1 /* 2 * Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation. 3 * All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/pci.h> 36 #include <linux/poll.h> 37 #include <linux/cdev.h> 38 #include <linux/swap.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/io.h> 42 #include <linux/uio.h> 43 #include <linux/jiffies.h> 44 #include <asm/pgtable.h> 45 #include <linux/delay.h> 46 47 #include "qib.h" 48 #include "qib_common.h" 49 #include "qib_user_sdma.h" 50 51 static int qib_open(struct inode *, struct file *); 52 static int qib_close(struct inode *, struct file *); 53 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *); 54 static ssize_t qib_aio_write(struct kiocb *, const struct iovec *, 55 unsigned long, loff_t); 56 static unsigned int qib_poll(struct file *, struct poll_table_struct *); 57 static int qib_mmapf(struct file *, struct vm_area_struct *); 58 59 static const struct file_operations qib_file_ops = { 60 .owner = THIS_MODULE, 61 .write = qib_write, 62 .aio_write = qib_aio_write, 63 .open = qib_open, 64 .release = qib_close, 65 .poll = qib_poll, 66 .mmap = qib_mmapf, 67 .llseek = noop_llseek, 68 }; 69 70 /* 71 * Convert kernel virtual addresses to physical addresses so they don't 72 * potentially conflict with the chip addresses used as mmap offsets. 73 * It doesn't really matter what mmap offset we use as long as we can 74 * interpret it correctly. 75 */ 76 static u64 cvt_kvaddr(void *p) 77 { 78 struct page *page; 79 u64 paddr = 0; 80 81 page = vmalloc_to_page(p); 82 if (page) 83 paddr = page_to_pfn(page) << PAGE_SHIFT; 84 85 return paddr; 86 } 87 88 static int qib_get_base_info(struct file *fp, void __user *ubase, 89 size_t ubase_size) 90 { 91 struct qib_ctxtdata *rcd = ctxt_fp(fp); 92 int ret = 0; 93 struct qib_base_info *kinfo = NULL; 94 struct qib_devdata *dd = rcd->dd; 95 struct qib_pportdata *ppd = rcd->ppd; 96 unsigned subctxt_cnt; 97 int shared, master; 98 size_t sz; 99 100 subctxt_cnt = rcd->subctxt_cnt; 101 if (!subctxt_cnt) { 102 shared = 0; 103 master = 0; 104 subctxt_cnt = 1; 105 } else { 106 shared = 1; 107 master = !subctxt_fp(fp); 108 } 109 110 sz = sizeof(*kinfo); 111 /* If context sharing is not requested, allow the old size structure */ 112 if (!shared) 113 sz -= 7 * sizeof(u64); 114 if (ubase_size < sz) { 115 ret = -EINVAL; 116 goto bail; 117 } 118 119 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); 120 if (kinfo == NULL) { 121 ret = -ENOMEM; 122 goto bail; 123 } 124 125 ret = dd->f_get_base_info(rcd, kinfo); 126 if (ret < 0) 127 goto bail; 128 129 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt; 130 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize; 131 kinfo->spi_tidegrcnt = rcd->rcvegrcnt; 132 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize; 133 /* 134 * have to mmap whole thing 135 */ 136 kinfo->spi_rcv_egrbuftotlen = 137 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 138 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk; 139 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / 140 rcd->rcvegrbuf_chunks; 141 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt; 142 if (master) 143 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt; 144 /* 145 * for this use, may be cfgctxts summed over all chips that 146 * are are configured and present 147 */ 148 kinfo->spi_nctxts = dd->cfgctxts; 149 /* unit (chip/board) our context is on */ 150 kinfo->spi_unit = dd->unit; 151 kinfo->spi_port = ppd->port; 152 /* for now, only a single page */ 153 kinfo->spi_tid_maxsize = PAGE_SIZE; 154 155 /* 156 * Doing this per context, and based on the skip value, etc. This has 157 * to be the actual buffer size, since the protocol code treats it 158 * as an array. 159 * 160 * These have to be set to user addresses in the user code via mmap. 161 * These values are used on return to user code for the mmap target 162 * addresses only. For 32 bit, same 44 bit address problem, so use 163 * the physical address, not virtual. Before 2.6.11, using the 164 * page_address() macro worked, but in 2.6.11, even that returns the 165 * full 64 bit address (upper bits all 1's). So far, using the 166 * physical addresses (or chip offsets, for chip mapping) works, but 167 * no doubt some future kernel release will change that, and we'll be 168 * on to yet another method of dealing with this. 169 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful 170 * since the chips with non-zero rhf_offset don't normally 171 * enable tail register updates to host memory, but for testing, 172 * both can be enabled and used. 173 */ 174 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys; 175 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys; 176 kinfo->spi_rhf_offset = dd->rhf_offset; 177 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys; 178 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys; 179 /* setup per-unit (not port) status area for user programs */ 180 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + 181 (char *) ppd->statusp - 182 (char *) dd->pioavailregs_dma; 183 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt; 184 if (!shared) { 185 kinfo->spi_piocnt = rcd->piocnt; 186 kinfo->spi_piobufbase = (u64) rcd->piobufs; 187 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask); 188 } else if (master) { 189 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) + 190 (rcd->piocnt % subctxt_cnt); 191 /* Master's PIO buffers are after all the slave's */ 192 kinfo->spi_piobufbase = (u64) rcd->piobufs + 193 dd->palign * 194 (rcd->piocnt - kinfo->spi_piocnt); 195 } else { 196 unsigned slave = subctxt_fp(fp) - 1; 197 198 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt; 199 kinfo->spi_piobufbase = (u64) rcd->piobufs + 200 dd->palign * kinfo->spi_piocnt * slave; 201 } 202 203 if (shared) { 204 kinfo->spi_sendbuf_status = 205 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]); 206 /* only spi_subctxt_* fields should be set in this block! */ 207 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase); 208 209 kinfo->spi_subctxt_rcvegrbuf = 210 cvt_kvaddr(rcd->subctxt_rcvegrbuf); 211 kinfo->spi_subctxt_rcvhdr_base = 212 cvt_kvaddr(rcd->subctxt_rcvhdr_base); 213 } 214 215 /* 216 * All user buffers are 2KB buffers. If we ever support 217 * giving 4KB buffers to user processes, this will need some 218 * work. Can't use piobufbase directly, because it has 219 * both 2K and 4K buffer base values. 220 */ 221 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) / 222 dd->palign; 223 kinfo->spi_pioalign = dd->palign; 224 kinfo->spi_qpair = QIB_KD_QP; 225 /* 226 * user mode PIO buffers are always 2KB, even when 4KB can 227 * be received, and sent via the kernel; this is ibmaxlen 228 * for 2K MTU. 229 */ 230 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32); 231 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */ 232 kinfo->spi_ctxt = rcd->ctxt; 233 kinfo->spi_subctxt = subctxt_fp(fp); 234 kinfo->spi_sw_version = QIB_KERN_SWVERSION; 235 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */ 236 kinfo->spi_hw_version = dd->revision; 237 238 if (master) 239 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER; 240 241 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo); 242 if (copy_to_user(ubase, kinfo, sz)) 243 ret = -EFAULT; 244 bail: 245 kfree(kinfo); 246 return ret; 247 } 248 249 /** 250 * qib_tid_update - update a context TID 251 * @rcd: the context 252 * @fp: the qib device file 253 * @ti: the TID information 254 * 255 * The new implementation as of Oct 2004 is that the driver assigns 256 * the tid and returns it to the caller. To reduce search time, we 257 * keep a cursor for each context, walking the shadow tid array to find 258 * one that's not in use. 259 * 260 * For now, if we can't allocate the full list, we fail, although 261 * in the long run, we'll allocate as many as we can, and the 262 * caller will deal with that by trying the remaining pages later. 263 * That means that when we fail, we have to mark the tids as not in 264 * use again, in our shadow copy. 265 * 266 * It's up to the caller to free the tids when they are done. 267 * We'll unlock the pages as they free them. 268 * 269 * Also, right now we are locking one page at a time, but since 270 * the intended use of this routine is for a single group of 271 * virtually contiguous pages, that should change to improve 272 * performance. 