xref: /openbmc/linux/drivers/infiniband/hw/qib/qib_file_ops.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved.
3  * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4  * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/pci.h>
36 #include <linux/poll.h>
37 #include <linux/cdev.h>
38 #include <linux/swap.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/io.h>
42 #include <linux/jiffies.h>
43 #include <asm/pgtable.h>
44 #include <linux/delay.h>
45 #include <linux/export.h>
46 #include <linux/uio.h>
47 
48 #include <rdma/ib.h>
49 
50 #include "qib.h"
51 #include "qib_common.h"
52 #include "qib_user_sdma.h"
53 
54 #undef pr_fmt
55 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt
56 
57 static int qib_open(struct inode *, struct file *);
58 static int qib_close(struct inode *, struct file *);
59 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *);
60 static ssize_t qib_write_iter(struct kiocb *, struct iov_iter *);
61 static __poll_t qib_poll(struct file *, struct poll_table_struct *);
62 static int qib_mmapf(struct file *, struct vm_area_struct *);
63 
64 /*
65  * This is really, really weird shit - write() and writev() here
66  * have completely unrelated semantics.  Sucky userland ABI,
67  * film at 11.
68  */
69 static const struct file_operations qib_file_ops = {
70 	.owner = THIS_MODULE,
71 	.write = qib_write,
72 	.write_iter = qib_write_iter,
73 	.open = qib_open,
74 	.release = qib_close,
75 	.poll = qib_poll,
76 	.mmap = qib_mmapf,
77 	.llseek = noop_llseek,
78 };
79 
80 /*
81  * Convert kernel virtual addresses to physical addresses so they don't
82  * potentially conflict with the chip addresses used as mmap offsets.
83  * It doesn't really matter what mmap offset we use as long as we can
84  * interpret it correctly.
85  */
86 static u64 cvt_kvaddr(void *p)
87 {
88 	struct page *page;
89 	u64 paddr = 0;
90 
91 	page = vmalloc_to_page(p);
92 	if (page)
93 		paddr = page_to_pfn(page) << PAGE_SHIFT;
94 
95 	return paddr;
96 }
97 
98 static int qib_get_base_info(struct file *fp, void __user *ubase,
99 			     size_t ubase_size)
100 {
101 	struct qib_ctxtdata *rcd = ctxt_fp(fp);
102 	int ret = 0;
103 	struct qib_base_info *kinfo = NULL;
104 	struct qib_devdata *dd = rcd->dd;
105 	struct qib_pportdata *ppd = rcd->ppd;
106 	unsigned subctxt_cnt;
107 	int shared, master;
108 	size_t sz;
109 
110 	subctxt_cnt = rcd->subctxt_cnt;
111 	if (!subctxt_cnt) {
112 		shared = 0;
113 		master = 0;
114 		subctxt_cnt = 1;
115 	} else {
116 		shared = 1;
117 		master = !subctxt_fp(fp);
118 	}
119 
120 	sz = sizeof(*kinfo);
121 	/* If context sharing is not requested, allow the old size structure */
122 	if (!shared)
123 		sz -= 7 * sizeof(u64);
124 	if (ubase_size < sz) {
125 		ret = -EINVAL;
126 		goto bail;
127 	}
128 
129 	kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL);
130 	if (kinfo == NULL) {
131 		ret = -ENOMEM;
132 		goto bail;
133 	}
134 
135 	ret = dd->f_get_base_info(rcd, kinfo);
136 	if (ret < 0)
137 		goto bail;
138 
139 	kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt;
140 	kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize;
141 	kinfo->spi_tidegrcnt = rcd->rcvegrcnt;
142 	kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize;
143 	/*
144 	 * have to mmap whole thing
145 	 */
146 	kinfo->spi_rcv_egrbuftotlen =
147 		rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
148 	kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk;
149 	kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen /
150 		rcd->rcvegrbuf_chunks;
151 	kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt;
152 	if (master)
153 		kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt;
154 	/*
155 	 * for this use, may be cfgctxts summed over all chips that
156 	 * are are configured and present
157 	 */
158 	kinfo->spi_nctxts = dd->cfgctxts;
159 	/* unit (chip/board) our context is on */
160 	kinfo->spi_unit = dd->unit;
161 	kinfo->spi_port = ppd->port;
162 	/* for now, only a single page */
163 	kinfo->spi_tid_maxsize = PAGE_SIZE;
164 
165 	/*
166 	 * Doing this per context, and based on the skip value, etc.  This has
167 	 * to be the actual buffer size, since the protocol code treats it
168 	 * as an array.
169 	 *
170 	 * These have to be set to user addresses in the user code via mmap.
171 	 * These values are used on return to user code for the mmap target
172 	 * addresses only.  For 32 bit, same 44 bit address problem, so use
173 	 * the physical address, not virtual.  Before 2.6.11, using the
174 	 * page_address() macro worked, but in 2.6.11, even that returns the
175 	 * full 64 bit address (upper bits all 1's).  So far, using the
176 	 * physical addresses (or chip offsets, for chip mapping) works, but
177 	 * no doubt some future kernel release will change that, and we'll be
178 	 * on to yet another method of dealing with this.
179 	 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful
180 	 * since the chips with non-zero rhf_offset don't normally
181 	 * enable tail register updates to host memory, but for testing,
182 	 * both can be enabled and used.
183 	 */
184 	kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys;
185 	kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys;
186 	kinfo->spi_rhf_offset = dd->rhf_offset;
187 	kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys;
188 	kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys;
189 	/* setup per-unit (not port) status area for user programs */
190 	kinfo->spi_status = (u64) kinfo->spi_pioavailaddr +
191 		(char *) ppd->statusp -
192 		(char *) dd->pioavailregs_dma;
193 	kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt;
194 	if (!shared) {
195 		kinfo->spi_piocnt = rcd->piocnt;
196 		kinfo->spi_piobufbase = (u64) rcd->piobufs;
197 		kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask);
198 	} else if (master) {
199 		kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) +
200 				    (rcd->piocnt % subctxt_cnt);
201 		/* Master's PIO buffers are after all the slave's */
202 		kinfo->spi_piobufbase = (u64) rcd->piobufs +
203 			dd->palign *
204 			(rcd->piocnt - kinfo->spi_piocnt);
205 	} else {
206 		unsigned slave = subctxt_fp(fp) - 1;
207 
208 		kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt;
209 		kinfo->spi_piobufbase = (u64) rcd->piobufs +
210 			dd->palign * kinfo->spi_piocnt * slave;
211 	}
212 
213 	if (shared) {
214 		kinfo->spi_sendbuf_status =
215 			cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]);
216 		/* only spi_subctxt_* fields should be set in this block! */
217 		kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase);
218 
219 		kinfo->spi_subctxt_rcvegrbuf =
220 			cvt_kvaddr(rcd->subctxt_rcvegrbuf);
221 		kinfo->spi_subctxt_rcvhdr_base =
222 			cvt_kvaddr(rcd->subctxt_rcvhdr_base);
223 	}
224 
225 	/*
226 	 * All user buffers are 2KB buffers.  If we ever support
227 	 * giving 4KB buffers to user processes, this will need some
228 	 * work.  Can't use piobufbase directly, because it has
229 	 * both 2K and 4K buffer base values.
230 	 */
231 	kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) /
232 		dd->palign;
233 	kinfo->spi_pioalign = dd->palign;
234 	kinfo->spi_qpair = QIB_KD_QP;
235 	/*
236 	 * user mode PIO buffers are always 2KB, even when 4KB can
237 	 * be received, and sent via the kernel; this is ibmaxlen
238 	 * for 2K MTU.
239 	 */
240 	kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32);
241 	kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */
242 	kinfo->spi_ctxt = rcd->ctxt;
243 	kinfo->spi_subctxt = subctxt_fp(fp);
244 	kinfo->spi_sw_version = QIB_KERN_SWVERSION;
245 	kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */
246 	kinfo->spi_hw_version = dd->revision;
247 
248 	if (master)
249 		kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER;
250 
251 	sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo);
252 	if (copy_to_user(ubase, kinfo, sz))
253 		ret = -EFAULT;
254 bail:
255 	kfree(kinfo);
256 	return ret;
257 }
258 
259 /**
260  * qib_tid_update - update a context TID
261  * @rcd: the context
262  * @fp: the qib device file
263  * @ti: the TID information
264  *
265  * The new implementation as of Oct 2004 is that the driver assigns
266  * the tid and returns it to the caller.   To reduce search time, we
267  * keep a cursor for each context, walking the shadow tid array to find
268  * one that's not in use.
269  *
270  * For now, if we can't allocate the full list, we fail, although
271  * in the long run, we'll allocate as many as we can, and the
272  * caller will deal with that by trying the remaining pages later.
273  * That means that when we fail, we have to mark the tids as not in
274  * use again, in our shadow copy.
275  *
276  * It's up to the caller to free the tids when they are done.
277  * We'll unlock the pages as they free them.
278  *
279  * Also, right now we are locking one page at a time, but since
280  * the intended use of this routine is for a single group of
281  * virtually contiguous pages, that should change to improve
282  * performance.
283  */
284 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp,
285 			  const struct qib_tid_info *ti)
286 {
287 	int ret = 0, ntids;
288 	u32 tid, ctxttid, cnt, i, tidcnt, tidoff;
289 	u16 *tidlist;
290 	struct qib_devdata *dd = rcd->dd;
291 	u64 physaddr;
292 	unsigned long vaddr;
293 	u64 __iomem *tidbase;
294 	unsigned long tidmap[8];
295 	struct page **pagep = NULL;
296 	unsigned subctxt = subctxt_fp(fp);
297 
298 	if (!dd->pageshadow) {
299 		ret = -ENOMEM;
300 		goto done;
301 	}
302 
303 	cnt = ti->tidcnt;
304 	if (!cnt) {
305 		ret = -EFAULT;
306 		goto done;
307 	}
308 	ctxttid = rcd->ctxt * dd->rcvtidcnt;
309 	if (!rcd->subctxt_cnt) {
310 		tidcnt = dd->rcvtidcnt;
311 		tid = rcd->tidcursor;
312 		tidoff = 0;
313 	} else if (!subctxt) {
314 		tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
315 			 (dd->rcvtidcnt % rcd->subctxt_cnt);
316 		tidoff = dd->rcvtidcnt - tidcnt;
317 		ctxttid += tidoff;
318 		tid = tidcursor_fp(fp);
319 	} else {
320 		tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
321 		tidoff = tidcnt * (subctxt - 1);
322 		ctxttid += tidoff;
323 		tid = tidcursor_fp(fp);
324 	}
325 	if (cnt > tidcnt) {
326 		/* make sure it all fits in tid_pg_list */
327 		qib_devinfo(dd->pcidev,
328 			"Process tried to allocate %u TIDs, only trying max (%u)\n",
329 			cnt, tidcnt);
330 		cnt = tidcnt;
331 	}
332 	pagep = (struct page **) rcd->tid_pg_list;
333 	tidlist = (u16 *) &pagep[dd->rcvtidcnt];
334 	pagep += tidoff;
335 	tidlist += tidoff;
336 
337 	memset(tidmap, 0, sizeof(tidmap));
338 	/* before decrement; chip actual # */
339 	ntids = tidcnt;
340 	tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) +
341 				   dd->rcvtidbase +
342 				   ctxttid * sizeof(*tidbase));
343 
344 	/* virtual address of first page in transfer */
345 	vaddr = ti->tidvaddr;
346 	if (!access_ok(VERIFY_WRITE, (void __user *) vaddr,
347 		       cnt * PAGE_SIZE)) {
348 		ret = -EFAULT;
349 		goto done;
350 	}
351 	ret = qib_get_user_pages(vaddr, cnt, pagep);
352 	if (ret) {
353 		/*
354 		 * if (ret == -EBUSY)
355 		 * We can't continue because the pagep array won't be
356 		 * initialized. This should never happen,
357 		 * unless perhaps the user has mpin'ed the pages
358 		 * themselves.
