib_filedata *fd = fp->private_data; 1582 struct qib_ctxtdata *rcd = fd->rcd; 1583 struct qib_devdata *dd = rcd->dd; 1584 1585 if (dd->flags & QIB_HAS_SEND_DMA) { 1586 1587 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev, 1588 dd->unit, 1589 rcd->ctxt, 1590 fd->subctxt); 1591 if (!fd->pq) 1592 return -ENOMEM; 1593 } 1594 1595 return 0; 1596 } 1597 1598 /* 1599 * Get ctxt early, so can set affinity prior to memory allocation. 1600 */ 1601 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo) 1602 { 1603 int ret; 1604 int i_minor; 1605 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS; 1606 1607 /* Check to be sure we haven't already initialized this file */ 1608 if (ctxt_fp(fp)) { 1609 ret = -EINVAL; 1610 goto done; 1611 } 1612 1613 /* for now, if major version is different, bail */ 1614 swmajor = uinfo->spu_userversion >> 16; 1615 if (swmajor != QIB_USER_SWMAJOR) { 1616 ret = -ENODEV; 1617 goto done; 1618 } 1619 1620 swminor = uinfo->spu_userversion & 0xffff; 1621 1622 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT) 1623 alg = uinfo->spu_port_alg; 1624 1625 mutex_lock(&qib_mutex); 1626 1627 if (qib_compatible_subctxts(swmajor, swminor) && 1628 uinfo->spu_subctxt_cnt) { 1629 ret = find_shared_ctxt(fp, uinfo); 1630 if (ret > 0) { 1631 ret = do_qib_user_sdma_queue_create(fp); 1632 if (!ret) 1633 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd); 1634 goto done_ok; 1635 } 1636 } 1637 1638 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE; 1639 if (i_minor) 1640 ret = find_free_ctxt(i_minor - 1, fp, uinfo); 1641 else { 1642 int unit; 1643 const unsigned int cpu = cpumask_first(¤t->cpus_allowed); 1644 const unsigned int weight = 1645 cpumask_weight(¤t->cpus_allowed); 1646 1647 if (weight == 1 && !test_bit(cpu, qib_cpulist)) 1648 if (!find_hca(cpu, &unit) && unit >= 0) 1649 if (!find_free_ctxt(unit, fp, uinfo)) { 1650 ret = 0; 1651 goto done_chk_sdma; 1652 } 1653 ret = get_a_ctxt(fp, uinfo, alg); 1654 } 1655 1656 done_chk_sdma: 1657 if (!ret) 1658 ret = do_qib_user_sdma_queue_create(fp); 1659 done_ok: 1660 mutex_unlock(&qib_mutex); 1661 1662 done: 1663 return ret; 1664 } 1665 1666 1667 static int qib_do_user_init(struct file *fp, 1668 const struct qib_user_info *uinfo) 1669 { 1670 int ret; 1671 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1672 struct qib_devdata *dd; 1673 unsigned uctxt; 1674 1675 /* Subctxts don't need to initialize anything since master did it. */ 1676 if (subctxt_fp(fp)) { 1677 ret = wait_event_interruptible(rcd->wait, 1678 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag)); 1679 goto bail; 1680 } 1681 1682 dd = rcd->dd; 1683 1684 /* some ctxts may get extra buffers, calculate that here */ 1685 uctxt = rcd->ctxt - dd->first_user_ctxt; 1686 if (uctxt < dd->ctxts_extrabuf) { 1687 rcd->piocnt = dd->pbufsctxt + 1; 1688 rcd->pio_base = rcd->piocnt * uctxt; 1689 } else { 1690 rcd->piocnt = dd->pbufsctxt; 1691 rcd->pio_base = rcd->piocnt * uctxt + 1692 dd->ctxts_extrabuf; 1693 } 1694 1695 /* 1696 * All user buffers are 2KB buffers. If we ever support 1697 * giving 4KB buffers to user processes, this will need some 1698 * work. Can't use piobufbase directly, because it has 1699 * both 2K and 4K buffer base values. So check and handle. 