1 /* 2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved. 3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/pci.h> 36 #include <linux/poll.h> 37 #include <linux/cdev.h> 38 #include <linux/swap.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/io.h> 42 #include <linux/jiffies.h> 43 #include <asm/pgtable.h> 44 #include <linux/delay.h> 45 #include <linux/export.h> 46 #include <linux/uio.h> 47 48 #include "qib.h" 49 #include "qib_common.h" 50 #include "qib_user_sdma.h" 51 52 #undef pr_fmt 53 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt 54 55 static int qib_open(struct inode *, struct file *); 56 static int qib_close(struct inode *, struct file *); 57 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *); 58 static ssize_t qib_write_iter(struct kiocb *, struct iov_iter *); 59 static unsigned int qib_poll(struct file *, struct poll_table_struct *); 60 static int qib_mmapf(struct file *, struct vm_area_struct *); 61 62 /* 63 * This is really, really weird shit - write() and writev() here 64 * have completely unrelated semantics. Sucky userland ABI, 65 * film at 11. 66 */ 67 static const struct file_operations qib_file_ops = { 68 .owner = THIS_MODULE, 69 .write = qib_write, 70 .write_iter = qib_write_iter, 71 .open = qib_open, 72 .release = qib_close, 73 .poll = qib_poll, 74 .mmap = qib_mmapf, 75 .llseek = noop_llseek, 76 }; 77 78 /* 79 * Convert kernel virtual addresses to physical addresses so they don't 80 * potentially conflict with the chip addresses used as mmap offsets. 81 * It doesn't really matter what mmap offset we use as long as we can 82 * interpret it correctly. 83 */ 84 static u64 cvt_kvaddr(void *p) 85 { 86 struct page *page; 87 u64 paddr = 0; 88 89 page = vmalloc_to_page(p); 90 if (page) 91 paddr = page_to_pfn(page) << PAGE_SHIFT; 92 93 return paddr; 94 } 95 96 static int qib_get_base_info(struct file *fp, void __user *ubase, 97 size_t ubase_size) 98 { 99 struct qib_ctxtdata *rcd = ctxt_fp(fp); 100 int ret = 0; 101 struct qib_base_info *kinfo = NULL; 102 struct qib_devdata *dd = rcd->dd; 103 struct qib_pportdata *ppd = rcd->ppd; 104 unsigned subctxt_cnt; 105 int shared, master; 106 size_t sz; 107 108 subctxt_cnt = rcd->subctxt_cnt; 109 if (!subctxt_cnt) { 110 shared = 0; 111 master = 0; 112 subctxt_cnt = 1; 113 } else { 114 shared = 1; 115 master = !subctxt_fp(fp); 116 } 117 118 sz = sizeof(*kinfo); 119 /* If context sharing is not requested, allow the old size structure */ 120 if (!shared) 121 sz -= 7 * sizeof(u64); 122 if (ubase_size < sz) { 123 ret = -EINVAL; 124 goto bail; 125 } 126 127 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); 128 if (kinfo == NULL) { 129 ret = -ENOMEM; 130 goto bail; 131 } 132 133 ret = dd->f_get_base_info(rcd, kinfo); 134 if (ret < 0) 135 goto bail; 136 137 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt; 138 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize; 139 kinfo->spi_tidegrcnt = rcd->rcvegrcnt; 140 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize; 141 /* 142 * have to mmap whole thing 143 */ 144 kinfo->spi_rcv_egrbuftotlen = 145 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 146 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk; 147 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / 148 rcd->rcvegrbuf_chunks; 149 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt; 150 if (master) 151 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt; 152 /* 153 * for this use, may be cfgctxts summed over all chips that 154 * are are configured and present 155 */ 156 kinfo->spi_nctxts = dd->cfgctxts; 157 /* unit (chip/board) our context is on */ 158 kinfo->spi_unit = dd->unit; 159 kinfo->spi_port = ppd->port; 160 /* for now, only a single page */ 161 kinfo->spi_tid_maxsize = PAGE_SIZE; 162 163 /* 164 * Doing this per context, and based on the skip value, etc. This has 165 * to be the actual buffer size, since the protocol code treats it 166 * as an array. 167 * 168 * These have to be set to user addresses in the user code via mmap. 169 * These values are used on return to user code for the mmap target 170 * addresses only. For 32 bit, same 44 bit address problem, so use 171 * the physical address, not virtual. Before 2.6.11, using the 172 * page_address() macro worked, but in 2.6.11, even that returns the 173 * full 64 bit address (upper bits all 1's). So far, using the 174 * physical addresses (or chip offsets, for chip mapping) works, but 175 * no doubt some future kernel release will change that, and we'll be 176 * on to yet another method of dealing with this. 177 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful 178 * since the chips with non-zero rhf_offset don't normally 179 * enable tail register updates to host memory, but for testing, 180 * both can be enabled and used. 181 */ 182 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys; 183 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys; 184 kinfo->spi_rhf_offset = dd->rhf_offset; 185 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys; 186 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys; 187 /* setup per-unit (not port) status area for user programs */ 188 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + 189 (char *) ppd->statusp - 190 (char *) dd->pioavailregs_dma; 191 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt; 192 if (!shared) { 193 kinfo->spi_piocnt = rcd->piocnt; 194 kinfo->spi_piobufbase = (u64) rcd->piobufs; 195 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask); 196 } else if (master) { 197 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) + 198 (rcd->piocnt % subctxt_cnt); 199 /* Master's PIO buffers are after all the slave's */ 200 kinfo->spi_piobufbase = (u64) rcd->piobufs + 201 dd->palign * 202 (rcd->piocnt - kinfo->spi_piocnt); 203 } else { 204 unsigned slave = subctxt_fp(fp) - 1; 205 206 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt; 207 kinfo->spi_piobufbase = (u64) rcd->piobufs + 208 dd->palign * kinfo->spi_piocnt * slave; 209 } 210 211 if (shared) { 212 kinfo->spi_sendbuf_status = 213 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]); 214 /* only spi_subctxt_* fields should be set in this block! */ 215 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase); 216 217 kinfo->spi_subctxt_rcvegrbuf = 218 cvt_kvaddr(rcd->subctxt_rcvegrbuf); 219 kinfo->spi_subctxt_rcvhdr_base = 220 cvt_kvaddr(rcd->subctxt_rcvhdr_base); 221 } 222 223 /* 224 * All user buffers are 2KB buffers. If we ever support 225 * giving 4KB buffers to user processes, this will need some 226 * work. Can't use piobufbase directly, because it has 227 * both 2K and 4K buffer base values. 228 */ 229 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) / 230 dd->palign; 231 kinfo->spi_pioalign = dd->palign; 232 kinfo->spi_qpair = QIB_KD_QP; 233 /* 234 * user mode PIO buffers are always 2KB, even when 4KB can 235 * be received, and sent via the kernel; this is ibmaxlen 236 * for 2K MTU. 237 */ 238 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32); 239 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */ 240 kinfo->spi_ctxt = rcd->ctxt; 241 kinfo->spi_subctxt = subctxt_fp(fp); 242 kinfo->spi_sw_version = QIB_KERN_SWVERSION; 243 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */ 244 kinfo->spi_hw_version = dd->revision; 245 246 if (master) 247 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER; 248 249 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo); 250 if (copy_to_user(ubase, kinfo, sz)) 251 ret = -EFAULT; 252 bail: 253 kfree(kinfo); 254 return ret; 255 } 256 257 /** 258 * qib_tid_update - update a context TID 259 * @rcd: the context 260 * @fp: the qib device file 261 * @ti: the TID information 262 * 263 * The new implementation as of Oct 2004 is that the driver assigns 264 * the tid and returns it to the caller. To reduce search time, we 265 * keep a cursor for each context, walking the shadow tid array to find 266 * one that's not in use. 267 * 268 * For now, if we can't allocate the full list, we fail, although 269 * in the long run, we'll allocate as many as we can, and the 270 * caller will deal with that by trying the remaining pages later. 271 * That means that when we fail, we have to mark the tids as not in 272 * use again, in our shadow copy. 273 * 274 * It's up to the caller to free the tids when they are done. 275 * We'll unlock the pages as they free them. 276 * 277 * Also, right now we are locking one page at a time, but since 278 * the intended use of this routine is for a single group of 279 * virtually contiguous pages, that should change to improve 280 * performance. 