359 		 */
360 		qib_devinfo(
361 			dd->pcidev,
362 			"Failed to lock addr %p, %u pages: errno %d\n",
363 			(void *) vaddr, cnt, -ret);
364 		goto done;
365 	}
366 	for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) {
367 		for (; ntids--; tid++) {
368 			if (tid == tidcnt)
369 				tid = 0;
370 			if (!dd->pageshadow[ctxttid + tid])
371 				break;
372 		}
373 		if (ntids < 0) {
374 			/*
375 			 * Oops, wrapped all the way through their TIDs,
376 			 * and didn't have enough free; see comments at
377 			 * start of routine
378 			 */
379 			i--;    /* last tidlist[i] not filled in */
380 			ret = -ENOMEM;
381 			break;
382 		}
383 		tidlist[i] = tid + tidoff;
384 		/* we "know" system pages and TID pages are same size */
385 		dd->pageshadow[ctxttid + tid] = pagep[i];
386 		dd->physshadow[ctxttid + tid] =
387 			qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE,
388 				     PCI_DMA_FROMDEVICE);
389 		/*
390 		 * don't need atomic or it's overhead
391 		 */
392 		__set_bit(tid, tidmap);
393 		physaddr = dd->physshadow[ctxttid + tid];
394 		/* PERFORMANCE: below should almost certainly be cached */
395 		dd->f_put_tid(dd, &tidbase[tid],
396 				  RCVHQ_RCV_TYPE_EXPECTED, physaddr);
397 		/*
398 		 * don't check this tid in qib_ctxtshadow, since we
399 		 * just filled it in; start with the next one.
400 		 */
401 		tid++;
402 	}
403 
404 	if (ret) {
405 		u32 limit;
406 cleanup:
407 		/* jump here if copy out of updated info failed... */
408 		/* same code that's in qib_free_tid() */
409 		limit = sizeof(tidmap) * BITS_PER_BYTE;
410 		if (limit > tidcnt)
411 			/* just in case size changes in future */
412 			limit = tidcnt;
413 		tid = find_first_bit((const unsigned long *)tidmap, limit);
414 		for (; tid < limit; tid++) {
415 			if (!test_bit(tid, tidmap))
416 				continue;
417 			if (dd->pageshadow[ctxttid + tid]) {
418 				dma_addr_t phys;
419 
420 				phys = dd->physshadow[ctxttid + tid];
421 				dd->physshadow[ctxttid + tid] = dd->tidinvalid;
422 				/* PERFORMANCE: below should almost certainly
423 				 * be cached
424 				 */
425 				dd->f_put_tid(dd, &tidbase[tid],
426 					      RCVHQ_RCV_TYPE_EXPECTED,
427 					      dd->tidinvalid);
428 				pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
429 					       PCI_DMA_FROMDEVICE);
430 				dd->pageshadow[ctxttid + tid] = NULL;
431 			}
432 		}
433 		qib_release_user_pages(pagep, cnt);
434 	} else {
435 		/*
436 		 * Copy the updated array, with qib_tid's filled in, back
437 		 * to user.  Since we did the copy in already, this "should
438 		 * never fail" If it does, we have to clean up...
439 		 */
440 		if (copy_to_user((void __user *)
441 				 (unsigned long) ti->tidlist,
442 				 tidlist, cnt * sizeof(*tidlist))) {
443 			ret = -EFAULT;
444 			goto cleanup;
445 		}
446 		if (copy_to_user((void __user *) (unsigned long) ti->tidmap,
447 				 tidmap, sizeof(tidmap))) {
448 			ret = -EFAULT;
449 			goto cleanup;
450 		}
451 		if (tid == tidcnt)
452 			tid = 0;
453 		if (!rcd->subctxt_cnt)
454 			rcd->tidcursor = tid;
455 		else
456 			tidcursor_fp(fp) = tid;
457 	}
458 
459 done:
460 	return ret;
461 }
462 
463 /**
464  * qib_tid_free - free a context TID
465  * @rcd: the context
466  * @subctxt: the subcontext
467  * @ti: the TID info
468  *
469  * right now we are unlocking one page at a time, but since
470  * the intended use of this routine is for a single group of
471  * virtually contiguous pages, that should change to improve
472  * performance.  We check that the TID is in range for this context
473  * but otherwise don't check validity; if user has an error and
474  * frees the wrong tid, it's only their own data that can thereby
475  * be corrupted.  We do check that the TID was in use, for sanity
476  * We always use our idea of the saved address, not the address that
477  * they pass in to us.
478  */
479 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt,
480 			const struct qib_tid_info *ti)
481 {
482 	int ret = 0;
483 	u32 tid, ctxttid, cnt, limit, tidcnt;
484 	struct qib_devdata *dd = rcd->dd;
485 	u64 __iomem *tidbase;
486 	unsigned long tidmap[8];
487 
488 	if (!dd->pageshadow) {
489 		ret = -ENOMEM;
490 		goto done;
491 	}
492 
493 	if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap,
494 			   sizeof(tidmap))) {
495 		ret = -EFAULT;
496 		goto done;
497 	}
498 
499 	ctxttid = rcd->ctxt * dd->rcvtidcnt;
500 	if (!rcd->subctxt_cnt)
501 		tidcnt = dd->rcvtidcnt;
502 	else if (!subctxt) {
503 		tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
504 			 (dd->rcvtidcnt % rcd->subctxt_cnt);
505 		ctxttid += dd->rcvtidcnt - tidcnt;
506 	} else {
507 		tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
508 		ctxttid += tidcnt * (subctxt - 1);
509 	}
510 	tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) +
511 				   dd->rcvtidbase +
512 				   ctxttid * sizeof(*tidbase));
513 
514 	limit = sizeof(tidmap) * BITS_PER_BYTE;
515 	if (limit > tidcnt)
516 		/* just in case size changes in future */
517 		limit = tidcnt;
518 	tid = find_first_bit(tidmap, limit);
519 	for (cnt = 0; tid < limit; tid++) {
520 		/*
521 		 * small optimization; if we detect a run of 3 or so without
522 		 * any set, use find_first_bit again.  That's mainly to
523 		 * accelerate the case where we wrapped, so we have some at
524 		 * the beginning, and some at the end, and a big gap
525 		 * in the middle.
526 		 */
527 		if (!test_bit(tid, tidmap))
528 			continue;
529 		cnt++;
530 		if (dd->pageshadow[ctxttid + tid]) {
531 			struct page *p;
532 			dma_addr_t phys;
533 
534 			p = dd->pageshadow[ctxttid + tid];
535 			dd->pageshadow[ctxttid + tid] = NULL;
536 			phys = dd->physshadow[ctxttid + tid];
537 			dd->physshadow[ctxttid + tid] = dd->tidinvalid;
538 			/* PERFORMANCE: below should almost certainly be
539 			 * cached
540 			 */
541 			dd->f_put_tid(dd, &tidbase[tid],
542 				      RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid);
543 			pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
544 				       PCI_DMA_FROMDEVICE);
545 			qib_release_user_pages(&p, 1);
546 		}
547 	}
548 done:
549 	return ret;
550 }
551 
552 /**
553  * qib_set_part_key - set a partition key
554  * @rcd: the context
555  * @key: the key
556  *
557  * We can have up to 4 active at a time (other than the default, which is
558  * always allowed).  This is somewhat tricky, since multiple contexts may set
559  * the same key, so we reference count them, and clean up at exit.  All 4
560  * partition keys are packed into a single qlogic_ib register.  It's an
561  * error for a process to set the same pkey multiple times.  We provide no
562  * mechanism to de-allocate a pkey at this time, we may eventually need to
563  * do that.  I've used the atomic operations, and no locking, and only make
564  * a single pass through what's available.  This should be more than
565  * adequate for some time. I'll think about spinlocks or the like if and as
566  * it's necessary.
567  */
568 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key)
569 {
570 	struct qib_pportdata *ppd = rcd->ppd;
571 	int i, pidx = -1;
572 	bool any = false;
573 	u16 lkey = key & 0x7FFF;
574 
575 	if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF))
576 		/* nothing to do; this key always valid */
577 		return 0;
578 
579 	if (!lkey)
580 		return -EINVAL;
581 
582 	/*
583 	 * Set the full membership bit, because it has to be
584 	 * set in the register or the packet, and it seems
585 	 * cleaner to set in the register than to force all
586 	 * callers to set it.
587 	 */
588 	key |= 0x8000;
589 
590 	for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
591 		if (!rcd->pkeys[i] && pidx == -1)
592 			pidx = i;
593 		if (rcd->pkeys[i] == key)
594 			return -EEXIST;
595 	}
596 	if (pidx == -1)
597 		return -EBUSY;
598 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
599 		if (!ppd->pkeys[i]) {
600 			any = true;
601 			continue;
602 		}
603 		if (ppd->pkeys[i] == key) {
604 			atomic_t *pkrefs = &ppd->pkeyrefs[i];
605 
606 			if (atomic_inc_return(pkrefs) > 1) {
607 				rcd->pkeys[pidx] = key;
608 				return 0;
609 			}
610 			/*
611 			 * lost race, decrement count, catch below
612 			 */
613 			atomic_dec(pkrefs);
614 			any = true;
615 		}
616 		if ((ppd->pkeys[i] & 0x7FFF) == lkey)
617 			/*
618 			 * It makes no sense to have both the limited and
619 			 * full membership PKEY set at the same time since
620 			 * the unlimited one will disable the limited one.