273 */ 274 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp, 275 const struct qib_tid_info *ti) 276 { 277 int ret = 0, ntids; 278 u32 tid, ctxttid, cnt, i, tidcnt, tidoff; 279 u16 *tidlist; 280 struct qib_devdata *dd = rcd->dd; 281 u64 physaddr; 282 unsigned long vaddr; 283 u64 __iomem *tidbase; 284 unsigned long tidmap[8]; 285 struct page **pagep = NULL; 286 unsigned subctxt = subctxt_fp(fp); 287 288 if (!dd->pageshadow) { 289 ret = -ENOMEM; 290 goto done; 291 } 292 293 cnt = ti->tidcnt; 294 if (!cnt) { 295 ret = -EFAULT; 296 goto done; 297 } 298 ctxttid = rcd->ctxt * dd->rcvtidcnt; 299 if (!rcd->subctxt_cnt) { 300 tidcnt = dd->rcvtidcnt; 301 tid = rcd->tidcursor; 302 tidoff = 0; 303 } else if (!subctxt) { 304 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 305 (dd->rcvtidcnt % rcd->subctxt_cnt); 306 tidoff = dd->rcvtidcnt - tidcnt; 307 ctxttid += tidoff; 308 tid = tidcursor_fp(fp); 309 } else { 310 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 311 tidoff = tidcnt * (subctxt - 1); 312 ctxttid += tidoff; 313 tid = tidcursor_fp(fp); 314 } 315 if (cnt > tidcnt) { 316 /* make sure it all fits in tid_pg_list */ 317 qib_devinfo(dd->pcidev, "Process tried to allocate %u " 318 "TIDs, only trying max (%u)\n", cnt, tidcnt); 319 cnt = tidcnt; 320 } 321 pagep = (struct page **) rcd->tid_pg_list; 322 tidlist = (u16 *) &pagep[dd->rcvtidcnt]; 323 pagep += tidoff; 324 tidlist += tidoff; 325 326 memset(tidmap, 0, sizeof(tidmap)); 327 /* before decrement; chip actual # */ 328 ntids = tidcnt; 329 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) + 330 dd->rcvtidbase + 331 ctxttid * sizeof(*tidbase)); 332 333 /* virtual address of first page in transfer */ 334 vaddr = ti->tidvaddr; 335 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr, 336 cnt * PAGE_SIZE)) { 337 ret = -EFAULT; 338 goto done; 339 } 340 ret = qib_get_user_pages(vaddr, cnt, pagep); 341 if (ret) { 342 /* 343 * if (ret == -EBUSY) 344 * We can't continue because the pagep array won't be 345 * initialized. This should never happen, 346 * unless perhaps the user has mpin'ed the pages 347 * themselves. 348 */ 349 qib_devinfo(dd->pcidev, 350 "Failed to lock addr %p, %u pages: " 351 "errno %d\n", (void *) vaddr, cnt, -ret); 352 goto done; 353 } 354 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { 355 for (; ntids--; tid++) { 356 if (tid == tidcnt) 357 tid = 0; 358 if (!dd->pageshadow[ctxttid + tid]) 359 break; 360 } 361 if (ntids < 0) { 362 /* 363 * Oops, wrapped all the way through their TIDs, 364 * and didn't have enough free; see comments at 365 * start of routine 366 */ 367 i--; /* last tidlist[i] not filled in */ 368 ret = -ENOMEM; 369 break; 370 } 371 tidlist[i] = tid + tidoff; 372 /* we "know" system pages and TID pages are same size */ 373 dd->pageshadow[ctxttid + tid] = pagep[i]; 374 dd->physshadow[ctxttid + tid] = 375 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE, 376 PCI_DMA_FROMDEVICE); 377 /* 378 * don't need atomic or it's overhead 379 */ 380 __set_bit(tid, tidmap); 381 physaddr = dd->physshadow[ctxttid + tid]; 382 /* PERFORMANCE: below should almost certainly be cached */ 383 dd->f_put_tid(dd, &tidbase[tid], 384 RCVHQ_RCV_TYPE_EXPECTED, physaddr); 385 /* 386 * don't check this tid in qib_ctxtshadow, since we 387 * just filled it in; start with the next one. 388 */ 389 tid++; 390 } 391 392 if (ret) { 393 u32 limit; 394 cleanup: 395 /* jump here if copy out of updated info failed... */ 396 /* same code that's in qib_free_tid() */ 397 limit = sizeof(tidmap) * BITS_PER_BYTE; 398 if (limit > tidcnt) 399 /* just in case size changes in future */ 400 limit = tidcnt; 401 tid = find_first_bit((const unsigned long *)tidmap, limit); 402 for (; tid < limit; tid++) { 403 if (!test_bit(tid, tidmap)) 404 continue; 405 if (dd->pageshadow[ctxttid + tid]) { 406 dma_addr_t phys; 407 408 phys = dd->physshadow[ctxttid + tid]; 409 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 410 /* PERFORMANCE: below should almost certainly 411 * be cached 412 */ 413 dd->f_put_tid(dd, &tidbase[tid], 414 RCVHQ_RCV_TYPE_EXPECTED, 415 dd->tidinvalid); 416 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 417 PCI_DMA_FROMDEVICE); 418 dd->pageshadow[ctxttid + tid] = NULL; 419 } 420 } 421 qib_release_user_pages(pagep, cnt); 422 } else { 423 /* 424 * Copy the updated array, with qib_tid's filled in, back 425 * to user. Since we did the copy in already, this "should 426 * never fail" If it does, we have to clean up... 427 */ 428 if (copy_to_user((void __user *) 429 (unsigned long) ti->tidlist, 430 tidlist, cnt * sizeof(*tidlist))) { 431 ret = -EFAULT; 432 goto cleanup; 433 } 434 if (copy_to_user((void __user *) (unsigned long) ti->tidmap, 435 tidmap, sizeof tidmap)) { 436 ret = -EFAULT; 437 goto cleanup; 438 } 439 if (tid == tidcnt) 440 tid = 0; 441 if (!rcd->subctxt_cnt) 442 rcd->tidcursor = tid; 443 else 444 tidcursor_fp(fp) = tid; 445 } 446 447 done: 448 return ret; 449 } 450 451 /** 452 * qib_tid_free - free a context TID 453 * @rcd: the context 454 * @subctxt: the subcontext 455 * @ti: the TID info 456 * 457 * right now we are unlocking one page at a time, but since 458 * the intended use of this routine is for a single group of 459 * virtually contiguous pages, that should change to improve 460 * performance. We check that the TID is in range for this context 461 * but otherwise don't check validity; if user has an error and 462 * frees the wrong tid, it's only their own data that can thereby 463 * be corrupted. We do check that the TID was in use, for sanity 464 * We always use our idea of the saved address, not the address that 465 * they pass in to us. 466 */ 467 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt, 468 const struct qib_tid_info *ti) 469 { 470 int ret = 0; 471 u32 tid, ctxttid, cnt, limit, tidcnt; 472 struct qib_devdata *dd = rcd->dd; 473 u64 __iomem *tidbase; 474 unsigned long tidmap[8]; 475 476 if (!dd->pageshadow) { 477 ret = -ENOMEM; 478 goto done; 479 } 480 481 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap, 482 sizeof tidmap)) { 483 ret = -EFAULT; 484 goto done; 485 } 486 487 ctxttid = rcd->ctxt * dd->rcvtidcnt; 488 if (!rcd->subctxt_cnt) 489 tidcnt = dd->rcvtidcnt; 490 else if (!subctxt) { 491 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 492 (dd->rcvtidcnt % rcd->subctxt_cnt); 493 ctxttid += dd->rcvtidcnt - tidcnt; 494 } else { 495 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 496 ctxttid += tidcnt * (subctxt - 1); 497 } 498 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) + 499 dd->rcvtidbase + 500 ctxttid * sizeof(*tidbase)); 501 502 limit = sizeof(tidmap) * BITS_PER_BYTE; 503 if (limit > tidcnt) 504 /* just in case size changes in future */ 505 limit = tidcnt; 506 tid = find_first_bit(tidmap, limit); 507 for (cnt = 0; tid < limit; tid++) { 508 /* 509 * small optimization; if we detect a run of 3 or so without 510 * any set, use find_first_bit again. That's mainly to 511 * accelerate the case where we wrapped, so we have some at 512 * the beginning, and some at the end, and a big gap 513 * in the middle. 514 */ 515 if (!test_bit(tid, tidmap)) 516 continue; 517 cnt++; 518 if (dd->pageshadow[ctxttid + tid]) { 519 struct page *p; 520 dma_addr_t phys; 521 522 p = dd->pageshadow[ctxttid + tid]; 523 dd->pageshadow[ctxttid + tid] = NULL; 524 phys = dd->physshadow[ctxttid + tid]; 525 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 526 /* PERFORMANCE: below should almost certainly be 527 * cached 528 */ 529 dd->f_put_tid(dd, &tidbase[tid], 530 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); 531 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 532 PCI_DMA_FROMDEVICE); 533 qib_release_user_pages(&p, 1); 534 } 535 } 536 done: 537 return ret; 538 } 539 540 /** 541 * qib_set_part_key - set a partition key 542 * @rcd: the context 543 * @key: the key 544 * 545 * We can have up to 4 active at a time (other than the default, which is 546 * always allowed). This is somewhat tricky, since multiple contexts may set 547 * the same key, so we reference count them, and clean up at exit. All 4 548 * partition keys are packed into a single qlogic_ib register. It's an 549 * error for a process to set the same pkey multiple times. We provide no 550 * mechanism to de-allocate a pkey at this time, we may eventually need to 551 * do that. I've used the atomic operations, and no locking, and only make 552 * a single pass through what's available. This should be more than 553 * adequate for some time. I'll think about spinlocks or the like if and as 554 * it's necessary. 