1700 */ 1701 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) { 1702 if (rcd->pio_base >= dd->piobcnt2k) { 1703 qib_dev_err(dd, 1704 "%u:ctxt%u: no 2KB buffers available\n", 1705 dd->unit, rcd->ctxt); 1706 ret = -ENOBUFS; 1707 goto bail; 1708 } 1709 rcd->piocnt = dd->piobcnt2k - rcd->pio_base; 1710 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n", 1711 rcd->ctxt, rcd->piocnt); 1712 } 1713 1714 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign; 1715 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1716 TXCHK_CHG_TYPE_USER, rcd); 1717 /* 1718 * try to ensure that processes start up with consistent avail update 1719 * for their own range, at least. If system very quiet, it might 1720 * have the in-memory copy out of date at startup for this range of 1721 * buffers, when a context gets re-used. Do after the chg_pioavail 1722 * and before the rest of setup, so it's "almost certain" the dma 1723 * will have occurred (can't 100% guarantee, but should be many 1724 * decimals of 9s, with this ordering), given how much else happens 1725 * after this. 1726 */ 1727 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP); 1728 1729 /* 1730 * Now allocate the rcvhdr Q and eager TIDs; skip the TID 1731 * array for time being. If rcd->ctxt > chip-supported, 1732 * we need to do extra stuff here to handle by handling overflow 1733 * through ctxt 0, someday 1734 */ 1735 ret = qib_create_rcvhdrq(dd, rcd); 1736 if (!ret) 1737 ret = qib_setup_eagerbufs(rcd); 1738 if (ret) 1739 goto bail_pio; 1740 1741 rcd->tidcursor = 0; /* start at beginning after open */ 1742 1743 /* initialize poll variables... */ 1744 rcd->urgent = 0; 1745 rcd->urgent_poll = 0; 1746 1747 /* 1748 * Now enable the ctxt for receive. 1749 * For chips that are set to DMA the tail register to memory 1750 * when they change (and when the update bit transitions from 1751 * 0 to 1. So for those chips, we turn it off and then back on. 1752 * This will (very briefly) affect any other open ctxts, but the 1753 * duration is very short, and therefore isn't an issue. We 1754 * explicitly set the in-memory tail copy to 0 beforehand, so we 1755 * don't have to wait to be sure the DMA update has happened 1756 * (chip resets head/tail to 0 on transition to enable). 1757 */ 1758 if (rcd->rcvhdrtail_kvaddr) 1759 qib_clear_rcvhdrtail(rcd); 1760 1761 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB, 1762 rcd->ctxt); 1763 1764 /* Notify any waiting slaves */ 1765 if (rcd->subctxt_cnt) { 1766 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1767 wake_up(&rcd->wait); 1768 } 1769 return 0; 1770 1771 bail_pio: 1772 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1773 TXCHK_CHG_TYPE_KERN, rcd); 1774 bail: 1775 return ret; 1776 } 1777 1778 /** 1779 * unlock_exptid - unlock any expected TID entries context still had in use 1780 * @rcd: ctxt 1781 * 1782 * We don't actually update the chip here, because we do a bulk update 1783 * below, using f_clear_tids. 1784 */ 1785 static void unlock_expected_tids(struct qib_ctxtdata *rcd) 1786 { 1787 struct qib_devdata *dd = rcd->dd; 1788 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt; 