621 			 */
622 			return -EEXIST;
623 	}
624 	if (!any)
625 		return -EBUSY;
626 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
627 		if (!ppd->pkeys[i] &&
628 		    atomic_inc_return(&ppd->pkeyrefs[i]) == 1) {
629 			rcd->pkeys[pidx] = key;
630 			ppd->pkeys[i] = key;
631 			(void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
632 			return 0;
633 		}
634 	}
635 	return -EBUSY;
636 }
637 
638 /**
639  * qib_manage_rcvq - manage a context's receive queue
640  * @rcd: the context
641  * @subctxt: the subcontext
642  * @start_stop: action to carry out
643  *
644  * start_stop == 0 disables receive on the context, for use in queue
645  * overflow conditions.  start_stop==1 re-enables, to be used to
646  * re-init the software copy of the head register
647  */
648 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt,
649 			   int start_stop)
650 {
651 	struct qib_devdata *dd = rcd->dd;
652 	unsigned int rcvctrl_op;
653 
654 	if (subctxt)
655 		goto bail;
656 	/* atomically clear receive enable ctxt. */
657 	if (start_stop) {
658 		/*
659 		 * On enable, force in-memory copy of the tail register to
660 		 * 0, so that protocol code doesn't have to worry about
661 		 * whether or not the chip has yet updated the in-memory
662 		 * copy or not on return from the system call. The chip
663 		 * always resets it's tail register back to 0 on a
664 		 * transition from disabled to enabled.
665 		 */
666 		if (rcd->rcvhdrtail_kvaddr)
667 			qib_clear_rcvhdrtail(rcd);
668 		rcvctrl_op = QIB_RCVCTRL_CTXT_ENB;
669 	} else
670 		rcvctrl_op = QIB_RCVCTRL_CTXT_DIS;
671 	dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt);
672 	/* always; new head should be equal to new tail; see above */
673 bail:
674 	return 0;
675 }
676 
677 static void qib_clean_part_key(struct qib_ctxtdata *rcd,
678 			       struct qib_devdata *dd)
679 {
680 	int i, j, pchanged = 0;
681 	struct qib_pportdata *ppd = rcd->ppd;
682 
683 	for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
684 		if (!rcd->pkeys[i])
685 			continue;
686 		for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) {
687 			/* check for match independent of the global bit */
688 			if ((ppd->pkeys[j] & 0x7fff) !=
689 			    (rcd->pkeys[i] & 0x7fff))
690 				continue;
691 			if (atomic_dec_and_test(&ppd->pkeyrefs[j])) {
692 				ppd->pkeys[j] = 0;
693 				pchanged++;
694 			}
695 			break;
696 		}
697 		rcd->pkeys[i] = 0;
698 	}
699 	if (pchanged)
700 		(void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
701 }
702 
703 /* common code for the mappings on dma_alloc_coherent mem */
704 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd,
705 			unsigned len, void *kvaddr, u32 write_ok, char *what)
706 {
707 	struct qib_devdata *dd = rcd->dd;
708 	unsigned long pfn;
709 	int ret;
710 
711 	if ((vma->vm_end - vma->vm_start) > len) {
712 		qib_devinfo(dd->pcidev,
713 			 "FAIL on %s: len %lx > %x\n", what,
714 			 vma->vm_end - vma->vm_start, len);
715 		ret = -EFAULT;
716 		goto bail;
717 	}
718 
719 	/*
720 	 * shared context user code requires rcvhdrq mapped r/w, others
721 	 * only allowed readonly mapping.
722 	 */
723 	if (!write_ok) {
724 		if (vma->vm_flags & VM_WRITE) {
725 			qib_devinfo(dd->pcidev,
726 				 "%s must be mapped readonly\n", what);
727 			ret = -EPERM;
728 			goto bail;
729 		}
730 
731 		/* don't allow them to later change with mprotect */
732 		vma->vm_flags &= ~VM_MAYWRITE;
733 	}
734 
735 	pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT;
736 	ret = remap_pfn_range(vma, vma->vm_start, pfn,
737 			      len, vma->vm_page_prot);
738 	if (ret)
739 		qib_devinfo(dd->pcidev,
740 			"%s ctxt%u mmap of %lx, %x bytes failed: %d\n",
741 			what, rcd->ctxt, pfn, len, ret);
742 bail:
743 	return ret;
744 }
745 
746 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd,
747 		     u64 ureg)
748 {
749 	unsigned long phys;
750 	unsigned long sz;
751 	int ret;
752 
753 	/*
754 	 * This is real hardware, so use io_remap.  This is the mechanism
755 	 * for the user process to update the head registers for their ctxt
756 	 * in the chip.
757 	 */
758 	sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE;
759 	if ((vma->vm_end - vma->vm_start) > sz) {
760 		qib_devinfo(dd->pcidev,
761 			"FAIL mmap userreg: reqlen %lx > PAGE\n",
762 			vma->vm_end - vma->vm_start);
763 		ret = -EFAULT;
764 	} else {
765 		phys = dd->physaddr + ureg;
766 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
767 
768 		vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
769 		ret = io_remap_pfn_range(vma, vma->vm_start,
770 					 phys >> PAGE_SHIFT,
771 					 vma->vm_end - vma->vm_start,
772 					 vma->vm_page_prot);
773 	}
774 	return ret;
775 }
776 
777 static int mmap_piobufs(struct vm_area_struct *vma,
778 			struct qib_devdata *dd,
779 			struct qib_ctxtdata *rcd,
780 			unsigned piobufs, unsigned piocnt)
781 {
782 	unsigned long phys;
783 	int ret;
784 
785 	/*
786 	 * When we map the PIO buffers in the chip, we want to map them as
787 	 * writeonly, no read possible; unfortunately, x86 doesn't allow
788 	 * for this in hardware, but we still prevent users from asking
789 	 * for it.
790 	 */
791 	if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) {
792 		qib_devinfo(dd->pcidev,
793 			"FAIL mmap piobufs: reqlen %lx > PAGE\n",
794 			 vma->vm_end - vma->vm_start);
795 		ret = -EINVAL;
796 		goto bail;
797 	}
798 
799 	phys = dd->physaddr + piobufs;
800 
801 #if defined(__powerpc__)
802 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
803 #endif
804 
805 	/*
806 	 * don't allow them to later change to readable with mprotect (for when
807 	 * not initially mapped readable, as is normally the case)
808 	 */
809 	vma->vm_flags &= ~VM_MAYREAD;
810 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
811 
812 	/* We used PAT if wc_cookie == 0 */
813 	if (!dd->wc_cookie)
814 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
815 
816 	ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT,
817 				 vma->vm_end - vma->vm_start,
818 				 vma->vm_page_prot);
819 bail:
820 	return ret;
821 }
822 
823 static int mmap_rcvegrbufs(struct vm_area_struct *vma,
824 			   struct qib_ctxtdata *rcd)
825 {
826 	struct qib_devdata *dd = rcd->dd;
827 	unsigned long start, size;
828 	size_t total_size, i;
829 	unsigned long pfn;
830 	int ret;
831 
832 	size = rcd->rcvegrbuf_size;
833 	total_size = rcd->rcvegrbuf_chunks * size;
834 	if ((vma->vm_end - vma->vm_start) > total_size) {
835 		qib_devinfo(dd->pcidev,
836 			"FAIL on egr bufs: reqlen %lx > actual %lx\n",
837 			 vma->vm_end - vma->vm_start,
838 			 (unsigned long) total_size);
839 		ret = -EINVAL;
840 		goto bail;
841 	}
842 
843 	if (vma->vm_flags & VM_WRITE) {
844 		qib_devinfo(dd->pcidev,
845 			"Can't map eager buffers as writable (flags=%lx)\n",
846 			vma->vm_flags);
847 		ret = -EPERM;
848 		goto bail;
849 	}
850 	/* don't allow them to later change to writeable with mprotect */
851 	vma->vm_flags &= ~VM_MAYWRITE;
852 
853 	start = vma->vm_start;
854 
855 	for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) {
856 		pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT;
857 		ret = remap_pfn_range(vma, start, pfn, size,
858 				      vma->vm_page_prot);
859 		if (ret < 0)
860 			goto bail;
861 	}
862 	ret = 0;
863 
864 bail:
865 	return ret;
866 }
867 
868 /*
869  * qib_file_vma_fault - handle a VMA page fault.
870  */
871 static int qib_file_vma_fault(struct vm_fault *vmf)
872 {
873 	struct page *page;
874 
875 	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
876 	if (!page)
877 		return VM_FAULT_SIGBUS;
878 
879 	get_page(page);
880 	vmf->page = page;
881 
882 	return 0;
883 }
884 
885 static const struct vm_operations_struct qib_file_vm_ops = {
886 	.fault = qib_file_vma_fault,
887 };
888 
889 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr,
890 		       struct qib_ctxtdata *rcd, unsigned subctxt)
891 {
892 	struct qib_devdata *dd = rcd->dd;
893 	unsigned subctxt_cnt;
894 	unsigned long len;
895 	void *addr;
896 	size_t size;
897 	int ret = 0;
898 
899 	subctxt_cnt = rcd->subctxt_cnt;
900 	size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
901 
902 	/*
903 	 * Each process has all the subctxt uregbase, rcvhdrq, and
904 	 * rcvegrbufs mmapped - as an array for all the processes,
905 	 * and also separately for this process.
906 	 */
907 	if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) {
908 		addr = rcd->subctxt_uregbase;
909 		size = PAGE_SIZE * subctxt_cnt;
910 	} else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) {
911 		addr = rcd->subctxt_rcvhdr_base;
912 		size = rcd->rcvhdrq_size * subctxt_cnt;
913 	} else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) {
914 		addr = rcd->subctxt_rcvegrbuf;
915 		size *= subctxt_cnt;
916 	} else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase +
917 					PAGE_SIZE * subctxt)) {
918 		addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt;
919 		size = PAGE_SIZE;
920 	} else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base +
921 					rcd->rcvhdrq_size * subctxt)) {
922 		addr = rcd->subctxt_rcvhdr_base +
923 			rcd->rcvhdrq_size * subctxt;
924 		size = rcd->rcvhdrq_size;
925 	} else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) {
926 		addr = rcd->user_event_mask;
927 		size = PAGE_SIZE;
928 	} else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf +
929 					size * subctxt)) {
930 		addr = rcd->subctxt_rcvegrbuf + size * subctxt;
931 		/* rcvegrbufs are read-only on the slave */
932 		if (vma->vm_flags & VM_WRITE) {
933 			qib_devinfo(dd->pcidev,
934 				 "Can't map eager buffers as writable (flags=%lx)\n",
935 				 vma->vm_flags);
936 			ret = -EPERM;
937 			goto bail;
938 		}
939 		/*
940 		 * Don't allow permission to later change to writeable
941 		 * with mprotect.
