1 /* 2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved. 3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/pci.h> 36 #include <linux/poll.h> 37 #include <linux/cdev.h> 38 #include <linux/swap.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/io.h> 42 #include <linux/jiffies.h> 43 #include <asm/pgtable.h> 44 #include <linux/delay.h> 45 #include <linux/export.h> 46 #include <linux/uio.h> 47 48 #include <rdma/ib.h> 49 50 #include "qib.h" 51 #include "qib_common.h" 52 #include "qib_user_sdma.h" 53 54 #undef pr_fmt 55 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt 56 57 static int qib_open(struct inode *, struct file *); 58 static int qib_close(struct inode *, struct file *); 59 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *); 60 static ssize_t qib_write_iter(struct kiocb *, struct iov_iter *); 61 static unsigned int qib_poll(struct file *, struct poll_table_struct *); 62 static int qib_mmapf(struct file *, struct vm_area_struct *); 63 64 /* 65 * This is really, really weird shit - write() and writev() here 66 * have completely unrelated semantics. Sucky userland ABI, 67 * film at 11. 68 */ 69 static const struct file_operations qib_file_ops = { 70 .owner = THIS_MODULE, 71 .write = qib_write, 72 .write_iter = qib_write_iter, 73 .open = qib_open, 74 .release = qib_close, 75 .poll = qib_poll, 76 .mmap = qib_mmapf, 77 .llseek = noop_llseek, 78 }; 79 80 /* 81 * Convert kernel virtual addresses to physical addresses so they don't 82 * potentially conflict with the chip addresses used as mmap offsets. 83 * It doesn't really matter what mmap offset we use as long as we can 84 * interpret it correctly. 85 */ 86 static u64 cvt_kvaddr(void *p) 87 { 88 struct page *page; 89 u64 paddr = 0; 90 91 page = vmalloc_to_page(p); 92 if (page) 93 paddr = page_to_pfn(page) << PAGE_SHIFT; 94 95 return paddr; 96 } 97 98 static int qib_get_base_info(struct file *fp, void __user *ubase, 99 size_t ubase_size) 100 { 101 struct qib_ctxtdata *rcd = ctxt_fp(fp); 102 int ret = 0; 103 struct qib_base_info *kinfo = NULL; 104 struct qib_devdata *dd = rcd->dd; 105 struct qib_pportdata *ppd = rcd->ppd; 106 unsigned subctxt_cnt; 107 int shared, master; 108 size_t sz; 109 110 subctxt_cnt = rcd->subctxt_cnt; 111 if (!subctxt_cnt) { 112 shared = 0; 113 master = 0; 114 subctxt_cnt = 1; 115 } else { 116 shared = 1; 117 master = !subctxt_fp(fp); 118 } 119 120 sz = sizeof(*kinfo); 121 /* If context sharing is not requested, allow the old size structure */ 122 if (!shared) 123 sz -= 7 * sizeof(u64); 124 if (ubase_size < sz) { 125 ret = -EINVAL; 126 goto bail; 127 } 128 129 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); 130 if (kinfo == NULL) { 131 ret = -ENOMEM; 132 goto bail; 133 } 134 135 ret = dd->f_get_base_info(rcd, kinfo); 136 if (ret < 0) 137 goto bail; 138 139 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt; 140 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize; 141 kinfo->spi_tidegrcnt = rcd->rcvegrcnt; 142 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize; 143 /* 144 * have to mmap whole thing 145 */ 146 kinfo->spi_rcv_egrbuftotlen = 147 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 148 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk; 149 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / 150 rcd->rcvegrbuf_chunks; 151 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt; 152 if (master) 153 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt; 154 /* 155 * for this use, may be cfgctxts summed over all chips that 156 * are are configured and present 157 */ 158 kinfo->spi_nctxts = dd->cfgctxts; 159 /* unit (chip/board) our context is on */ 160 kinfo->spi_unit = dd->unit; 161 kinfo->spi_port = ppd->port; 162 /* for now, only a single page */ 163 kinfo->spi_tid_maxsize = PAGE_SIZE; 164 165 /* 166 * Doing this per context, and based on the skip value, etc. This has 167 * to be the actual buffer size, since the protocol code treats it 168 * as an array. 169 * 170 * These have to be set to user addresses in the user code via mmap. 171 * These values are used on return to user code for the mmap target 172 * addresses only. For 32 bit, same 44 bit address problem, so use 173 * the physical address, not virtual. Before 2.6.11, using the 174 * page_address() macro worked, but in 2.6.11, even that returns the 175 * full 64 bit address (upper bits all 1's). So far, using the 176 * physical addresses (or chip offsets, for chip mapping) works, but 177 * no doubt some future kernel release will change that, and we'll be 178 * on to yet another method of dealing with this. 179 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful 180 * since the chips with non-zero rhf_offset don't normally 181 * enable tail register updates to host memory, but for testing, 182 * both can be enabled and used. 183 */ 184 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys; 185 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys; 186 kinfo->spi_rhf_offset = dd->rhf_offset; 187 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys; 188 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys; 189 /* setup per-unit (not port) status area for user programs */ 190 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + 191 (char *) ppd->statusp - 192 (char *) dd->pioavailregs_dma; 193 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt; 194 if (!shared) { 195 kinfo->spi_piocnt = rcd->piocnt; 196 kinfo->spi_piobufbase = (u64) rcd->piobufs; 197 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask); 198 } else if (master) { 199 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) + 200 (rcd->piocnt % subctxt_cnt); 201 /* Master's PIO buffers are after all the slave's */ 202 kinfo->spi_piobufbase = (u64) rcd->piobufs + 203 dd->palign * 204 (rcd->piocnt - kinfo->spi_piocnt); 205 } else { 206 unsigned slave = subctxt_fp(fp) - 1; 207 208 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt; 209 kinfo->spi_piobufbase = (u64) rcd->piobufs + 210 dd->palign * kinfo->spi_piocnt * slave; 211 } 212 213 if (shared) { 214 kinfo->spi_sendbuf_status = 215 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]); 216 /* only spi_subctxt_* fields should be set in this block! */ 217 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase); 218 219 kinfo->spi_subctxt_rcvegrbuf = 220 cvt_kvaddr(rcd->subctxt_rcvegrbuf); 221 kinfo->spi_subctxt_rcvhdr_base = 222 cvt_kvaddr(rcd->subctxt_rcvhdr_base); 223 } 224 225 /* 226 * All user buffers are 2KB buffers. If we ever support 227 * giving 4KB buffers to user processes, this will need some 228 * work. Can't use piobufbase directly, because it has 229 * both 2K and 4K buffer base values. 230 */ 231 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) / 232 dd->palign; 233 kinfo->spi_pioalign = dd->palign; 234 kinfo->spi_qpair = QIB_KD_QP; 235 /* 236 * user mode PIO buffers are always 2KB, even when 4KB can 237 * be received, and sent via the kernel; this is ibmaxlen 238 * for 2K MTU. 239 */ 240 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32); 241 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */ 242 kinfo->spi_ctxt = rcd->ctxt; 243 kinfo->spi_subctxt = subctxt_fp(fp); 244 kinfo->spi_sw_version = QIB_KERN_SWVERSION; 245 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */ 246 kinfo->spi_hw_version = dd->revision; 247 248 if (master) 249 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER; 250 251 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo); 252 if (copy_to_user(ubase, kinfo, sz)) 253 ret = -EFAULT; 254 bail: 255 kfree(kinfo); 256 return ret; 257 } 258 259 /** 260 * qib_tid_update - update a context TID 261 * @rcd: the context 262 * @fp: the qib device file 263 * @ti: the TID information 264 * 265 * The new implementation as of Oct 2004 is that the driver assigns 266 * the tid and returns it to the caller. To reduce search time, we 267 * keep a cursor for each context, walking the shadow tid array to find 268 * one that's not in use. 269 * 270 * For now, if we can't allocate the full list, we fail, although 271 * in the long run, we'll allocate as many as we can, and the 272 * caller will deal with that by trying the remaining pages later. 273 * That means that when we fail, we have to mark the tids as not in 274 * use again, in our shadow copy. 275 * 276 * It's up to the caller to free the tids when they are done. 277 * We'll unlock the pages as they free them. 278 * 279 * Also, right now we are locking one page at a time, but since 280 * the intended use of this routine is for a single group of 281 * virtually contiguous pages, that should change to improve 282 * performance. 