1 /* 2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved. 3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/pci.h> 36 #include <linux/poll.h> 37 #include <linux/cdev.h> 38 #include <linux/swap.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/io.h> 42 #include <linux/jiffies.h> 43 #include <asm/pgtable.h> 44 #include <linux/delay.h> 45 #include <linux/export.h> 46 #include <linux/uio.h> 47 48 #include "qib.h" 49 #include "qib_common.h" 50 #include "qib_user_sdma.h" 51 52 #undef pr_fmt 53 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt 54 55 static int qib_open(struct inode *, struct file *); 56 static int qib_close(struct inode *, struct file *); 57 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *); 58 static ssize_t qib_write_iter(struct kiocb *, struct iov_iter *); 59 static unsigned int qib_poll(struct file *, struct poll_table_struct *); 60 static int qib_mmapf(struct file *, struct vm_area_struct *); 61 62 /* 63 * This is really, really weird shit - write() and writev() here 64 * have completely unrelated semantics. Sucky userland ABI, 65 * film at 11. 66 */ 67 static const struct file_operations qib_file_ops = { 68 .owner = THIS_MODULE, 69 .write = qib_write, 70 .write_iter = qib_write_iter, 71 .open = qib_open, 72 .release = qib_close, 73 .poll = qib_poll, 74 .mmap = qib_mmapf, 75 .llseek = noop_llseek, 76 }; 77 78 /* 79 * Convert kernel virtual addresses to physical addresses so they don't 80 * potentially conflict with the chip addresses used as mmap offsets. 81 * It doesn't really matter what mmap offset we use as long as we can 82 * interpret it correctly. 83 */ 84 static u64 cvt_kvaddr(void *p) 85 { 86 struct page *page; 87 u64 paddr = 0; 88 89 page = vmalloc_to_page(p); 90 if (page) 91 paddr = page_to_pfn(page) << PAGE_SHIFT; 92 93 return paddr; 94 } 95 96 static int qib_get_base_info(struct file *fp, void __user *ubase, 97 size_t ubase_size) 98 { 99 struct qib_ctxtdata *rcd = ctxt_fp(fp); 100 int ret = 0; 101 struct qib_base_info *kinfo = NULL; 102 struct qib_devdata *dd = rcd->dd; 103 struct qib_pportdata *ppd = rcd->ppd; 104 unsigned subctxt_cnt; 105 int shared, master; 106 size_t sz; 107 108 subctxt_cnt = rcd->subctxt_cnt; 109 if (!subctxt_cnt) { 110 shared = 0; 111 master = 0; 112 subctxt_cnt = 1; 113 } else { 114 shared = 1; 115 master = !subctxt_fp(fp); 116 } 117 118 sz = sizeof(*kinfo); 119 /* If context sharing is not requested, allow the old size structure */ 120 if (!shared) 121 sz -= 7 * sizeof(u64); 122 if (ubase_size < sz) { 123 ret = -EINVAL; 124 goto bail; 125 } 126 127 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); 128 if (kinfo == NULL) { 129 ret = -ENOMEM; 130 goto bail; 131 } 132 133 ret = dd->f_get_base_info(rcd, kinfo); 134 if (ret < 0) 135 goto bail; 136 137 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt; 138 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize; 139 kinfo->spi_tidegrcnt = rcd->rcvegrcnt; 140 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize; 141 /* 142 * have to mmap whole thing 143 */ 144 kinfo->spi_rcv_egrbuftotlen = 145 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 146 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk; 147 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / 148 rcd->rcvegrbuf_chunks; 149 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt; 150 if (master) 151 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt; 152 /* 153 * for this use, may be cfgctxts summed over all chips that 154 * are are configured and present 155 */ 156 kinfo->spi_nctxts = dd->cfgctxts; 157 /* unit (chip/board) our context is on */ 158 kinfo->spi_unit = dd->unit; 159 kinfo->spi_port = ppd->port; 160 /* for now, only a single page */ 161 kinfo->spi_tid_maxsize = PAGE_SIZE; 162 163 /* 164 * Doing this per context, and based on the skip value, etc. This has 165 * to be the actual buffer size, since the protocol code treats it 166 * as an array. 