942 		 */
943 		vma->vm_flags &= ~VM_MAYWRITE;
944 	} else
945 		goto bail;
946 	len = vma->vm_end - vma->vm_start;
947 	if (len > size) {
948 		ret = -EINVAL;
949 		goto bail;
950 	}
951 
952 	vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT;
953 	vma->vm_ops = &qib_file_vm_ops;
954 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
955 	ret = 1;
956 
957 bail:
958 	return ret;
959 }
960 
961 /**
962  * qib_mmapf - mmap various structures into user space
963  * @fp: the file pointer
964  * @vma: the VM area
965  *
966  * We use this to have a shared buffer between the kernel and the user code
967  * for the rcvhdr queue, egr buffers, and the per-context user regs and pio
968  * buffers in the chip.  We have the open and close entries so we can bump
969  * the ref count and keep the driver from being unloaded while still mapped.
970  */
971 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma)
972 {
973 	struct qib_ctxtdata *rcd;
974 	struct qib_devdata *dd;
975 	u64 pgaddr, ureg;
976 	unsigned piobufs, piocnt;
977 	int ret, match = 1;
978 
979 	rcd = ctxt_fp(fp);
980 	if (!rcd || !(vma->vm_flags & VM_SHARED)) {
981 		ret = -EINVAL;
982 		goto bail;
983 	}
984 	dd = rcd->dd;
985 
986 	/*
987 	 * This is the qib_do_user_init() code, mapping the shared buffers
988 	 * and per-context user registers into the user process. The address
989 	 * referred to by vm_pgoff is the file offset passed via mmap().
990 	 * For shared contexts, this is the kernel vmalloc() address of the
991 	 * pages to share with the master.
992 	 * For non-shared or master ctxts, this is a physical address.
993 	 * We only do one mmap for each space mapped.
994 	 */
995 	pgaddr = vma->vm_pgoff << PAGE_SHIFT;
996 
997 	/*
998 	 * Check for 0 in case one of the allocations failed, but user
999 	 * called mmap anyway.
1000 	 */
1001 	if (!pgaddr)  {
1002 		ret = -EINVAL;
1003 		goto bail;
1004 	}
1005 
1006 	/*
1007 	 * Physical addresses must fit in 40 bits for our hardware.
1008 	 * Check for kernel virtual addresses first, anything else must
1009 	 * match a HW or memory address.
1010 	 */
1011 	ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp));
1012 	if (ret) {
1013 		if (ret > 0)
1014 			ret = 0;
1015 		goto bail;
1016 	}
1017 
1018 	ureg = dd->uregbase + dd->ureg_align * rcd->ctxt;
1019 	if (!rcd->subctxt_cnt) {
1020 		/* ctxt is not shared */
1021 		piocnt = rcd->piocnt;
1022 		piobufs = rcd->piobufs;
1023 	} else if (!subctxt_fp(fp)) {
1024 		/* caller is the master */
1025 		piocnt = (rcd->piocnt / rcd->subctxt_cnt) +
1026 			 (rcd->piocnt % rcd->subctxt_cnt);
1027 		piobufs = rcd->piobufs +
1028 			dd->palign * (rcd->piocnt - piocnt);
1029 	} else {
1030 		unsigned slave = subctxt_fp(fp) - 1;
1031 
1032 		/* caller is a slave */
1033 		piocnt = rcd->piocnt / rcd->subctxt_cnt;
1034 		piobufs = rcd->piobufs + dd->palign * piocnt * slave;
1035 	}
1036 
1037 	if (pgaddr == ureg)
1038 		ret = mmap_ureg(vma, dd, ureg);
1039 	else if (pgaddr == piobufs)
1040 		ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt);
1041 	else if (pgaddr == dd->pioavailregs_phys)
1042 		/* in-memory copy of pioavail registers */
1043 		ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1044 				   (void *) dd->pioavailregs_dma, 0,
1045 				   "pioavail registers");
1046 	else if (pgaddr == rcd->rcvegr_phys)
1047 		ret = mmap_rcvegrbufs(vma, rcd);
1048 	else if (pgaddr == (u64) rcd->rcvhdrq_phys)
1049 		/*
1050 		 * The rcvhdrq itself; multiple pages, contiguous
1051 		 * from an i/o perspective.  Shared contexts need
1052 		 * to map r/w, so we allow writing.
1053 		 */
1054 		ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size,
1055 				   rcd->rcvhdrq, 1, "rcvhdrq");
1056 	else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys)
1057 		/* in-memory copy of rcvhdrq tail register */
1058 		ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1059 				   rcd->rcvhdrtail_kvaddr, 0,
1060 				   "rcvhdrq tail");
1061 	else
1062 		match = 0;
1063 	if (!match)
1064 		ret = -EINVAL;
1065 
1066 	vma->vm_private_data = NULL;
1067 
1068 	if (ret < 0)
1069 		qib_devinfo(dd->pcidev,
1070 			 "mmap Failure %d: off %llx len %lx\n",
1071 			 -ret, (unsigned long long)pgaddr,
1072 			 vma->vm_end - vma->vm_start);
1073 bail:
1074 	return ret;
1075 }
1076 
1077 static __poll_t qib_poll_urgent(struct qib_ctxtdata *rcd,
1078 				    struct file *fp,
1079 				    struct poll_table_struct *pt)
1080 {
1081 	struct qib_devdata *dd = rcd->dd;
1082 	__poll_t pollflag;
1083 
1084 	poll_wait(fp, &rcd->wait, pt);
1085 
1086 	spin_lock_irq(&dd->uctxt_lock);
1087 	if (rcd->urgent != rcd->urgent_poll) {
1088 		pollflag = EPOLLIN | EPOLLRDNORM;
1089 		rcd->urgent_poll = rcd->urgent;
1090 	} else {
1091 		pollflag = 0;
1092 		set_bit(QIB_CTXT_WAITING_URG, &rcd->flag);
1093 	}
1094 	spin_unlock_irq(&dd->uctxt_lock);
1095 
1096 	return pollflag;
1097 }
1098 
1099 static __poll_t qib_poll_next(struct qib_ctxtdata *rcd,
1100 				  struct file *fp,
1101 				  struct poll_table_struct *pt)
1102 {
1103 	struct qib_devdata *dd = rcd->dd;
1104 	__poll_t pollflag;
1105 
1106 	poll_wait(fp, &rcd->wait, pt);
1107 
1108 	spin_lock_irq(&dd->uctxt_lock);
1109 	if (dd->f_hdrqempty(rcd)) {
1110 		set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag);
1111 		dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt);
1112 		pollflag = 0;
1113 	} else
1114 		pollflag = EPOLLIN | EPOLLRDNORM;
1115 	spin_unlock_irq(&dd->uctxt_lock);
1116 
1117 	return pollflag;
1118 }
1119 
1120 static __poll_t qib_poll(struct file *fp, struct poll_table_struct *pt)
1121 {
1122 	struct qib_ctxtdata *rcd;
1123 	__poll_t pollflag;
1124 
1125 	rcd = ctxt_fp(fp);
1126 	if (!rcd)
1127 		pollflag = EPOLLERR;
1128 	else if (rcd->poll_type == QIB_POLL_TYPE_URGENT)
1129 		pollflag = qib_poll_urgent(rcd, fp, pt);
1130 	else  if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV)
1131 		pollflag = qib_poll_next(rcd, fp, pt);
1132 	else /* invalid */
1133 		pollflag = EPOLLERR;
1134 
1135 	return pollflag;
1136 }
1137 
1138 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd)
1139 {
1140 	struct qib_filedata *fd = fp->private_data;
1141 	const unsigned int weight = cpumask_weight(&current->cpus_allowed);
1142 	const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus);
1143 	int local_cpu;
1144 
1145 	/*
1146 	 * If process has NOT already set it's affinity, select and
1147 	 * reserve a processor for it on the local NUMA node.
1148 	 */
1149 	if ((weight >= qib_cpulist_count) &&
1150 		(cpumask_weight(local_mask) <= qib_cpulist_count)) {
1151 		for_each_cpu(local_cpu, local_mask)
1152 			if (!test_and_set_bit(local_cpu, qib_cpulist)) {
1153 				fd->rec_cpu_num = local_cpu;
1154 				return;
1155 			}
1156 	}
1157 
1158 	/*
1159 	 * If process has NOT already set it's affinity, select and
1160 	 * reserve a processor for it, as a rendevous for all
1161 	 * users of the driver.  If they don't actually later
1162 	 * set affinity to this cpu, or set it to some other cpu,
1163 	 * it just means that sooner or later we don't recommend
1164 	 * a cpu, and let the scheduler do it's best.
1165 	 */
1166 	if (weight >= qib_cpulist_count) {
1167 		int cpu;
1168 
1169 		cpu = find_first_zero_bit(qib_cpulist,
1170 					  qib_cpulist_count);
1171 		if (cpu == qib_cpulist_count)
1172 			qib_dev_err(dd,
1173 			"no cpus avail for affinity PID %u\n",
1174 			current->pid);
1175 		else {
1176 			__set_bit(cpu, qib_cpulist);
1177 			fd->rec_cpu_num = cpu;
1178 		}
1179 	}
1180 }
1181 
1182 /*
1183  * Check that userland and driver are compatible for subcontexts.
1184  */
1185 static int qib_compatible_subctxts(int user_swmajor, int user_swminor)
1186 {
1187 	/* this code is written long-hand for clarity */
1188 	if (QIB_USER_SWMAJOR != user_swmajor) {
1189 		/* no promise of compatibility if major mismatch */
1190 		return 0;
1191 	}
1192 	if (QIB_USER_SWMAJOR == 1) {
1193 		switch (QIB_USER_SWMINOR) {
1194 		case 0:
1195 		case 1:
1196 		case 2:
1197 			/* no subctxt implementation so cannot be compatible */
1198 			return 0;
1199 		case 3:
1200 			/* 3 is only compatible with itself */
1201 			return user_swminor == 3;
1202 		default:
1203 			/* >= 4 are compatible (or are expected to be) */
1204 			return user_swminor <= QIB_USER_SWMINOR;
1205 		}
1206 	}
1207 	/* make no promises yet for future major versions */
1208 	return 0;
1209 }
1210 
1211 static int init_subctxts(struct qib_devdata *dd,
1212 			 struct qib_ctxtdata *rcd,
1213 			 const struct qib_user_info *uinfo)
1214 {
1215 	int ret = 0;
1216 	unsigned num_subctxts;
1217 	size_t size;
1218 
1219 	/*
1220 	 * If the user is requesting zero subctxts,
1221 	 * skip the subctxt allocation.