283 */ 284 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp, 285 const struct qib_tid_info *ti) 286 { 287 int ret = 0, ntids; 288 u32 tid, ctxttid, cnt, i, tidcnt, tidoff; 289 u16 *tidlist; 290 struct qib_devdata *dd = rcd->dd; 291 u64 physaddr; 292 unsigned long vaddr; 293 u64 __iomem *tidbase; 294 unsigned long tidmap[8]; 295 struct page **pagep = NULL; 296 unsigned subctxt = subctxt_fp(fp); 297 298 if (!dd->pageshadow) { 299 ret = -ENOMEM; 300 goto done; 301 } 302 303 cnt = ti->tidcnt; 304 if (!cnt) { 305 ret = -EFAULT; 306 goto done; 307 } 308 ctxttid = rcd->ctxt * dd->rcvtidcnt; 309 if (!rcd->subctxt_cnt) { 310 tidcnt = dd->rcvtidcnt; 311 tid = rcd->tidcursor; 312 tidoff = 0; 313 } else if (!subctxt) { 314 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 315 (dd->rcvtidcnt % rcd->subctxt_cnt); 316 tidoff = dd->rcvtidcnt - tidcnt; 317 ctxttid += tidoff; 318 tid = tidcursor_fp(fp); 319 } else { 320 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 321 tidoff = tidcnt * (subctxt - 1); 322 ctxttid += tidoff; 323 tid = tidcursor_fp(fp); 324 } 325 if (cnt > tidcnt) { 326 /* make sure it all fits in tid_pg_list */ 327 qib_devinfo(dd->pcidev, 328 "Process tried to allocate %u TIDs, only trying max (%u)\n", 329 cnt, tidcnt); 330 cnt = tidcnt; 331 } 332 pagep = (struct page **) rcd->tid_pg_list; 333 tidlist = (u16 *) &pagep[dd->rcvtidcnt]; 334 pagep += tidoff; 335 tidlist += tidoff; 336 337 memset(tidmap, 0, sizeof(tidmap)); 338 /* before decrement; chip actual # */ 339 ntids = tidcnt; 340 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) + 341 dd->rcvtidbase + 342 ctxttid * sizeof(*tidbase)); 343 344 /* virtual address of first page in transfer */ 345 vaddr = ti->tidvaddr; 346 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr, 347 cnt * PAGE_SIZE)) { 348 ret = -EFAULT; 349 goto done; 350 } 351 ret = qib_get_user_pages(vaddr, cnt, pagep); 352 if (ret) { 353 /* 354 * if (ret == -EBUSY) 355 * We can't continue because the pagep array won't be 356 * initialized. This should never happen, 357 * unless perhaps the user has mpin'ed the pages 358 * themselves. 359 */ 360 qib_devinfo( 361 dd->pcidev, 362 "Failed to lock addr %p, %u pages: errno %d\n", 363 (void *) vaddr, cnt, -ret); 364 goto done; 365 } 366 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { 367 for (; ntids--; tid++) { 368 if (tid == tidcnt) 369 tid = 0; 370 if (!dd->pageshadow[ctxttid + tid]) 371 break; 372 } 373 if (ntids < 0) { 374 /* 375 * Oops, wrapped all the way through their TIDs, 376 * and didn't have enough free; see comments at 377 * start of routine 378 */ 379 i--; /* last tidlist[i] not filled in */ 380 ret = -ENOMEM; 381 break; 382 } 383 tidlist[i] = tid + tidoff; 384 /* we "know" system pages and TID pages are same size */ 385 dd->pageshadow[ctxttid + tid] = pagep[i]; 386 dd->physshadow[ctxttid + tid] = 387 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE, 388 PCI_DMA_FROMDEVICE); 389 /* 390 * don't need atomic or it's overhead 391 */ 392 __set_bit(tid, tidmap); 393 physaddr = dd->physshadow[ctxttid + tid]; 394 /* PERFORMANCE: below should almost certainly be cached */ 395 dd->f_put_tid(dd, &tidbase[tid], 396 RCVHQ_RCV_TYPE_EXPECTED, physaddr); 397 /* 398 * don't check this tid in qib_ctxtshadow, since we 399 * just filled it in; start with the next one. 400 */ 401 tid++; 402 } 403 404 if (ret) { 405 u32 limit; 406 cleanup: 407 /* jump here if copy out of updated info failed... */ 408 /* same code that's in qib_free_tid() */ 409 limit = sizeof(tidmap) * BITS_PER_BYTE; 410 if (limit > tidcnt) 411 /* just in case size changes in future */ 412 limit = tidcnt; 413 tid = find_first_bit((const unsigned long *)tidmap, limit); 414 for (; tid < limit; tid++) { 415 if (!test_bit(tid, tidmap)) 416 continue; 417 if (dd->pageshadow[ctxttid + tid]) { 418 dma_addr_t phys; 419 420 phys = dd->physshadow[ctxttid + tid]; 421 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 422 /* PERFORMANCE: below should almost certainly 423 * be cached 424 */ 425 dd->f_put_tid(dd, &tidbase[tid], 426 RCVHQ_RCV_TYPE_EXPECTED, 427 dd->tidinvalid); 428 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 429 PCI_DMA_FROMDEVICE); 430 dd->pageshadow[ctxttid + tid] = NULL; 431 } 432 } 433 qib_release_user_pages(pagep, cnt); 434 } else { 435 /* 436 * Copy the updated array, with qib_tid's filled in, back 437 * to user. Since we did the copy in already, this "should 438 * never fail" If it does, we have to clean up... 439 */ 440 if (copy_to_user((void __user *) 441 (unsigned long) ti->tidlist, 442 tidlist, cnt * sizeof(*tidlist))) { 443 ret = -EFAULT; 444 goto cleanup; 445 } 446 if (copy_to_user((void __user *) (unsigned long) ti->tidmap, 447 tidmap, sizeof(tidmap))) { 448 ret = -EFAULT; 449 goto cleanup; 450 } 451 if (tid == tidcnt) 452 tid = 0; 453 if (!rcd->subctxt_cnt) 454 rcd->tidcursor = tid; 455 else 456 tidcursor_fp(fp) = tid; 457 } 458 459 done: 460 return ret; 461 } 462 463 /** 464 * qib_tid_free - free a context TID 465 * @rcd: the context 466 * @subctxt: the subcontext 467 * @ti: the TID info 468 * 469 * right now we are unlocking one page at a time, but since 470 * the intended use of this routine is for a single group of 471 * virtually contiguous pages, that should change to improve 472 * performance. We check that the TID is in range for this context 473 * but otherwise don't check validity; if user has an error and 474 * frees the wrong tid, it's only their own data that can thereby 475 * be corrupted. We do check that the TID was in use, for sanity 476 * We always use our idea of the saved address, not the address that 477 * they pass in to us. 478 */ 479 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt, 480 const struct qib_tid_info *ti) 481 { 482 int ret = 0; 483 u32 tid, ctxttid, cnt, limit, tidcnt; 484 struct qib_devdata *dd = rcd->dd; 485 u64 __iomem *tidbase; 486 unsigned long tidmap[8]; 487 488 if (!dd->pageshadow) { 489 ret = -ENOMEM; 490 goto done; 491 } 492 493 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap, 494 sizeof(tidmap))) { 495 ret = -EFAULT; 496 goto done; 497 } 498 499 ctxttid = rcd->ctxt * dd->rcvtidcnt; 500 if (!rcd->subctxt_cnt) 501 tidcnt = dd->rcvtidcnt; 502 else if (!subctxt) { 503 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 504 (dd->rcvtidcnt % rcd->subctxt_cnt); 505 ctxttid += dd->rcvtidcnt - tidcnt; 506 } else { 507 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 508 ctxttid += tidcnt * (subctxt - 1); 509 } 510 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) + 511 dd->rcvtidbase + 512 ctxttid * sizeof(*tidbase)); 513 514 limit = sizeof(tidmap) * BITS_PER_BYTE; 515 if (limit > tidcnt) 516 /* just in case size changes in future */ 517 limit = tidcnt; 518 tid = find_first_bit(tidmap, limit); 519 for (cnt = 0; tid < limit; tid++) { 520 /* 521 * small optimization; if we detect a run of 3 or so without 522 * any set, use find_first_bit again. That's mainly to 523 * accelerate the case where we wrapped, so we have some at 524 * the beginning, and some at the end, and a big gap 525 * in the middle. 526 */ 527 if (!test_bit(tid, tidmap)) 528 continue; 529 cnt++; 530 if (dd->pageshadow[ctxttid + tid]) { 531 struct page *p; 532 dma_addr_t phys; 533 534 p = dd->pageshadow[ctxttid + tid]; 535 dd->pageshadow[ctxttid + tid] = NULL; 536 phys = dd->physshadow[ctxttid + tid]; 537 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 538 /* PERFORMANCE: below should almost certainly be 539 * cached 540 */ 541 dd->f_put_tid(dd, &tidbase[tid], 542 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); 543 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 544 PCI_DMA_FROMDEVICE); 545 qib_release_user_pages(&p, 1); 546 } 547 } 548 done: 549 return ret; 550 } 551 552 /** 553 * qib_set_part_key - set a partition key 554 * @rcd: the context 555 * @key: the key 556 * 557 * We can have up to 4 active at a time (other than the default, which is 558 * always allowed). This is somewhat tricky, since multiple contexts may set 559 * the same key, so we reference count them, and clean up at exit. All 4 560 * partition keys are packed into a single qlogic_ib register. It's an 561 * error for a process to set the same pkey multiple times. We provide no 562 * mechanism to de-allocate a pkey at this time, we may eventually need to 563 * do that. I've used the atomic operations, and no locking, and only make 564 * a single pass through what's available. This should be more than 565 * adequate for some time. I'll think about spinlocks or the like if and as 566 * it's necessary. 