1789 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt; 1790 1791 for (i = ctxt_tidbase; i < maxtid; i++) { 1792 struct page *p = dd->pageshadow[i]; 1793 dma_addr_t phys; 1794 1795 if (!p) 1796 continue; 1797 1798 phys = dd->physshadow[i]; 1799 dd->physshadow[i] = dd->tidinvalid; 1800 dd->pageshadow[i] = NULL; 1801 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 1802 PCI_DMA_FROMDEVICE); 1803 qib_release_user_pages(&p, 1); 1804 cnt++; 1805 } 1806 } 1807 1808 static int qib_close(struct inode *in, struct file *fp) 1809 { 1810 int ret = 0; 1811 struct qib_filedata *fd; 1812 struct qib_ctxtdata *rcd; 1813 struct qib_devdata *dd; 1814 unsigned long flags; 1815 unsigned ctxt; 1816 pid_t pid; 1817 1818 mutex_lock(&qib_mutex); 1819 1820 fd = fp->private_data; 1821 fp->private_data = NULL; 1822 rcd = fd->rcd; 1823 if (!rcd) { 1824 mutex_unlock(&qib_mutex); 1825 goto bail; 1826 } 1827 1828 dd = rcd->dd; 1829 1830 /* ensure all pio buffer writes in progress are flushed */ 1831 qib_flush_wc(); 1832 1833 /* drain user sdma queue */ 1834 if (fd->pq) { 1835 qib_user_sdma_queue_drain(rcd->ppd, fd->pq); 1836 qib_user_sdma_queue_destroy(fd->pq); 1837 } 1838 1839 if (fd->rec_cpu_num != -1) 1840 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1841 1842 if (--rcd->cnt) { 1843 /* 1844 * XXX If the master closes the context before the slave(s), 1845 * revoke the mmap for the eager receive queue so 1846 * the slave(s) don't wait for receive data forever. 1847 */ 1848 rcd->active_slaves &= ~(1 << fd->subctxt); 1849 rcd->subpid[fd->subctxt] = 0; 1850 mutex_unlock(&qib_mutex); 1851 goto bail; 1852 } 1853 1854 /* early; no interrupt users after this */ 1855 spin_lock_irqsave(&dd->uctxt_lock, flags); 1856 ctxt = rcd->ctxt; 1857 dd->rcd[ctxt] = NULL; 1858 pid = rcd->pid; 1859 rcd->pid = 0; 1860 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1861 1862 if (rcd->rcvwait_to || rcd->piowait_to || 1863 rcd->rcvnowait || rcd->pionowait) { 1864 rcd->rcvwait_to = 0; 1865 rcd->piowait_to = 0; 1866 rcd->rcvnowait = 0; 1867 rcd->pionowait = 0; 1868 } 1869 if (rcd->flag) 1870 rcd->flag = 0; 1871 1872 if (dd->kregbase) { 1873 /* atomically clear receive enable ctxt and intr avail. */ 1874 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS | 1875 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt); 1876 1877 /* clean up the pkeys for this ctxt user */ 1878 qib_clean_part_key(rcd, dd); 1879 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt); 1880 qib_chg_pioavailkernel(dd, rcd->pio_base, 1881 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL); 1882 1883 dd->f_clear_tids(dd, rcd); 1884 1885 if (dd->pageshadow) 1886 unlock_expected_tids(rcd); 1887 qib_stats.sps_ctxts--; 1888 dd->freectxts++; 1889 } 1890 1891 mutex_unlock(&qib_mutex); 1892 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */ 1893 1894 bail: 1895 kfree(fd); 1896 return ret; 1897 } 1898 1899 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo) 1900 { 1901 struct qib_ctxt_info info; 1902 int ret; 1903 size_t sz; 1904 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1905 struct qib_filedata *fd; 1906 1907 fd = fp->private_data; 1908 1909 info.num_active = qib_count_active_units(); 1910 info.unit = rcd->dd->unit; 1911 info.port = rcd->ppd->port; 1912 info.ctxt = rcd->ctxt; 1913 info.subctxt = subctxt_fp(fp); 1914 /* Number of user ctxts available for this device. */ 1915 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt; 1916 info.num_subctxts = rcd->subctxt_cnt; 1917 info.rec_cpu = fd->rec_cpu_num; 1918 sz = sizeof(info); 1919 1920 if (copy_to_user(uinfo, &info, sz)) { 1921 ret = -EFAULT; 1922 goto bail; 1923 } 1924 ret = 0; 1925 1926 bail: 1927 return ret; 1928 } 1929 1930 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq, 1931 u32 __user *inflightp) 1932 { 1933 const u32 val = qib_user_sdma_inflight_counter(pq); 1934 1935 if (put_user(val, inflightp)) 1936 return -EFAULT; 1937 1938 return 0; 1939 } 1940 1941 static int qib_sdma_get_complete(struct qib_pportdata *ppd, 1942 struct qib_user_sdma_queue *pq, 1943 u32 __user *completep) 1944 { 1945 u32 val; 1946 int err; 1947 1948 if (!pq) 1949 return -EINVAL; 1950 1951 err = qib_user_sdma_make_progress(ppd, pq); 1952 if (err < 0) 1953 return err; 1954 1955 val = qib_user_sdma_complete_counter(pq); 1956 if (put_user(val, completep)) 1957 return -EFAULT; 1958 1959 return 0; 1960 } 1961 1962 static int disarm_req_delay(struct qib_ctxtdata *rcd) 1963 { 1964 int ret = 0; 1965 1966 if (!usable(rcd->ppd)) { 1967 int i; 1968 /* 1969 * if link is down, or otherwise not usable, delay 1970 * the caller up to 30 seconds, so we don't thrash 1971 * in trying to get the chip back to ACTIVE, and 1972 * set flag so they make the call again. 1973 */ 1974 if (rcd->user_event_mask) { 1975 /* 1976 * subctxt_cnt is 0 if not shared, so do base 1977 * separately, first, then remaining subctxt, if any 1978 */ 1979 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1980 &rcd->user_event_mask[0]); 1981 for (i = 1; i < rcd->subctxt_cnt; i++) 1982 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1983 &rcd->user_event_mask[i]); 1984 } 1985 for (i = 0; !usable(rcd->ppd) && i < 300; i++) 1986 msleep(100); 1987 ret = -ENETDOWN; 1988 } 1989 return ret; 1990 } 1991 1992 /* 1993 * Find all user contexts in use, and set the specified bit in their 1994 * event mask. 1995 * See also find_ctxt() for a similar use, that is specific to send buffers. 1996 */ 1997 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit) 1998 { 1999 struct qib_ctxtdata *rcd; 2000 unsigned ctxt; 2001 int ret = 0; 2002 unsigned long flags; 2003 2004 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags); 2005 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts; 2006 ctxt++) { 2007 rcd = ppd->dd->rcd[ctxt]; 2008 if (!rcd) 2009 continue; 2010 if (rcd->user_event_mask) { 2011 int i; 2012 /* 2013 * subctxt_cnt is 0 if not shared, so do base 2014 * separately, first, then remaining subctxt, if any 2015 */ 2016 set_bit(evtbit, &rcd->user_event_mask[0]); 2017 for (i = 1; i < rcd->subctxt_cnt; i++) 2018 set_bit(evtbit, &rcd->user_event_mask[i]); 2019 } 2020 ret = 1; 2021 break; 2022 } 2023 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags); 2024 2025 return ret; 2026 } 2027 2028 /* 2029 * clear the event notifier events for this context. 