281 */ 282 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp, 283 const struct qib_tid_info *ti) 284 { 285 int ret = 0, ntids; 286 u32 tid, ctxttid, cnt, i, tidcnt, tidoff; 287 u16 *tidlist; 288 struct qib_devdata *dd = rcd->dd; 289 u64 physaddr; 290 unsigned long vaddr; 291 u64 __iomem *tidbase; 292 unsigned long tidmap[8]; 293 struct page **pagep = NULL; 294 unsigned subctxt = subctxt_fp(fp); 295 296 if (!dd->pageshadow) { 297 ret = -ENOMEM; 298 goto done; 299 } 300 301 cnt = ti->tidcnt; 302 if (!cnt) { 303 ret = -EFAULT; 304 goto done; 305 } 306 ctxttid = rcd->ctxt * dd->rcvtidcnt; 307 if (!rcd->subctxt_cnt) { 308 tidcnt = dd->rcvtidcnt; 309 tid = rcd->tidcursor; 310 tidoff = 0; 311 } else if (!subctxt) { 312 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 313 (dd->rcvtidcnt % rcd->subctxt_cnt); 314 tidoff = dd->rcvtidcnt - tidcnt; 315 ctxttid += tidoff; 316 tid = tidcursor_fp(fp); 317 } else { 318 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 319 tidoff = tidcnt * (subctxt - 1); 320 ctxttid += tidoff; 321 tid = tidcursor_fp(fp); 322 } 323 if (cnt > tidcnt) { 324 /* make sure it all fits in tid_pg_list */ 325 qib_devinfo(dd->pcidev, 326 "Process tried to allocate %u TIDs, only trying max (%u)\n", 327 cnt, tidcnt); 328 cnt = tidcnt; 329 } 330 pagep = (struct page **) rcd->tid_pg_list; 331 tidlist = (u16 *) &pagep[dd->rcvtidcnt]; 332 pagep += tidoff; 333 tidlist += tidoff; 334 335 memset(tidmap, 0, sizeof(tidmap)); 336 /* before decrement; chip actual # */ 337 ntids = tidcnt; 338 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) + 339 dd->rcvtidbase + 340 ctxttid * sizeof(*tidbase)); 341 342 /* virtual address of first page in transfer */ 343 vaddr = ti->tidvaddr; 344 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr, 345 cnt * PAGE_SIZE)) { 346 ret = -EFAULT; 347 goto done; 348 } 349 ret = qib_get_user_pages(vaddr, cnt, pagep); 350 if (ret) { 351 /* 352 * if (ret == -EBUSY) 353 * We can't continue because the pagep array won't be 354 * initialized. This should never happen, 355 * unless perhaps the user has mpin'ed the pages 356 * themselves. 357 */ 358 qib_devinfo( 359 dd->pcidev, 360 "Failed to lock addr %p, %u pages: errno %d\n", 361 (void *) vaddr, cnt, -ret); 362 goto done; 363 } 364 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { 365 for (; ntids--; tid++) { 366 if (tid == tidcnt) 367 tid = 0; 368 if (!dd->pageshadow[ctxttid + tid]) 369 break; 370 } 371 if (ntids < 0) { 372 /* 373 * Oops, wrapped all the way through their TIDs, 374 * and didn't have enough free; see comments at 375 * start of routine 376 */ 377 i--; /* last tidlist[i] not filled in */ 378 ret = -ENOMEM; 379 break; 380 } 381 tidlist[i] = tid + tidoff; 382 /* we "know" system pages and TID pages are same size */ 383 dd->pageshadow[ctxttid + tid] = pagep[i]; 384 dd->physshadow[ctxttid + tid] = 385 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE, 386 PCI_DMA_FROMDEVICE); 387 /* 388 * don't need atomic or it's overhead 389 */ 390 __set_bit(tid, tidmap); 391 physaddr = dd->physshadow[ctxttid + tid]; 392 /* PERFORMANCE: below should almost certainly be cached */ 393 dd->f_put_tid(dd, &tidbase[tid], 394 RCVHQ_RCV_TYPE_EXPECTED, physaddr); 395 /* 396 * don't check this tid in qib_ctxtshadow, since we 397 * just filled it in; start with the next one. 398 */ 399 tid++; 400 } 401 402 if (ret) { 403 u32 limit; 404 cleanup: 405 /* jump here if copy out of updated info failed... */ 406 /* same code that's in qib_free_tid() */ 407 limit = sizeof(tidmap) * BITS_PER_BYTE; 408 if (limit > tidcnt) 409 /* just in case size changes in future */ 410 limit = tidcnt; 411 tid = find_first_bit((const unsigned long *)tidmap, limit); 412 for (; tid < limit; tid++) { 413 if (!test_bit(tid, tidmap)) 414 continue; 415 if (dd->pageshadow[ctxttid + tid]) { 416 dma_addr_t phys; 417 418 phys = dd->physshadow[ctxttid + tid]; 419 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 420 /* PERFORMANCE: below should almost certainly 421 * be cached 422 */ 423 dd->f_put_tid(dd, &tidbase[tid], 424 RCVHQ_RCV_TYPE_EXPECTED, 425 dd->tidinvalid); 426 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 427 PCI_DMA_FROMDEVICE); 428 dd->pageshadow[ctxttid + tid] = NULL; 429 } 430 } 431 qib_release_user_pages(pagep, cnt); 432 } else { 433 /* 434 * Copy the updated array, with qib_tid's filled in, back 435 * to user. Since we did the copy in already, this "should 436 * never fail" If it does, we have to clean up... 437 */ 438 if (copy_to_user((void __user *) 439 (unsigned long) ti->tidlist, 440 tidlist, cnt * sizeof(*tidlist))) { 441 ret = -EFAULT; 442 goto cleanup; 443 } 444 if (copy_to_user((void __user *) (unsigned long) ti->tidmap, 445 tidmap, sizeof(tidmap))) { 446 ret = -EFAULT; 447 goto cleanup; 448 } 449 if (tid == tidcnt) 450 tid = 0; 451 if (!rcd->subctxt_cnt) 452 rcd->tidcursor = tid; 453 else 454 tidcursor_fp(fp) = tid; 455 } 456 457 done: 458 return ret; 459 } 460 461 /** 462 * qib_tid_free - free a context TID 463 * @rcd: the context 464 * @subctxt: the subcontext 465 * @ti: the TID info 466 * 467 * right now we are unlocking one page at a time, but since 468 * the intended use of this routine is for a single group of 469 * virtually contiguous pages, that should change to improve 470 * performance. We check that the TID is in range for this context 471 * but otherwise don't check validity; if user has an error and 472 * frees the wrong tid, it's only their own data that can thereby 473 * be corrupted. We do check that the TID was in use, for sanity 474 * We always use our idea of the saved address, not the address that 475 * they pass in to us. 476 */ 477 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt, 478 const struct qib_tid_info *ti) 479 { 480 int ret = 0; 481 u32 tid, ctxttid, cnt, limit, tidcnt; 482 struct qib_devdata *dd = rcd->dd; 483 u64 __iomem *tidbase; 484 unsigned long tidmap[8]; 485 486 if (!dd->pageshadow) { 487 ret = -ENOMEM; 488 goto done; 489 } 490 491 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap, 492 sizeof(tidmap))) { 493 ret = -EFAULT; 494 goto done; 495 } 496 497 ctxttid = rcd->ctxt * dd->rcvtidcnt; 498 if (!rcd->subctxt_cnt) 499 tidcnt = dd->rcvtidcnt; 500 else if (!subctxt) { 501 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 502 (dd->rcvtidcnt % rcd->subctxt_cnt); 503 ctxttid += dd->rcvtidcnt - tidcnt; 504 } else { 505 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 506 ctxttid += tidcnt * (subctxt - 1); 507 } 508 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) + 509 dd->rcvtidbase + 510 ctxttid * sizeof(*tidbase)); 511 512 limit = sizeof(tidmap) * BITS_PER_BYTE; 513 if (limit > tidcnt) 514 /* just in case size changes in future */ 515 limit = tidcnt; 516 tid = find_first_bit(tidmap, limit); 517 for (cnt = 0; tid < limit; tid++) { 518 /* 519 * small optimization; if we detect a run of 3 or so without 520 * any set, use find_first_bit again. That's mainly to 521 * accelerate the case where we wrapped, so we have some at 522 * the beginning, and some at the end, and a big gap 523 * in the middle. 524 */ 525 if (!test_bit(tid, tidmap)) 526 continue; 527 cnt++; 528 if (dd->pageshadow[ctxttid + tid]) { 529 struct page *p; 530 dma_addr_t phys; 531 532 p = dd->pageshadow[ctxttid + tid]; 533 dd->pageshadow[ctxttid + tid] = NULL; 534 phys = dd->physshadow[ctxttid + tid]; 535 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 536 /* PERFORMANCE: below should almost certainly be 537 * cached 538 */ 539 dd->f_put_tid(dd, &tidbase[tid], 540 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); 541 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 542 PCI_DMA_FROMDEVICE); 543 qib_release_user_pages(&p, 1); 544 } 545 } 546 done: 547 return ret; 548 } 549 550 /** 551 * qib_set_part_key - set a partition key 552 * @rcd: the context 553 * @key: the key 554 * 555 * We can have up to 4 active at a time (other than the default, which is 556 * always allowed). This is somewhat tricky, since multiple contexts may set 557 * the same key, so we reference count them, and clean up at exit. All 4 558 * partition keys are packed into a single qlogic_ib register. It's an 559 * error for a process to set the same pkey multiple times. We provide no 560 * mechanism to de-allocate a pkey at this time, we may eventually need to 561 * do that. I've used the atomic operations, and no locking, and only make 562 * a single pass through what's available. This should be more than 563 * adequate for some time. I'll think about spinlocks or the like if and as 564 * it's necessary. 