567 */ 568 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key) 569 { 570 struct qib_pportdata *ppd = rcd->ppd; 571 int i, any = 0, pidx = -1; 572 u16 lkey = key & 0x7FFF; 573 int ret; 574 575 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) { 576 /* nothing to do; this key always valid */ 577 ret = 0; 578 goto bail; 579 } 580 581 if (!lkey) { 582 ret = -EINVAL; 583 goto bail; 584 } 585 586 /* 587 * Set the full membership bit, because it has to be 588 * set in the register or the packet, and it seems 589 * cleaner to set in the register than to force all 590 * callers to set it. 591 */ 592 key |= 0x8000; 593 594 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 595 if (!rcd->pkeys[i] && pidx == -1) 596 pidx = i; 597 if (rcd->pkeys[i] == key) { 598 ret = -EEXIST; 599 goto bail; 600 } 601 } 602 if (pidx == -1) { 603 ret = -EBUSY; 604 goto bail; 605 } 606 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 607 if (!ppd->pkeys[i]) { 608 any++; 609 continue; 610 } 611 if (ppd->pkeys[i] == key) { 612 atomic_t *pkrefs = &ppd->pkeyrefs[i]; 613 614 if (atomic_inc_return(pkrefs) > 1) { 615 rcd->pkeys[pidx] = key; 616 ret = 0; 617 goto bail; 618 } else { 619 /* 620 * lost race, decrement count, catch below 621 */ 622 atomic_dec(pkrefs); 623 any++; 624 } 625 } 626 if ((ppd->pkeys[i] & 0x7FFF) == lkey) { 627 /* 628 * It makes no sense to have both the limited and 629 * full membership PKEY set at the same time since 630 * the unlimited one will disable the limited one. 631 */ 632 ret = -EEXIST; 633 goto bail; 634 } 635 } 636 if (!any) { 637 ret = -EBUSY; 638 goto bail; 639 } 640 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 641 if (!ppd->pkeys[i] && 642 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) { 643 rcd->pkeys[pidx] = key; 644 ppd->pkeys[i] = key; 645 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 646 ret = 0; 647 goto bail; 648 } 649 } 650 ret = -EBUSY; 651 652 bail: 653 return ret; 654 } 655 656 /** 657 * qib_manage_rcvq - manage a context's receive queue 658 * @rcd: the context 659 * @subctxt: the subcontext 660 * @start_stop: action to carry out 661 * 662 * start_stop == 0 disables receive on the context, for use in queue 663 * overflow conditions. start_stop==1 re-enables, to be used to 664 * re-init the software copy of the head register 665 */ 666 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt, 667 int start_stop) 668 { 669 struct qib_devdata *dd = rcd->dd; 670 unsigned int rcvctrl_op; 671 672 if (subctxt) 673 goto bail; 674 /* atomically clear receive enable ctxt. */ 675 if (start_stop) { 676 /* 677 * On enable, force in-memory copy of the tail register to 678 * 0, so that protocol code doesn't have to worry about 679 * whether or not the chip has yet updated the in-memory 680 * copy or not on return from the system call. The chip 681 * always resets it's tail register back to 0 on a 682 * transition from disabled to enabled. 683 */ 684 if (rcd->rcvhdrtail_kvaddr) 685 qib_clear_rcvhdrtail(rcd); 686 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB; 687 } else 688 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS; 689 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt); 690 /* always; new head should be equal to new tail; see above */ 691 bail: 692 return 0; 693 } 694 695 static void qib_clean_part_key(struct qib_ctxtdata *rcd, 696 struct qib_devdata *dd) 697 { 698 int i, j, pchanged = 0; 699 struct qib_pportdata *ppd = rcd->ppd; 700 701 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 702 if (!rcd->pkeys[i]) 703 continue; 704 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) { 705 /* check for match independent of the global bit */ 706 if ((ppd->pkeys[j] & 0x7fff) != 707 (rcd->pkeys[i] & 0x7fff)) 708 continue; 709 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) { 710 ppd->pkeys[j] = 0; 711 pchanged++; 712 } 713 break; 714 } 715 rcd->pkeys[i] = 0; 716 } 717 if (pchanged) 718 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 719 } 720 721 /* common code for the mappings on dma_alloc_coherent mem */ 722 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd, 723 unsigned len, void *kvaddr, u32 write_ok, char *what) 724 { 725 struct qib_devdata *dd = rcd->dd; 726 unsigned long pfn; 727 int ret; 728 729 if ((vma->vm_end - vma->vm_start) > len) { 730 qib_devinfo(dd->pcidev, 731 "FAIL on %s: len %lx > %x\n", what, 732 vma->vm_end - vma->vm_start, len); 733 ret = -EFAULT; 734 goto bail; 735 } 736 737 /* 738 * shared context user code requires rcvhdrq mapped r/w, others 739 * only allowed readonly mapping. 740 */ 741 if (!write_ok) { 742 if (vma->vm_flags & VM_WRITE) { 743 qib_devinfo(dd->pcidev, 744 "%s must be mapped readonly\n", what); 745 ret = -EPERM; 746 goto bail; 747 } 748 749 /* don't allow them to later change with mprotect */ 750 vma->vm_flags &= ~VM_MAYWRITE; 751 } 752 753 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT; 754 ret = remap_pfn_range(vma, vma->vm_start, pfn, 755 len, vma->vm_page_prot); 756 if (ret) 757 qib_devinfo(dd->pcidev, 758 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n", 759 what, rcd->ctxt, pfn, len, ret); 760 bail: 761 return ret; 762 } 763 764 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd, 765 u64 ureg) 766 { 767 unsigned long phys; 768 unsigned long sz; 769 int ret; 770 771 /* 772 * This is real hardware, so use io_remap. This is the mechanism 773 * for the user process to update the head registers for their ctxt 774 * in the chip. 775 */ 776 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE; 777 if ((vma->vm_end - vma->vm_start) > sz) { 778 qib_devinfo(dd->pcidev, 779 "FAIL mmap userreg: reqlen %lx > PAGE\n", 780 vma->vm_end - vma->vm_start); 781 ret = -EFAULT; 782 } else { 783 phys = dd->physaddr + ureg; 784 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 785 786 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 787 ret = io_remap_pfn_range(vma, vma->vm_start, 788 phys >> PAGE_SHIFT, 789 vma->vm_end - vma->vm_start, 790 vma->vm_page_prot); 791 } 792 return ret; 793 } 794 795 static int mmap_piobufs(struct vm_area_struct *vma, 796 struct qib_devdata *dd, 797 struct qib_ctxtdata *rcd, 798 unsigned piobufs, unsigned piocnt) 799 { 800 unsigned long phys; 801 int ret; 802 803 /* 804 * When we map the PIO buffers in the chip, we want to map them as 805 * writeonly, no read possible; unfortunately, x86 doesn't allow 806 * for this in hardware, but we still prevent users from asking 807 * for it. 808 */ 809 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) { 810 qib_devinfo(dd->pcidev, 811 "FAIL mmap piobufs: reqlen %lx > PAGE\n", 812 vma->vm_end - vma->vm_start); 813 ret = -EINVAL; 814 goto bail; 815 } 816 817 phys = dd->physaddr + piobufs; 818 819 #if defined(__powerpc__) 820 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 821 #endif 822 823 /* 824 * don't allow them to later change to readable with mprotect (for when 825 * not initially mapped readable, as is normally the case) 826 */ 827 vma->vm_flags &= ~VM_MAYREAD; 828 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 829 830 /* We used PAT if wc_cookie == 0 */ 831 if (!dd->wc_cookie) 832 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 833 834 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, 835 vma->vm_end - vma->vm_start, 836 vma->vm_page_prot); 837 bail: 838 return ret; 839 } 840 841 static int mmap_rcvegrbufs(struct vm_area_struct *vma, 842 struct qib_ctxtdata *rcd) 843 { 844 struct qib_devdata *dd = rcd->dd; 845 unsigned long start, size; 846 size_t total_size, i; 847 unsigned long pfn; 848 int ret; 849 850 size = rcd->rcvegrbuf_size; 851 total_size = rcd->rcvegrbuf_chunks * size; 852 if ((vma->vm_end - vma->vm_start) > total_size) { 853 qib_devinfo(dd->pcidev, 854 "FAIL on egr bufs: reqlen %lx > actual %lx\n", 855 vma->vm_end - vma->vm_start, 856 (unsigned long) total_size); 857 ret = -EINVAL; 858 goto bail; 859 } 860 861 if (vma->vm_flags & VM_WRITE) { 862 qib_devinfo(dd->pcidev, 863 "Can't map eager buffers as writable (flags=%lx)\n", 864 vma->vm_flags); 865 ret = -EPERM; 866 goto bail; 867 } 868 /* don't allow them to later change to writeable with mprotect */ 869 vma->vm_flags &= ~VM_MAYWRITE; 870 871 start = vma->vm_start; 872 873 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) { 874 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT; 875 ret = remap_pfn_range(vma, start, pfn, size, 876 vma->vm_page_prot); 877 if (ret < 0) 878 goto bail; 879 } 880 ret = 0; 881 882 bail: 883 return ret; 884 } 885 886 /* 887 * qib_file_vma_fault - handle a VMA page fault. 