2030 * For the DISARM_BUFS case, we also take action (this obsoletes 2031 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards 2032 * compatibility. 2033 * Other bits don't currently require actions, just atomically clear. 2034 * User process then performs actions appropriate to bit having been 2035 * set, if desired, and checks again in future. 2036 */ 2037 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt, 2038 unsigned long events) 2039 { 2040 int ret = 0, i; 2041 2042 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) { 2043 if (!test_bit(i, &events)) 2044 continue; 2045 if (i == _QIB_EVENT_DISARM_BUFS_BIT) { 2046 (void)qib_disarm_piobufs_ifneeded(rcd); 2047 ret = disarm_req_delay(rcd); 2048 } else 2049 clear_bit(i, &rcd->user_event_mask[subctxt]); 2050 } 2051 return ret; 2052 } 2053 2054 static ssize_t qib_write(struct file *fp, const char __user *data, 2055 size_t count, loff_t *off) 2056 { 2057 const struct qib_cmd __user *ucmd; 2058 struct qib_ctxtdata *rcd; 2059 const void __user *src; 2060 size_t consumed, copy = 0; 2061 struct qib_cmd cmd; 2062 ssize_t ret = 0; 2063 void *dest; 2064 2065 if (count < sizeof(cmd.type)) { 2066 ret = -EINVAL; 2067 goto bail; 2068 } 2069 2070 ucmd = (const struct qib_cmd __user *) data; 2071 2072 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { 2073 ret = -EFAULT; 2074 goto bail; 2075 } 2076 2077 consumed = sizeof(cmd.type); 2078 2079 switch (cmd.type) { 2080 case QIB_CMD_ASSIGN_CTXT: 2081 case QIB_CMD_USER_INIT: 2082 copy = sizeof(cmd.cmd.user_info); 2083 dest = &cmd.cmd.user_info; 2084 src = &ucmd->cmd.user_info; 2085 break; 2086 2087 case QIB_CMD_RECV_CTRL: 2088 copy = sizeof(cmd.cmd.recv_ctrl); 2089 dest = &cmd.cmd.recv_ctrl; 2090 src = &ucmd->cmd.recv_ctrl; 2091 break; 2092 2093 case QIB_CMD_CTXT_INFO: 2094 copy = sizeof(cmd.cmd.ctxt_info); 2095 dest = &cmd.cmd.ctxt_info; 2096 src = &ucmd->cmd.ctxt_info; 2097 break; 2098 2099 case QIB_CMD_TID_UPDATE: 2100 case QIB_CMD_TID_FREE: 2101 copy = sizeof(cmd.cmd.tid_info); 2102 dest = &cmd.cmd.tid_info; 2103 src = &ucmd->cmd.tid_info; 2104 break; 2105 2106 case QIB_CMD_SET_PART_KEY: 2107 copy = sizeof(cmd.cmd.part_key); 2108 dest = &cmd.cmd.part_key; 2109 src = &ucmd->cmd.part_key; 2110 break; 2111 2112 case QIB_CMD_DISARM_BUFS: 2113 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */ 2114 copy = 0; 2115 src = NULL; 2116 dest = NULL; 2117 break; 2118 2119 case QIB_CMD_POLL_TYPE: 2120 copy = sizeof(cmd.cmd.poll_type); 2121 dest = &cmd.cmd.poll_type; 2122 src = &ucmd->cmd.poll_type; 2123 break; 2124 2125 case QIB_CMD_ARMLAUNCH_CTRL: 2126 copy = sizeof(cmd.cmd.armlaunch_ctrl); 2127 dest = &cmd.cmd.armlaunch_ctrl; 2128 src = &ucmd->cmd.armlaunch_ctrl; 2129 break; 2130 2131 case QIB_CMD_SDMA_INFLIGHT: 2132 copy = sizeof(cmd.cmd.sdma_inflight); 2133 dest = &cmd.cmd.sdma_inflight; 2134 src = &ucmd->cmd.sdma_inflight; 2135 break; 2136 2137 case QIB_CMD_SDMA_COMPLETE: 2138 copy = sizeof(cmd.cmd.sdma_complete); 2139 dest = &cmd.cmd.sdma_complete; 2140 src = &ucmd->cmd.sdma_complete; 2141 break; 2142 2143 case QIB_CMD_ACK_EVENT: 2144 copy = sizeof(cmd.cmd.event_mask); 2145 dest = &cmd.cmd.event_mask; 2146 src = &ucmd->cmd.event_mask; 2147 break; 2148 2149 default: 2150 ret = -EINVAL; 2151 