565 */ 566 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key) 567 { 568 struct qib_pportdata *ppd = rcd->ppd; 569 int i, any = 0, pidx = -1; 570 u16 lkey = key & 0x7FFF; 571 int ret; 572 573 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) { 574 /* nothing to do; this key always valid */ 575 ret = 0; 576 goto bail; 577 } 578 579 if (!lkey) { 580 ret = -EINVAL; 581 goto bail; 582 } 583 584 /* 585 * Set the full membership bit, because it has to be 586 * set in the register or the packet, and it seems 587 * cleaner to set in the register than to force all 588 * callers to set it. 589 */ 590 key |= 0x8000; 591 592 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 593 if (!rcd->pkeys[i] && pidx == -1) 594 pidx = i; 595 if (rcd->pkeys[i] == key) { 596 ret = -EEXIST; 597 goto bail; 598 } 599 } 600 if (pidx == -1) { 601 ret = -EBUSY; 602 goto bail; 603 } 604 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 605 if (!ppd->pkeys[i]) { 606 any++; 607 continue; 608 } 609 if (ppd->pkeys[i] == key) { 610 atomic_t *pkrefs = &ppd->pkeyrefs[i]; 611 612 if (atomic_inc_return(pkrefs) > 1) { 613 rcd->pkeys[pidx] = key; 614 ret = 0; 615 goto bail; 616 } else { 617 /* 618 * lost race, decrement count, catch below 619 */ 620 atomic_dec(pkrefs); 621 any++; 622 } 623 } 624 if ((ppd->pkeys[i] & 0x7FFF) == lkey) { 625 /* 626 * It makes no sense to have both the limited and 627 * full membership PKEY set at the same time since 628 * the unlimited one will disable the limited one. 629 */ 630 ret = -EEXIST; 631 goto bail; 632 } 633 } 634 if (!any) { 635 ret = -EBUSY; 636 goto bail; 637 } 638 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 639 if (!ppd->pkeys[i] && 640 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) { 641 rcd->pkeys[pidx] = key; 642 ppd->pkeys[i] = key; 643 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 644 ret = 0; 645 goto bail; 646 } 647 } 648 ret = -EBUSY; 649 650 bail: 651 return ret; 652 } 653 654 /** 655 * qib_manage_rcvq - manage a context's receive queue 656 * @rcd: the context 657 * @subctxt: the subcontext 658 * @start_stop: action to carry out 659 * 660 * start_stop == 0 disables receive on the context, for use in queue 661 * overflow conditions. start_stop==1 re-enables, to be used to 662 * re-init the software copy of the head register 663 */ 664 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt, 665 int start_stop) 666 { 667 struct qib_devdata *dd = rcd->dd; 668 unsigned int rcvctrl_op; 669 670 if (subctxt) 671 goto bail; 672 /* atomically clear receive enable ctxt. */ 673 if (start_stop) { 674 /* 675 * On enable, force in-memory copy of the tail register to 676 * 0, so that protocol code doesn't have to worry about 677 * whether or not the chip has yet updated the in-memory 678 * copy or not on return from the system call. The chip 679 * always resets it's tail register back to 0 on a 680 * transition from disabled to enabled. 681 */ 682 if (rcd->rcvhdrtail_kvaddr) 683 qib_clear_rcvhdrtail(rcd); 684 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB; 685 } else 686 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS; 687 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt); 688 /* always; new head should be equal to new tail; see above */ 689 bail: 690 return 0; 691 } 692 693 static void qib_clean_part_key(struct qib_ctxtdata *rcd, 694 struct qib_devdata *dd) 695 { 696 int i, j, pchanged = 0; 697 u64 oldpkey; 698 struct qib_pportdata *ppd = rcd->ppd; 699 700 /* for debugging only */ 701 oldpkey = (u64) ppd->pkeys[0] | 702 ((u64) ppd->pkeys[1] << 16) | 703 ((u64) ppd->pkeys[2] << 32) | 704 ((u64) ppd->pkeys[3] << 48); 705 706 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 707 if (!rcd->pkeys[i]) 708 continue; 709 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) { 710 /* check for match independent of the global bit */ 711 if ((ppd->pkeys[j] & 0x7fff) != 712 (rcd->pkeys[i] & 0x7fff)) 713 continue; 714 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) { 715 ppd->pkeys[j] = 0; 716 pchanged++; 717 } 718 break; 719 } 720 rcd->pkeys[i] = 0; 721 } 722 if (pchanged) 723 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 724 } 725 726 /* common code for the mappings on dma_alloc_coherent mem */ 727 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd, 728 unsigned len, void *kvaddr, u32 write_ok, char *what) 729 { 730 struct qib_devdata *dd = rcd->dd; 731 unsigned long pfn; 732 int ret; 733 734 if ((vma->vm_end - vma->vm_start) > len) { 735 qib_devinfo(dd->pcidev, 736 "FAIL on %s: len %lx > %x\n", what, 737 vma->vm_end - vma->vm_start, len); 738 ret = -EFAULT; 739 goto bail; 740 } 741 742 /* 743 * shared context user code requires rcvhdrq mapped r/w, others 744 * only allowed readonly mapping. 745 */ 746 if (!write_ok) { 747 if (vma->vm_flags & VM_WRITE) { 748 qib_devinfo(dd->pcidev, 749 "%s must be mapped readonly\n", what); 750 ret = -EPERM; 751 goto bail; 752 } 753 754 /* don't allow them to later change with mprotect */ 755 vma->vm_flags &= ~VM_MAYWRITE; 756 } 757 758 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT; 759 ret = remap_pfn_range(vma, vma->vm_start, pfn, 760 len, vma->vm_page_prot); 761 if (ret) 762 qib_devinfo(dd->pcidev, 763 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n", 764 what, rcd->ctxt, pfn, len, ret); 765 bail: 766 return ret; 767 } 768 769 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd, 770 u64 ureg) 771 { 772 unsigned long phys; 773 unsigned long sz; 774 int ret; 775 776 /* 777 * This is real hardware, so use io_remap. This is the mechanism 778 * for the user process to update the head registers for their ctxt 779 * in the chip. 780 */ 781 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE; 782 if ((vma->vm_end - vma->vm_start) > sz) { 783 qib_devinfo(dd->pcidev, 784 "FAIL mmap userreg: reqlen %lx > PAGE\n", 785 vma->vm_end - vma->vm_start); 786 ret = -EFAULT; 787 } else { 788 phys = dd->physaddr + ureg; 789 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 790 791 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 792 ret = io_remap_pfn_range(vma, vma->vm_start, 793 phys >> PAGE_SHIFT, 794 vma->vm_end - vma->vm_start, 795 vma->vm_page_prot); 796 } 797 return ret; 798 } 799 800 static int mmap_piobufs(struct vm_area_struct *vma, 801 struct qib_devdata *dd, 802 struct qib_ctxtdata *rcd, 803 unsigned piobufs, unsigned piocnt) 804 { 805 unsigned long phys; 806 int ret; 807 808 /* 809 * When we map the PIO buffers in the chip, we want to map them as 810 * writeonly, no read possible; unfortunately, x86 doesn't allow 811 * for this in hardware, but we still prevent users from asking 812 * for it. 813 */ 814 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) { 815 qib_devinfo(dd->pcidev, 816 "FAIL mmap piobufs: reqlen %lx > PAGE\n", 817 vma->vm_end - vma->vm_start); 818 ret = -EINVAL; 819 goto bail; 820 } 821 822 phys = dd->physaddr + piobufs; 823 824 #if defined(__powerpc__) 825 /* There isn't a generic way to specify writethrough mappings */ 826 pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE; 827 pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU; 828 pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED; 829 #endif 830 831 /* 832 * don't allow them to later change to readable with mprotect (for when 833 * not initially mapped readable, as is normally the case) 834 */ 835 vma->vm_flags &= ~VM_MAYREAD; 836 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 837 838 /* We used PAT if wc_cookie == 0 */ 839 if (!dd->wc_cookie) 840 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 841 842 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, 843 vma->vm_end - vma->vm_start, 844 vma->vm_page_prot); 845 bail: 846 return ret; 847 } 848 849 static int mmap_rcvegrbufs(struct vm_area_struct *vma, 850 struct qib_ctxtdata *rcd) 851 { 852 struct qib_devdata *dd = rcd->dd; 853 unsigned long start, size; 854 size_t total_size, i; 855 unsigned long pfn; 856 int ret; 857 858 size = rcd->rcvegrbuf_size; 859 total_size = rcd->rcvegrbuf_chunks * size; 860 if ((vma->vm_end - vma->vm_start) > total_size) { 861 qib_devinfo(dd->pcidev, 862 "FAIL on egr bufs: reqlen %lx > actual %lx\n", 863 vma->vm_end - vma->vm_start, 864 (unsigned long) total_size); 865 ret = -EINVAL; 866 goto bail; 867 } 868 869 if (vma->vm_flags & VM_WRITE) { 870 qib_devinfo(dd->pcidev, 871 "Can't map eager buffers as writable (flags=%lx)\n", 872 vma->vm_flags); 873 ret = -EPERM; 874 goto bail; 875 } 876 /* don't allow them to later change to writeable with mprotect */ 877 vma->vm_flags &= ~VM_MAYWRITE; 878 879 start = vma->vm_start; 880 881 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) { 882 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT; 883 ret = remap_pfn_range(vma, start, pfn, size, 884 vma->vm_page_prot); 885 if (ret < 0) 886 goto bail; 887 } 888 ret = 0; 889 890 bail: 891 return ret; 892 } 893 894 /* 895 * qib_file_vma_fault - handle a VMA page fault. 