888 */ 889 static int qib_file_vma_fault(struct vm_fault *vmf) 890 { 891 struct page *page; 892 893 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 894 if (!page) 895 return VM_FAULT_SIGBUS; 896 897 get_page(page); 898 vmf->page = page; 899 900 return 0; 901 } 902 903 static const struct vm_operations_struct qib_file_vm_ops = { 904 .fault = qib_file_vma_fault, 905 }; 906 907 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr, 908 struct qib_ctxtdata *rcd, unsigned subctxt) 909 { 910 struct qib_devdata *dd = rcd->dd; 911 unsigned subctxt_cnt; 912 unsigned long len; 913 void *addr; 914 size_t size; 915 int ret = 0; 916 917 subctxt_cnt = rcd->subctxt_cnt; 918 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 919 920 /* 921 * Each process has all the subctxt uregbase, rcvhdrq, and 922 * rcvegrbufs mmapped - as an array for all the processes, 923 * and also separately for this process. 924 */ 925 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) { 926 addr = rcd->subctxt_uregbase; 927 size = PAGE_SIZE * subctxt_cnt; 928 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) { 929 addr = rcd->subctxt_rcvhdr_base; 930 size = rcd->rcvhdrq_size * subctxt_cnt; 931 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) { 932 addr = rcd->subctxt_rcvegrbuf; 933 size *= subctxt_cnt; 934 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase + 935 PAGE_SIZE * subctxt)) { 936 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt; 937 size = PAGE_SIZE; 938 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base + 939 rcd->rcvhdrq_size * subctxt)) { 940 addr = rcd->subctxt_rcvhdr_base + 941 rcd->rcvhdrq_size * subctxt; 942 size = rcd->rcvhdrq_size; 943 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) { 944 addr = rcd->user_event_mask; 945 size = PAGE_SIZE; 946 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf + 947 size * subctxt)) { 948 addr = rcd->subctxt_rcvegrbuf + size * subctxt; 949 /* rcvegrbufs are read-only on the slave */ 950 if (vma->vm_flags & VM_WRITE) { 951 qib_devinfo(dd->pcidev, 952 "Can't map eager buffers as writable (flags=%lx)\n", 953 vma->vm_flags); 954 ret = -EPERM; 955 goto bail; 956 } 957 /* 958 * Don't allow permission to later change to writeable 959 * with mprotect. 960 */ 961 vma->vm_flags &= ~VM_MAYWRITE; 962 } else 963 goto bail; 964 len = vma->vm_end - vma->vm_start; 965 if (len > size) { 966 ret = -EINVAL; 967 goto bail; 968 } 969 970 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT; 971 vma->vm_ops = &qib_file_vm_ops; 972 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 973 ret = 1; 974 975 bail: 976 return ret; 977 } 978 979 /** 980 * qib_mmapf - mmap various structures into user space 981 * @fp: the file pointer 982 * @vma: the VM area 983 * 984 * We use this to have a shared buffer between the kernel and the user code 985 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio 986 * buffers in the chip. We have the open and close entries so we can bump 987 * the ref count and keep the driver from being unloaded while still mapped. 988 */ 989 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma) 990 { 991 struct qib_ctxtdata *rcd; 992 struct qib_devdata *dd; 993 u64 pgaddr, ureg; 994 unsigned piobufs, piocnt; 995 int ret, match = 1; 996 997 rcd = ctxt_fp(fp); 998 if (!rcd || !(vma->vm_flags & VM_SHARED)) { 999 ret = -EINVAL; 1000 goto bail; 1001 } 1002 dd = rcd->dd; 1003 1004 /* 1005 * This is the qib_do_user_init() code, mapping the shared buffers 1006 * and per-context user registers into the user process. The address 1007 * referred to by vm_pgoff is the file offset passed via mmap(). 1008 * For shared contexts, this is the kernel vmalloc() address of the 1009 * pages to share with the master. 1010 * For non-shared or master ctxts, this is a physical address. 1011 * We only do one mmap for each space mapped. 1012 */ 1013 pgaddr = vma->vm_pgoff << PAGE_SHIFT; 1014 1015 /* 1016 * Check for 0 in case one of the allocations failed, but user 1017 * called mmap anyway. 1018 */ 1019 if (!pgaddr) { 1020 ret = -EINVAL; 1021 goto bail; 1022 } 1023 1024 /* 1025 * Physical addresses must fit in 40 bits for our hardware. 1026 * Check for kernel virtual addresses first, anything else must 1027 * match a HW or memory address. 1028 */ 1029 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp)); 1030 if (ret) { 1031 if (ret > 0) 1032 ret = 0; 1033 goto bail; 1034 } 1035 1036 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt; 1037 if (!rcd->subctxt_cnt) { 1038 /* ctxt is not shared */ 1039 piocnt = rcd->piocnt; 1040 piobufs = rcd->piobufs; 1041 } else if (!subctxt_fp(fp)) { 1042 /* caller is the master */ 1043 piocnt = (rcd->piocnt / rcd->subctxt_cnt) + 1044 (rcd->piocnt % rcd->subctxt_cnt); 1045 piobufs = rcd->piobufs + 1046 dd->palign * (rcd->piocnt - piocnt); 1047 } else { 1048 unsigned slave = subctxt_fp(fp) - 1; 1049 1050 /* caller is a slave */ 1051 piocnt = rcd->piocnt / rcd->subctxt_cnt; 1052 piobufs = rcd->piobufs + dd->palign * piocnt * slave; 1053 } 1054 1055 if (pgaddr == ureg) 1056 ret = mmap_ureg(vma, dd, ureg); 1057 else if (pgaddr == piobufs) 1058 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt); 1059 else if (pgaddr == dd->pioavailregs_phys) 1060 /* in-memory copy of pioavail registers */ 1061 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1062 (void *) dd->pioavailregs_dma, 0, 1063 "pioavail registers"); 1064 else if (pgaddr == rcd->rcvegr_phys) 1065 ret = mmap_rcvegrbufs(vma, rcd); 1066 else if (pgaddr == (u64) rcd->rcvhdrq_phys) 1067 /* 1068 * The rcvhdrq itself; multiple pages, contiguous 1069 * from an i/o perspective. Shared contexts need 1070 * to map r/w, so we allow writing. 1071 */ 1072 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size, 1073 rcd->rcvhdrq, 1, "rcvhdrq"); 1074 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys) 1075 /* in-memory copy of rcvhdrq tail register */ 1076 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1077 rcd->rcvhdrtail_kvaddr, 0, 1078 "rcvhdrq tail"); 1079 else 1080 match = 0; 1081 if (!match) 1082 ret = -EINVAL; 1083 1084 vma->vm_private_data = NULL; 1085 1086 if (ret < 0) 1087 qib_devinfo(dd->pcidev, 1088 "mmap Failure %d: off %llx len %lx\n", 1089 -ret, (unsigned long long)pgaddr, 1090 vma->vm_end - vma->vm_start); 1091 bail: 1092 return ret; 1093 } 1094 1095 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd, 1096 struct file *fp, 1097 struct poll_table_struct *pt) 1098 { 1099 struct qib_devdata *dd = rcd->dd; 1100 unsigned pollflag; 1101 1102 poll_wait(fp, &rcd->wait, pt); 1103 1104 spin_lock_irq(&dd->uctxt_lock); 1105 if (rcd->urgent != rcd->urgent_poll) { 1106 pollflag = POLLIN | POLLRDNORM; 1107 rcd->urgent_poll = rcd->urgent; 1108 } else { 1109 pollflag = 0; 1110 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag); 1111 } 1112 spin_unlock_irq(&dd->uctxt_lock); 1113 1114 return pollflag; 1115 } 1116 1117 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd, 1118 struct file *fp, 1119 struct poll_table_struct *pt) 1120 { 1121 struct qib_devdata *dd = rcd->dd; 1122 unsigned pollflag; 1123 1124 poll_wait(fp, &rcd->wait, pt); 1125 1126 spin_lock_irq(&dd->uctxt_lock); 1127 if (dd->f_hdrqempty(rcd)) { 1128 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag); 1129 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt); 1130 pollflag = 0; 1131 } else 1132 pollflag = POLLIN | POLLRDNORM; 1133 spin_unlock_irq(&dd->uctxt_lock); 1134 1135 return pollflag; 1136 } 1137 1138 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt) 1139 { 1140 struct qib_ctxtdata *rcd; 1141 unsigned pollflag; 1142 1143 rcd = ctxt_fp(fp); 1144 if (!rcd) 1145 pollflag = POLLERR; 1146 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT) 1147 pollflag = qib_poll_urgent(rcd, fp, pt); 1148 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV) 1149 pollflag = qib_poll_next(rcd, fp, pt); 1150 else /* invalid */ 1151 pollflag = POLLERR; 1152 1153 return pollflag; 1154 } 1155 1156 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd) 1157 { 1158 struct qib_filedata *fd = fp->private_data; 1159 const unsigned int weight = cpumask_weight(¤t->cpus_allowed); 