555 */ 556 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key) 557 { 558 struct qib_pportdata *ppd = rcd->ppd; 559 int i, any = 0, pidx = -1; 560 u16 lkey = key & 0x7FFF; 561 int ret; 562 563 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) { 564 /* nothing to do; this key always valid */ 565 ret = 0; 566 goto bail; 567 } 568 569 if (!lkey) { 570 ret = -EINVAL; 571 goto bail; 572 } 573 574 /* 575 * Set the full membership bit, because it has to be 576 * set in the register or the packet, and it seems 577 * cleaner to set in the register than to force all 578 * callers to set it. 579 */ 580 key |= 0x8000; 581 582 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 583 if (!rcd->pkeys[i] && pidx == -1) 584 pidx = i; 585 if (rcd->pkeys[i] == key) { 586 ret = -EEXIST; 587 goto bail; 588 } 589 } 590 if (pidx == -1) { 591 ret = -EBUSY; 592 goto bail; 593 } 594 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 595 if (!ppd->pkeys[i]) { 596 any++; 597 continue; 598 } 599 if (ppd->pkeys[i] == key) { 600 atomic_t *pkrefs = &ppd->pkeyrefs[i]; 601 602 if (atomic_inc_return(pkrefs) > 1) { 603 rcd->pkeys[pidx] = key; 604 ret = 0; 605 goto bail; 606 } else { 607 /* 608 * lost race, decrement count, catch below 609 */ 610 atomic_dec(pkrefs); 611 any++; 612 } 613 } 614 if ((ppd->pkeys[i] & 0x7FFF) == lkey) { 615 /* 616 * It makes no sense to have both the limited and 617 * full membership PKEY set at the same time since 618 * the unlimited one will disable the limited one. 619 */ 620 ret = -EEXIST; 621 goto bail; 622 } 623 } 624 if (!any) { 625 ret = -EBUSY; 626 goto bail; 627 } 628 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 629 if (!ppd->pkeys[i] && 630 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) { 631 rcd->pkeys[pidx] = key; 632 ppd->pkeys[i] = key; 633 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 634 ret = 0; 635 goto bail; 636 } 637 } 638 ret = -EBUSY; 639 640 bail: 641 return ret; 642 } 643 644 /** 645 * qib_manage_rcvq - manage a context's receive queue 646 * @rcd: the context 647 * @subctxt: the subcontext 648 * @start_stop: action to carry out 649 * 650 * start_stop == 0 disables receive on the context, for use in queue 651 * overflow conditions. start_stop==1 re-enables, to be used to 652 * re-init the software copy of the head register 653 */ 654 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt, 655 int start_stop) 656 { 657 struct qib_devdata *dd = rcd->dd; 658 unsigned int rcvctrl_op; 659 660 if (subctxt) 661 goto bail; 662 /* atomically clear receive enable ctxt. */ 663 if (start_stop) { 664 /* 665 * On enable, force in-memory copy of the tail register to 666 * 0, so that protocol code doesn't have to worry about 667 * whether or not the chip has yet updated the in-memory 668 * copy or not on return from the system call. The chip 669 * always resets it's tail register back to 0 on a 670 * transition from disabled to enabled. 671 */ 672 if (rcd->rcvhdrtail_kvaddr) 673 qib_clear_rcvhdrtail(rcd); 674 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB; 675 } else 676 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS; 677 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt); 678 /* always; new head should be equal to new tail; see above */ 679 bail: 680 return 0; 681 } 682 683 static void qib_clean_part_key(struct qib_ctxtdata *rcd, 684 struct qib_devdata *dd) 685 { 686 int i, j, pchanged = 0; 687 u64 oldpkey; 688 struct qib_pportdata *ppd = rcd->ppd; 689 690 /* for debugging only */ 691 oldpkey = (u64) ppd->pkeys[0] | 692 ((u64) ppd->pkeys[1] << 16) | 693 ((u64) ppd->pkeys[2] << 32) | 694 ((u64) ppd->pkeys[3] << 48); 695 696 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 697 if (!rcd->pkeys[i]) 698 continue; 699 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) { 700 /* check for match independent of the global bit */ 701 if ((ppd->pkeys[j] & 0x7fff) != 702 (rcd->pkeys[i] & 0x7fff)) 703 continue; 704 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) { 705 ppd->pkeys[j] = 0; 706 pchanged++; 707 } 708 break; 709 } 710 rcd->pkeys[i] = 0; 711 } 712 if (pchanged) 713 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 714 } 715 716 /* common code for the mappings on dma_alloc_coherent mem */ 717 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd, 718 unsigned len, void *kvaddr, u32 write_ok, char *what) 719 { 720 struct qib_devdata *dd = rcd->dd; 721 unsigned long pfn; 722 int ret; 723 724 if ((vma->vm_end - vma->vm_start) > len) { 725 qib_devinfo(dd->pcidev, 726 "FAIL on %s: len %lx > %x\n", what, 727 vma->vm_end - vma->vm_start, len); 728 ret = -EFAULT; 729 goto bail; 730 } 731 732 /* 733 * shared context user code requires rcvhdrq mapped r/w, others 734 * only allowed readonly mapping. 735 */ 736 if (!write_ok) { 737 if (vma->vm_flags & VM_WRITE) { 738 qib_devinfo(dd->pcidev, 739 "%s must be mapped readonly\n", what); 740 ret = -EPERM; 741 goto bail; 742 } 743 744 /* don't allow them to later change with mprotect */ 745 vma->vm_flags &= ~VM_MAYWRITE; 746 } 747 748 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT; 749 ret = remap_pfn_range(vma, vma->vm_start, pfn, 750 len, vma->vm_page_prot); 751 if (ret) 752 qib_devinfo(dd->pcidev, "%s ctxt%u mmap of %lx, %x " 753 "bytes failed: %d\n", what, rcd->ctxt, 754 pfn, len, ret); 755 bail: 756 return ret; 757 } 758 759 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd, 760 u64 ureg) 761 { 762 unsigned long phys; 763 unsigned long sz; 764 int ret; 765 766 /* 767 * This is real hardware, so use io_remap. This is the mechanism 768 * for the user process to update the head registers for their ctxt 769 * in the chip. 770 */ 771 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE; 772 if ((vma->vm_end - vma->vm_start) > sz) { 773 qib_devinfo(dd->pcidev, "FAIL mmap userreg: reqlen " 774 "%lx > PAGE\n", vma->vm_end - vma->vm_start); 775 ret = -EFAULT; 776 } else { 777 phys = dd->physaddr + ureg; 778 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 779 780 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 781 ret = io_remap_pfn_range(vma, vma->vm_start, 782 phys >> PAGE_SHIFT, 783 vma->vm_end - vma->vm_start, 784 vma->vm_page_prot); 785 } 786 return ret; 787 } 788 789 static int mmap_piobufs(struct vm_area_struct *vma, 790 struct qib_devdata *dd, 791 struct qib_ctxtdata *rcd, 792 unsigned piobufs, unsigned piocnt) 793 { 794 unsigned long phys; 795 int ret; 796 797 /* 798 * When we map the PIO buffers in the chip, we want to map them as 799 * writeonly, no read possible; unfortunately, x86 doesn't allow 800 * for this in hardware, but we still prevent users from asking 801 * for it. 802 */ 803 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) { 804 qib_devinfo(dd->pcidev, "FAIL mmap piobufs: " 805 "reqlen %lx > PAGE\n", 806 vma->vm_end - vma->vm_start); 807 ret = -EINVAL; 808 goto bail; 809 } 810 811 phys = dd->physaddr + piobufs; 812 813 #if defined(__powerpc__) 814 /* There isn't a generic way to specify writethrough mappings */ 815 pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE; 816 pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU; 817 pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED; 818 #endif 819 820 /* 821 * don't allow them to later change to readable with mprotect (for when 822 * not initially mapped readable, as is normally the case) 823 */ 824 vma->vm_flags &= ~VM_MAYREAD; 825 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 826 827 if (qib_wc_pat) 828 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 829 830 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, 831 vma->vm_end - vma->vm_start, 832 vma->vm_page_prot); 833 bail: 834 return ret; 835 } 836 837 static int mmap_rcvegrbufs(struct vm_area_struct *vma, 838 struct qib_ctxtdata *rcd) 839 { 840 struct qib_devdata *dd = rcd->dd; 841 unsigned long start, size; 842 size_t total_size, i; 843 unsigned long pfn; 844 int ret; 845 846 size = rcd->rcvegrbuf_size; 847 total_size = rcd->rcvegrbuf_chunks * size; 848 if ((vma->vm_end - vma->vm_start) > total_size) { 849 qib_devinfo(dd->pcidev, "FAIL on egr bufs: " 850 "reqlen %lx > actual %lx\n", 851 vma->vm_end - vma->vm_start, 852 (unsigned long) total_size); 853 ret = -EINVAL; 854 goto bail; 855 } 856 857 if (vma->vm_flags & VM_WRITE) { 858 qib_devinfo(dd->pcidev, "Can't map eager buffers as " 859 "writable (flags=%lx)\n", vma->vm_flags); 860 ret = -EPERM; 861 goto bail; 862 } 863 /* don't allow them to later change to writeable with mprotect */ 864 vma->vm_flags &= ~VM_MAYWRITE; 865 866 start = vma->vm_start; 867 868 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) { 869 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT; 870 ret = remap_pfn_range(vma, start, pfn, size, 871 vma->vm_page_prot); 872 if (ret < 0) 873 goto bail; 874 } 875 ret = 0; 876 877 bail: 878 return ret; 879 } 880 881 /* 882 * qib_file_vma_fault - handle a VMA page fault. 