896 */ 897 static int qib_file_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 898 { 899 struct page *page; 900 901 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 902 if (!page) 903 return VM_FAULT_SIGBUS; 904 905 get_page(page); 906 vmf->page = page; 907 908 return 0; 909 } 910 911 static const struct vm_operations_struct qib_file_vm_ops = { 912 .fault = qib_file_vma_fault, 913 }; 914 915 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr, 916 struct qib_ctxtdata *rcd, unsigned subctxt) 917 { 918 struct qib_devdata *dd = rcd->dd; 919 unsigned subctxt_cnt; 920 unsigned long len; 921 void *addr; 922 size_t size; 923 int ret = 0; 924 925 subctxt_cnt = rcd->subctxt_cnt; 926 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 927 928 /* 929 * Each process has all the subctxt uregbase, rcvhdrq, and 930 * rcvegrbufs mmapped - as an array for all the processes, 931 * and also separately for this process. 932 */ 933 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) { 934 addr = rcd->subctxt_uregbase; 935 size = PAGE_SIZE * subctxt_cnt; 936 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) { 937 addr = rcd->subctxt_rcvhdr_base; 938 size = rcd->rcvhdrq_size * subctxt_cnt; 939 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) { 940 addr = rcd->subctxt_rcvegrbuf; 941 size *= subctxt_cnt; 942 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase + 943 PAGE_SIZE * subctxt)) { 944 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt; 945 size = PAGE_SIZE; 946 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base + 947 rcd->rcvhdrq_size * subctxt)) { 948 addr = rcd->subctxt_rcvhdr_base + 949 rcd->rcvhdrq_size * subctxt; 950 size = rcd->rcvhdrq_size; 951 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) { 952 addr = rcd->user_event_mask; 953 size = PAGE_SIZE; 954 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf + 955 size * subctxt)) { 956 addr = rcd->subctxt_rcvegrbuf + size * subctxt; 957 /* rcvegrbufs are read-only on the slave */ 958 if (vma->vm_flags & VM_WRITE) { 959 qib_devinfo(dd->pcidev, 960 "Can't map eager buffers as writable (flags=%lx)\n", 961 vma->vm_flags); 962 ret = -EPERM; 963 goto bail; 964 } 965 /* 966 * Don't allow permission to later change to writeable 967 * with mprotect. 968 */ 969 vma->vm_flags &= ~VM_MAYWRITE; 970 } else 971 goto bail; 972 len = vma->vm_end - vma->vm_start; 973 if (len > size) { 974 ret = -EINVAL; 975 goto bail; 976 } 977 978 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT; 979 vma->vm_ops = &qib_file_vm_ops; 980 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 981 ret = 1; 982 983 bail: 984 return ret; 985 } 986 987 /** 988 * qib_mmapf - mmap various structures into user space 989 * @fp: the file pointer 990 * @vma: the VM area 991 * 992 * We use this to have a shared buffer between the kernel and the user code 993 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio 994 * buffers in the chip. We have the open and close entries so we can bump 995 * the ref count and keep the driver from being unloaded while still mapped. 996 */ 997 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma) 998 { 999 struct qib_ctxtdata *rcd; 1000 struct qib_devdata *dd; 1001 u64 pgaddr, ureg; 1002 unsigned piobufs, piocnt; 1003 int ret, match = 1; 1004 1005 rcd = ctxt_fp(fp); 1006 if (!rcd || !(vma->vm_flags & VM_SHARED)) { 1007 ret = -EINVAL; 1008 goto bail; 1009 } 1010 dd = rcd->dd; 1011 1012 /* 1013 * This is the qib_do_user_init() code, mapping the shared buffers 1014 * and per-context user registers into the user process. The address 1015 * referred to by vm_pgoff is the file offset passed via mmap(). 1016 * For shared contexts, this is the kernel vmalloc() address of the 1017 * pages to share with the master. 1018 * For non-shared or master ctxts, this is a physical address. 1019 * We only do one mmap for each space mapped. 1020 */ 1021 pgaddr = vma->vm_pgoff << PAGE_SHIFT; 1022 1023 /* 1024 * Check for 0 in case one of the allocations failed, but user 1025 * called mmap anyway. 1026 */ 1027 if (!pgaddr) { 1028 ret = -EINVAL; 1029 goto bail; 1030 } 1031 1032 /* 1033 * Physical addresses must fit in 40 bits for our hardware. 1034 * Check for kernel virtual addresses first, anything else must 1035 * match a HW or memory address. 1036 */ 1037 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp)); 1038 if (ret) { 1039 if (ret > 0) 1040 ret = 0; 1041 goto bail; 1042 } 1043 1044 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt; 1045 if (!rcd->subctxt_cnt) { 1046 /* ctxt is not shared */ 1047 piocnt = rcd->piocnt; 1048 piobufs = rcd->piobufs; 1049 } else if (!subctxt_fp(fp)) { 1050 /* caller is the master */ 1051 piocnt = (rcd->piocnt / rcd->subctxt_cnt) + 1052 (rcd->piocnt % rcd->subctxt_cnt); 1053 piobufs = rcd->piobufs + 1054 dd->palign * (rcd->piocnt - piocnt); 1055 } else { 1056 unsigned slave = subctxt_fp(fp) - 1; 1057 1058 /* caller is a slave */ 1059 piocnt = rcd->piocnt / rcd->subctxt_cnt; 1060 piobufs = rcd->piobufs + dd->palign * piocnt * slave; 1061 } 1062 1063 if (pgaddr == ureg) 1064 ret = mmap_ureg(vma, dd, ureg); 1065 else if (pgaddr == piobufs) 1066 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt); 1067 else if (pgaddr == dd->pioavailregs_phys) 1068 /* in-memory copy of pioavail registers */ 1069 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1070 (void *) dd->pioavailregs_dma, 0, 1071 "pioavail registers"); 1072 else if (pgaddr == rcd->rcvegr_phys) 1073 ret = mmap_rcvegrbufs(vma, rcd); 1074 else if (pgaddr == (u64) rcd->rcvhdrq_phys) 1075 /* 1076 * The rcvhdrq itself; multiple pages, contiguous 1077 * from an i/o perspective. Shared contexts need 1078 * to map r/w, so we allow writing. 1079 */ 1080 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size, 1081 rcd->rcvhdrq, 1, "rcvhdrq"); 1082 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys) 1083 /* in-memory copy of rcvhdrq tail register */ 1084 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1085 rcd->rcvhdrtail_kvaddr, 0, 1086 "rcvhdrq tail"); 1087 else 1088 match = 0; 1089 if (!match) 1090 ret = -EINVAL; 1091 1092 vma->vm_private_data = NULL; 1093 1094 if (ret < 0) 1095 qib_devinfo(dd->pcidev, 1096 "mmap Failure %d: off %llx len %lx\n", 1097 -ret, (unsigned long long)pgaddr, 1098 vma->vm_end - vma->vm_start); 1099 bail: 1100 return ret; 1101 } 1102 1103 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd, 1104 struct file *fp, 1105 struct poll_table_struct *pt) 1106 { 1107 struct qib_devdata *dd = rcd->dd; 1108 unsigned pollflag; 1109 1110 poll_wait(fp, &rcd->wait, pt); 1111 1112 spin_lock_irq(&dd->uctxt_lock); 1113 if (rcd->urgent != rcd->urgent_poll) { 1114 pollflag = POLLIN | POLLRDNORM; 1115 rcd->urgent_poll = rcd->urgent; 1116 } else { 1117 pollflag = 0; 1118 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag); 1119 } 1120 spin_unlock_irq(&dd->uctxt_lock); 1121 1122 return pollflag; 1123 } 1124 1125 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd, 1126 struct file *fp, 1127 struct poll_table_struct *pt) 1128 { 1129 struct qib_devdata *dd = rcd->dd; 1130 unsigned pollflag; 1131 1132 poll_wait(fp, &rcd->wait, pt); 1133 1134 spin_lock_irq(&dd->uctxt_lock); 1135 if (dd->f_hdrqempty(rcd)) { 1136 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag); 1137 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt); 1138 pollflag = 0; 1139 } else 1140 pollflag = POLLIN | POLLRDNORM; 1141 spin_unlock_irq(&dd->uctxt_lock); 1142 1143 return pollflag; 1144 } 1145 1146 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt) 1147 { 1148 struct qib_ctxtdata *rcd; 1149 unsigned pollflag; 1150 1151 rcd = ctxt_fp(fp); 1152 if (!rcd) 1153 pollflag = POLLERR; 1154 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT) 1155 pollflag = qib_poll_urgent(rcd, fp, pt); 1156 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV) 