goto bail; 2152 } 2153 2154 if (copy) { 2155 if ((count - consumed) < copy) { 2156 ret = -EINVAL; 2157 goto bail; 2158 } 2159 if (copy_from_user(dest, src, copy)) { 2160 ret = -EFAULT; 2161 goto bail; 2162 } 2163 consumed += copy; 2164 } 2165 2166 rcd = ctxt_fp(fp); 2167 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) { 2168 ret = -EINVAL; 2169 goto bail; 2170 } 2171 2172 switch (cmd.type) { 2173 case QIB_CMD_ASSIGN_CTXT: 2174 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info); 2175 if (ret) 2176 goto bail; 2177 break; 2178 2179 case QIB_CMD_USER_INIT: 2180 ret = qib_do_user_init(fp, &cmd.cmd.user_info); 2181 if (ret) 2182 goto bail; 2183 ret = qib_get_base_info(fp, (void __user *) (unsigned long) 2184 cmd.cmd.user_info.spu_base_info, 2185 cmd.cmd.user_info.spu_base_info_size); 2186 break; 2187 2188 case QIB_CMD_RECV_CTRL: 2189 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl); 2190 break; 2191 2192 case QIB_CMD_CTXT_INFO: 2193 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *) 2194 (unsigned long) cmd.cmd.ctxt_info); 2195 break; 2196 2197 case QIB_CMD_TID_UPDATE: 2198 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info); 2199 break; 2200 2201 case QIB_CMD_TID_FREE: 2202 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info); 2203 break; 2204 2205 case QIB_CMD_SET_PART_KEY: 2206 ret = qib_set_part_key(rcd, cmd.cmd.part_key); 2207 break; 2208 2209 case QIB_CMD_DISARM_BUFS: 2210 (void)qib_disarm_piobufs_ifneeded(rcd); 2211 ret = disarm_req_delay(rcd); 2212 break; 2213 2214 case QIB_CMD_PIOAVAILUPD: 2215 qib_force_pio_avail_update(rcd->dd); 2216 break; 2217 2218 case QIB_CMD_POLL_TYPE: 2219 rcd->poll_type = cmd.cmd.poll_type; 2220 break; 2221 2222 case QIB_CMD_ARMLAUNCH_CTRL: 2223 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl); 2224 break; 2225 2226 case QIB_CMD_SDMA_INFLIGHT: 2227 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp), 2228 (u32 __user *) (unsigned long) 2229 cmd.cmd.sdma_inflight); 2230 break; 2231 2232 case QIB_CMD_SDMA_COMPLETE: 2233 ret = qib_sdma_get_complete(rcd->ppd, 2234 user_sdma_queue_fp(fp), 2235 (u32 __user *) (unsigned long) 2236 cmd.cmd.sdma_complete); 2237 break; 2238 2239 case QIB_CMD_ACK_EVENT: 2240 ret = qib_user_event_ack(rcd, subctxt_fp(fp), 2241 cmd.cmd.event_mask); 2242 break; 2243 } 2244 2245 if (ret >= 0) 2246 ret = consumed; 2247 2248 bail: 2249 return ret; 2250 } 2251 2252 static ssize_t qib_aio_write(struct kiocb *iocb, const struct iovec *iov, 2253 unsigned long dim, loff_t off) 2254 { 2255 struct qib_filedata *fp = iocb->ki_filp->private_data; 2256 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp); 2257 struct qib_user_sdma_queue *pq = fp->pq; 2258 2259 if (!dim || !pq) 2260 return -EINVAL; 2261 2262 return qib_user_sdma_writev(rcd, pq, iov, dim); 2263 } 2264 2265 static struct class *qib_class; 2266 static dev_t qib_dev; 2267 2268 int qib_cdev_init(int minor, const char *name, 2269 const struct file_operations *fops, 2270 struct cdev **cdevp, struct device **devp) 2271 { 2272 const dev_t dev = MKDEV(MAJOR(qib_dev), minor); 2273 struct cdev *cdev; 2274 struct device *device = NULL; 2275 int ret; 2276 2277 cdev = cdev_alloc(); 2278 if (!cdev) { 