167 * 168 * These have to be set to user addresses in the user code via mmap. 169 * These values are used on return to user code for the mmap target 170 * addresses only. For 32 bit, same 44 bit address problem, so use 171 * the physical address, not virtual. Before 2.6.11, using the 172 * page_address() macro worked, but in 2.6.11, even that returns the 173 * full 64 bit address (upper bits all 1's). So far, using the 174 * physical addresses (or chip offsets, for chip mapping) works, but 175 * no doubt some future kernel release will change that, and we'll be 176 * on to yet another method of dealing with this. 177 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful 178 * since the chips with non-zero rhf_offset don't normally 179 * enable tail register updates to host memory, but for testing, 180 * both can be enabled and used. 181 */ 182 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys; 183 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys; 184 kinfo->spi_rhf_offset = dd->rhf_offset; 185 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys; 186 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys; 187 /* setup per-unit (not port) status area for user programs */ 188 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + 189 (char *) ppd->statusp - 190 (char *) dd->pioavailregs_dma; 191 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt; 192 if (!shared) { 193 kinfo->spi_piocnt = rcd->piocnt; 194 kinfo->spi_piobufbase = (u64) rcd->piobufs; 195 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask); 196 } else if (master) { 197 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) + 198 (rcd->piocnt % subctxt_cnt); 199 /* Master's PIO buffers are after all the slave's */ 200 kinfo->spi_piobufbase = (u64) rcd->piobufs + 201 dd->palign * 202 (rcd->piocnt - kinfo->spi_piocnt); 203 } else { 204 unsigned slave = subctxt_fp(fp) - 1; 205 206 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt; 207 kinfo->spi_piobufbase = (u64) rcd->piobufs + 208 dd->palign * kinfo->spi_piocnt * slave; 209 } 210 211 if (shared) { 212 kinfo->spi_sendbuf_status = 213 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]); 214 /* only spi_subctxt_* fields should be set in this block! */ 215 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase); 216 217 kinfo->spi_subctxt_rcvegrbuf = 218 cvt_kvaddr(rcd->subctxt_rcvegrbuf); 219 kinfo->spi_subctxt_rcvhdr_base = 220 cvt_kvaddr(rcd->subctxt_rcvhdr_base); 221 } 222 223 /* 224 * All user buffers are 2KB buffers. If we ever support 225 * giving 4KB buffers to user processes, this will need some 226 * work. Can't use piobufbase directly, because it has 227 * both 2K and 4K buffer base values. 228 */ 229 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) / 230 dd->palign; 231 kinfo->spi_pioalign = dd->palign; 232 kinfo->spi_qpair = QIB_KD_QP; 233 /* 234 * user mode PIO buffers are always 2KB, even when 4KB can 235 * be received, and sent via the kernel; this is ibmaxlen 236 * for 2K MTU. 237 */ 238 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32); 239 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */ 240 kinfo->spi_ctxt = rcd->ctxt; 241 kinfo->spi_subctxt = subctxt_fp(fp); 242 kinfo->spi_sw_version = QIB_KERN_SWVERSION; 243 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */ 244 kinfo->spi_hw_version = dd->revision; 245 246 if (master) 247 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER; 248 249 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo); 250 if (copy_to_user(ubase, kinfo, sz)) 251 ret = -EFAULT; 252 bail: 253 kfree(kinfo); 254 return ret; 255 } 256 257 /** 258 * qib_tid_update - update a context TID 259 * @rcd: the context 260 * @fp: the qib device file 261 * @ti: the TID information 262 * 263 * The new implementation as of Oct 2004 is that the driver assigns 264 * the tid and returns it to the caller. To reduce search time, we 265 * keep a cursor for each context, walking the shadow tid array to find 266 * one that's not in use. 267 * 268 * For now, if we can't allocate the full list, we fail, although 269 * in the long run, we'll allocate as many as we can, and the 270 * caller will deal with that by trying the remaining pages later. 