883 */ 884 static int qib_file_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 885 { 886 struct page *page; 887 888 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 889 if (!page) 890 return VM_FAULT_SIGBUS; 891 892 get_page(page); 893 vmf->page = page; 894 895 return 0; 896 } 897 898 static struct vm_operations_struct qib_file_vm_ops = { 899 .fault = qib_file_vma_fault, 900 }; 901 902 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr, 903 struct qib_ctxtdata *rcd, unsigned subctxt) 904 { 905 struct qib_devdata *dd = rcd->dd; 906 unsigned subctxt_cnt; 907 unsigned long len; 908 void *addr; 909 size_t size; 910 int ret = 0; 911 912 subctxt_cnt = rcd->subctxt_cnt; 913 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 914 915 /* 916 * Each process has all the subctxt uregbase, rcvhdrq, and 917 * rcvegrbufs mmapped - as an array for all the processes, 918 * and also separately for this process. 919 */ 920 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) { 921 addr = rcd->subctxt_uregbase; 922 size = PAGE_SIZE * subctxt_cnt; 923 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) { 924 addr = rcd->subctxt_rcvhdr_base; 925 size = rcd->rcvhdrq_size * subctxt_cnt; 926 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) { 927 addr = rcd->subctxt_rcvegrbuf; 928 size *= subctxt_cnt; 929 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase + 930 PAGE_SIZE * subctxt)) { 931 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt; 932 size = PAGE_SIZE; 933 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base + 934 rcd->rcvhdrq_size * subctxt)) { 935 addr = rcd->subctxt_rcvhdr_base + 936 rcd->rcvhdrq_size * subctxt; 937 size = rcd->rcvhdrq_size; 938 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) { 939 addr = rcd->user_event_mask; 940 size = PAGE_SIZE; 941 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf + 942 size * subctxt)) { 943 addr = rcd->subctxt_rcvegrbuf + size * subctxt; 944 /* rcvegrbufs are read-only on the slave */ 945 if (vma->vm_flags & VM_WRITE) { 946 qib_devinfo(dd->pcidev, 947 "Can't map eager buffers as " 948 "writable (flags=%lx)\n", vma->vm_flags); 949 ret = -EPERM; 950 goto bail; 951 } 952 /* 953 * Don't allow permission to later change to writeable 954 * with mprotect. 955 */ 956 vma->vm_flags &= ~VM_MAYWRITE; 957 } else 958 goto bail; 959 len = vma->vm_end - vma->vm_start; 960 if (len > size) { 961 ret = -EINVAL; 962 goto bail; 963 } 964 965 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT; 966 vma->vm_ops = &qib_file_vm_ops; 967 vma->vm_flags |= VM_RESERVED | VM_DONTEXPAND; 968 ret = 1; 969 970 bail: 971 return ret; 972 } 973 974 /** 975 * qib_mmapf - mmap various structures into user space 976 * @fp: the file pointer 977 * @vma: the VM area 978 * 979 * We use this to have a shared buffer between the kernel and the user code 980 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio 981 * buffers in the chip. We have the open and close entries so we can bump 982 * the ref count and keep the driver from being unloaded while still mapped. 983 */ 984 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma) 985 { 986 struct qib_ctxtdata *rcd; 987 struct qib_devdata *dd; 988 u64 pgaddr, ureg; 989 unsigned piobufs, piocnt; 990 int ret, match = 1; 991 992 rcd = ctxt_fp(fp); 993 if (!rcd || !(vma->vm_flags & VM_SHARED)) { 994 ret = -EINVAL; 995 goto bail; 996 } 997 dd = rcd->dd; 998 999 /* 1000 * This is the qib_do_user_init() code, mapping the shared buffers 1001 * and per-context user registers into the user process. The address 1002 * referred to by vm_pgoff is the file offset passed via mmap(). 1003 * For shared contexts, this is the kernel vmalloc() address of the 1004 * pages to share with the master. 1005 * For non-shared or master ctxts, this is a physical address. 1006 * We only do one mmap for each space mapped. 1007 */ 1008 pgaddr = vma->vm_pgoff << PAGE_SHIFT; 1009 1010 /* 1011 * Check for 0 in case one of the allocations failed, but user 1012 * called mmap anyway. 1013 */ 1014 if (!pgaddr) { 1015 ret = -EINVAL; 1016 goto bail; 1017 } 1018 1019 /* 1020 * Physical addresses must fit in 40 bits for our hardware. 1021 * Check for kernel virtual addresses first, anything else must 1022 * match a HW or memory address. 1023 */ 1024 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp)); 1025 if (ret) { 1026 if (ret > 0) 1027 ret = 0; 1028 goto bail; 1029 } 1030 1031 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt; 1032 if (!rcd->subctxt_cnt) { 1033 /* ctxt is not shared */ 1034 piocnt = rcd->piocnt; 1035 piobufs = rcd->piobufs; 1036 } else if (!subctxt_fp(fp)) { 1037 /* caller is the master */ 1038 piocnt = (rcd->piocnt / rcd->subctxt_cnt) + 1039 (rcd->piocnt % rcd->subctxt_cnt); 1040 piobufs = rcd->piobufs + 1041 dd->palign * (rcd->piocnt - piocnt); 1042 } else { 1043 unsigned slave = subctxt_fp(fp) - 1; 1044 1045 /* caller is a slave */ 1046 piocnt = rcd->piocnt / rcd->subctxt_cnt; 1047 piobufs = rcd->piobufs + dd->palign * piocnt * slave; 1048 } 1049 1050 if (pgaddr == ureg) 1051 ret = mmap_ureg(vma, dd, ureg); 1052 else if (pgaddr == piobufs) 1053 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt); 1054 else if (pgaddr == dd->pioavailregs_phys) 1055 /* in-memory copy of pioavail registers */ 1056 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1057 (void *) dd->pioavailregs_dma, 0, 1058 "pioavail registers"); 1059 else if (pgaddr == rcd->rcvegr_phys) 1060 ret = mmap_rcvegrbufs(vma, rcd); 1061 else if (pgaddr == (u64) rcd->rcvhdrq_phys) 1062 /* 1063 * The rcvhdrq itself; multiple pages, contiguous 1064 * from an i/o perspective. Shared contexts need 1065 * to map r/w, so we allow writing. 1066 */ 1067 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size, 1068 rcd->rcvhdrq, 1, "rcvhdrq"); 1069 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys) 1070 /* in-memory copy of rcvhdrq tail register */ 1071 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1072 rcd->rcvhdrtail_kvaddr, 0, 1073 "rcvhdrq tail"); 1074 else 1075 match = 0; 1076 if (!match) 1077 ret = -EINVAL; 1078 1079 vma->vm_private_data = NULL; 1080 1081 if (ret < 0) 1082 qib_devinfo(dd->pcidev, 1083 "mmap Failure %d: off %llx len %lx\n", 1084 -ret, (unsigned long long)pgaddr, 1085 vma->vm_end - vma->vm_start); 1086 bail: 1087 return ret; 1088 } 1089 1090 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd, 1091 struct file *fp, 1092 struct poll_table_struct *pt) 1093 { 1094 struct qib_devdata *dd = rcd->dd; 1095 unsigned pollflag; 1096 1097 poll_wait(fp, &rcd->wait, pt); 1098 1099 spin_lock_irq(&dd->uctxt_lock); 1100 if (rcd->urgent != rcd->urgent_poll) { 1101 pollflag = POLLIN | POLLRDNORM; 1102 rcd->urgent_poll = rcd->urgent; 1103 } else { 1104 pollflag = 0; 1105 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag); 1106 } 1107 spin_unlock_irq(&dd->uctxt_lock); 1108 1109 return pollflag; 1110 } 1111 1112 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd, 1113 struct file *fp, 1114 struct poll_table_struct *pt) 1115 { 1116 struct qib_devdata *dd = rcd->dd; 1117 unsigned pollflag; 1118 1119 poll_wait(fp, &rcd->wait, pt); 1120 1121 spin_lock_irq(&dd->uctxt_lock); 1122 if (dd->f_hdrqempty(rcd)) { 1123 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag); 1124 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt); 1125 pollflag = 0; 1126 } else 1127 pollflag = POLLIN | POLLRDNORM; 1128 spin_unlock_irq(&dd->uctxt_lock); 1129 1130 return pollflag; 1131 } 1132 1133 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt) 1134 { 1135 struct qib_ctxtdata *rcd; 1136 unsigned pollflag; 1137 1138 rcd = ctxt_fp(fp); 1139 if (!rcd) 1140 pollflag = POLLERR; 1141 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT) 1142 pollflag = qib_poll_urgent(rcd, fp, pt); 1143 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV) 1144 pollflag = qib_poll_next(rcd, fp, pt); 1145 else /* invalid */ 1146 pollflag = POLLERR; 1147 1148 return pollflag; 1149 } 1150 1151 /* 1152 * Check that userland and driver are compatible for subcontexts. 