1157 pollflag = qib_poll_next(rcd, fp, pt); 1158 else /* invalid */ 1159 pollflag = POLLERR; 1160 1161 return pollflag; 1162 } 1163 1164 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd) 1165 { 1166 struct qib_filedata *fd = fp->private_data; 1167 const unsigned int weight = cpumask_weight(¤t->cpus_allowed); 1168 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus); 1169 int local_cpu; 1170 1171 /* 1172 * If process has NOT already set it's affinity, select and 1173 * reserve a processor for it on the local NUMA node. 1174 */ 1175 if ((weight >= qib_cpulist_count) && 1176 (cpumask_weight(local_mask) <= qib_cpulist_count)) { 1177 for_each_cpu(local_cpu, local_mask) 1178 if (!test_and_set_bit(local_cpu, qib_cpulist)) { 1179 fd->rec_cpu_num = local_cpu; 1180 return; 1181 } 1182 } 1183 1184 /* 1185 * If process has NOT already set it's affinity, select and 1186 * reserve a processor for it, as a rendevous for all 1187 * users of the driver. If they don't actually later 1188 * set affinity to this cpu, or set it to some other cpu, 1189 * it just means that sooner or later we don't recommend 1190 * a cpu, and let the scheduler do it's best. 1191 */ 1192 if (weight >= qib_cpulist_count) { 1193 int cpu; 1194 1195 cpu = find_first_zero_bit(qib_cpulist, 1196 qib_cpulist_count); 1197 if (cpu == qib_cpulist_count) 1198 qib_dev_err(dd, 1199 "no cpus avail for affinity PID %u\n", 1200 current->pid); 1201 else { 1202 __set_bit(cpu, qib_cpulist); 1203 fd->rec_cpu_num = cpu; 1204 } 1205 } 1206 } 1207 1208 /* 1209 * Check that userland and driver are compatible for subcontexts. 1210 */ 1211 static int qib_compatible_subctxts(int user_swmajor, int user_swminor) 1212 { 1213 /* this code is written long-hand for clarity */ 1214 if (QIB_USER_SWMAJOR != user_swmajor) { 1215 /* no promise of compatibility if major mismatch */ 1216 return 0; 1217 } 1218 if (QIB_USER_SWMAJOR == 1) { 1219 switch (QIB_USER_SWMINOR) { 1220 case 0: 1221 case 1: 1222 case 2: 1223 /* no subctxt implementation so cannot be compatible */ 1224 return 0; 1225 case 3: 1226 /* 3 is only compatible with itself */ 1227 return user_swminor == 3; 1228 default: 1229 /* >= 4 are compatible (or are expected to be) */ 1230 return user_swminor <= QIB_USER_SWMINOR; 1231 } 1232 } 1233 /* make no promises yet for future major versions */ 1234 return 0; 1235 } 1236 1237 static int init_subctxts(struct qib_devdata *dd, 1238 struct qib_ctxtdata *rcd, 1239 const struct qib_user_info *uinfo) 1240 { 1241 int ret = 0; 1242 unsigned num_subctxts; 1243 size_t size; 1244 1245 /* 1246 * If the user is requesting zero subctxts, 1247 * skip the subctxt allocation. 1248 */ 1249 if (uinfo->spu_subctxt_cnt <= 0) 1250 goto bail; 1251 num_subctxts = uinfo->spu_subctxt_cnt; 1252 1253 /* Check for subctxt compatibility */ 1254 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16, 1255 uinfo->spu_userversion & 0xffff)) { 1256 qib_devinfo(dd->pcidev, 1257 "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n", 1258 (int) (uinfo->spu_userversion >> 16), 1259 (int) (uinfo->spu_userversion & 0xffff), 1260 QIB_USER_SWMAJOR, QIB_USER_SWMINOR); 1261 goto bail; 1262 } 1263 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) { 1264 ret = -EINVAL; 1265 goto bail; 1266 } 1267 1268 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts); 1269 if (!rcd->subctxt_uregbase) { 1270 ret = -ENOMEM; 1271 goto bail; 1272 } 1273 /* Note: rcd->rcvhdrq_size isn't initialized yet. */ 1274 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * 1275 sizeof(u32), PAGE_SIZE) * num_subctxts; 1276 rcd->subctxt_rcvhdr_base = vmalloc_user(size); 1277 if (!rcd->subctxt_rcvhdr_base) { 1278 ret = -ENOMEM; 1279 goto bail_ureg; 1280 } 1281 1282 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks * 1283 rcd->rcvegrbuf_size * 1284 num_subctxts); 1285 if (!rcd->subctxt_rcvegrbuf) { 1286 ret = -ENOMEM; 1287 goto bail_rhdr; 1288 } 1289 1290 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt; 1291 rcd->subctxt_id = uinfo->spu_subctxt_id; 1292 rcd->active_slaves = 1; 1293 rcd->redirect_seq_cnt = 1; 1294 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1295 goto bail; 1296 1297 bail_rhdr: 1298 vfree(rcd->subctxt_rcvhdr_base); 1299 bail_ureg: 1300 vfree(rcd->subctxt_uregbase); 1301 rcd->subctxt_uregbase = NULL; 1302 bail: 1303 return ret; 1304 } 1305 1306 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt, 1307 struct file *fp, const struct qib_user_info *uinfo) 1308 { 1309 struct qib_filedata *fd = fp->private_data; 1310 struct qib_devdata *dd = ppd->dd; 1311 struct qib_ctxtdata *rcd; 1312 void *ptmp = NULL; 1313 int ret; 1314 int numa_id; 1315 1316 assign_ctxt_affinity(fp, dd); 1317 1318 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ? 1319 cpu_to_node(fd->rec_cpu_num) : 1320 numa_node_id()) : dd->assigned_node_id; 1321 1322 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id); 1323 1324 /* 1325 * Allocate memory for use in qib_tid_update() at open to 1326 * reduce cost of expected send setup per message segment 1327 */ 1328 if (rcd) 1329 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) + 1330 dd->rcvtidcnt * sizeof(struct page **), 1331 GFP_KERNEL); 1332 1333 if (!rcd || !ptmp) { 1334 qib_dev_err(dd, 1335 "Unable to allocate ctxtdata memory, failing open\n"); 1336 ret = -ENOMEM; 1337 goto bailerr; 1338 } 1339 rcd->userversion = uinfo->spu_userversion; 1340 ret = init_subctxts(dd, rcd, uinfo); 1341 if (ret) 1342 goto bailerr; 1343 rcd->tid_pg_list = ptmp; 1344 rcd->pid = current->pid; 1345 init_waitqueue_head(&dd->rcd[ctxt]->wait); 1346 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm)); 1347 ctxt_fp(fp) = rcd; 1348 qib_stats.sps_ctxts++; 1349 dd->freectxts--; 1350 ret = 0; 1351 goto bail; 1352 1353 bailerr: 1354 if (fd->rec_cpu_num != -1) 1355 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1356 1357 dd->rcd[ctxt] = NULL; 1358 kfree(rcd); 1359 kfree(ptmp); 1360 bail: 1361 return ret; 1362 } 1363 1364 static inline int usable(struct qib_pportdata *ppd) 1365 { 1366 struct qib_devdata *dd = ppd->dd; 1367 1368 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid && 1369 (ppd->lflags & QIBL_LINKACTIVE); 1370 } 1371 1372 /* 1373 * Select a context on the given device, either using a requested port 1374 * or the port based on the context number. 1375 */ 1376 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port, 1377 const struct qib_user_info *uinfo) 1378 { 1379 struct qib_pportdata *ppd = NULL; 1380 int ret, ctxt; 1381 1382 if (port) { 1383 if (!usable(dd->pport + port - 1)) { 1384 ret = -ENETDOWN; 1385 goto done; 1386 } else 1387 ppd = dd->pport + port - 1; 1388 } 1389 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt]; 1390 ctxt++) 1391 ; 1392 if (ctxt == dd->cfgctxts) { 1393 ret = -EBUSY; 1394 goto done; 1395 } 1396 if (!ppd) { 1397 u32 pidx = ctxt % dd->num_pports; 1398 1399 if (usable(dd->pport + pidx)) 1400 ppd = dd->pport + pidx; 1401 else { 1402 for (pidx = 0; pidx < dd->num_pports && !ppd; 1403 pidx++) 1404 if (usable(dd->pport + pidx)) 1405 ppd = dd->pport + pidx; 1406 } 1407 } 1408 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN; 1409 done: 1410 return ret; 1411 } 1412 1413 static int find_free_ctxt(int unit, struct file *fp, 1414 const struct qib_user_info *uinfo) 1415 { 1416 struct qib_devdata *dd = qib_lookup(unit); 1417 int ret; 1418 1419 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports)) 1420 ret = -ENODEV; 1421 else 1422 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo); 1423 1424 return ret; 1425 } 1426 1427 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo, 1428 unsigned alg) 1429 { 1430 struct qib_devdata *udd = NULL; 1431 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i; 1432 u32 port = uinfo->spu_port, ctxt; 1433 1434 devmax = qib_count_units(&npresent, &nup); 1435 if (!npresent) { 1436 ret = -ENXIO; 1437 goto done; 1438 } 1439 if (nup == 0) { 1440 ret = -ENETDOWN; 1441 goto done; 1442 } 1443 1444 if (alg == QIB_PORT_ALG_ACROSS) { 1445 unsigned inuse = ~0U; 1446 1447 /* find device (with ACTIVE ports) with fewest ctxts in use */ 1448 for (ndev = 0; ndev < devmax; ndev++) { 1449 struct qib_devdata *dd = qib_lookup(ndev); 1450 unsigned cused = 0, cfree = 0, pusable = 0; 1451 1452 if (!dd) 1453 continue; 1454 if (port && port <= dd->num_pports && 1455 usable(dd->pport + port - 1)) 1456 pusable = 1; 1457 else 1458 for (i = 0; i < dd->num_pports; i++) 1459 if (usable(dd->pport + i)) 1460 pusable++; 1461 if (!pusable) 1462 continue; 1463 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; 1464 ctxt++) 1465 if (dd->rcd[ctxt]) 1466 cused++; 1467 else 1468 cfree++; 1469 if (cfree && cused < inuse) { 1470 udd = dd; 1471 inuse = cused; 1472 } 1473 } 1474 if (udd) { 1475 ret = choose_port_ctxt(fp, udd, port, uinfo); 1476 goto done; 1477 } 1478 } else { 1479 for (ndev = 0; ndev < devmax; ndev++) { 1480 struct qib_devdata *dd = qib_lookup(ndev); 1481 1482 if (dd) { 1483 ret = choose_port_ctxt(fp, dd, port, uinfo); 1484 if (!ret) 1485 goto done; 1486 if (ret == -EBUSY) 1487 dusable++; 1488 } 1489 } 1490 } 1491 ret = dusable ? -EBUSY : -ENETDOWN; 1492 1493 done: 1494 return ret; 1495 } 1496 1497 static int find_shared_ctxt(struct file *fp, 1498 const struct qib_user_info *uinfo) 1499 { 1500 int devmax, ndev, i; 1501 int ret = 0; 1502 1503 devmax = qib_count_units(NULL, NULL); 1504 1505 for (ndev = 0; ndev < devmax; ndev++) { 1506 struct qib_devdata *dd = qib_lookup(ndev); 1507 1508 /* device portion of usable() */ 1509 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase)) 1510 continue; 1511 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) { 1512 struct qib_ctxtdata *rcd = dd->rcd[i]; 1513 1514 /* Skip ctxts which are not yet open */ 1515 if (!rcd || !rcd->cnt) 1516 continue; 1517 /* Skip ctxt if it doesn't match the requested one */ 1518 if (rcd->subctxt_id != uinfo->spu_subctxt_id) 1519 continue; 1520 /* Verify the sharing process matches the master */ 1521 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt || 1522 rcd->userversion != uinfo->spu_userversion || 1523 rcd->cnt >= rcd->subctxt_cnt) { 1524 ret = -EINVAL; 1525 goto done; 1526 } 1527 ctxt_fp(fp) = rcd; 1528 subctxt_fp(fp) = rcd->cnt++; 1529 rcd->subpid[subctxt_fp(fp)] = current->pid; 1530 tidcursor_fp(fp) = 0; 1531 rcd->active_slaves |= 1 << subctxt_fp(fp); 1532 ret = 1; 1533 goto done; 1534 } 1535 } 1536 1537 done: 1538 return ret; 1539 } 1540 1541 static int qib_open(struct inode *in, struct file *fp) 1542 { 1543 /* The real work is performed later in qib_assign_ctxt() */ 1544 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL); 1545 if (fp->private_data) /* no cpu affinity by default */ 1546 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1; 1547 return fp->private_data ? 0 : -ENOMEM; 1548 } 1549 1550 static int find_hca(unsigned int cpu, int *unit) 1551 { 1552 int ret = 0, devmax, npresent, nup, ndev; 1553 1554 *unit = -1; 1555 1556 devmax = qib_count_units(&npresent, &nup); 1557 if (!npresent) { 1558 ret = -ENXIO; 1559 goto done; 1560 } 1561 if (!nup) { 1562 ret = -ENETDOWN; 1563 goto done; 1564 } 1565 for (ndev = 0; ndev < devmax; ndev++) { 1566 struct qib_devdata *dd = qib_lookup(ndev); 1567 1568 if (dd) { 1569 if (pcibus_to_node(dd->pcidev->bus) < 0) { 1570 ret = -EINVAL; 1571 goto done; 1572 } 1573 if (cpu_to_node(cpu) == 1574 pcibus_to_node(dd->pcidev->bus)) { 1575 *unit = ndev; 1576 goto done; 1577 } 1578 } 1579 } 1580 done: 1581 return ret; 1582 } 1583 1584 static int do_qib_user_sdma_queue_create(struct file *fp) 1585 { 1586 struct qib_filedata *fd = fp->private_data; 1587 struct qib_ctxtdata *rcd = fd->rcd; 1588 struct qib_devdata *dd = rcd->dd; 1589 1590 if (dd->flags & QIB_HAS_SEND_DMA) { 1591 1592 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev, 1593 dd->unit, 1594 rcd->ctxt, 1595 fd->subctxt); 1596 if (!fd->pq) 1597 return -ENOMEM; 1598 } 1599 1600 return 0; 1601 } 1602 1603 /* 1604 * Get ctxt early, so can set affinity prior to memory allocation. 1605 */ 1606 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo) 1607 { 1608 int ret; 1609 int i_minor; 1610 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS; 1611 1612 /* Check to be sure we haven't already initialized this file */ 1613 if (ctxt_fp(fp)) { 1614 ret = -EINVAL; 1615 goto done; 1616 } 1617 1618 /* for now, if major version is different, bail */ 1619 swmajor = uinfo->spu_userversion >> 16; 1620 if (swmajor != QIB_USER_SWMAJOR) { 1621 ret = -ENODEV; 1622 goto done; 1623 } 1624 1625 swminor = uinfo->spu_userversion & 0xffff; 1626 1627 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT) 1628 alg = uinfo->spu_port_alg; 1629 1630 mutex_lock(&qib_mutex); 1631 1632 if (qib_compatible_subctxts(swmajor, swminor) && 1633 uinfo->spu_subctxt_cnt) { 1634 ret = find_shared_ctxt(fp, uinfo); 1635 if (ret > 0) { 1636 ret = do_qib_user_sdma_queue_create(fp); 1637 if (!ret) 1638 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd); 1639 goto done_ok; 1640 } 1641 } 1642 1643 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE; 1644 if (i_minor) 1645 ret = find_free_ctxt(i_minor - 1, fp, uinfo); 1646 else { 1647 int unit; 1648 const unsigned int cpu = cpumask_first(¤t->cpus_allowed); 1649 const unsigned int weight = 1650 cpumask_weight(¤t->cpus_allowed); 1651 1652 if (weight == 1 && !test_bit(cpu, qib_cpulist)) 1653 if (!find_hca(cpu, &unit) && unit >= 0) 1654 if (!find_free_ctxt(unit, fp, uinfo)) { 1655 ret = 0; 1656 goto done_chk_sdma; 1657 } 1658 ret = get_a_ctxt(fp, uinfo, alg); 1659 } 1660 1661 done_chk_sdma: 1662 if (!ret) 1663 ret = do_qib_user_sdma_queue_create(fp); 1664 done_ok: 1665 mutex_unlock(&qib_mutex); 1666 1667 done: 1668 return ret; 1669 } 1670 1671 1672 static int qib_do_user_init(struct file *fp, 1673 const struct qib_user_info *uinfo) 1674 { 1675 int ret; 1676 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1677 struct qib_devdata *dd; 1678 unsigned uctxt; 1679 1680 /* Subctxts don't need to initialize anything since master did it. */ 1681 if (subctxt_fp(fp)) { 1682 ret = wait_event_interruptible(rcd->wait, 1683 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag)); 1684 goto bail; 1685 } 1686 1687 dd = rcd->dd; 1688 1689 /* some ctxts may get extra buffers, calculate that here */ 1690 uctxt = rcd->ctxt - dd->first_user_ctxt; 1691 if (uctxt < dd->ctxts_extrabuf) { 1692 rcd->piocnt = dd->pbufsctxt + 1; 1693 rcd->pio_base = rcd->piocnt * uctxt; 1694 } else { 1695 rcd->piocnt = dd->pbufsctxt; 1696 rcd->pio_base = rcd->piocnt * uctxt + 1697 dd->ctxts_extrabuf; 1698 } 1699 1700 /* 1701 * All user buffers are 2KB buffers. If we ever support 1702 * giving 4KB buffers to user processes, this will need some 1703 * work. Can't use piobufbase directly, because it has 1704 * both 2K and 4K buffer base values. So check and handle. 1705 */ 1706 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) { 1707 if (rcd->pio_base >= dd->piobcnt2k) { 1708 qib_dev_err(dd, 1709 "%u:ctxt%u: no 2KB buffers available\n", 1710 dd->unit, rcd->ctxt); 1711 ret = -ENOBUFS; 1712 goto bail; 1713 } 1714 rcd->piocnt = dd->piobcnt2k - rcd->pio_base; 1715 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n", 1716 rcd->ctxt, rcd->piocnt); 1717 } 1718 1719 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign; 1720 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1721 TXCHK_CHG_TYPE_USER, rcd); 1722 /* 1723 * try to ensure that processes start up with consistent avail update 1724 * for their own range, at least. If system very quiet, it might 1725 * have the in-memory copy out of date at startup for this range of 1726 * buffers, when a context gets re-used. Do after the chg_pioavail 1727 * and before the rest of setup, so it's "almost certain" the dma 1728 * will have occurred (can't 100% guarantee, but should be many 1729 * decimals of 9s, with this ordering), given how much else happens 1730 * after this. 1731 */ 1732 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP); 1733 1734 /* 1735 * Now allocate the rcvhdr Q and eager TIDs; skip the TID 1736 * array for time being. If rcd->ctxt > chip-supported, 1737 * we need to do extra stuff here to handle by handling overflow 1738 * through ctxt 0, someday 1739 */ 1740 ret = qib_create_rcvhdrq(dd, rcd); 1741 if (!ret) 1742 ret = qib_setup_eagerbufs(rcd); 1743 if (ret) 1744 goto bail_pio; 1745 1746 rcd->tidcursor = 0; /* start at beginning after open */ 1747 1748 /* initialize poll variables... */ 1749 rcd->urgent = 0; 1750 rcd->urgent_poll = 0; 1751 1752 /* 1753 * Now enable the ctxt for receive. 1754 * For chips that are set to DMA the tail register to memory 1755 * when they change (and when the update bit transitions from 1756 * 0 to 1. So for those chips, we turn it off and then back on. 1757 * This will (very briefly) affect any other open ctxts, but the 1758 * duration is very short, and therefore isn't an issue. We 1759 * explicitly set the in-memory tail copy to 0 beforehand, so we 1760 * don't have to wait to be sure the DMA update has happened 1761 * (chip resets head/tail to 0 on transition to enable). 