1160 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus); 1161 int local_cpu; 1162 1163 /* 1164 * If process has NOT already set it's affinity, select and 1165 * reserve a processor for it on the local NUMA node. 1166 */ 1167 if ((weight >= qib_cpulist_count) && 1168 (cpumask_weight(local_mask) <= qib_cpulist_count)) { 1169 for_each_cpu(local_cpu, local_mask) 1170 if (!test_and_set_bit(local_cpu, qib_cpulist)) { 1171 fd->rec_cpu_num = local_cpu; 1172 return; 1173 } 1174 } 1175 1176 /* 1177 * If process has NOT already set it's affinity, select and 1178 * reserve a processor for it, as a rendevous for all 1179 * users of the driver. If they don't actually later 1180 * set affinity to this cpu, or set it to some other cpu, 1181 * it just means that sooner or later we don't recommend 1182 * a cpu, and let the scheduler do it's best. 1183 */ 1184 if (weight >= qib_cpulist_count) { 1185 int cpu; 1186 1187 cpu = find_first_zero_bit(qib_cpulist, 1188 qib_cpulist_count); 1189 if (cpu == qib_cpulist_count) 1190 qib_dev_err(dd, 1191 "no cpus avail for affinity PID %u\n", 1192 current->pid); 1193 else { 1194 __set_bit(cpu, qib_cpulist); 1195 fd->rec_cpu_num = cpu; 1196 } 1197 } 1198 } 1199 1200 /* 1201 * Check that userland and driver are compatible for subcontexts. 1202 */ 1203 static int qib_compatible_subctxts(int user_swmajor, int user_swminor) 1204 { 1205 /* this code is written long-hand for clarity */ 1206 if (QIB_USER_SWMAJOR != user_swmajor) { 1207 /* no promise of compatibility if major mismatch */ 1208 return 0; 1209 } 1210 if (QIB_USER_SWMAJOR == 1) { 1211 switch (QIB_USER_SWMINOR) { 1212 case 0: 1213 case 1: 1214 case 2: 1215 /* no subctxt implementation so cannot be compatible */ 1216 return 0; 1217 case 3: 1218 /* 3 is only compatible with itself */ 1219 return user_swminor == 3; 1220 default: 1221 /* >= 4 are compatible (or are expected to be) */ 1222 return user_swminor <= QIB_USER_SWMINOR; 1223 } 1224 } 1225 /* make no promises yet for future major versions */ 1226 return 0; 1227 } 1228 1229 static int init_subctxts(struct qib_devdata *dd, 1230 struct qib_ctxtdata *rcd, 1231 const struct qib_user_info *uinfo) 1232 { 1233 int ret = 0; 1234 unsigned num_subctxts; 1235 size_t size; 1236 1237 /* 1238 * If the user is requesting zero subctxts, 1239 * skip the subctxt allocation. 1240 */ 1241 if (uinfo->spu_subctxt_cnt <= 0) 1242 goto bail; 1243 num_subctxts = uinfo->spu_subctxt_cnt; 1244 1245 /* Check for subctxt compatibility */ 1246 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16, 1247 uinfo->spu_userversion & 0xffff)) { 1248 qib_devinfo(dd->pcidev, 1249 "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n", 1250 (int) (uinfo->spu_userversion >> 16), 1251 (int) (uinfo->spu_userversion & 0xffff), 1252 QIB_USER_SWMAJOR, QIB_USER_SWMINOR); 1253 goto bail; 1254 } 1255 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) { 1256 ret = -EINVAL; 1257 goto bail; 1258 } 1259 1260 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts); 1261 if (!rcd->subctxt_uregbase) { 1262 ret = -ENOMEM; 1263 goto bail; 1264 } 1265 /* Note: rcd->rcvhdrq_size isn't initialized yet. */ 1266 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * 1267 sizeof(u32), PAGE_SIZE) * num_subctxts; 1268 rcd->subctxt_rcvhdr_base = vmalloc_user(size); 1269 if (!rcd->subctxt_rcvhdr_base) { 1270 ret = -ENOMEM; 1271 goto bail_ureg; 1272 } 1273 1274 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks * 1275 rcd->rcvegrbuf_size * 1276 num_subctxts); 1277 if (!rcd->subctxt_rcvegrbuf) { 1278 ret = -ENOMEM; 1279 goto bail_rhdr; 1280 } 1281 1282 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt; 1283 rcd->subctxt_id = uinfo->spu_subctxt_id; 1284 rcd->active_slaves = 1; 1285 rcd->redirect_seq_cnt = 1; 1286 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1287 goto bail; 1288 1289 bail_rhdr: 1290 vfree(rcd->subctxt_rcvhdr_base); 1291 bail_ureg: 1292 vfree(rcd->subctxt_uregbase); 1293 rcd->subctxt_uregbase = NULL; 1294 bail: 1295 return ret; 1296 } 1297 1298 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt, 1299 struct file *fp, const struct qib_user_info *uinfo) 1300 { 1301 struct qib_filedata *fd = fp->private_data; 1302 struct qib_devdata *dd = ppd->dd; 1303 struct qib_ctxtdata *rcd; 1304 void *ptmp = NULL; 1305 int ret; 1306 int numa_id; 1307 1308 assign_ctxt_affinity(fp, dd); 1309 1310 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ? 1311 cpu_to_node(fd->rec_cpu_num) : 1312 numa_node_id()) : dd->assigned_node_id; 1313 1314 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id); 1315 1316 /* 1317 * Allocate memory for use in qib_tid_update() at open to 1318 * reduce cost of expected send setup per message segment 1319 */ 1320 if (rcd) 1321 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) + 1322 dd->rcvtidcnt * sizeof(struct page **), 1323 GFP_KERNEL); 1324 1325 if (!rcd || !ptmp) { 1326 qib_dev_err(dd, 1327 "Unable to allocate ctxtdata memory, failing open\n"); 1328 ret = -ENOMEM; 1329 goto bailerr; 1330 } 1331 rcd->userversion = uinfo->spu_userversion; 1332 ret = init_subctxts(dd, rcd, uinfo); 1333 if (ret) 1334 goto bailerr; 1335 rcd->tid_pg_list = ptmp; 1336 rcd->pid = current->pid; 1337 init_waitqueue_head(&dd->rcd[ctxt]->wait); 1338 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm)); 1339 ctxt_fp(fp) = rcd; 1340 qib_stats.sps_ctxts++; 1341 dd->freectxts--; 1342 ret = 0; 1343 goto bail; 1344 1345 bailerr: 1346 if (fd->rec_cpu_num != -1) 1347 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1348 1349 dd->rcd[ctxt] = NULL; 1350 kfree(rcd); 1351 kfree(ptmp); 1352 bail: 1353 return ret; 1354 } 1355 1356 static inline int usable(struct qib_pportdata *ppd) 1357 { 1358 struct qib_devdata *dd = ppd->dd; 1359 1360 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid && 1361 (ppd->lflags & QIBL_LINKACTIVE); 1362 } 1363 1364 /* 1365 * Select a context on the given device, either using a requested port 1366 * or the port based on the context number. 1367 */ 1368 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port, 1369 const struct qib_user_info *uinfo) 1370 { 1371 struct qib_pportdata *ppd = NULL; 1372 int ret, ctxt; 1373 1374 if (port) { 1375 if (!usable(dd->pport + port - 1)) { 1376 ret = -ENETDOWN; 1377 goto done; 1378 } else 1379 ppd = dd->pport + port - 1; 1380 } 1381 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt]; 1382 ctxt++) 1383 ; 1384 if (ctxt == dd->cfgctxts) { 1385 ret = -EBUSY; 1386 goto done; 1387 } 1388 if (!ppd) { 1389 u32 pidx = ctxt % dd->num_pports; 1390 1391 if (usable(dd->pport + pidx)) 1392 ppd = dd->pport + pidx; 1393 else { 1394 for (pidx = 0; pidx < dd->num_pports && !ppd; 1395 pidx++) 1396 if (usable(dd->pport + pidx)) 1397 ppd = dd->pport + pidx; 1398 } 1399 } 1400 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN; 1401 done: 1402 return ret; 1403 } 1404 1405 static int find_free_ctxt(int unit, struct file *fp, 1406 const struct qib_user_info *uinfo) 1407 { 1408 struct qib_devdata *dd = qib_lookup(unit); 1409 int ret; 1410 1411 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports)) 1412 ret = -ENODEV; 1413 else 1414 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo); 1415 1416 return ret; 1417 } 1418 1419 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo, 1420 unsigned alg) 1421 { 1422 struct qib_devdata *udd = NULL; 1423 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i; 1424 u32 port = uinfo->spu_port, ctxt; 1425 1426 devmax = qib_count_units(&npresent, &nup); 1427 if (!npresent) { 1428 ret = -ENXIO; 1429 goto done; 1430 } 1431 if (nup == 0) { 1432 ret = -ENETDOWN; 1433 goto done; 1434 } 1435 1436 if (alg == QIB_PORT_ALG_ACROSS) { 1437 unsigned inuse = ~0U; 1438 1439 /* find device (with ACTIVE ports) with fewest ctxts in use */ 1440 for (ndev = 0; ndev < devmax; ndev++) { 1441 struct qib_devdata *dd = qib_lookup(ndev); 1442 unsigned cused = 0, cfree = 0, pusable = 0; 1443 1444 if (!dd) 1445 continue; 1446 if (port && port <= dd->num_pports && 1447 usable(dd->pport + port - 1)) 1448 pusable = 1; 1449 else 1450 for (i = 0; i < dd->num_pports; i++) 1451 if (usable(dd->pport + i)) 1452 pusable++; 1453 if (!pusable) 1454 continue; 1455 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; 1456 ctxt++) 1457 if (dd->rcd[ctxt]) 1458 cused++; 1459 else 1460 cfree++; 1461 if (cfree && cused < inuse) { 1462 udd = dd; 1463 inuse = cused; 1464 } 1465 } 1466 if (udd) { 1467 ret = choose_port_ctxt(fp, udd, port, uinfo); 