1153 */ 1154 static int qib_compatible_subctxts(int user_swmajor, int user_swminor) 1155 { 1156 /* this code is written long-hand for clarity */ 1157 if (QIB_USER_SWMAJOR != user_swmajor) { 1158 /* no promise of compatibility if major mismatch */ 1159 return 0; 1160 } 1161 if (QIB_USER_SWMAJOR == 1) { 1162 switch (QIB_USER_SWMINOR) { 1163 case 0: 1164 case 1: 1165 case 2: 1166 /* no subctxt implementation so cannot be compatible */ 1167 return 0; 1168 case 3: 1169 /* 3 is only compatible with itself */ 1170 return user_swminor == 3; 1171 default: 1172 /* >= 4 are compatible (or are expected to be) */ 1173 return user_swminor >= 4; 1174 } 1175 } 1176 /* make no promises yet for future major versions */ 1177 return 0; 1178 } 1179 1180 static int init_subctxts(struct qib_devdata *dd, 1181 struct qib_ctxtdata *rcd, 1182 const struct qib_user_info *uinfo) 1183 { 1184 int ret = 0; 1185 unsigned num_subctxts; 1186 size_t size; 1187 1188 /* 1189 * If the user is requesting zero subctxts, 1190 * skip the subctxt allocation. 1191 */ 1192 if (uinfo->spu_subctxt_cnt <= 0) 1193 goto bail; 1194 num_subctxts = uinfo->spu_subctxt_cnt; 1195 1196 /* Check for subctxt compatibility */ 1197 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16, 1198 uinfo->spu_userversion & 0xffff)) { 1199 qib_devinfo(dd->pcidev, 1200 "Mismatched user version (%d.%d) and driver " 1201 "version (%d.%d) while context sharing. Ensure " 1202 "that driver and library are from the same " 1203 "release.\n", 1204 (int) (uinfo->spu_userversion >> 16), 1205 (int) (uinfo->spu_userversion & 0xffff), 1206 QIB_USER_SWMAJOR, QIB_USER_SWMINOR); 1207 goto bail; 1208 } 1209 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) { 1210 ret = -EINVAL; 1211 goto bail; 1212 } 1213 1214 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts); 1215 if (!rcd->subctxt_uregbase) { 1216 ret = -ENOMEM; 1217 goto bail; 1218 } 1219 /* Note: rcd->rcvhdrq_size isn't initialized yet. */ 1220 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * 1221 sizeof(u32), PAGE_SIZE) * num_subctxts; 1222 rcd->subctxt_rcvhdr_base = vmalloc_user(size); 1223 if (!rcd->subctxt_rcvhdr_base) { 1224 ret = -ENOMEM; 1225 goto bail_ureg; 1226 } 1227 1228 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks * 1229 rcd->rcvegrbuf_size * 1230 num_subctxts); 1231 if (!rcd->subctxt_rcvegrbuf) { 1232 ret = -ENOMEM; 1233 goto bail_rhdr; 1234 } 1235 1236 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt; 1237 rcd->subctxt_id = uinfo->spu_subctxt_id; 1238 rcd->active_slaves = 1; 1239 rcd->redirect_seq_cnt = 1; 1240 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1241 goto bail; 1242 1243 bail_rhdr: 1244 vfree(rcd->subctxt_rcvhdr_base); 1245 bail_ureg: 1246 vfree(rcd->subctxt_uregbase); 1247 rcd->subctxt_uregbase = NULL; 1248 bail: 1249 return ret; 1250 } 1251 1252 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt, 1253 struct file *fp, const struct qib_user_info *uinfo) 1254 { 1255 struct qib_devdata *dd = ppd->dd; 1256 struct qib_ctxtdata *rcd; 1257 void *ptmp = NULL; 1258 int ret; 1259 1260 rcd = qib_create_ctxtdata(ppd, ctxt); 1261 1262 /* 1263 * Allocate memory for use in qib_tid_update() at open to 1264 * reduce cost of expected send setup per message segment 1265 */ 1266 if (rcd) 1267 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) + 1268 dd->rcvtidcnt * sizeof(struct page **), 1269 GFP_KERNEL); 1270 1271 if (!rcd || !ptmp) { 1272 qib_dev_err(dd, "Unable to allocate ctxtdata " 1273 "memory, failing open\n"); 1274 ret = -ENOMEM; 1275 goto bailerr; 1276 } 1277 rcd->userversion = uinfo->spu_userversion; 1278 ret = init_subctxts(dd, rcd, uinfo); 1279 if (ret) 1280 goto bailerr; 1281 rcd->tid_pg_list = ptmp; 1282 rcd->pid = current->pid; 1283 init_waitqueue_head(&dd->rcd[ctxt]->wait); 1284 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm)); 1285 ctxt_fp(fp) = rcd; 1286 qib_stats.sps_ctxts++; 1287 ret = 0; 1288 goto bail; 1289 1290 bailerr: 1291 dd->rcd[ctxt] = NULL; 1292 kfree(rcd); 1293 kfree(ptmp); 1294 bail: 1295 return ret; 1296 } 1297 1298 static inline int usable(struct qib_pportdata *ppd) 1299 { 1300 struct qib_devdata *dd = ppd->dd; 1301 1302 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid && 1303 (ppd->lflags & QIBL_LINKACTIVE); 1304 } 1305 1306 /* 1307 * Select a context on the given device, either using a requested port 1308 * or the port based on the context number. 1309 */ 1310 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port, 1311 const struct qib_user_info *uinfo) 1312 { 1313 struct qib_pportdata *ppd = NULL; 1314 int ret, ctxt; 1315 1316 if (port) { 1317 if (!usable(dd->pport + port - 1)) { 1318 ret = -ENETDOWN; 1319 goto done; 1320 } else 1321 ppd = dd->pport + port - 1; 1322 } 1323 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt]; 1324 ctxt++) 1325 ; 1326 if (ctxt == dd->cfgctxts) { 1327 ret = -EBUSY; 1328 goto done; 1329 } 1330 if (!ppd) { 1331 u32 pidx = ctxt % dd->num_pports; 1332 if (usable(dd->pport + pidx)) 1333 ppd = dd->pport + pidx; 1334 else { 1335 for (pidx = 0; pidx < dd->num_pports && !ppd; 1336 pidx++) 1337 if (usable(dd->pport + pidx)) 1338 ppd = dd->pport + pidx; 1339 } 1340 } 1341 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN; 1342 done: 1343 return ret; 1344 } 1345 1346 static int find_free_ctxt(int unit, struct file *fp, 1347 const struct qib_user_info *uinfo) 1348 { 1349 struct qib_devdata *dd = qib_lookup(unit); 1350 int ret; 1351 1352 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports)) 1353 ret = -ENODEV; 1354 else 1355 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo); 1356 1357 return ret; 1358 } 1359 1360 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo, 1361 unsigned alg) 1362 { 1363 struct qib_devdata *udd = NULL; 1364 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i; 1365 u32 port = uinfo->spu_port, ctxt; 1366 1367 devmax = qib_count_units(&npresent, &nup); 1368 if (!npresent) { 1369 ret = -ENXIO; 1370 goto done; 1371 } 1372 if (nup == 0) { 1373 ret = -ENETDOWN; 1374 goto done; 1375 } 1376 1377 if (alg == QIB_PORT_ALG_ACROSS) { 1378 unsigned inuse = ~0U; 1379 /* find device (with ACTIVE ports) with fewest ctxts in use */ 1380 for (ndev = 0; ndev < devmax; ndev++) { 1381 struct qib_devdata *dd = qib_lookup(ndev); 1382 unsigned cused = 0, cfree = 0, pusable = 0; 1383 if (!dd) 1384 continue; 1385 if (port && port <= dd->num_pports && 1386 usable(dd->pport + port - 1)) 1387 pusable = 1; 1388 else 1389 for (i = 0; i < dd->num_pports; i++) 1390 if (usable(dd->pport + i)) 1391 pusable++; 1392 if (!pusable) 1393 continue; 1394 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; 1395 ctxt++) 1396 if (dd->rcd[ctxt]) 1397 cused++; 1398 else 1399 cfree++; 1400 if (pusable && cfree && cused < inuse) { 1401 udd = dd; 1402 inuse = cused; 1403 } 1404 } 1405 if (udd) { 1406 ret = choose_port_ctxt(fp, udd, port, uinfo); 1407 goto done; 1408 } 1409 } else { 1410 for (ndev = 0; ndev < devmax; ndev++) { 1411 struct qib_devdata *dd = qib_lookup(ndev); 1412 if (dd) { 1413 ret = choose_port_ctxt(fp, dd, port, uinfo); 1414 if (!ret) 1415 goto done; 1416 if (ret == -EBUSY) 1417 dusable++; 1418 } 1419 } 1420 } 1421 ret = dusable ? -EBUSY : -ENETDOWN; 