1222 	 */
1223 	if (uinfo->spu_subctxt_cnt <= 0)
1224 		goto bail;
1225 	num_subctxts = uinfo->spu_subctxt_cnt;
1226 
1227 	/* Check for subctxt compatibility */
1228 	if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16,
1229 		uinfo->spu_userversion & 0xffff)) {
1230 		qib_devinfo(dd->pcidev,
1231 			 "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n",
1232 			 (int) (uinfo->spu_userversion >> 16),
1233 			 (int) (uinfo->spu_userversion & 0xffff),
1234 			 QIB_USER_SWMAJOR, QIB_USER_SWMINOR);
1235 		goto bail;
1236 	}
1237 	if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) {
1238 		ret = -EINVAL;
1239 		goto bail;
1240 	}
1241 
1242 	rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts);
1243 	if (!rcd->subctxt_uregbase) {
1244 		ret = -ENOMEM;
1245 		goto bail;
1246 	}
1247 	/* Note: rcd->rcvhdrq_size isn't initialized yet. */
1248 	size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize *
1249 		     sizeof(u32), PAGE_SIZE) * num_subctxts;
1250 	rcd->subctxt_rcvhdr_base = vmalloc_user(size);
1251 	if (!rcd->subctxt_rcvhdr_base) {
1252 		ret = -ENOMEM;
1253 		goto bail_ureg;
1254 	}
1255 
1256 	rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks *
1257 					      rcd->rcvegrbuf_size *
1258 					      num_subctxts);
1259 	if (!rcd->subctxt_rcvegrbuf) {
1260 		ret = -ENOMEM;
1261 		goto bail_rhdr;
1262 	}
1263 
1264 	rcd->subctxt_cnt = uinfo->spu_subctxt_cnt;
1265 	rcd->subctxt_id = uinfo->spu_subctxt_id;
1266 	rcd->active_slaves = 1;
1267 	rcd->redirect_seq_cnt = 1;
1268 	set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1269 	goto bail;
1270 
1271 bail_rhdr:
1272 	vfree(rcd->subctxt_rcvhdr_base);
1273 bail_ureg:
1274 	vfree(rcd->subctxt_uregbase);
1275 	rcd->subctxt_uregbase = NULL;
1276 bail:
1277 	return ret;
1278 }
1279 
1280 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt,
1281 		      struct file *fp, const struct qib_user_info *uinfo)
1282 {
1283 	struct qib_filedata *fd = fp->private_data;
1284 	struct qib_devdata *dd = ppd->dd;
1285 	struct qib_ctxtdata *rcd;
1286 	void *ptmp = NULL;
1287 	int ret;
1288 	int numa_id;
1289 
1290 	assign_ctxt_affinity(fp, dd);
1291 
1292 	numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ?
1293 		cpu_to_node(fd->rec_cpu_num) :
1294 		numa_node_id()) : dd->assigned_node_id;
1295 
1296 	rcd = qib_create_ctxtdata(ppd, ctxt, numa_id);
1297 
1298 	/*
1299 	 * Allocate memory for use in qib_tid_update() at open to
1300 	 * reduce cost of expected send setup per message segment
1301 	 */
1302 	if (rcd)
1303 		ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) +
1304 			       dd->rcvtidcnt * sizeof(struct page **),
1305 			       GFP_KERNEL);
1306 
1307 	if (!rcd || !ptmp) {
1308 		qib_dev_err(dd,
1309 			"Unable to allocate ctxtdata memory, failing open\n");
1310 		ret = -ENOMEM;
1311 		goto bailerr;
1312 	}
1313 	rcd->userversion = uinfo->spu_userversion;
1314 	ret = init_subctxts(dd, rcd, uinfo);
1315 	if (ret)
1316 		goto bailerr;
1317 	rcd->tid_pg_list = ptmp;
1318 	rcd->pid = current->pid;
1319 	init_waitqueue_head(&dd->rcd[ctxt]->wait);
1320 	strlcpy(rcd->comm, current->comm, sizeof(rcd->comm));
1321 	ctxt_fp(fp) = rcd;
1322 	qib_stats.sps_ctxts++;
1323 	dd->freectxts--;
1324 	ret = 0;
1325 	goto bail;
1326 
1327 bailerr:
1328 	if (fd->rec_cpu_num != -1)
1329 		__clear_bit(fd->rec_cpu_num, qib_cpulist);
1330 
1331 	dd->rcd[ctxt] = NULL;
1332 	kfree(rcd);
1333 	kfree(ptmp);
1334 bail:
1335 	return ret;
1336 }
1337 
1338 static inline int usable(struct qib_pportdata *ppd)
1339 {
1340 	struct qib_devdata *dd = ppd->dd;
1341 
1342 	return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid &&
1343 		(ppd->lflags & QIBL_LINKACTIVE);
1344 }
1345 
1346 /*
1347  * Select a context on the given device, either using a requested port
1348  * or the port based on the context number.
1349  */
1350 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port,
1351 			    const struct qib_user_info *uinfo)
1352 {
1353 	struct qib_pportdata *ppd = NULL;
1354 	int ret, ctxt;
1355 
1356 	if (port) {
1357 		if (!usable(dd->pport + port - 1)) {
1358 			ret = -ENETDOWN;
1359 			goto done;
1360 		} else
1361 			ppd = dd->pport + port - 1;
1362 	}
1363 	for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt];
1364 	     ctxt++)
1365 		;
1366 	if (ctxt == dd->cfgctxts) {
1367 		ret = -EBUSY;
1368 		goto done;
1369 	}
1370 	if (!ppd) {
1371 		u32 pidx = ctxt % dd->num_pports;
1372 
1373 		if (usable(dd->pport + pidx))
1374 			ppd = dd->pport + pidx;
1375 		else {
1376 			for (pidx = 0; pidx < dd->num_pports && !ppd;
1377 			     pidx++)
1378 				if (usable(dd->pport + pidx))
1379 					ppd = dd->pport + pidx;
1380 		}
1381 	}
1382 	ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN;
1383 done:
1384 	return ret;
1385 }
1386 
1387 static int find_free_ctxt(int unit, struct file *fp,
1388 			  const struct qib_user_info *uinfo)
1389 {
1390 	struct qib_devdata *dd = qib_lookup(unit);
1391 	int ret;
1392 
1393 	if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports))
1394 		ret = -ENODEV;
1395 	else
1396 		ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo);
1397 
1398 	return ret;
1399 }
1400 
1401 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo,
1402 		      unsigned alg)
1403 {
1404 	struct qib_devdata *udd = NULL;
1405 	int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i;
1406 	u32 port = uinfo->spu_port, ctxt;
1407 
1408 	devmax = qib_count_units(&npresent, &nup);
1409 	if (!npresent) {
1410 		ret = -ENXIO;
1411 		goto done;
1412 	}
1413 	if (nup == 0) {
1414 		ret = -ENETDOWN;
1415 		goto done;
1416 	}
1417 
1418 	if (alg == QIB_PORT_ALG_ACROSS) {
1419 		unsigned inuse = ~0U;
1420 
1421 		/* find device (with ACTIVE ports) with fewest ctxts in use */
1422 		for (ndev = 0; ndev < devmax; ndev++) {
1423 			struct qib_devdata *dd = qib_lookup(ndev);
1424 			unsigned cused = 0, cfree = 0, pusable = 0;
1425 
1426 			if (!dd)
1427 				continue;
1428 			if (port && port <= dd->num_pports &&
1429 			    usable(dd->pport + port - 1))
1430 				pusable = 1;
1431 			else
1432 				for (i = 0; i < dd->num_pports; i++)
1433 					if (usable(dd->pport + i))
1434 						pusable++;
1435 			if (!pusable)
1436 				continue;
1437 			for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts;
1438 			     ctxt++)
1439 				if (dd->rcd[ctxt])
1440 					cused++;
1441 				else
1442 					cfree++;
1443 			if (cfree && cused < inuse) {
1444 				udd = dd;
1445 				inuse = cused;
1446 			}
1447 		}
1448 		if (udd) {
1449 			ret = choose_port_ctxt(fp, udd, port, uinfo);
1450 			goto done;
1451 		}
1452 	} else {
1453 		for (ndev = 0; ndev < devmax; ndev++) {
1454 			struct qib_devdata *dd = qib_lookup(ndev);
1455 
1456 			if (dd) {
1457 				ret = choose_port_ctxt(fp, dd, port, uinfo);
1458 				if (!ret)
1459 					goto done;
1460 				if (ret == -EBUSY)
1461 					dusable++;
1462 			}
1463 		}
1464 	}
1465 	ret = dusable ? -EBUSY : -ENETDOWN;
1466 
1467 done:
1468 	return ret;
1469 }
1470 
1471 static int find_shared_ctxt(struct file *fp,
1472 			    const struct qib_user_info *uinfo)
1473 {
1474 	int devmax, ndev, i;
1475 	int ret = 0;
1476 
1477 	devmax = qib_count_units(NULL, NULL);
1478 
1479 	for (ndev = 0; ndev < devmax; ndev++) {
1480 		struct qib_devdata *dd = qib_lookup(ndev);
1481 
1482 		/* device portion of usable() */
1483 		if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase))
1484 			continue;
1485 		for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) {
1486 			struct qib_ctxtdata *rcd = dd->rcd[i];
1487 
1488 			/* Skip ctxts which are not yet open */
1489 			if (!rcd || !rcd->cnt)
1490 				continue;
1491 			/* Skip ctxt if it doesn't match the requested one */
1492 			if (rcd->subctxt_id != uinfo->spu_subctxt_id)
1493 				continue;
1494 			/* Verify the sharing process matches the master */
1495 			if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt ||
1496 			    rcd->userversion != uinfo->spu_userversion ||
1497 			    rcd->cnt >= rcd->subctxt_cnt) {
1498 				ret = -EINVAL;
1499 				goto done;
1500 			}
1501 			ctxt_fp(fp) = rcd;
1502 			subctxt_fp(fp) = rcd->cnt++;
1503 			rcd->subpid[subctxt_fp(fp)] = current->pid;
1504 			tidcursor_fp(fp) = 0;
1505 			rcd->active_slaves |= 1 << subctxt_fp(fp);
1506 			ret = 1;
1507 			goto done;
1508 		}
1509 	}
1510 
1511 done:
1512 	return ret;
1513 }
1514 
1515 static int qib_open(struct inode *in, struct file *fp)
1516 {
1517 	/* The real work is performed later in qib_assign_ctxt() */
1518 	fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL);
1519 	if (fp->private_data) /* no cpu affinity by default */
1520 		((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1;
1521 	return fp->private_data ? 0 : -ENOMEM;
1522 }
1523 
1524 static int find_hca(unsigned int cpu, int *unit)
1525 {
1526 	int ret = 0, devmax, npresent, nup, ndev;
1527 
1528 	*unit = -1;
1529 
1530 	devmax = qib_count_units(&npresent, &nup);
1531 	if (!npresent) {
1532 		ret = -ENXIO;
1533 		goto done;
1534 	}
1535 	if (!nup) {
1536 		ret = -ENETDOWN;
1537 		goto done;
1538 	}
1539 	for (ndev = 0; ndev < devmax; ndev++) {
1540 		struct qib_devdata *dd = qib_lookup(ndev);
1541 
1542 		if (dd) {
1543 			if (pcibus_to_node(dd->pcidev->bus) < 0) {
1544 				ret = -EINVAL;
1545 				goto done;
1546 			}
1547 			if (cpu_to_node(cpu) ==
1548 				pcibus_to_node(dd->pcidev->bus)) {
1549 				*unit = ndev;
1550 				goto done;
1551 			}
1552 		}
1553 	}
1554 done:
1555 	return ret;
1556 }
1557 
1558 static int do_qib_user_sdma_queue_create(struct file *fp)
1559 {
1560 	struct qib_filedata *fd = fp->private_data;
1561 	struct qib_ctxtdata *rcd = fd->rcd;
1562 	struct qib_devdata *dd = rcd->dd;
1563 
1564 	if (dd->flags & QIB_HAS_SEND_DMA) {
1565 
1566 		fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev,
1567 						    dd->unit,
1568 						    rcd->ctxt,
1569 						    fd->subctxt);
1570 		if (!fd->pq)
1571 			return -ENOMEM;
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 /*
1578  * Get ctxt early, so can set affinity prior to memory allocation.