1468 goto done; 1469 } 1470 } else { 1471 for (ndev = 0; ndev < devmax; ndev++) { 1472 struct qib_devdata *dd = qib_lookup(ndev); 1473 1474 if (dd) { 1475 ret = choose_port_ctxt(fp, dd, port, uinfo); 1476 if (!ret) 1477 goto done; 1478 if (ret == -EBUSY) 1479 dusable++; 1480 } 1481 } 1482 } 1483 ret = dusable ? -EBUSY : -ENETDOWN; 1484 1485 done: 1486 return ret; 1487 } 1488 1489 static int find_shared_ctxt(struct file *fp, 1490 const struct qib_user_info *uinfo) 1491 { 1492 int devmax, ndev, i; 1493 int ret = 0; 1494 1495 devmax = qib_count_units(NULL, NULL); 1496 1497 for (ndev = 0; ndev < devmax; ndev++) { 1498 struct qib_devdata *dd = qib_lookup(ndev); 1499 1500 /* device portion of usable() */ 1501 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase)) 1502 continue; 1503 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) { 1504 struct qib_ctxtdata *rcd = dd->rcd[i]; 1505 1506 /* Skip ctxts which are not yet open */ 1507 if (!rcd || !rcd->cnt) 1508 continue; 1509 /* Skip ctxt if it doesn't match the requested one */ 1510 if (rcd->subctxt_id != uinfo->spu_subctxt_id) 1511 continue; 1512 /* Verify the sharing process matches the master */ 1513 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt || 1514 rcd->userversion != uinfo->spu_userversion || 1515 rcd->cnt >= rcd->subctxt_cnt) { 1516 ret = -EINVAL; 1517 goto done; 1518 } 1519 ctxt_fp(fp) = rcd; 1520 subctxt_fp(fp) = rcd->cnt++; 1521 rcd->subpid[subctxt_fp(fp)] = current->pid; 1522 tidcursor_fp(fp) = 0; 1523 rcd->active_slaves |= 1 << subctxt_fp(fp); 1524 ret = 1; 1525 goto done; 1526 } 1527 } 1528 1529 done: 1530 return ret; 1531 } 1532 1533 static int qib_open(struct inode *in, struct file *fp) 1534 { 1535 /* The real work is performed later in qib_assign_ctxt() */ 1536 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL); 1537 if (fp->private_data) /* no cpu affinity by default */ 1538 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1; 1539 return fp->private_data ? 0 : -ENOMEM; 1540 } 1541 1542 static int find_hca(unsigned int cpu, int *unit) 1543 { 1544 int ret = 0, devmax, npresent, nup, ndev; 1545 1546 *unit = -1; 1547 1548 devmax = qib_count_units(&npresent, &nup); 1549 if (!npresent) { 1550 ret = -ENXIO; 1551 goto done; 1552 } 1553 if (!nup) { 1554 ret = -ENETDOWN; 1555 goto done; 1556 } 1557 for (ndev = 0; ndev < devmax; ndev++) { 1558 struct qib_devdata *dd = qib_lookup(ndev); 1559 1560 if (dd) { 1561 if (pcibus_to_node(dd->pcidev->bus) < 0) { 1562 ret = -EINVAL; 1563 goto done; 1564 } 1565 if (cpu_to_node(cpu) == 1566 pcibus_to_node(dd->pcidev->bus)) { 1567 *unit = ndev; 1568 goto done; 1569 } 1570 } 1571 } 1572 done: 1573 return ret; 1574 } 1575 1576 static int do_qib_user_sdma_queue_create(struct file *fp) 1577 { 1578 struct qib_filedata *fd = fp->private_data; 1579 struct qib_ctxtdata *rcd = fd->rcd; 1580 struct qib_devdata *dd = rcd->dd; 1581 1582 if (dd->flags & QIB_HAS_SEND_DMA) { 1583 1584 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev, 1585 dd->unit, 1586 rcd->ctxt, 1587 fd->subctxt); 1588 if (!fd->pq) 1589 return -ENOMEM; 1590 } 1591 1592 return 0; 1593 } 1594 1595 /* 1596 * Get ctxt early, so can set affinity prior to memory allocation. 1597 */ 1598 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo) 1599 { 1600 int ret; 1601 int i_minor; 1602 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS; 1603 1604 /* Check to be sure we haven't already initialized this file */ 1605 if (ctxt_fp(fp)) { 1606 ret = -EINVAL; 1607 goto done; 1608 } 1609 1610 /* for now, if major version is different, bail */ 1611 swmajor = uinfo->spu_userversion >> 16; 1612 if (swmajor != QIB_USER_SWMAJOR) { 1613 ret = -ENODEV; 1614 goto done; 1615 } 1616 1617 swminor = uinfo->spu_userversion & 0xffff; 1618 1619 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT) 1620 alg = uinfo->spu_port_alg; 1621 1622 mutex_lock(&qib_mutex); 1623 1624 if (qib_compatible_subctxts(swmajor, swminor) && 1625 uinfo->spu_subctxt_cnt) { 1626 ret = find_shared_ctxt(fp, uinfo); 1627 if (ret > 0) { 1628 ret = do_qib_user_sdma_queue_create(fp); 1629 if (!ret) 1630 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd); 1631 goto done_ok; 1632 } 1633 } 1634 1635 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE; 1636 if (i_minor) 1637 ret = find_free_ctxt(i_minor - 1, fp, uinfo); 1638 else { 1639 int unit; 1640 const unsigned int cpu = cpumask_first(¤t->cpus_allowed); 1641 const unsigned int weight = 1642 cpumask_weight(¤t->cpus_allowed); 1643 1644 if (weight == 1 && !test_bit(cpu, qib_cpulist)) 1645 if (!find_hca(cpu, &unit) && unit >= 0) 1646 if (!find_free_ctxt(unit, fp, uinfo)) { 1647 ret = 0; 1648 goto done_chk_sdma; 1649 } 1650 ret = get_a_ctxt(fp, uinfo, alg); 1651 } 1652 1653 done_chk_sdma: 1654 if (!ret) 1655 ret = do_qib_user_sdma_queue_create(fp); 1656 done_ok: 1657 mutex_unlock(&qib_mutex); 1658 1659 done: 1660 return ret; 1661 } 1662 1663 1664 static int qib_do_user_init(struct file *fp, 1665 const struct qib_user_info *uinfo) 1666 { 1667 int ret; 1668 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1669 struct qib_devdata *dd; 1670 unsigned uctxt; 1671 1672 /* Subctxts don't need to initialize anything since master did it. */ 1673 if (subctxt_fp(fp)) { 1674 ret = wait_event_interruptible(rcd->wait, 1675 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag)); 1676 goto bail; 1677 } 1678 1679 dd = rcd->dd; 1680 1681 /* some ctxts may get extra buffers, calculate that here */ 1682 uctxt = rcd->ctxt - dd->first_user_ctxt; 1683 if (uctxt < dd->ctxts_extrabuf) { 1684 rcd->piocnt = dd->pbufsctxt + 1; 1685 rcd->pio_base = rcd->piocnt * uctxt; 1686 } else { 1687 rcd->piocnt = dd->pbufsctxt; 1688 rcd->pio_base = rcd->piocnt * uctxt + 1689 dd->ctxts_extrabuf; 1690 } 1691 1692 /* 1693 * All user buffers are 2KB buffers. If we ever support 1694 * giving 4KB buffers to user processes, this will need some 1695 * work. Can't use piobufbase directly, because it has 1696 * both 2K and 4K buffer base values. So check and handle. 1697 */ 1698 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) { 1699 if (rcd->pio_base >= dd->piobcnt2k) { 1700 qib_dev_err(dd, 1701 "%u:ctxt%u: no 2KB buffers available\n", 1702 dd->unit, rcd->ctxt); 1703 ret = -ENOBUFS; 1704 goto bail; 1705 } 1706 rcd->piocnt = dd->piobcnt2k - rcd->pio_base; 1707 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n", 1708 rcd->ctxt, rcd->piocnt); 1709 } 1710 1711 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign; 1712 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1713 TXCHK_CHG_TYPE_USER, rcd); 1714 /* 1715 * try to ensure that processes start up with consistent avail update 1716 * for their own range, at least. If system very quiet, it might 1717 * have the in-memory copy out of date at startup for this range of 1718 * buffers, when a context gets re-used. Do after the chg_pioavail 1719 * and before the rest of setup, so it's "almost certain" the dma 1720 * will have occurred (can't 100% guarantee, but should be many 1721 * decimals of 9s, with this ordering), given how much else happens 1722 * after this. 1723 */ 1724 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP); 1725 1726 /* 1727 * Now allocate the rcvhdr Q and eager TIDs; skip the TID 1728 * array for time being. If rcd->ctxt > chip-supported, 1729 * we need to do extra stuff here to handle by handling overflow 1730 * through ctxt 0, someday 1731 */ 1732 ret = qib_create_rcvhdrq(dd, rcd); 1733 if (!ret) 1734 ret = qib_setup_eagerbufs(rcd); 1735 if (ret) 1736 goto bail_pio; 1737 1738 rcd->tidcursor = 0; /* start at beginning after open */ 1739 1740 /* initialize poll variables... */ 1741 rcd->urgent = 0; 1742 rcd->urgent_poll = 0; 1743 1744 /* 1745 * Now enable the ctxt for receive. 1746 * For chips that are set to DMA the tail register to memory 1747 * when they change (and when the update bit transitions from 1748 * 0 to 1. So for those chips, we turn it off and then back on. 1749 * This will (very briefly) affect any other open ctxts, but the 1750 * duration is very short, and therefore isn't an issue. We 1751 * explicitly set the in-memory tail copy to 0 beforehand, so we 1752 * don't have to wait to be sure the DMA update has happened 1753 * (chip resets head/tail to 0 on transition to enable). 