1422 1423 done: 1424 return ret; 1425 } 1426 1427 static int find_shared_ctxt(struct file *fp, 1428 const struct qib_user_info *uinfo) 1429 { 1430 int devmax, ndev, i; 1431 int ret = 0; 1432 1433 devmax = qib_count_units(NULL, NULL); 1434 1435 for (ndev = 0; ndev < devmax; ndev++) { 1436 struct qib_devdata *dd = qib_lookup(ndev); 1437 1438 /* device portion of usable() */ 1439 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase)) 1440 continue; 1441 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) { 1442 struct qib_ctxtdata *rcd = dd->rcd[i]; 1443 1444 /* Skip ctxts which are not yet open */ 1445 if (!rcd || !rcd->cnt) 1446 continue; 1447 /* Skip ctxt if it doesn't match the requested one */ 1448 if (rcd->subctxt_id != uinfo->spu_subctxt_id) 1449 continue; 1450 /* Verify the sharing process matches the master */ 1451 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt || 1452 rcd->userversion != uinfo->spu_userversion || 1453 rcd->cnt >= rcd->subctxt_cnt) { 1454 ret = -EINVAL; 1455 goto done; 1456 } 1457 ctxt_fp(fp) = rcd; 1458 subctxt_fp(fp) = rcd->cnt++; 1459 rcd->subpid[subctxt_fp(fp)] = current->pid; 1460 tidcursor_fp(fp) = 0; 1461 rcd->active_slaves |= 1 << subctxt_fp(fp); 1462 ret = 1; 1463 goto done; 1464 } 1465 } 1466 1467 done: 1468 return ret; 1469 } 1470 1471 static int qib_open(struct inode *in, struct file *fp) 1472 { 1473 /* The real work is performed later in qib_assign_ctxt() */ 1474 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL); 1475 if (fp->private_data) /* no cpu affinity by default */ 1476 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1; 1477 return fp->private_data ? 0 : -ENOMEM; 1478 } 1479 1480 /* 1481 * Get ctxt early, so can set affinity prior to memory allocation. 1482 */ 1483 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo) 1484 { 1485 int ret; 1486 int i_minor; 1487 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS; 1488 1489 /* Check to be sure we haven't already initialized this file */ 1490 if (ctxt_fp(fp)) { 1491 ret = -EINVAL; 1492 goto done; 1493 } 1494 1495 /* for now, if major version is different, bail */ 1496 swmajor = uinfo->spu_userversion >> 16; 1497 if (swmajor != QIB_USER_SWMAJOR) { 1498 ret = -ENODEV; 1499 goto done; 1500 } 1501 1502 swminor = uinfo->spu_userversion & 0xffff; 1503 1504 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT) 1505 alg = uinfo->spu_port_alg; 1506 1507 mutex_lock(&qib_mutex); 1508 1509 if (qib_compatible_subctxts(swmajor, swminor) && 1510 uinfo->spu_subctxt_cnt) { 1511 ret = find_shared_ctxt(fp, uinfo); 1512 if (ret) { 1513 if (ret > 0) 1514 ret = 0; 1515 goto done_chk_sdma; 1516 } 1517 } 1518 1519 i_minor = iminor(fp->f_dentry->d_inode) - QIB_USER_MINOR_BASE; 1520 if (i_minor) 1521 ret = find_free_ctxt(i_minor - 1, fp, uinfo); 1522 else 1523 ret = get_a_ctxt(fp, uinfo, alg); 1524 1525 done_chk_sdma: 1526 if (!ret) { 1527 struct qib_filedata *fd = fp->private_data; 1528 const struct qib_ctxtdata *rcd = fd->rcd; 1529 const struct qib_devdata *dd = rcd->dd; 1530 unsigned int weight; 1531 1532 if (dd->flags & QIB_HAS_SEND_DMA) { 1533 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev, 1534 dd->unit, 1535 rcd->ctxt, 1536 fd->subctxt); 1537 if (!fd->pq) 1538 ret = -ENOMEM; 1539 } 1540 1541 /* 1542 * If process has NOT already set it's affinity, select and 1543 * reserve a processor for it, as a rendezvous for all 1544 * users of the driver. If they don't actually later 1545 * set affinity to this cpu, or set it to some other cpu, 1546 * it just means that sooner or later we don't recommend 1547 * a cpu, and let the scheduler do it's best. 1548 */ 1549 weight = cpumask_weight(tsk_cpus_allowed(current)); 1550 if (!ret && weight >= qib_cpulist_count) { 1551 int cpu; 1552 cpu = find_first_zero_bit(qib_cpulist, 1553 qib_cpulist_count); 1554 if (cpu != qib_cpulist_count) { 1555 __set_bit(cpu, qib_cpulist); 1556 fd->rec_cpu_num = cpu; 1557 } 1558 } else if (weight == 1 && 1559 test_bit(cpumask_first(tsk_cpus_allowed(current)), 1560 qib_cpulist)) 1561 qib_devinfo(dd->pcidev, "%s PID %u affinity " 1562 "set to cpu %d; already allocated\n", 1563 current->comm, current->pid, 1564 cpumask_first(tsk_cpus_allowed(current))); 1565 } 1566 1567 mutex_unlock(&qib_mutex); 1568 1569 done: 1570 return ret; 1571 } 1572 1573 1574 static int qib_do_user_init(struct file *fp, 1575 const struct qib_user_info *uinfo) 1576 { 1577 int ret; 1578 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1579 struct qib_devdata *dd; 1580 unsigned uctxt; 1581 1582 /* Subctxts don't need to initialize anything since master did it. */ 1583 if (subctxt_fp(fp)) { 1584 ret = wait_event_interruptible(rcd->wait, 1585 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag)); 1586 goto bail; 1587 } 1588 1589 dd = rcd->dd; 1590 1591 /* some ctxts may get extra buffers, calculate that here */ 1592 uctxt = rcd->ctxt - dd->first_user_ctxt; 1593 if (uctxt < dd->ctxts_extrabuf) { 1594 rcd->piocnt = dd->pbufsctxt + 1; 1595 rcd->pio_base = rcd->piocnt * uctxt; 1596 } else { 1597 rcd->piocnt = dd->pbufsctxt; 1598 rcd->pio_base = rcd->piocnt * uctxt + 1599 dd->ctxts_extrabuf; 1600 } 1601 1602 /* 1603 * All user buffers are 2KB buffers. If we ever support 1604 * giving 4KB buffers to user processes, this will need some 1605 * work. Can't use piobufbase directly, because it has 1606 * both 2K and 4K buffer base values. So check and handle. 1607 */ 1608 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) { 1609 if (rcd->pio_base >= dd->piobcnt2k) { 1610 qib_dev_err(dd, 1611 "%u:ctxt%u: no 2KB buffers available\n", 1612 dd->unit, rcd->ctxt); 1613 ret = -ENOBUFS; 1614 goto bail; 1615 } 1616 rcd->piocnt = dd->piobcnt2k - rcd->pio_base; 1617 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n", 1618 rcd->ctxt, rcd->piocnt); 1619 } 1620 1621 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign; 1622 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1623 TXCHK_CHG_TYPE_USER, rcd); 1624 /* 1625 * try to ensure that processes start up with consistent avail update 1626 * for their own range, at least. If system very quiet, it might 1627 * have the in-memory copy out of date at startup for this range of 1628 * buffers, when a context gets re-used. Do after the chg_pioavail 1629 * and before the rest of setup, so it's "almost certain" the dma 1630 * will have occurred (can't 100% guarantee, but should be many 1631 * decimals of 9s, with this ordering), given how much else happens 1632 * after this. 1633 */ 1634 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP); 1635 1636 /* 1637 * Now allocate the rcvhdr Q and eager TIDs; skip the TID 1638 * array for time being. If rcd->ctxt > chip-supported, 1639 * we need to do extra stuff here to handle by handling overflow 1640 * through ctxt 0, someday 1641 */ 1642 ret = qib_create_rcvhdrq(dd, rcd); 1643 if (!ret) 1644 ret = qib_setup_eagerbufs(rcd); 1645 if (ret) 1646 goto bail_pio; 1647 1648 rcd->tidcursor = 0; /* start at beginning after open */ 1649 1650 /* initialize poll variables... */ 1651 rcd->urgent = 0; 1652 rcd->urgent_poll = 0; 1653 1654 /* 1655 * Now enable the ctxt for receive. 1656 * For chips that are set to DMA the tail register to memory 1657 * when they change (and when the update bit transitions from 1658 * 0 to 1. So for those chips, we turn it off and then back on. 1659 * This will (very briefly) affect any other open ctxts, but the 1660 * duration is very short, and therefore isn't an issue. We 1661 * explicitly set the in-memory tail copy to 0 beforehand, so we 1662 * don't have to wait to be sure the DMA update has happened 1663 * (chip resets head/tail to 0 on transition to enable). 