1579  */
1580 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo)
1581 {
1582 	int ret;
1583 	int i_minor;
1584 	unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS;
1585 
1586 	/* Check to be sure we haven't already initialized this file */
1587 	if (ctxt_fp(fp)) {
1588 		ret = -EINVAL;
1589 		goto done;
1590 	}
1591 
1592 	/* for now, if major version is different, bail */
1593 	swmajor = uinfo->spu_userversion >> 16;
1594 	if (swmajor != QIB_USER_SWMAJOR) {
1595 		ret = -ENODEV;
1596 		goto done;
1597 	}
1598 
1599 	swminor = uinfo->spu_userversion & 0xffff;
1600 
1601 	if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT)
1602 		alg = uinfo->spu_port_alg;
1603 
1604 	mutex_lock(&qib_mutex);
1605 
1606 	if (qib_compatible_subctxts(swmajor, swminor) &&
1607 	    uinfo->spu_subctxt_cnt) {
1608 		ret = find_shared_ctxt(fp, uinfo);
1609 		if (ret > 0) {
1610 			ret = do_qib_user_sdma_queue_create(fp);
1611 			if (!ret)
1612 				assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd);
1613 			goto done_ok;
1614 		}
1615 	}
1616 
1617 	i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE;
1618 	if (i_minor)
1619 		ret = find_free_ctxt(i_minor - 1, fp, uinfo);
1620 	else {
1621 		int unit;
1622 		const unsigned int cpu = cpumask_first(&current->cpus_allowed);
1623 		const unsigned int weight =
1624 			cpumask_weight(&current->cpus_allowed);
1625 
1626 		if (weight == 1 && !test_bit(cpu, qib_cpulist))
1627 			if (!find_hca(cpu, &unit) && unit >= 0)
1628 				if (!find_free_ctxt(unit, fp, uinfo)) {
1629 					ret = 0;
1630 					goto done_chk_sdma;
1631 				}
1632 		ret = get_a_ctxt(fp, uinfo, alg);
1633 	}
1634 
1635 done_chk_sdma:
1636 	if (!ret)
1637 		ret = do_qib_user_sdma_queue_create(fp);
1638 done_ok:
1639 	mutex_unlock(&qib_mutex);
1640 
1641 done:
1642 	return ret;
1643 }
1644 
1645 
1646 static int qib_do_user_init(struct file *fp,
1647 			    const struct qib_user_info *uinfo)
1648 {
1649 	int ret;
1650 	struct qib_ctxtdata *rcd = ctxt_fp(fp);
1651 	struct qib_devdata *dd;
1652 	unsigned uctxt;
1653 
1654 	/* Subctxts don't need to initialize anything since master did it. */
1655 	if (subctxt_fp(fp)) {
1656 		ret = wait_event_interruptible(rcd->wait,
1657 			!test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag));
1658 		goto bail;
1659 	}
1660 
1661 	dd = rcd->dd;
1662 
1663 	/* some ctxts may get extra buffers, calculate that here */
1664 	uctxt = rcd->ctxt - dd->first_user_ctxt;
1665 	if (uctxt < dd->ctxts_extrabuf) {
1666 		rcd->piocnt = dd->pbufsctxt + 1;
1667 		rcd->pio_base = rcd->piocnt * uctxt;
1668 	} else {
1669 		rcd->piocnt = dd->pbufsctxt;
1670 		rcd->pio_base = rcd->piocnt * uctxt +
1671 			dd->ctxts_extrabuf;
1672 	}
1673 
1674 	/*
1675 	 * All user buffers are 2KB buffers.  If we ever support
1676 	 * giving 4KB buffers to user processes, this will need some
1677 	 * work.  Can't use piobufbase directly, because it has
1678 	 * both 2K and 4K buffer base values.  So check and handle.
1679 	 */
1680 	if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) {
1681 		if (rcd->pio_base >= dd->piobcnt2k) {
1682 			qib_dev_err(dd,
1683 				    "%u:ctxt%u: no 2KB buffers available\n",
1684 				    dd->unit, rcd->ctxt);
1685 			ret = -ENOBUFS;
1686 			goto bail;
1687 		}
1688 		rcd->piocnt = dd->piobcnt2k - rcd->pio_base;
1689 		qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n",
1690 			    rcd->ctxt, rcd->piocnt);
1691 	}
1692 
1693 	rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign;
1694 	qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1695 			       TXCHK_CHG_TYPE_USER, rcd);
1696 	/*
1697 	 * try to ensure that processes start up with consistent avail update
1698 	 * for their own range, at least.   If system very quiet, it might
1699 	 * have the in-memory copy out of date at startup for this range of
1700 	 * buffers, when a context gets re-used.  Do after the chg_pioavail
1701 	 * and before the rest of setup, so it's "almost certain" the dma
1702 	 * will have occurred (can't 100% guarantee, but should be many
1703 	 * decimals of 9s, with this ordering), given how much else happens
1704 	 * after this.
1705 	 */
1706 	dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP);
1707 
1708 	/*
1709 	 * Now allocate the rcvhdr Q and eager TIDs; skip the TID
1710 	 * array for time being.  If rcd->ctxt > chip-supported,
1711 	 * we need to do extra stuff here to handle by handling overflow
1712 	 * through ctxt 0, someday
1713 	 */
1714 	ret = qib_create_rcvhdrq(dd, rcd);
1715 	if (!ret)
1716 		ret = qib_setup_eagerbufs(rcd);
1717 	if (ret)
1718 		goto bail_pio;
1719 
1720 	rcd->tidcursor = 0; /* start at beginning after open */
1721 
1722 	/* initialize poll variables... */
1723 	rcd->urgent = 0;
1724 	rcd->urgent_poll = 0;
1725 
1726 	/*
1727 	 * Now enable the ctxt for receive.
1728 	 * For chips that are set to DMA the tail register to memory
1729 	 * when they change (and when the update bit transitions from
1730 	 * 0 to 1.  So for those chips, we turn it off and then back on.
1731 	 * This will (very briefly) affect any other open ctxts, but the
1732 	 * duration is very short, and therefore isn't an issue.  We
1733 	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1734 	 * don't have to wait to be sure the DMA update has happened
1735 	 * (chip resets head/tail to 0 on transition to enable).
1736 	 */
1737 	if (rcd->rcvhdrtail_kvaddr)
1738 		qib_clear_rcvhdrtail(rcd);
1739 
1740 	dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB,
1741 		      rcd->ctxt);
1742 
1743 	/* Notify any waiting slaves */
1744 	if (rcd->subctxt_cnt) {
1745 		clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1746 		wake_up(&rcd->wait);
1747 	}
1748 	return 0;
1749 
1750 bail_pio:
1751 	qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1752 			       TXCHK_CHG_TYPE_KERN, rcd);
1753 bail:
1754 	return ret;
1755 }
1756 
1757 /**
1758  * unlock_exptid - unlock any expected TID entries context still had in use
1759  * @rcd: ctxt
1760  *
1761  * We don't actually update the chip here, because we do a bulk update
1762  * below, using f_clear_tids.
1763  */
1764 static void unlock_expected_tids(struct qib_ctxtdata *rcd)
1765 {
1766 	struct qib_devdata *dd = rcd->dd;
1767 	int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt;
1768 	int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt;
1769 
1770 	for (i = ctxt_tidbase; i < maxtid; i++) {
1771 		struct page *p = dd->pageshadow[i];
1772 		dma_addr_t phys;
1773 
1774 		if (!p)
1775 			continue;
1776 
1777 		phys = dd->physshadow[i];
1778 		dd->physshadow[i] = dd->tidinvalid;
1779 		dd->pageshadow[i] = NULL;
1780 		pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
1781 			       PCI_DMA_FROMDEVICE);
1782 		qib_release_user_pages(&p, 1);
1783 		cnt++;
1784 	}
1785 }
1786 
1787 static int qib_close(struct inode *in, struct file *fp)
1788 {
1789 	int ret = 0;
1790 	struct qib_filedata *fd;
1791 	struct qib_ctxtdata *rcd;
1792 	struct qib_devdata *dd;
1793 	unsigned long flags;
1794 	unsigned ctxt;
1795 
1796 	mutex_lock(&qib_mutex);
1797 
1798 	fd = fp->private_data;
1799 	fp->private_data = NULL;
1800 	rcd = fd->rcd;
1801 	if (!rcd) {
1802 		mutex_unlock(&qib_mutex);
1803 		goto bail;
1804 	}
1805 
1806 	dd = rcd->dd;
1807 
1808 	/* ensure all pio buffer writes in progress are flushed */
1809 	qib_flush_wc();
1810 
1811 	/* drain user sdma queue */
1812 	if (fd->pq) {
1813 		qib_user_sdma_queue_drain(rcd->ppd, fd->pq);
1814 		qib_user_sdma_queue_destroy(fd->pq);
1815 	}
1816 
1817 	if (fd->rec_cpu_num != -1)
1818 		__clear_bit(fd->rec_cpu_num, qib_cpulist);
1819 
1820 	if (--rcd->cnt) {
1821 		/*
1822 		 * XXX If the master closes the context before the slave(s),
1823 		 * revoke the mmap for the eager receive queue so
1824 		 * the slave(s) don't wait for receive data forever.