1754 */ 1755 if (rcd->rcvhdrtail_kvaddr) 1756 qib_clear_rcvhdrtail(rcd); 1757 1758 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB, 1759 rcd->ctxt); 1760 1761 /* Notify any waiting slaves */ 1762 if (rcd->subctxt_cnt) { 1763 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1764 wake_up(&rcd->wait); 1765 } 1766 return 0; 1767 1768 bail_pio: 1769 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1770 TXCHK_CHG_TYPE_KERN, rcd); 1771 bail: 1772 return ret; 1773 } 1774 1775 /** 1776 * unlock_exptid - unlock any expected TID entries context still had in use 1777 * @rcd: ctxt 1778 * 1779 * We don't actually update the chip here, because we do a bulk update 1780 * below, using f_clear_tids. 1781 */ 1782 static void unlock_expected_tids(struct qib_ctxtdata *rcd) 1783 { 1784 struct qib_devdata *dd = rcd->dd; 1785 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt; 1786 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt; 1787 1788 for (i = ctxt_tidbase; i < maxtid; i++) { 1789 struct page *p = dd->pageshadow[i]; 1790 dma_addr_t phys; 1791 1792 if (!p) 1793 continue; 1794 1795 phys = dd->physshadow[i]; 1796 dd->physshadow[i] = dd->tidinvalid; 1797 dd->pageshadow[i] = NULL; 1798 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 1799 PCI_DMA_FROMDEVICE); 1800 qib_release_user_pages(&p, 1); 1801 cnt++; 1802 } 1803 } 1804 1805 static int qib_close(struct inode *in, struct file *fp) 1806 { 1807 int ret = 0; 1808 struct qib_filedata *fd; 1809 struct qib_ctxtdata *rcd; 1810 struct qib_devdata *dd; 1811 unsigned long flags; 1812 unsigned ctxt; 1813 1814 mutex_lock(&qib_mutex); 1815 1816 fd = fp->private_data; 1817 fp->private_data = NULL; 1818 rcd = fd->rcd; 1819 if (!rcd) { 1820 mutex_unlock(&qib_mutex); 1821 goto bail; 1822 } 1823 1824 dd = rcd->dd; 1825 1826 /* ensure all pio buffer writes in progress are flushed */ 1827 qib_flush_wc(); 1828 1829 /* drain user sdma queue */ 1830 if (fd->pq) { 1831 qib_user_sdma_queue_drain(rcd->ppd, fd->pq); 1832 qib_user_sdma_queue_destroy(fd->pq); 1833 } 1834 1835 if (fd->rec_cpu_num != -1) 1836 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1837 1838 if (--rcd->cnt) { 1839 /* 1840 * XXX If the master closes the context before the slave(s), 1841 * revoke the mmap for the eager receive queue so 1842 * the slave(s) don't wait for receive data forever. 1843 */ 1844 rcd->active_slaves &= ~(1 << fd->subctxt); 1845 rcd->subpid[fd->subctxt] = 0; 1846 mutex_unlock(&qib_mutex); 1847 goto bail; 1848 } 1849 1850 /* early; no interrupt users after this */ 1851 spin_lock_irqsave(&dd->uctxt_lock, flags); 1852 ctxt = rcd->ctxt; 1853 dd->rcd[ctxt] = NULL; 1854 rcd->pid = 0; 1855 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1856 1857 if (rcd->rcvwait_to || rcd->piowait_to || 1858 rcd->rcvnowait || rcd->pionowait) { 1859 rcd->rcvwait_to = 0; 1860 rcd->piowait_to = 0; 1861 rcd->rcvnowait = 0; 1862 rcd->pionowait = 0; 1863 } 1864 if (rcd->flag) 1865 rcd->flag = 0; 1866 1867 if (dd->kregbase) { 1868 /* atomically clear receive enable ctxt and intr avail. */ 1869 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS | 1870 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt); 1871 1872 /* clean up the pkeys for this ctxt user */ 1873 qib_clean_part_key(rcd, dd); 1874 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt); 1875 qib_chg_pioavailkernel(dd, rcd->pio_base, 1876 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL); 1877 1878 dd->f_clear_tids(dd, rcd); 1879 1880 if (dd->pageshadow) 1881 unlock_expected_tids(rcd); 1882 qib_stats.sps_ctxts--; 1883 dd->freectxts++; 1884 } 1885 1886 mutex_unlock(&qib_mutex); 1887 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */ 1888 1889 bail: 1890 kfree(fd); 1891 return ret; 1892 } 1893 1894 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo) 1895 { 1896 struct qib_ctxt_info info; 1897 int ret; 1898 size_t sz; 1899 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1900 struct qib_filedata *fd; 1901 1902 fd = fp->private_data; 1903 1904 info.num_active = qib_count_active_units(); 1905 info.unit = rcd->dd->unit; 1906 info.port = rcd->ppd->port; 1907 info.ctxt = rcd->ctxt; 1908 info.subctxt = subctxt_fp(fp); 1909 /* Number of user ctxts available for this device. */ 1910 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt; 1911 info.num_subctxts = rcd->subctxt_cnt; 1912 info.rec_cpu = fd->rec_cpu_num; 1913 sz = sizeof(info); 1914 1915 if (copy_to_user(uinfo, &info, sz)) { 1916 ret = -EFAULT; 1917 goto bail; 1918 } 1919 ret = 0; 1920 1921 bail: 1922 return ret; 1923 } 1924 1925 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq, 1926 u32 __user *inflightp) 1927 { 1928 const u32 val = qib_user_sdma_inflight_counter(pq); 1929 1930 if (put_user(val, inflightp)) 1931 return -EFAULT; 1932 1933 return 0; 1934 } 1935 1936 static int qib_sdma_get_complete(struct qib_pportdata *ppd, 1937 struct qib_user_sdma_queue *pq, 1938 u32 __user *completep) 1939 { 1940 u32 val; 1941 int err; 1942 1943 if (!pq) 1944 return -EINVAL; 1945 1946 err = qib_user_sdma_make_progress(ppd, pq); 1947 if (err < 0) 1948 return err; 1949 1950 val = qib_user_sdma_complete_counter(pq); 1951 if (put_user(val, completep)) 1952 return -EFAULT; 1953 1954 return 0; 1955 } 1956 1957 static int disarm_req_delay(struct qib_ctxtdata *rcd) 1958 { 1959 int ret = 0; 1960 1961 if (!usable(rcd->ppd)) { 1962 int i; 1963 /* 1964 * if link is down, or otherwise not usable, delay 1965 * the caller up to 30 seconds, so we don't thrash 1966 * in trying to get the chip back to ACTIVE, and 1967 * set flag so they make the call again. 1968 */ 1969 if (rcd->user_event_mask) { 1970 /* 1971 * subctxt_cnt is 0 if not shared, so do base 1972 * separately, first, then remaining subctxt, if any 1973 */ 1974 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1975 &rcd->user_event_mask[0]); 1976 for (i = 1; i < rcd->subctxt_cnt; i++) 1977 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1978 &rcd->user_event_mask[i]); 1979 } 1980 for (i = 0; !usable(rcd->ppd) && i < 300; i++) 1981 msleep(100); 1982 ret = -ENETDOWN; 1983 } 1984 return ret; 1985 } 1986 1987 /* 1988 * Find all user contexts in use, and set the specified bit in their 1989 * event mask. 1990 * See also find_ctxt() for a similar use, that is specific to send buffers. 1991 */ 1992 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit) 1993 { 1994 struct qib_ctxtdata *rcd; 1995 unsigned ctxt; 1996 int ret = 0; 1997 unsigned long flags; 1998 1999 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags); 2000 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts; 2001 ctxt++) { 2002 rcd = ppd->dd->rcd[ctxt]; 2003 if (!rcd) 2004 continue; 2005 if (rcd->user_event_mask) { 2006 int i; 2007 /* 2008 * subctxt_cnt is 0 if not shared, so do base 2009 * separately, first, then remaining subctxt, if any 2010 */ 2011 set_bit(evtbit, &rcd->user_event_mask[0]); 2012 for (i = 1; i < rcd->subctxt_cnt; i++) 2013 set_bit(evtbit, &rcd->user_event_mask[i]); 2014 } 2015 ret = 1; 2016 break; 2017 } 2018 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags); 2019 2020 return ret; 2021 } 2022 2023 /* 2024 * clear the event notifier events for this context. 2025 * For the DISARM_BUFS case, we also take action (this obsoletes 2026 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards 2027 * compatibility. 2028 * Other bits don't currently require actions, just atomically clear. 2029 * User process then performs actions appropriate to bit having been 2030 * set, if desired, and checks again in future. 2031 */ 2032 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt, 2033 unsigned long events) 2034 { 2035 int ret = 0, i; 2036 2037 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) { 2038 if (!test_bit(i, &events)) 2039 continue; 2040 if (i == _QIB_EVENT_DISARM_BUFS_BIT) { 2041 (void)qib_disarm_piobufs_ifneeded(rcd); 2042 ret = disarm_req_delay(rcd); 2043 } else 2044 clear_bit(i, &rcd->user_event_mask[subctxt]); 2045 } 2046 return ret; 2047 } 2048 2049 static ssize_t qib_write(struct file *fp, const char __user *data, 2050 size_t count, loff_t *off) 2051 { 2052 const struct qib_cmd __user *ucmd; 2053 struct qib_ctxtdata *rcd; 2054 const void __user *src; 2055 size_t consumed, copy = 0; 2056 struct qib_cmd cmd; 2057 ssize_t ret = 0; 2058 void *dest; 2059 2060 if (!ib_safe_file_access(fp)) { 2061 pr_err_once("qib_write: process %d (%s) changed security contexts after opening file descriptor, this is not allowed.