1664 */ 1665 if (rcd->rcvhdrtail_kvaddr) 1666 qib_clear_rcvhdrtail(rcd); 1667 1668 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB, 1669 rcd->ctxt); 1670 1671 /* Notify any waiting slaves */ 1672 if (rcd->subctxt_cnt) { 1673 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1674 wake_up(&rcd->wait); 1675 } 1676 return 0; 1677 1678 bail_pio: 1679 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1680 TXCHK_CHG_TYPE_KERN, rcd); 1681 bail: 1682 return ret; 1683 } 1684 1685 /** 1686 * unlock_exptid - unlock any expected TID entries context still had in use 1687 * @rcd: ctxt 1688 * 1689 * We don't actually update the chip here, because we do a bulk update 1690 * below, using f_clear_tids. 1691 */ 1692 static void unlock_expected_tids(struct qib_ctxtdata *rcd) 1693 { 1694 struct qib_devdata *dd = rcd->dd; 1695 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt; 1696 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt; 1697 1698 for (i = ctxt_tidbase; i < maxtid; i++) { 1699 struct page *p = dd->pageshadow[i]; 1700 dma_addr_t phys; 1701 1702 if (!p) 1703 continue; 1704 1705 phys = dd->physshadow[i]; 1706 dd->physshadow[i] = dd->tidinvalid; 1707 dd->pageshadow[i] = NULL; 1708 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 1709 PCI_DMA_FROMDEVICE); 1710 qib_release_user_pages(&p, 1); 1711 cnt++; 1712 } 1713 } 1714 1715 static int qib_close(struct inode *in, struct file *fp) 1716 { 1717 int ret = 0; 1718 struct qib_filedata *fd; 1719 struct qib_ctxtdata *rcd; 1720 struct qib_devdata *dd; 1721 unsigned long flags; 1722 unsigned ctxt; 1723 pid_t pid; 1724 1725 mutex_lock(&qib_mutex); 1726 1727 fd = fp->private_data; 1728 fp->private_data = NULL; 1729 rcd = fd->rcd; 1730 if (!rcd) { 1731 mutex_unlock(&qib_mutex); 1732 goto bail; 1733 } 1734 1735 dd = rcd->dd; 1736 1737 /* ensure all pio buffer writes in progress are flushed */ 1738 qib_flush_wc(); 1739 1740 /* drain user sdma queue */ 1741 if (fd->pq) { 1742 qib_user_sdma_queue_drain(rcd->ppd, fd->pq); 1743 qib_user_sdma_queue_destroy(fd->pq); 1744 } 1745 1746 if (fd->rec_cpu_num != -1) 1747 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1748 1749 if (--rcd->cnt) { 1750 /* 1751 * XXX If the master closes the context before the slave(s), 1752 * revoke the mmap for the eager receive queue so 1753 * the slave(s) don't wait for receive data forever. 1754 */ 1755 rcd->active_slaves &= ~(1 << fd->subctxt); 1756 rcd->subpid[fd->subctxt] = 0; 1757 mutex_unlock(&qib_mutex); 1758 goto bail; 1759 } 1760 1761 /* early; no interrupt users after this */ 1762 spin_lock_irqsave(&dd->uctxt_lock, flags); 1763 ctxt = rcd->ctxt; 1764 dd->rcd[ctxt] = NULL; 1765 pid = rcd->pid; 1766 rcd->pid = 0; 1767 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1768 1769 if (rcd->rcvwait_to || rcd->piowait_to || 1770 rcd->rcvnowait || rcd->pionowait) { 1771 rcd->rcvwait_to = 0; 1772 rcd->piowait_to = 0; 1773 rcd->rcvnowait = 0; 1774 rcd->pionowait = 0; 1775 } 1776 if (rcd->flag) 1777 rcd->flag = 0; 1778 1779 if (dd->kregbase) { 1780 /* atomically clear receive enable ctxt and intr avail. */ 1781 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS | 1782 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt); 1783 1784 /* clean up the pkeys for this ctxt user */ 1785 qib_clean_part_key(rcd, dd); 1786 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt); 1787 qib_chg_pioavailkernel(dd, rcd->pio_base, 1788 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL); 1789 1790 dd->f_clear_tids(dd, rcd); 1791 1792 if (dd->pageshadow) 1793 unlock_expected_tids(rcd); 1794 qib_stats.sps_ctxts--; 1795 } 1796 1797 mutex_unlock(&qib_mutex); 1798 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */ 1799 1800 bail: 1801 kfree(fd); 1802 return ret; 1803 } 1804 1805 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo) 1806 { 1807 struct qib_ctxt_info info; 1808 int ret; 1809 size_t sz; 1810 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1811 struct qib_filedata *fd; 1812 1813 fd = fp->private_data; 1814 1815 info.num_active = qib_count_active_units(); 1816 info.unit = rcd->dd->unit; 1817 info.port = rcd->ppd->port; 1818 info.ctxt = rcd->ctxt; 1819 info.subctxt = subctxt_fp(fp); 1820 /* Number of user ctxts available for this device. */ 1821 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt; 1822 info.num_subctxts = rcd->subctxt_cnt; 1823 info.rec_cpu = fd->rec_cpu_num; 1824 sz = sizeof(info); 1825 1826 if (copy_to_user(uinfo, &info, sz)) { 1827 ret = -EFAULT; 1828 goto bail; 1829 } 1830 ret = 0; 1831 1832 bail: 1833 return ret; 1834 } 1835 1836 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq, 1837 u32 __user *inflightp) 1838 { 1839 const u32 val = qib_user_sdma_inflight_counter(pq); 1840 1841 if (put_user(val, inflightp)) 1842 return -EFAULT; 1843 1844 return 0; 1845 } 1846 1847 static int qib_sdma_get_complete(struct qib_pportdata *ppd, 1848 struct qib_user_sdma_queue *pq, 1849 u32 __user *completep) 1850 { 1851 u32 val; 1852 int err; 1853 1854 if (!pq) 1855 return -EINVAL; 1856 1857 err = qib_user_sdma_make_progress(ppd, pq); 1858 if (err < 0) 1859 return err; 1860 1861 val = qib_user_sdma_complete_counter(pq); 1862 if (put_user(val, completep)) 1863 return -EFAULT; 1864 1865 return 0; 1866 } 1867 1868 static int disarm_req_delay(struct qib_ctxtdata *rcd) 1869 { 1870 int ret = 0; 1871 1872 if (!usable(rcd->ppd)) { 1873 int i; 1874 /* 1875 * if link is down, or otherwise not usable, delay 1876 * the caller up to 30 seconds, so we don't thrash 1877 * in trying to get the chip back to ACTIVE, and 1878 * set flag so they make the call again. 1879 */ 1880 if (rcd->user_event_mask) { 1881 /* 1882 * subctxt_cnt is 0 if not shared, so do base 1883 * separately, first, then remaining subctxt, if any 1884 */ 1885 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1886 &rcd->user_event_mask[0]); 1887 for (i = 1; i < rcd->subctxt_cnt; i++) 1888 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1889 &rcd->user_event_mask[i]); 1890 } 1891 for (i = 0; !usable(rcd->ppd) && i < 300; i++) 1892 msleep(100); 1893 ret = -ENETDOWN; 1894 } 1895 return ret; 1896 } 1897 1898 /* 1899 * Find all user contexts in use, and set the specified bit in their 1900 * event mask. 1901 * See also find_ctxt() for a similar use, that is specific to send buffers. 1902 */ 1903 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit) 1904 { 1905 struct qib_ctxtdata *rcd; 1906 unsigned ctxt; 1907 int ret = 0; 1908 unsigned long flags; 1909 1910 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags); 1911 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts; 1912 ctxt++) { 1913 rcd = ppd->dd->rcd[ctxt]; 1914 if (!rcd) 1915 continue; 1916 if (rcd->user_event_mask) { 1917 int i; 1918 /* 1919 * subctxt_cnt is 0 if not shared, so do base 1920 * separately, first, then remaining subctxt, if any 1921 */ 1922 set_bit(evtbit, &rcd->user_event_mask[0]); 1923 for (i = 1; i < rcd->subctxt_cnt; i++) 1924 set_bit(evtbit, &rcd->user_event_mask[i]); 1925 } 1926 ret = 1; 1927 break; 1928 } 1929 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags); 1930 1931 return ret; 1932 } 1933 1934 /* 1935 * clear the event notifier events for this context. 1936 * For the DISARM_BUFS case, we also take action (this obsoletes 1937 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards 1938 * compatibility. 1939 * Other bits don't currently require actions, just atomically clear. 1940 * User process then performs actions appropriate to bit having been 1941 * set, if desired, and checks again in future. 