1762 */ 1763 if (rcd->rcvhdrtail_kvaddr) 1764 qib_clear_rcvhdrtail(rcd); 1765 1766 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB, 1767 rcd->ctxt); 1768 1769 /* Notify any waiting slaves */ 1770 if (rcd->subctxt_cnt) { 1771 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1772 wake_up(&rcd->wait); 1773 } 1774 return 0; 1775 1776 bail_pio: 1777 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1778 TXCHK_CHG_TYPE_KERN, rcd); 1779 bail: 1780 return ret; 1781 } 1782 1783 /** 1784 * unlock_exptid - unlock any expected TID entries context still had in use 1785 * @rcd: ctxt 1786 * 1787 * We don't actually update the chip here, because we do a bulk update 1788 * below, using f_clear_tids. 1789 */ 1790 static void unlock_expected_tids(struct qib_ctxtdata *rcd) 1791 { 1792 struct qib_devdata *dd = rcd->dd; 1793 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt; 1794 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt; 1795 1796 for (i = ctxt_tidbase; i < maxtid; i++) { 1797 struct page *p = dd->pageshadow[i]; 1798 dma_addr_t phys; 1799 1800 if (!p) 1801 continue; 1802 1803 phys = dd->physshadow[i]; 1804 dd->physshadow[i] = dd->tidinvalid; 1805 dd->pageshadow[i] = NULL; 1806 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 1807 PCI_DMA_FROMDEVICE); 1808 qib_release_user_pages(&p, 1); 1809 cnt++; 1810 } 1811 } 1812 1813 static int qib_close(struct inode *in, struct file *fp) 1814 { 1815 int ret = 0; 1816 struct qib_filedata *fd; 1817 struct qib_ctxtdata *rcd; 1818 struct qib_devdata *dd; 1819 unsigned long flags; 1820 unsigned ctxt; 1821 pid_t pid; 1822 1823 mutex_lock(&qib_mutex); 1824 1825 fd = fp->private_data; 1826 fp->private_data = NULL; 1827 rcd = fd->rcd; 1828 if (!rcd) { 1829 mutex_unlock(&qib_mutex); 1830 goto bail; 1831 } 1832 1833 dd = rcd->dd; 1834 1835 /* ensure all pio buffer writes in progress are flushed */ 1836 qib_flush_wc(); 1837 1838 /* drain user sdma queue */ 1839 if (fd->pq) { 1840 qib_user_sdma_queue_drain(rcd->ppd, fd->pq); 1841 qib_user_sdma_queue_destroy(fd->pq); 1842 } 1843 1844 if (fd->rec_cpu_num != -1) 1845 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1846 1847 if (--rcd->cnt) { 1848 /* 1849 * XXX If the master closes the context before the slave(s), 1850 * revoke the mmap for the eager receive queue so 1851 * the slave(s) don't wait for receive data forever. 1852 */ 1853 rcd->active_slaves &= ~(1 << fd->subctxt); 1854 rcd->subpid[fd->subctxt] = 0; 1855 mutex_unlock(&qib_mutex); 1856 goto bail; 1857 } 1858 1859 /* early; no interrupt users after this */ 1860 spin_lock_irqsave(&dd->uctxt_lock, flags); 1861 ctxt = rcd->ctxt; 1862 dd->rcd[ctxt] = NULL; 1863 pid = rcd->pid; 1864 rcd->pid = 0; 1865 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1866 1867 if (rcd->rcvwait_to || rcd->piowait_to || 1868 rcd->rcvnowait || rcd->pionowait) { 1869 rcd->rcvwait_to = 0; 1870 rcd->piowait_to = 0; 1871 rcd->rcvnowait = 0; 1872 rcd->pionowait = 0; 1873 } 1874 if (rcd->flag) 1875 rcd->flag = 0; 1876 1877 if (dd->kregbase) { 1878 /* atomically clear receive enable ctxt and intr avail. */ 1879 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS | 1880 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt); 1881 1882 /* clean up the pkeys for this ctxt user */ 1883 qib_clean_part_key(rcd, dd); 1884 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt); 1885 qib_chg_pioavailkernel(dd, rcd->pio_base, 1886 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL); 1887 1888 dd->f_clear_tids(dd, rcd); 1889 1890 if (dd->pageshadow) 1891 unlock_expected_tids(rcd); 1892 qib_stats.sps_ctxts--; 1893 dd->freectxts++; 1894 } 1895 1896 mutex_unlock(&qib_mutex); 1897 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */ 1898 1899 bail: 1900 kfree(fd); 1901 return ret; 1902 } 1903 1904 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo) 1905 { 1906 struct qib_ctxt_info info; 1907 int ret; 1908 size_t sz; 1909 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1910 struct qib_filedata *fd; 1911 1912 fd = fp->private_data; 1913 1914 info.num_active = qib_count_active_units(); 1915 info.unit = rcd->dd->unit; 1916 info.port = rcd->ppd->port; 1917 info.ctxt = rcd->ctxt; 1918 info.subctxt = subctxt_fp(fp); 1919 /* Number of user ctxts available for this device. */ 1920 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt; 1921 info.num_subctxts = rcd->subctxt_cnt; 1922 info.rec_cpu = fd->rec_cpu_num; 1923 sz = sizeof(info); 1924 1925 if (copy_to_user(uinfo, &info, sz)) { 1926 ret = -EFAULT; 1927 goto bail; 1928 } 1929 ret = 0; 1930 1931 bail: 1932 return ret; 1933 } 1934 1935 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq, 1936 u32 __user *inflightp) 1937 { 1938 const u32 val = qib_user_sdma_inflight_counter(pq); 1939 1940 if (put_user(val, inflightp)) 1941 return -EFAULT; 1942 1943 return 0; 1944 } 1945 1946 static int qib_sdma_get_complete(struct qib_pportdata *ppd, 1947 struct qib_user_sdma_queue *pq, 1948 u32 __user *completep) 1949 { 1950 u32 val; 1951 int err; 1952 1953 if (!pq) 1954 return -EINVAL; 1955 1956 err = qib_user_sdma_make_progress(ppd, pq); 1957 if (err < 0) 1958 return err; 1959 1960 val = qib_user_sdma_complete_counter(pq); 1961 if (put_user(val, completep)) 1962 return -EFAULT; 1963 1964 return 0; 1965 } 1966 1967 static int disarm_req_delay(struct qib_ctxtdata *rcd) 1968 { 1969 int ret = 0; 1970 1971 if (!usable(rcd->ppd)) { 1972 int i; 1973 /* 1974 * if link is down, or otherwise not usable, delay 1975 * the caller up to 30 seconds, so we don't thrash 1976 * in trying to get the chip back to ACTIVE, and 1977 * set flag so they make the call again. 1978 */ 1979 if (rcd->user_event_mask) { 1980 /* 1981 * subctxt_cnt is 0 if not shared, so do base 1982 * separately, first, then remaining subctxt, if any 1983 */ 1984 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1985 &rcd->user_event_mask[0]); 1986 for (i = 1; i < rcd->subctxt_cnt; i++) 1987 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1988 &rcd->user_event_mask[i]); 1989 } 1990 for (i = 0; !usable(rcd->ppd) && i < 300; i++) 1991 msleep(100); 1992 ret = -ENETDOWN; 1993 } 1994 return ret; 1995 } 1996 1997 /* 1998 * Find all user contexts in use, and set the specified bit in their 1999 * event mask. 2000 * See also find_ctxt() for a similar use, that is specific to send buffers. 2001 */ 2002 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit) 2003 { 2004 struct qib_ctxtdata *rcd; 2005 unsigned ctxt; 2006 int ret = 0; 2007 unsigned long flags; 2008 2009 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags); 2010 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts; 2011 ctxt++) { 2012 rcd = ppd->dd->rcd[ctxt]; 2013 if (!rcd) 2014 continue; 2015 if (rcd->user_event_mask) { 2016 int i; 2017 /* 2018 * subctxt_cnt is 0 if not shared, so do base 2019 * separately, first, then remaining subctxt, if any 2020 */ 2021 set_bit(evtbit, &rcd->user_event_mask[0]); 2022 for (i = 1; i < rcd->subctxt_cnt; i++) 2023 set_bit(evtbit, &rcd->user_event_mask[i]); 2024 } 2025 ret = 1; 2026 break; 2027 } 2028 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags); 2029 2030 return ret; 2031 } 2032 2033 /* 2034 * clear the event notifier events for this context. 2035 * For the DISARM_BUFS case, we also take action (this obsoletes 2036 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards 2037 * compatibility. 2038 * Other bits don't currently require actions, just atomically clear. 2039 * User process then performs actions appropriate to bit having been 2040 * set, if desired, and checks again in future. 