\n", 2062 task_tgid_vnr(current), current->comm); 2063 return -EACCES; 2064 } 2065 2066 if (count < sizeof(cmd.type)) { 2067 ret = -EINVAL; 2068 goto bail; 2069 } 2070 2071 ucmd = (const struct qib_cmd __user *) data; 2072 2073 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { 2074 ret = -EFAULT; 2075 goto bail; 2076 } 2077 2078 consumed = sizeof(cmd.type); 2079 2080 switch (cmd.type) { 2081 case QIB_CMD_ASSIGN_CTXT: 2082 case QIB_CMD_USER_INIT: 2083 copy = sizeof(cmd.cmd.user_info); 2084 dest = &cmd.cmd.user_info; 2085 src = &ucmd->cmd.user_info; 2086 break; 2087 2088 case QIB_CMD_RECV_CTRL: 2089 copy = sizeof(cmd.cmd.recv_ctrl); 2090 dest = &cmd.cmd.recv_ctrl; 2091 src = &ucmd->cmd.recv_ctrl; 2092 break; 2093 2094 case QIB_CMD_CTXT_INFO: 2095 copy = sizeof(cmd.cmd.ctxt_info); 2096 dest = &cmd.cmd.ctxt_info; 2097 src = &ucmd->cmd.ctxt_info; 2098 break; 2099 2100 case QIB_CMD_TID_UPDATE: 2101 case QIB_CMD_TID_FREE: 2102 copy = sizeof(cmd.cmd.tid_info); 2103 dest = &cmd.cmd.tid_info; 2104 src = &ucmd->cmd.tid_info; 2105 break; 2106 2107 case QIB_CMD_SET_PART_KEY: 2108 copy = sizeof(cmd.cmd.part_key); 2109 dest = &cmd.cmd.part_key; 2110 src = &ucmd->cmd.part_key; 2111 break; 2112 2113 case QIB_CMD_DISARM_BUFS: 2114 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */ 2115 copy = 0; 2116 src = NULL; 2117 dest = NULL; 2118 break; 2119 2120 case QIB_CMD_POLL_TYPE: 2121 copy = sizeof(cmd.cmd.poll_type); 2122 dest = &cmd.cmd.poll_type; 2123 src = &ucmd->cmd.poll_type; 2124 break; 2125 2126 case QIB_CMD_ARMLAUNCH_CTRL: 2127 copy = sizeof(cmd.cmd.armlaunch_ctrl); 2128 dest = &cmd.cmd.armlaunch_ctrl; 2129 src = &ucmd->cmd.armlaunch_ctrl; 2130 break; 2131 2132 case QIB_CMD_SDMA_INFLIGHT: 2133 copy = sizeof(cmd.cmd.sdma_inflight); 2134 dest = &cmd.cmd.sdma_inflight; 2135 src = &ucmd->cmd.sdma_inflight; 2136 break; 2137 2138 case QIB_CMD_SDMA_COMPLETE: 2139 copy = sizeof(cmd.cmd.sdma_complete); 2140 dest = &cmd.cmd.sdma_complete; 2141 src = &ucmd->cmd.sdma_complete; 2142 break; 2143 2144 case QIB_CMD_ACK_EVENT: 2145 copy = sizeof(cmd.cmd.event_mask); 2146 dest = &cmd.cmd.event_mask; 2147 src = &ucmd->cmd.event_mask; 2148 break; 2149 2150 default: 2151 ret = -EINVAL; 2152 goto bail; 2153 } 2154 2155 if (copy) { 2156 if ((count - consumed) < copy) { 2157 ret = -EINVAL; 2158 goto bail; 2159 } 2160 if (copy_from_user(dest, src, copy)) { 2161 ret = -EFAULT; 2162 goto bail; 2163 } 2164 consumed += copy; 2165 } 2166 2167 rcd = ctxt_fp(fp); 2168 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) { 2169 ret = -EINVAL; 2170 goto bail; 2171 } 2172 2173 switch (cmd.type) { 2174 case QIB_CMD_ASSIGN_CTXT: 2175 if (rcd) { 2176 ret = -EINVAL; 2177 goto bail; 2178 } 2179 2180 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info); 2181 if (ret) 2182 goto bail; 2183 break; 2184 2185 case QIB_CMD_USER_INIT: 2186 ret = qib_do_user_init(fp, &cmd.cmd.user_info); 2187 if (ret) 2188 goto bail; 2189 ret = qib_get_base_info(fp, (void __user *) (unsigned long) 2190 cmd.cmd.user_info.spu_base_info, 2191 cmd.cmd.user_info.spu_base_info_size); 2192 break; 2193 2194 case QIB_CMD_RECV_CTRL: 2195 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl); 2196 break; 2197 2198 case QIB_CMD_CTXT_INFO: 2199 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *) 2200 (unsigned long) cmd.cmd.ctxt_info); 2201 break; 2202 2203 case QIB_CMD_TID_UPDATE: 2204 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info); 2205 break; 2206 2207 case QIB_CMD_TID_FREE: 2208 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info); 2209 break; 2210 2211 case QIB_CMD_SET_PART_KEY: 2212 ret = qib_set_part_key(rcd, cmd.cmd.part_key); 2213 break; 2214 2215 case QIB_CMD_DISARM_BUFS: 2216 (void)qib_disarm_piobufs_ifneeded(rcd); 2217 ret = disarm_req_delay(rcd); 2218 break; 2219 2220 case QIB_CMD_PIOAVAILUPD: 2221 qib_force_pio_avail_update(rcd->dd); 2222 break; 2223 2224 case QIB_CMD_POLL_TYPE: 2225 rcd->poll_type = cmd.cmd.poll_type; 2226 break; 2227 2228 case QIB_CMD_ARMLAUNCH_CTRL: 2229 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl); 2230 break; 2231 2232 case QIB_CMD_SDMA_INFLIGHT: 2233 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp), 2234 (u32 __user *) (unsigned long) 2235 cmd.cmd.sdma_inflight); 2236 break; 2237 2238 case QIB_CMD_SDMA_COMPLETE: 2239 ret = qib_sdma_get_complete(rcd->ppd, 2240 user_sdma_queue_fp(fp), 2241 (u32 __user *) (unsigned long) 2242 cmd.cmd.sdma_complete); 2243 break; 2244 2245 case QIB_CMD_ACK_EVENT: 2246 ret = qib_user_event_ack(rcd, subctxt_fp(fp), 2247 cmd.cmd.event_mask); 2248 break; 2249 } 2250 2251 if (ret >= 0) 2252 ret = consumed; 2253 2254 bail: 2255 return ret; 2256 } 2257 2258 static ssize_t qib_write_iter(struct kiocb *iocb, struct iov_iter *from) 2259 { 2260 struct qib_filedata *fp = iocb->ki_filp->private_data; 2261 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp); 2262 struct qib_user_sdma_queue *pq = fp->pq; 2263 2264 if (!iter_is_iovec(from) || !from->nr_segs || !pq) 2265 return -EINVAL; 2266 2267 return qib_user_sdma_writev(rcd, pq, from->iov, from->nr_segs); 2268 } 2269 2270 static struct class *qib_class; 2271 static dev_t qib_dev; 2272 2273 int qib_cdev_init(int minor, const char *name, 2274 const struct file_operations *fops, 2275 struct cdev **cdevp, struct device **devp) 2276 { 2277 const dev_t dev = MKDEV(MAJOR(qib_dev), minor); 2278 struct cdev *cdev; 2279 struct device *device = NULL; 2280 int ret; 2281 2282 cdev = cdev_alloc(); 2283 if (!cdev) { 2284 pr_err("Could not allocate cdev for minor %d, %s\n", 2285 minor, name); 2286 ret = -ENOMEM; 2287 goto done; 2288 } 2289 2290 cdev->owner = THIS_MODULE; 2291 cdev->ops = fops; 2292 kobject_set_name(&cdev->kobj, name); 2293 2294 ret = cdev_add(cdev, dev, 1); 2295 if (ret < 0) { 2296 pr_err("Could not add cdev for minor %d, %s (err %d)\n", 2297 minor, name, -ret); 2298 goto err_cdev; 2299 } 2300 2301 device = device_create(qib_class, NULL, dev, NULL, "%s", name); 2302 if (!IS_ERR(device)) 2303 goto done; 2304 ret = PTR_ERR(device); 2305 device = NULL; 2306 pr_err("Could not create device for minor %d, %s (err %d)\n", 2307 minor, name, -ret); 2308 err_cdev: 2309 cdev_del(cdev); 2310 cdev = NULL; 2311 done: 2312 *cdevp = cdev; 2313 *devp = device; 2314 return ret; 2315 } 2316 2317 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp) 2318 { 2319 struct device *device = *devp; 2320 2321 if (device) { 2322 device_unregister(device); 2323 *devp = NULL; 2324 } 2325 2326 if (*cdevp) { 2327 cdev_del(*cdevp); 2328 *cdevp = NULL; 2329 } 2330 } 2331 2332 static struct cdev *wildcard_cdev; 2333 static struct device *wildcard_device; 2334 2335 int __init qib_dev_init(void) 2336 { 2337 int ret; 2338 2339 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME); 2340 if (ret < 0) { 2341 pr_err("Could not allocate chrdev region (err %d)\n", -ret); 2342 goto done; 2343 } 2344 2345 qib_class = class_create(THIS_MODULE, "ipath"); 2346 if (IS_ERR(qib_class)) { 2347 ret = PTR_ERR(qib_class); 2348 pr_err("Could not create device class (err %d)\n", -ret); 2349 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2350 } 2351 2352 done: 2353 return ret; 2354 } 2355 2356 void qib_dev_cleanup(void) 2357 { 2358 if (qib_class) { 2359 class_destroy(qib_class); 2360 qib_class = NULL; 2361 } 2362 2363 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2364 } 2365 2366 static atomic_t user_count = ATOMIC_INIT(0); 2367 2368 static void qib_user_remove(struct qib_devdata *dd) 2369 { 2370 if (atomic_dec_return(&user_count) == 0) 2371 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device); 2372 2373 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device); 2374 } 2375 2376 static int qib_user_add(struct qib_devdata *dd) 2377 { 2378 char name[10]; 2379 int ret; 2380 2381 if (atomic_inc_return(&user_count) == 1) { 2382 ret = qib_cdev_init(0, "ipath", &qib_file_ops, 2383 &wildcard_cdev, &wildcard_device); 2384 if (ret) 2385 goto done; 2386 } 2387 2388 snprintf(name, sizeof(name), "ipath%d", dd->unit); 2389 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops, 2390 &dd->user_cdev, &dd->user_device); 2391 if (ret) 2392 qib_user_remove(dd); 2393 done: 2394 return ret; 2395 } 2396 2397 /* 2398 * Create per-unit files in /dev 2399 */ 2400 int qib_device_create(struct qib_devdata *dd) 2401 { 2402 int r, ret; 2403 2404 r = qib_user_add(dd); 2405 ret = qib_diag_add(dd); 2406 if (r && !ret) 2407 ret = r; 2408 return ret; 2409 } 2410 2411 /* 2412 * Remove per-unit files in /dev 2413 * void, core kernel returns no errors for this stuff 2414 */ 2415 void qib_device_remove(struct qib_devdata *dd) 2416 { 2417 qib_user_remove(dd); 2418 qib_diag_remove(dd); 2419 } 2420