1942 */ 1943 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt, 1944 unsigned long events) 1945 { 1946 int ret = 0, i; 1947 1948 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) { 1949 if (!test_bit(i, &events)) 1950 continue; 1951 if (i == _QIB_EVENT_DISARM_BUFS_BIT) { 1952 (void)qib_disarm_piobufs_ifneeded(rcd); 1953 ret = disarm_req_delay(rcd); 1954 } else 1955 clear_bit(i, &rcd->user_event_mask[subctxt]); 1956 } 1957 return ret; 1958 } 1959 1960 static ssize_t qib_write(struct file *fp, const char __user *data, 1961 size_t count, loff_t *off) 1962 { 1963 const struct qib_cmd __user *ucmd; 1964 struct qib_ctxtdata *rcd; 1965 const void __user *src; 1966 size_t consumed, copy = 0; 1967 struct qib_cmd cmd; 1968 ssize_t ret = 0; 1969 void *dest; 1970 1971 if (count < sizeof(cmd.type)) { 1972 ret = -EINVAL; 1973 goto bail; 1974 } 1975 1976 ucmd = (const struct qib_cmd __user *) data; 1977 1978 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { 1979 ret = -EFAULT; 1980 goto bail; 1981 } 1982 1983 consumed = sizeof(cmd.type); 1984 1985 switch (cmd.type) { 1986 case QIB_CMD_ASSIGN_CTXT: 1987 case QIB_CMD_USER_INIT: 1988 copy = sizeof(cmd.cmd.user_info); 1989 dest = &cmd.cmd.user_info; 1990 src = &ucmd->cmd.user_info; 1991 break; 1992 1993 case QIB_CMD_RECV_CTRL: 1994 copy = sizeof(cmd.cmd.recv_ctrl); 1995 dest = &cmd.cmd.recv_ctrl; 1996 src = &ucmd->cmd.recv_ctrl; 1997 break; 1998 1999 case QIB_CMD_CTXT_INFO: 2000 copy = sizeof(cmd.cmd.ctxt_info); 2001 dest = &cmd.cmd.ctxt_info; 2002 src = &ucmd->cmd.ctxt_info; 2003 break; 2004 2005 case QIB_CMD_TID_UPDATE: 2006 case QIB_CMD_TID_FREE: 2007 copy = sizeof(cmd.cmd.tid_info); 2008 dest = &cmd.cmd.tid_info; 2009 src = &ucmd->cmd.tid_info; 2010 break; 2011 2012 case QIB_CMD_SET_PART_KEY: 2013 copy = sizeof(cmd.cmd.part_key); 2014 dest = &cmd.cmd.part_key; 2015 src = &ucmd->cmd.part_key; 2016 break; 2017 2018 case QIB_CMD_DISARM_BUFS: 2019 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */ 2020 copy = 0; 2021 src = NULL; 2022 dest = NULL; 2023 break; 2024 2025 case QIB_CMD_POLL_TYPE: 2026 copy = sizeof(cmd.cmd.poll_type); 2027 dest = &cmd.cmd.poll_type; 2028 src = &ucmd->cmd.poll_type; 2029 break; 2030 2031 case QIB_CMD_ARMLAUNCH_CTRL: 2032 copy = sizeof(cmd.cmd.armlaunch_ctrl); 2033 dest = &cmd.cmd.armlaunch_ctrl; 2034 src = &ucmd->cmd.armlaunch_ctrl; 2035 break; 2036 2037 case QIB_CMD_SDMA_INFLIGHT: 2038 copy = sizeof(cmd.cmd.sdma_inflight); 2039 dest = &cmd.cmd.sdma_inflight; 2040 src = &ucmd->cmd.sdma_inflight; 2041 break; 2042 2043 case QIB_CMD_SDMA_COMPLETE: 2044 copy = sizeof(cmd.cmd.sdma_complete); 2045 dest = &cmd.cmd.sdma_complete; 2046 src = &ucmd->cmd.sdma_complete; 2047 break; 2048 2049 case QIB_CMD_ACK_EVENT: 2050 copy = sizeof(cmd.cmd.event_mask); 2051 dest = &cmd.cmd.event_mask; 2052 src = &ucmd->cmd.event_mask; 2053 break; 2054 2055 default: 2056 ret = -EINVAL; 2057 goto bail; 2058 } 2059 2060 if (copy) { 2061 if ((count - consumed) < copy) { 2062 ret = -EINVAL; 2063 goto bail; 2064 } 2065 if (copy_from_user(dest, src, copy)) { 2066 ret = -EFAULT; 2067 goto bail; 2068 } 2069 consumed += copy; 2070 } 2071 2072 rcd = ctxt_fp(fp); 2073 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) { 2074 ret = -EINVAL; 2075 goto bail; 2076 } 2077 2078 switch (cmd.type) { 2079 case QIB_CMD_ASSIGN_CTXT: 2080 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info); 2081 if (ret) 2082 goto bail; 2083 break; 2084 2085 case QIB_CMD_USER_INIT: 2086 ret = qib_do_user_init(fp, &cmd.cmd.user_info); 2087 if (ret) 2088 goto bail; 2089 ret = qib_get_base_info(fp, (void __user *) (unsigned long) 2090 cmd.cmd.user_info.spu_base_info, 2091 cmd.cmd.user_info.spu_base_info_size); 2092 break; 2093 2094 case QIB_CMD_RECV_CTRL: 2095 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl); 2096 break; 2097 2098 case QIB_CMD_CTXT_INFO: 2099 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *) 2100 (unsigned long) cmd.cmd.ctxt_info); 2101 break; 2102 2103 case QIB_CMD_TID_UPDATE: 2104 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info); 2105 break; 2106 2107 case QIB_CMD_TID_FREE: 2108 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info); 2109 break; 2110 2111 case QIB_CMD_SET_PART_KEY: 2112 ret = qib_set_part_key(rcd, cmd.cmd.part_key); 2113 break; 2114 2115 case QIB_CMD_DISARM_BUFS: 2116 (void)qib_disarm_piobufs_ifneeded(rcd); 2117 ret = disarm_req_delay(rcd); 2118 break; 2119 2120 case QIB_CMD_PIOAVAILUPD: 2121 qib_force_pio_avail_update(rcd->dd); 2122 break; 2123 2124 case QIB_CMD_POLL_TYPE: 2125 rcd->poll_type = cmd.cmd.poll_type; 2126 break; 2127 2128 case QIB_CMD_ARMLAUNCH_CTRL: 2129 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl); 2130 break; 2131 2132 case QIB_CMD_SDMA_INFLIGHT: 2133 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp), 2134 (u32 __user *) (unsigned long) 2135 cmd.cmd.sdma_inflight); 2136 break; 2137 2138 case QIB_CMD_SDMA_COMPLETE: 2139 ret = qib_sdma_get_complete(rcd->ppd, 2140 user_sdma_queue_fp(fp), 2141 (u32 __user *) (unsigned long) 2142 cmd.cmd.sdma_complete); 2143 break; 2144 2145 case QIB_CMD_ACK_EVENT: 2146 ret = qib_user_event_ack(rcd, subctxt_fp(fp), 2147 cmd.cmd.event_mask); 2148 break; 2149 } 2150 2151 if (ret >= 0) 2152 ret = consumed; 2153 2154 bail: 2155 return ret; 2156 } 2157 2158 static ssize_t qib_aio_write(struct kiocb *iocb, const struct iovec *iov, 2159 unsigned long dim, loff_t off) 2160 { 2161 struct qib_filedata *fp = iocb->ki_filp->private_data; 2162 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp); 2163 struct qib_user_sdma_queue *pq = fp->pq; 2164 2165 if (!dim || !pq) 2166 return -EINVAL; 2167 2168 return qib_user_sdma_writev(rcd, pq, iov, dim); 2169 } 2170 2171 static struct class *qib_class; 2172 static dev_t qib_dev; 2173 2174 int qib_cdev_init(int minor, const char *name, 2175 const struct file_operations *fops, 2176 struct cdev **cdevp, struct device **devp) 2177 { 2178 const dev_t dev = MKDEV(MAJOR(qib_dev), minor); 2179 struct cdev *cdev; 2180 struct device *device = NULL; 2181 int ret; 2182 2183 cdev = cdev_alloc(); 2184 if (!cdev) { 2185 printk(KERN_ERR QIB_DRV_NAME 2186 ": Could not allocate cdev for minor %d, %s\n", 2187 minor, name); 2188 ret = -ENOMEM; 2189 goto done; 2190 } 2191 2192 cdev->owner = THIS_MODULE; 2193 cdev->ops = fops; 2194 kobject_set_name(&cdev->kobj, name); 2195 2196 ret = cdev_add(cdev, dev, 1); 2197 if (ret < 0) { 2198 printk(KERN_ERR QIB_DRV_NAME 2199 ": Could not add cdev for minor %d, %s (err %d)\n", 2200 minor, name, -ret); 2201 goto err_cdev; 2202 } 2203 2204 device = device_create(qib_class, NULL, dev, NULL, name); 2205 if (!IS_ERR(device)) 2206 goto done; 2207 ret = PTR_ERR(device); 2208 device = NULL; 2209 printk(KERN_ERR QIB_DRV_NAME ": Could not create " 2210 "device for minor %d, %s (err %d)\n", 2211 minor, name, -ret); 2212 err_cdev: 2213 cdev_del(cdev); 2214 cdev = NULL; 2215 done: 2216 *cdevp = cdev; 2217 *devp = device; 2218 return ret; 2219 } 2220 2221 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp) 2222 { 2223 struct device *device = *devp; 2224 2225 if (device) { 2226 device_unregister(device); 2227 *devp = NULL; 2228 } 2229 2230 if (*cdevp) { 2231 cdev_del(*cdevp); 2232 *cdevp = NULL; 2233 } 2234 } 2235 2236 static struct cdev *wildcard_cdev; 2237 static struct device *wildcard_device; 2238 2239 int __init qib_dev_init(void) 2240 { 2241 int ret; 2242 2243 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME); 2244 if (ret < 0) { 2245 printk(KERN_ERR QIB_DRV_NAME ": Could not allocate " 2246 "chrdev region (err %d)\n", -ret); 2247 goto done; 2248 } 2249 2250 qib_class = class_create(THIS_MODULE, "ipath"); 2251 if (IS_ERR(qib_class)) { 2252 ret = PTR_ERR(qib_class); 2253 printk(KERN_ERR QIB_DRV_NAME ": Could not create " 2254 "device class (err %d)\n", -ret); 2255 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2256 } 2257 2258 done: 2259 return ret; 2260 } 2261 2262 void qib_dev_cleanup(void) 2263 { 2264 if (qib_class) { 2265 class_destroy(qib_class); 2266 qib_class = NULL; 2267 } 2268 2269 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2270 } 2271 2272 static atomic_t user_count = ATOMIC_INIT(0); 2273 2274 static void qib_user_remove(struct qib_devdata *dd) 2275 { 2276 if (atomic_dec_return(&user_count) == 0) 2277 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device); 2278 2279 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device); 2280 } 2281 2282 static int qib_user_add(struct qib_devdata *dd) 2283 { 2284 char name[10]; 2285 int ret; 2286 2287 if (atomic_inc_return(&user_count) == 1) { 2288 ret = qib_cdev_init(0, "ipath", &qib_file_ops, 2289 &wildcard_cdev, &wildcard_device); 2290 if (ret) 2291 goto done; 2292 } 2293 2294 snprintf(name, sizeof(name), "ipath%d", dd->unit); 2295 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops, 2296 &dd->user_cdev, &dd->user_device); 2297 if (ret) 2298 qib_user_remove(dd); 2299 done: 2300 return ret; 2301 } 2302 2303 /* 2304 * Create per-unit files in /dev 2305 */ 2306 int qib_device_create(struct qib_devdata *dd) 2307 { 2308 int r, ret; 2309 2310 r = qib_user_add(dd); 2311 ret = qib_diag_add(dd); 2312 if (r && !ret) 2313 ret = r; 2314 return ret; 2315 } 2316 2317 /* 2318 * Remove per-unit files in /dev 2319 * void, core kernel returns no errors for this stuff 2320 */ 2321 void qib_device_remove(struct qib_devdata *dd) 2322 { 2323 qib_user_remove(dd); 2324 qib_diag_remove(dd); 2325 } 2326