1825 		 */
1826 		rcd->active_slaves &= ~(1 << fd->subctxt);
1827 		rcd->subpid[fd->subctxt] = 0;
1828 		mutex_unlock(&qib_mutex);
1829 		goto bail;
1830 	}
1831 
1832 	/* early; no interrupt users after this */
1833 	spin_lock_irqsave(&dd->uctxt_lock, flags);
1834 	ctxt = rcd->ctxt;
1835 	dd->rcd[ctxt] = NULL;
1836 	rcd->pid = 0;
1837 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1838 
1839 	if (rcd->rcvwait_to || rcd->piowait_to ||
1840 	    rcd->rcvnowait || rcd->pionowait) {
1841 		rcd->rcvwait_to = 0;
1842 		rcd->piowait_to = 0;
1843 		rcd->rcvnowait = 0;
1844 		rcd->pionowait = 0;
1845 	}
1846 	if (rcd->flag)
1847 		rcd->flag = 0;
1848 
1849 	if (dd->kregbase) {
1850 		/* atomically clear receive enable ctxt and intr avail. */
1851 		dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS |
1852 				  QIB_RCVCTRL_INTRAVAIL_DIS, ctxt);
1853 
1854 		/* clean up the pkeys for this ctxt user */
1855 		qib_clean_part_key(rcd, dd);
1856 		qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt);
1857 		qib_chg_pioavailkernel(dd, rcd->pio_base,
1858 				       rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL);
1859 
1860 		dd->f_clear_tids(dd, rcd);
1861 
1862 		if (dd->pageshadow)
1863 			unlock_expected_tids(rcd);
1864 		qib_stats.sps_ctxts--;
1865 		dd->freectxts++;
1866 	}
1867 
1868 	mutex_unlock(&qib_mutex);
1869 	qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */
1870 
1871 bail:
1872 	kfree(fd);
1873 	return ret;
1874 }
1875 
1876 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo)
1877 {
1878 	struct qib_ctxt_info info;
1879 	int ret;
1880 	size_t sz;
1881 	struct qib_ctxtdata *rcd = ctxt_fp(fp);
1882 	struct qib_filedata *fd;
1883 
1884 	fd = fp->private_data;
1885 
1886 	info.num_active = qib_count_active_units();
1887 	info.unit = rcd->dd->unit;
1888 	info.port = rcd->ppd->port;
1889 	info.ctxt = rcd->ctxt;
1890 	info.subctxt =  subctxt_fp(fp);
1891 	/* Number of user ctxts available for this device. */
1892 	info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt;
1893 	info.num_subctxts = rcd->subctxt_cnt;
1894 	info.rec_cpu = fd->rec_cpu_num;
1895 	sz = sizeof(info);
1896 
1897 	if (copy_to_user(uinfo, &info, sz)) {
1898 		ret = -EFAULT;
1899 		goto bail;
1900 	}
1901 	ret = 0;
1902 
1903 bail:
1904 	return ret;
1905 }
1906 
1907 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq,
1908 				 u32 __user *inflightp)
1909 {
1910 	const u32 val = qib_user_sdma_inflight_counter(pq);
1911 
1912 	if (put_user(val, inflightp))
1913 		return -EFAULT;
1914 
1915 	return 0;
1916 }
1917 
1918 static int qib_sdma_get_complete(struct qib_pportdata *ppd,
1919 				 struct qib_user_sdma_queue *pq,
1920 				 u32 __user *completep)
1921 {
1922 	u32 val;
1923 	int err;
1924 
1925 	if (!pq)
1926 		return -EINVAL;
1927 
1928 	err = qib_user_sdma_make_progress(ppd, pq);
1929 	if (err < 0)
1930 		return err;
1931 
1932 	val = qib_user_sdma_complete_counter(pq);
1933 	if (put_user(val, completep))
1934 		return -EFAULT;
1935 
1936 	return 0;
1937 }
1938 
1939 static int disarm_req_delay(struct qib_ctxtdata *rcd)
1940 {
1941 	int ret = 0;
1942 
1943 	if (!usable(rcd->ppd)) {
1944 		int i;
1945 		/*
1946 		 * if link is down, or otherwise not usable, delay
1947 		 * the caller up to 30 seconds, so we don't thrash
1948 		 * in trying to get the chip back to ACTIVE, and
1949 		 * set flag so they make the call again.
1950 		 */
1951 		if (rcd->user_event_mask) {
1952 			/*
1953 			 * subctxt_cnt is 0 if not shared, so do base
1954 			 * separately, first, then remaining subctxt, if any
1955 			 */
1956 			set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1957 				&rcd->user_event_mask[0]);
1958 			for (i = 1; i < rcd->subctxt_cnt; i++)
1959 				set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1960 					&rcd->user_event_mask[i]);
1961 		}
1962 		for (i = 0; !usable(rcd->ppd) && i < 300; i++)
1963 			msleep(100);
1964 		ret = -ENETDOWN;
1965 	}
1966 	return ret;
1967 }
1968 
1969 /*
1970  * Find all user contexts in use, and set the specified bit in their
1971  * event mask.
1972  * See also find_ctxt() for a similar use, that is specific to send buffers.
1973  */
1974 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit)
1975 {
1976 	struct qib_ctxtdata *rcd;
1977 	unsigned ctxt;
1978 	int ret = 0;
1979 	unsigned long flags;
1980 
1981 	spin_lock_irqsave(&ppd->dd->uctxt_lock, flags);
1982 	for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts;
1983 	     ctxt++) {
1984 		rcd = ppd->dd->rcd[ctxt];
1985 		if (!rcd)
1986 			continue;
1987 		if (rcd->user_event_mask) {
1988 			int i;
1989 			/*
1990 			 * subctxt_cnt is 0 if not shared, so do base
1991 			 * separately, first, then remaining subctxt, if any
1992 			 */
1993 			set_bit(evtbit, &rcd->user_event_mask[0]);
1994 			for (i = 1; i < rcd->subctxt_cnt; i++)
1995 				set_bit(evtbit, &rcd->user_event_mask[i]);
1996 		}
1997 		ret = 1;
1998 		break;
1999 	}
2000 	spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags);
2001 
2002 	return ret;
2003 }
2004 
2005 /*
2006  * clear the event notifier events for this context.
2007  * For the DISARM_BUFS case, we also take action (this obsoletes
2008  * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards
2009  * compatibility.
2010  * Other bits don't currently require actions, just atomically clear.
2011  * User process then performs actions appropriate to bit having been
2012  * set, if desired, and checks again in future.