2041 */ 2042 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt, 2043 unsigned long events) 2044 { 2045 int ret = 0, i; 2046 2047 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) { 2048 if (!test_bit(i, &events)) 2049 continue; 2050 if (i == _QIB_EVENT_DISARM_BUFS_BIT) { 2051 (void)qib_disarm_piobufs_ifneeded(rcd); 2052 ret = disarm_req_delay(rcd); 2053 } else 2054 clear_bit(i, &rcd->user_event_mask[subctxt]); 2055 } 2056 return ret; 2057 } 2058 2059 static ssize_t qib_write(struct file *fp, const char __user *data, 2060 size_t count, loff_t *off) 2061 { 2062 const struct qib_cmd __user *ucmd; 2063 struct qib_ctxtdata *rcd; 2064 const void __user *src; 2065 size_t consumed, copy = 0; 2066 struct qib_cmd cmd; 2067 ssize_t ret = 0; 2068 void *dest; 2069 2070 if (count < sizeof(cmd.type)) { 2071 ret = -EINVAL; 2072 goto bail; 2073 } 2074 2075 ucmd = (const struct qib_cmd __user *) data; 2076 2077 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { 2078 ret = -EFAULT; 2079 goto bail; 2080 } 2081 2082 consumed = sizeof(cmd.type); 2083 2084 switch (cmd.type) { 2085 case QIB_CMD_ASSIGN_CTXT: 2086 case QIB_CMD_USER_INIT: 2087 copy = sizeof(cmd.cmd.user_info); 2088 dest = &cmd.cmd.user_info; 2089 src = &ucmd->cmd.user_info; 2090 break; 2091 2092 case QIB_CMD_RECV_CTRL: 2093 copy = sizeof(cmd.cmd.recv_ctrl); 2094 dest = &cmd.cmd.recv_ctrl; 2095 src = &ucmd->cmd.recv_ctrl; 2096 break; 2097 2098 case QIB_CMD_CTXT_INFO: 2099 copy = sizeof(cmd.cmd.ctxt_info); 2100 dest = &cmd.cmd.ctxt_info; 2101 src = &ucmd->cmd.ctxt_info; 2102 break; 2103 2104 case QIB_CMD_TID_UPDATE: 2105 case QIB_CMD_TID_FREE: 2106 copy = sizeof(cmd.cmd.tid_info); 2107 dest = &cmd.cmd.tid_info; 2108 src = &ucmd->cmd.tid_info; 2109 break; 2110 2111 case QIB_CMD_SET_PART_KEY: 2112 copy = sizeof(cmd.cmd.part_key); 2113 dest = &cmd.cmd.part_key; 2114 src = &ucmd->cmd.part_key; 2115 break; 2116 2117 case QIB_CMD_DISARM_BUFS: 2118 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */ 2119 copy = 0; 2120 src = NULL; 2121 dest = NULL; 2122 break; 2123 2124 case QIB_CMD_POLL_TYPE: 2125 copy = sizeof(cmd.cmd.poll_type); 2126 dest = &cmd.cmd.poll_type; 2127 src = &ucmd->cmd.poll_type; 2128 break; 2129 2130 case QIB_CMD_ARMLAUNCH_CTRL: 2131 copy = sizeof(cmd.cmd.armlaunch_ctrl); 2132 dest = &cmd.cmd.armlaunch_ctrl; 2133 src = &ucmd->cmd.armlaunch_ctrl; 2134 break; 2135 2136 case QIB_CMD_SDMA_INFLIGHT: 2137 copy = sizeof(cmd.cmd.sdma_inflight); 2138 dest = &cmd.cmd.sdma_inflight; 2139 src = &ucmd->cmd.sdma_inflight; 2140 break; 2141 2142 case QIB_CMD_SDMA_COMPLETE: 2143 copy = sizeof(cmd.cmd.sdma_complete); 2144 dest = &cmd.cmd.sdma_complete; 2145 src = &ucmd->cmd.sdma_complete; 2146 break; 2147 2148 case QIB_CMD_ACK_EVENT: 2149 copy = sizeof(cmd.cmd.event_mask); 2150 dest = &cmd.cmd.event_mask; 2151 src = &ucmd->cmd.event_mask; 2152 break; 2153 2154 default: 2155 ret = -EINVAL; 2156 goto bail; 2157 } 2158 2159 if (copy) { 2160 if ((count - consumed) < copy) { 2161 ret = -EINVAL; 2162 goto bail; 2163 } 2164 if (copy_from_user(dest, src, copy)) { 2165 ret = -EFAULT; 2166 goto bail; 2167 } 2168 consumed += copy; 2169 } 2170 2171 rcd = ctxt_fp(fp); 2172 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) { 2173 ret = -EINVAL; 2174 goto bail; 2175 } 2176 2177 switch (cmd.type) { 2178 case QIB_CMD_ASSIGN_CTXT: 2179 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info); 2180 if (ret) 2181 goto bail; 2182 break; 2183 2184 case QIB_CMD_USER_INIT: 2185 ret = qib_do_user_init(fp, &cmd.cmd.user_info); 2186 if (ret) 2187 goto bail; 2188 ret = qib_get_base_info(fp, (void __user *) (unsigned long) 2189 cmd.cmd.user_info.spu_base_info, 2190 cmd.cmd.user_info.spu_base_info_size); 2191 break; 2192 2193 case QIB_CMD_RECV_CTRL: 2194 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl); 2195 break; 2196 2197 case QIB_CMD_CTXT_INFO: 2198 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *) 2199 (unsigned long) cmd.cmd.ctxt_info); 2200 break; 2201 2202 case QIB_CMD_TID_UPDATE: 2203 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info); 2204 break; 2205 2206 case QIB_CMD_TID_FREE: 2207 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info); 2208 break; 2209 2210 case QIB_CMD_SET_PART_KEY: 2211 ret = qib_set_part_key(rcd, cmd.cmd.part_key); 2212 break; 2213 2214 case QIB_CMD_DISARM_BUFS: 2215 (void)qib_disarm_piobufs_ifneeded(rcd); 2216 ret = disarm_req_delay(rcd); 2217 break; 2218 2219 case QIB_CMD_PIOAVAILUPD: 2220 qib_force_pio_avail_update(rcd->dd); 2221 break; 2222 2223 case QIB_CMD_POLL_TYPE: 2224 rcd->poll_type = cmd.cmd.poll_type; 2225 break; 2226 2227 case QIB_CMD_ARMLAUNCH_CTRL: 2228 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl); 2229 break; 2230 2231 case QIB_CMD_SDMA_INFLIGHT: 2232 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp), 2233 (u32 __user *) (unsigned long) 2234 cmd.cmd.sdma_inflight); 2235 break; 2236 2237 case QIB_CMD_SDMA_COMPLETE: 2238 ret = qib_sdma_get_complete(rcd->ppd, 2239 user_sdma_queue_fp(fp), 2240 (u32 __user *) (unsigned long) 2241 cmd.cmd.sdma_complete); 2242 break; 2243 2244 case QIB_CMD_ACK_EVENT: 2245 ret = qib_user_event_ack(rcd, subctxt_fp(fp), 2246 cmd.cmd.event_mask); 2247 break; 2248 } 2249 2250 if (ret >= 0) 2251 ret = consumed; 2252 2253 bail: 2254 return ret; 2255 } 2256 2257 static ssize_t qib_write_iter(struct kiocb *iocb, struct iov_iter *from) 2258 { 2259 struct qib_filedata *fp = iocb->ki_filp->private_data; 2260 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp); 2261 struct qib_user_sdma_queue *pq = fp->pq; 2262 2263 if (!iter_is_iovec(from) || !from->nr_segs || !pq) 2264 return -EINVAL; 2265 2266 return qib_user_sdma_writev(rcd, pq, from->iov, from->nr_segs); 2267 } 2268 2269 static struct class *qib_class; 2270 static dev_t qib_dev; 2271 2272 int qib_cdev_init(int minor, const char *name, 2273 const struct file_operations *fops, 2274 struct cdev **cdevp, struct device **devp) 2275 { 2276 const dev_t dev = MKDEV(MAJOR(qib_dev), minor); 2277 struct cdev *cdev; 2278 struct device *device = NULL; 2279 int ret; 2280 2281 cdev = cdev_alloc(); 2282 if (!cdev) { 2283 pr_err("Could not allocate cdev for minor %d, %s\n", 2284 minor, name); 2285 ret = -ENOMEM; 2286 goto done; 2287 } 2288 2289 cdev->owner = THIS_MODULE; 2290 cdev->ops = fops; 2291 kobject_set_name(&cdev->kobj, name); 2292 2293 ret = cdev_add(cdev, dev, 1); 2294 if (ret < 0) { 2295 pr_err("Could not add cdev for minor %d, %s (err %d)\n", 2296 minor, name, -ret); 2297 goto err_cdev; 2298 } 2299 2300 device = device_create(qib_class, NULL, dev, NULL, "%s", name); 2301 if (!IS_ERR(device)) 2302 goto done; 2303 ret = PTR_ERR(device); 2304 device = NULL; 2305 pr_err("Could not create device for minor %d, %s (err %d)\n", 2306 minor, name, -ret); 2307 err_cdev: 2308 cdev_del(cdev); 2309 cdev = NULL; 2310 done: 2311 *cdevp = cdev; 2312 *devp = device; 2313 return ret; 2314 } 2315 2316 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp) 2317 { 2318 struct device *device = *devp; 2319 2320 if (device) { 2321 device_unregister(device); 2322 *devp = NULL; 2323 } 2324 2325 if (*cdevp) { 2326 cdev_del(*cdevp); 2327 *cdevp = NULL; 2328 } 2329 } 2330 2331 static struct cdev *wildcard_cdev; 2332 static struct device *wildcard_device; 2333 2334 int __init qib_dev_init(void) 2335 { 2336 int ret; 2337 2338 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME); 2339 if (ret < 0) { 2340 pr_err("Could not allocate chrdev region (err %d)\n", -ret); 2341 goto done; 2342 } 2343 2344 qib_class = class_create(THIS_MODULE, "ipath"); 2345 if (IS_ERR(qib_class)) { 2346 ret = PTR_ERR(qib_class); 2347 pr_err("Could not create device class (err %d)\n", -ret); 2348 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2349 } 2350 2351 done: 2352 return ret; 2353 } 2354 2355 void qib_dev_cleanup(void) 2356 { 2357 if (qib_class) { 2358 class_destroy(qib_class); 2359 qib_class = NULL; 2360 } 2361 2362 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2363 } 2364 2365 static atomic_t user_count = ATOMIC_INIT(0); 2366 2367 static void qib_user_remove(struct qib_devdata *dd) 2368 { 2369 if (atomic_dec_return(&user_count) == 0) 2370 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device); 2371 2372 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device); 2373 } 2374 2375 static int qib_user_add(struct qib_devdata *dd) 2376 { 2377 char name[10]; 2378 int ret; 2379 2380 if (atomic_inc_return(&user_count) == 1) { 2381 ret = qib_cdev_init(0, "ipath", &qib_file_ops, 2382 &wildcard_cdev, &wildcard_device); 2383 if (ret) 2384 goto done; 2385 } 2386 2387 snprintf(name, sizeof(name), "ipath%d", dd->unit); 2388 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops, 2389 &dd->user_cdev, &dd->user_device); 2390 if (ret) 2391 qib_user_remove(dd); 2392 done: 2393 return ret; 2394 } 2395 2396 /* 2397 * Create per-unit files in /dev 2398 */ 2399 int qib_device_create(struct qib_devdata *dd) 2400 { 2401 int r, ret; 2402 2403 r = qib_user_add(dd); 2404 ret = qib_diag_add(dd); 2405 if (r && !ret) 2406 ret = r; 2407 return ret; 2408 } 2409 2410 /* 2411 * Remove per-unit files in /dev 2412 * void, core kernel returns no errors for this stuff 2413 */ 2414 void qib_device_remove(struct qib_devdata *dd) 2415 { 2416 qib_user_remove(dd); 2417 qib_diag_remove(dd); 2418 } 2419