2279 pr_err("Could not allocate cdev for minor %d, %s\n", 2280 minor, name); 2281 ret = -ENOMEM; 2282 goto done; 2283 } 2284 2285 cdev->owner = THIS_MODULE; 2286 cdev->ops = fops; 2287 kobject_set_name(&cdev->kobj, name); 2288 2289 ret = cdev_add(cdev, dev, 1); 2290 if (ret < 0) { 2291 pr_err("Could not add cdev for minor %d, %s (err %d)\n", 2292 minor, name, -ret); 2293 goto err_cdev; 2294 } 2295 2296 device = device_create(qib_class, NULL, dev, NULL, "%s", name); 2297 if (!IS_ERR(device)) 2298 goto done; 2299 ret = PTR_ERR(device); 2300 device = NULL; 2301 pr_err("Could not create device for minor %d, %s (err %d)\n", 2302 minor, name, -ret); 2303 err_cdev: 2304 cdev_del(cdev); 2305 cdev = NULL; 2306 done: 2307 *cdevp = cdev; 2308 *devp = device; 2309 return ret; 2310 } 2311 2312 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp) 2313 { 2314 struct device *device = *devp; 2315 2316 if (device) { 2317 device_unregister(device); 2318 *devp = NULL; 2319 } 2320 2321 if (*cdevp) { 2322 cdev_del(*cdevp); 2323 *cdevp = NULL; 2324 } 2325 } 2326 2327 static struct cdev *wildcard_cdev; 2328 static struct device *wildcard_device; 2329 2330 int __init qib_dev_init(void) 2331 { 2332 int ret; 2333 2334 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME); 2335 if (ret < 0) { 2336 pr_err("Could not allocate chrdev region (err %d)\n", -ret); 2337 goto done; 2338 } 2339 2340 qib_class = class_create(THIS_MODULE, "ipath"); 2341 if (IS_ERR(qib_class)) { 2342 ret = PTR_ERR(qib_class); 2343 pr_err("Could not create device class (err %d)\n", -ret); 2344 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2345 } 2346 2347 done: 2348 return ret; 2349 } 2350 2351 void qib_dev_cleanup(void) 2352 { 2353 if (qib_class) { 2354 class_destroy(qib_class); 2355 qib_class = NULL; 2356 } 2357 2358 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2359 } 2360 2361 static atomic_t user_count = ATOMIC_INIT(0); 2362 2363 static void qib_user_remove(struct qib_devdata *dd) 2364 { 2365 if (atomic_dec_return(&user_count) == 0) 2366 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device); 2367 2368 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device); 2369 } 2370 2371 static int qib_user_add(struct qib_devdata *dd) 2372 { 2373 char name[10]; 2374 int ret; 2375 2376 if (atomic_inc_return(&user_count) == 1) { 2377 ret = qib_cdev_init(0, "ipath", &qib_file_ops, 2378 &wildcard_cdev, &wildcard_device); 2379 if (ret) 2380 goto done; 2381 } 2382 2383 snprintf(name, sizeof(name), "ipath%d", dd->unit); 2384 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops, 2385 &dd->user_cdev, &dd->user_device); 2386 if (ret) 2387 qib_user_remove(dd); 2388 done: 2389 return ret; 2390 } 2391 2392 /* 2393 * Create per-unit files in /dev 2394 */ 2395 int qib_device_create(struct qib_devdata *dd) 2396 { 2397 int r, ret; 2398 2399 r = qib_user_add(dd); 2400 ret = qib_diag_add(dd); 2401 if (r && !ret) 2402 ret = r; 2403 return ret; 2404 } 2405 2406 /* 2407 * Remove per-unit files in /dev 2408 * void, core kernel returns no errors for this stuff 2409 */ 2410 void qib_device_remove(struct qib_devdata *dd) 2411 { 2412 qib_user_remove(dd); 2413 qib_diag_remove(dd); 2414 } 2415