2013  */
2014 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt,
2015 			      unsigned long events)
2016 {
2017 	int ret = 0, i;
2018 
2019 	for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) {
2020 		if (!test_bit(i, &events))
2021 			continue;
2022 		if (i == _QIB_EVENT_DISARM_BUFS_BIT) {
2023 			(void)qib_disarm_piobufs_ifneeded(rcd);
2024 			ret = disarm_req_delay(rcd);
2025 		} else
2026 			clear_bit(i, &rcd->user_event_mask[subctxt]);
2027 	}
2028 	return ret;
2029 }
2030 
2031 static ssize_t qib_write(struct file *fp, const char __user *data,
2032 			 size_t count, loff_t *off)
2033 {
2034 	const struct qib_cmd __user *ucmd;
2035 	struct qib_ctxtdata *rcd;
2036 	const void __user *src;
2037 	size_t consumed, copy = 0;
2038 	struct qib_cmd cmd;
2039 	ssize_t ret = 0;
2040 	void *dest;
2041 
2042 	if (!ib_safe_file_access(fp)) {
2043 		pr_err_once("qib_write: process %d (%s) changed security contexts after opening file descriptor, this is not allowed.\n",
2044 			    task_tgid_vnr(current), current->comm);
2045 		return -EACCES;
2046 	}
2047 
2048 	if (count < sizeof(cmd.type)) {
2049 		ret = -EINVAL;
2050 		goto bail;
2051 	}
2052 
2053 	ucmd = (const struct qib_cmd __user *) data;
2054 
2055 	if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) {
2056 		ret = -EFAULT;
2057 		goto bail;
2058 	}
2059 
2060 	consumed = sizeof(cmd.type);
2061 
2062 	switch (cmd.type) {
2063 	case QIB_CMD_ASSIGN_CTXT:
2064 	case QIB_CMD_USER_INIT:
2065 		copy = sizeof(cmd.cmd.user_info);
2066 		dest = &cmd.cmd.user_info;
2067 		src = &ucmd->cmd.user_info;
2068 		break;
2069 
2070 	case QIB_CMD_RECV_CTRL:
2071 		copy = sizeof(cmd.cmd.recv_ctrl);
2072 		dest = &cmd.cmd.recv_ctrl;
2073 		src = &ucmd->cmd.recv_ctrl;
2074 		break;
2075 
2076 	case QIB_CMD_CTXT_INFO:
2077 		copy = sizeof(cmd.cmd.ctxt_info);
2078 		dest = &cmd.cmd.ctxt_info;
2079 		src = &ucmd->cmd.ctxt_info;
2080 		break;
2081 
2082 	case QIB_CMD_TID_UPDATE:
2083 	case QIB_CMD_TID_FREE:
2084 		copy = sizeof(cmd.cmd.tid_info);
2085 		dest = &cmd.cmd.tid_info;
2086 		src = &ucmd->cmd.tid_info;
2087 		break;
2088 
2089 	case QIB_CMD_SET_PART_KEY:
2090 		copy = sizeof(cmd.cmd.part_key);
2091 		dest = &cmd.cmd.part_key;
2092 		src = &ucmd->cmd.part_key;
2093 		break;
2094 
2095 	case QIB_CMD_DISARM_BUFS:
2096 	case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */
2097 		copy = 0;
2098 		src = NULL;
2099 		dest = NULL;
2100 		break;
2101 
2102 	case QIB_CMD_POLL_TYPE:
2103 		copy = sizeof(cmd.cmd.poll_type);
2104 		dest = &cmd.cmd.poll_type;
2105 		src = &ucmd->cmd.poll_type;
2106 		break;
2107 
2108 	case QIB_CMD_ARMLAUNCH_CTRL:
2109 		copy = sizeof(cmd.cmd.armlaunch_ctrl);
2110 		dest = &cmd.cmd.armlaunch_ctrl;
2111 		src = &ucmd->cmd.armlaunch_ctrl;
2112 		break;
2113 
2114 	case QIB_CMD_SDMA_INFLIGHT:
2115 		copy = sizeof(cmd.cmd.sdma_inflight);
2116 		dest = &cmd.cmd.sdma_inflight;
2117 		src = &ucmd->cmd.sdma_inflight;
2118 		break;
2119 
2120 	case QIB_CMD_SDMA_COMPLETE:
2121 		copy = sizeof(cmd.cmd.sdma_complete);
2122 		dest = &cmd.cmd.sdma_complete;
2123 		src = &ucmd->cmd.sdma_complete;
2124 		break;
2125 
2126 	case QIB_CMD_ACK_EVENT:
2127 		copy = sizeof(cmd.cmd.event_mask);
2128 		dest = &cmd.cmd.event_mask;
2129 		src = &ucmd->cmd.event_mask;
2130 		break;
2131 
2132 	default:
2133 		ret = -EINVAL;
2134 		goto bail;
2135 	}
2136 
2137 	if (copy) {
2138 		if ((count - consumed) < copy) {
2139 			ret = -EINVAL;
2140 			goto bail;
2141 		}
2142 		if (copy_from_user(dest, src, copy)) {
2143 			ret = -EFAULT;
2144 			goto bail;
2145 		}
2146 		consumed += copy;
2147 	}
2148 
2149 	rcd = ctxt_fp(fp);
2150 	if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) {
2151 		ret = -EINVAL;
2152 		goto bail;
2153 	}
2154 
2155 	switch (cmd.type) {
2156 	case QIB_CMD_ASSIGN_CTXT:
2157 		if (rcd) {
2158 			ret = -EINVAL;
2159 			goto bail;
2160 		}
2161 
2162 		ret = qib_assign_ctxt(fp, &cmd.cmd.user_info);
2163 		if (ret)
2164 			goto bail;
2165 		break;
2166 
2167 	case QIB_CMD_USER_INIT:
2168 		ret = qib_do_user_init(fp, &cmd.cmd.user_info);
2169 		if (ret)
2170 			goto bail;
2171 		ret = qib_get_base_info(fp, (void __user *) (unsigned long)
2172 					cmd.cmd.user_info.spu_base_info,
2173 					cmd.cmd.user_info.spu_base_info_size);
2174 		break;
2175 
2176 	case QIB_CMD_RECV_CTRL:
2177 		ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl);
2178 		break;
2179 
2180 	case QIB_CMD_CTXT_INFO:
2181 		ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *)
2182 				    (unsigned long) cmd.cmd.ctxt_info);
2183 		break;
2184 
2185 	case QIB_CMD_TID_UPDATE:
2186 		ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info);
2187 		break;
2188 
2189 	case QIB_CMD_TID_FREE:
2190 		ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info);
2191 		break;
2192 
2193 	case QIB_CMD_SET_PART_KEY:
2194 		ret = qib_set_part_key(rcd, cmd.cmd.part_key);
2195 		break;
2196 
2197 	case QIB_CMD_DISARM_BUFS:
2198 		(void)qib_disarm_piobufs_ifneeded(rcd);
2199 		ret = disarm_req_delay(rcd);
2200 		break;
2201 
2202 	case QIB_CMD_PIOAVAILUPD:
2203 		qib_force_pio_avail_update(rcd->dd);
2204 		break;
2205 
2206 	case QIB_CMD_POLL_TYPE:
2207 		rcd->poll_type = cmd.cmd.poll_type;
2208 		break;
2209 
2210 	case QIB_CMD_ARMLAUNCH_CTRL:
2211 		rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl);
2212 		break;
2213 
2214 	case QIB_CMD_SDMA_INFLIGHT:
2215 		ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp),
2216 					    (u32 __user *) (unsigned long)
2217 					    cmd.cmd.sdma_inflight);
2218 		break;
2219 
2220 	case QIB_CMD_SDMA_COMPLETE:
2221 		ret = qib_sdma_get_complete(rcd->ppd,
2222 					    user_sdma_queue_fp(fp),
2223 					    (u32 __user *) (unsigned long)
2224 					    cmd.cmd.sdma_complete);
2225 		break;
2226 
2227 	case QIB_CMD_ACK_EVENT:
2228 		ret = qib_user_event_ack(rcd, subctxt_fp(fp),
2229 					 cmd.cmd.event_mask);
2230 		break;
2231 	}
2232 
2233 	if (ret >= 0)
2234 		ret = consumed;
2235 
2236 bail:
2237 	return ret;
2238 }
2239 
2240 static ssize_t qib_write_iter(struct kiocb *iocb, struct iov_iter *from)
2241 {
2242 	struct qib_filedata *fp = iocb->ki_filp->private_data;
2243 	struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp);
2244 	struct qib_user_sdma_queue *pq = fp->pq;
2245 
2246 	if (!iter_is_iovec(from) || !from->nr_segs || !pq)
2247 		return -EINVAL;
2248 
2249 	return qib_user_sdma_writev(rcd, pq, from->iov, from->nr_segs);
2250 }
2251 
2252 static struct class *qib_class;
2253 static dev_t qib_dev;
2254 
2255 int qib_cdev_init(int minor, const char *name,
2256 		  const struct file_operations *fops,
2257 		  struct cdev **cdevp, struct device **devp)
2258 {
2259 	const dev_t dev = MKDEV(MAJOR(qib_dev), minor);
2260 	struct cdev *cdev;
2261 	struct device *device = NULL;
2262 	int ret;
2263 
2264 	cdev = cdev_alloc();
2265 	if (!cdev) {
2266 		pr_err("Could not allocate cdev for minor %d, %s\n",
2267 		       minor, name);
2268 		ret = -ENOMEM;
2269 		goto done;
2270 	}
2271 
2272 	cdev->owner = THIS_MODULE;
2273 	cdev->ops = fops;
2274 	kobject_set_name(&cdev->kobj, name);
2275 
2276 	ret = cdev_add(cdev, dev, 1);
2277 	if (ret < 0) {
2278 		pr_err("Could not add cdev for minor %d, %s (err %d)\n",
2279 		       minor, name, -ret);
2280 		goto err_cdev;
2281 	}
2282 
2283 	device = device_create(qib_class, NULL, dev, NULL, "%s", name);
2284 	if (!IS_ERR(device))
2285 		goto done;
2286 	ret = PTR_ERR(device);
2287 	device = NULL;
2288 	pr_err("Could not create device for minor %d, %s (err %d)\n",
2289 	       minor, name, -ret);
2290 err_cdev:
2291 	cdev_del(cdev);
2292 	cdev = NULL;
2293 done:
2294 	*cdevp = cdev;
2295 	*devp = device;
2296 	return ret;
2297 }
2298 
2299 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp)
2300 {
2301 	struct device *device = *devp;
2302 
2303 	if (device) {
2304 		device_unregister(device);
2305 		*devp = NULL;
2306 	}
2307 
2308 	if (*cdevp) {
2309 		cdev_del(*cdevp);
2310 		*cdevp = NULL;
2311 	}
2312 }
2313 
2314 static struct cdev *wildcard_cdev;
2315 static struct device *wildcard_device;
2316 
2317 int __init qib_dev_init(void)
2318 {
2319 	int ret;
2320 
2321 	ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME);
2322 	if (ret < 0) {
2323 		pr_err("Could not allocate chrdev region (err %d)\n", -ret);
2324 		goto done;
2325 	}
2326 
2327 	qib_class = class_create(THIS_MODULE, "ipath");
2328 	if (IS_ERR(qib_class)) {
2329 		ret = PTR_ERR(qib_class);
2330 		pr_err("Could not create device class (err %d)\n", -ret);
2331 		unregister_chrdev_region(qib_dev, QIB_NMINORS);
2332 	}
2333 
2334 done:
2335 	return ret;
2336 }
2337 
2338 void qib_dev_cleanup(void)
2339 {
2340 	if (qib_class) {
2341 		class_destroy(qib_class);
2342 		qib_class = NULL;
2343 	}
2344 
2345 	unregister_chrdev_region(qib_dev, QIB_NMINORS);
2346 }
2347 
2348 static atomic_t user_count = ATOMIC_INIT(0);
2349 
2350 static void qib_user_remove(struct qib_devdata *dd)
2351 {
2352 	if (atomic_dec_return(&user_count) == 0)
2353 		qib_cdev_cleanup(&wildcard_cdev, &wildcard_device);
2354 
2355 	qib_cdev_cleanup(&dd->user_cdev, &dd->user_device);
2356 }
2357 
2358 static int qib_user_add(struct qib_devdata *dd)
2359 {
2360 	char name[10];
2361 	int ret;
2362 
2363 	if (atomic_inc_return(&user_count) == 1) {
2364 		ret = qib_cdev_init(0, "ipath", &qib_file_ops,
2365 				    &wildcard_cdev, &wildcard_device);
2366 		if (ret)
2367 			goto done;
2368 	}
2369 
2370 	snprintf(name, sizeof(name), "ipath%d", dd->unit);
2371 	ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops,
2372 			    &dd->user_cdev, &dd->user_device);
2373 	if (ret)
2374 		qib_user_remove(dd);
2375 done:
2376 	return ret;
2377 }
2378 
2379 /*
2380  * Create per-unit files in /dev
2381  */
2382 int qib_device_create(struct qib_devdata *dd)
2383 {
2384 	int r, ret;
2385 
2386 	r = qib_user_add(dd);
2387 	ret = qib_diag_add(dd);
2388 	if (r && !ret)
2389 		ret = r;
2390 	return ret;
2391 }
2392 
2393 /*
2394  * Remove per-unit files in /dev
2395  * void, core kernel returns no errors for this stuff
2396  */
2397 void qib_device_remove(struct qib_devdata *dd)
2398 {
2399 	qib_user_remove(dd);
2400 	qib_diag_remove(dd);
2401 }
2402