271 * That means that when we fail, we have to mark the tids as not in 272 * use again, in our shadow copy. 273 * 274 * It's up to the caller to free the tids when they are done. 275 * We'll unlock the pages as they free them. 276 * 277 * Also, right now we are locking one page at a time, but since 278 * the intended use of this routine is for a single group of 279 * virtually contiguous pages, that should change to improve 280 * performance. 281 */ 282 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp, 283 const struct qib_tid_info *ti) 284 { 285 int ret = 0, ntids; 286 u32 tid, ctxttid, cnt, i, tidcnt, tidoff; 287 u16 *tidlist; 288 struct qib_devdata *dd = rcd->dd; 289 u64 physaddr; 290 unsigned long vaddr; 291 u64 __iomem *tidbase; 292 unsigned long tidmap[8]; 293 struct page **pagep = NULL; 294 unsigned subctxt = subctxt_fp(fp); 295 296 if (!dd->pageshadow) { 297 ret = -ENOMEM; 298 goto done; 299 } 300 301 cnt = ti->tidcnt; 302 if (!cnt) { 303 ret = -EFAULT; 304 goto done; 305 } 306 ctxttid = rcd->ctxt * dd->rcvtidcnt; 307 if (!rcd->subctxt_cnt) { 308 tidcnt = dd->rcvtidcnt; 309 tid = rcd->tidcursor; 310 tidoff = 0; 311 } else if (!subctxt) { 312 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 313 (dd->rcvtidcnt % rcd->subctxt_cnt); 314 tidoff = dd->rcvtidcnt - tidcnt; 315 ctxttid += tidoff; 316 tid = tidcursor_fp(fp); 317 } else { 318 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 319 tidoff = tidcnt * (subctxt - 1); 320 ctxttid += tidoff; 321 tid = tidcursor_fp(fp); 322 } 323 if (cnt > tidcnt) { 324 /* make sure it all fits in tid_pg_list */ 325 qib_devinfo(dd->pcidev, 326 "Process tried to allocate %u TIDs, only trying max (%u)\n", 327 cnt, tidcnt); 328 cnt = tidcnt; 329 } 330 pagep = (struct page **) rcd->tid_pg_list; 331 tidlist = (u16 *) &pagep[dd->rcvtidcnt]; 332 pagep += tidoff; 333 tidlist += tidoff; 334 335 memset(tidmap, 0, sizeof(tidmap)); 336 /* before decrement; chip actual # */ 337 ntids = tidcnt; 338 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) + 339 dd->rcvtidbase + 340 ctxttid * sizeof(*tidbase)); 341 342 /* virtual address of first page in transfer */ 343 vaddr = ti->tidvaddr; 344 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr, 345 cnt * PAGE_SIZE)) { 346 ret = -EFAULT; 347 goto done; 348 } 349 ret = qib_get_user_pages(vaddr, cnt, pagep); 350 if (ret) { 351 /* 352 * if (ret == -EBUSY) 353 * We can't continue because the pagep array won't be 354 * initialized. This should never happen, 355 * unless perhaps the user has mpin'ed the pages 356 * themselves. 357 */ 358 qib_devinfo( 359 dd->pcidev, 360 "Failed to lock addr %p, %u pages: errno %d\n", 361 (void *) vaddr, cnt, -ret); 362 goto done; 363 } 364 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { 365 for (; ntids--; tid++) { 366 if (tid == tidcnt) 367 tid = 0; 368 if (!dd->pageshadow[ctxttid + tid]) 369 break; 370 } 371 if (ntids < 0) { 372 /* 373 * Oops, wrapped all the way through their TIDs, 374 * and didn't have enough free; see comments at 375 * start of routine 376 */ 377 i--; /* last tidlist[i] not filled in */ 378 ret = -ENOMEM; 379 break; 380 } 381 tidlist[i] = tid + tidoff; 382 /* we "know" system pages and TID pages are same size */ 383 dd->pageshadow[ctxttid + tid] = pagep[i]; 384 dd->physshadow[ctxttid + tid] = 385 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE, 386 PCI_DMA_FROMDEVICE); 387 /* 388 * don't need atomic or it's overhead 389 */ 390 __set_bit(tid, tidmap); 391 physaddr = dd->physshadow[ctxttid + tid]; 392 /* PERFORMANCE: below should almost certainly be cached */ 393 dd->f_put_tid(dd, &tidbase[tid], 394 RCVHQ_RCV_TYPE_EXPECTED, physaddr); 395 /* 396 * don't check this tid in qib_ctxtshadow, since we 397 * just filled it in; start with the next one. 398 */ 399 tid++; 400 } 401 402 if (ret) { 403 u32 limit; 404 cleanup: 405 /* jump here if copy out of updated info failed... */ 406 /* same code that's in qib_free_tid() */ 407 limit = sizeof(tidmap) * BITS_PER_BYTE; 408 if (limit > tidcnt) 409 /* just in case size changes in future */ 410 limit = tidcnt; 411 tid = find_first_bit((const unsigned long *)tidmap, limit); 412 for (; tid < limit; tid++) { 413 if (!test_bit(tid, tidmap)) 414 continue; 415 if (dd->pageshadow[ctxttid + tid]) { 416 dma_addr_t phys; 417 418 phys = dd->physshadow[ctxttid + tid]; 419 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 420 /* PERFORMANCE: below should almost certainly 421 * be cached 422 */ 423 dd->f_put_tid(dd, &tidbase[tid], 424 RCVHQ_RCV_TYPE_EXPECTED, 425 dd->tidinvalid); 426 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 427 PCI_DMA_FROMDEVICE); 428 dd->pageshadow[ctxttid + tid] = NULL; 429 } 430 } 431 qib_release_user_pages(pagep, cnt); 432 } else { 433 /* 434 * Copy the updated array, with qib_tid's filled in, back 435 * to user. Since we did the copy in already, this "should 436 * never fail" If it does, we have to clean up... 437 */ 438 if (copy_to_user((void __user *) 439 (unsigned long) ti->tidlist, 440 tidlist, cnt * sizeof(*tidlist))) { 441 ret = -EFAULT; 442 goto cleanup; 443 } 444 if (copy_to_user((void __user *) (unsigned long) ti->tidmap, 445 tidmap, sizeof(tidmap))) { 446 ret = -EFAULT; 447 goto cleanup; 448 } 449 if (tid == tidcnt) 450 tid = 0; 451 if (!rcd->subctxt_cnt) 452 rcd->tidcursor = tid; 453 else 454 tidcursor_fp(fp) = tid; 455 } 456 457 done: 458 return ret; 459 } 460 461 /** 462 * qib_tid_free - free a context TID 463 * @rcd: the context 464 * @subctxt: the subcontext 465 * @ti: the TID info 466 * 467 * right now we are unlocking one page at a time, but since 468 * the intended use of this routine is for a single group of 469 * virtually contiguous pages, that should change to improve 470 * performance. We check that the TID is in range for this context 471 * but otherwise don't check validity; if user has an error and 472 * frees the wrong tid, it's only their own data that can thereby 473 * be corrupted. We do check that the TID was in use, for sanity 474 * We always use our idea of the saved address, not the address that 475 * they pass in to us. 476 */ 477 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt, 478 const struct qib_tid_info *ti) 479 { 480 int ret = 0; 481 u32 tid, ctxttid, cnt, limit, tidcnt; 482 struct qib_devdata *dd = rcd->dd; 483 u64 __iomem *tidbase; 484 unsigned long tidmap[8]; 485 486 if (!dd->pageshadow) { 487 ret = -ENOMEM; 488 goto done; 489 } 490 491 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap, 492 sizeof(tidmap))) { 493 ret = -EFAULT; 494 goto done; 495 } 496 497 ctxttid = rcd->ctxt * dd->rcvtidcnt; 498 if (!rcd->subctxt_cnt) 499 tidcnt = dd->rcvtidcnt; 500 else if (!subctxt) { 501 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 502 (dd->rcvtidcnt % rcd->subctxt_cnt); 503 ctxttid += dd->rcvtidcnt - tidcnt; 504 } else { 505 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 506 ctxttid += tidcnt * (subctxt - 1); 507 } 508 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) + 509 dd->rcvtidbase + 510 ctxttid * sizeof(*tidbase)); 511 512 limit = sizeof(tidmap) * BITS_PER_BYTE; 513 if (limit > tidcnt) 514 /* just in case size changes in future */ 515 limit = tidcnt; 516 tid = find_first_bit(tidmap, limit); 517 for (cnt = 0; tid < limit; tid++) { 518 /* 519 * small optimization; if we detect a run of 3 or so without 520 * any set, use find_first_bit again. That's mainly to 521 * accelerate the case where we wrapped, so we have some at 522 * the beginning, and some at the end, and a big gap 523 * in the middle. 524 */ 525 if (!test_bit(tid, tidmap)) 526 continue; 527 cnt++; 528 if (dd->pageshadow[ctxttid + tid]) { 529 struct page *p; 530 dma_addr_t phys; 531 532 p = dd->pageshadow[ctxttid + tid]; 533 dd->pageshadow[ctxttid + tid] = NULL; 534 phys = dd->physshadow[ctxttid + tid]; 535 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 536 /* PERFORMANCE: below should almost certainly be 537 * cached 538 */ 539 dd->f_put_tid(dd, &tidbase[tid], 540 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); 541 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 542 PCI_DMA_FROMDEVICE); 543 qib_release_user_pages(&p, 1); 544 } 545 } 546 done: 547 return ret; 548 } 549 550 /** 551 * qib_set_part_key - set a partition key 552 * @rcd: the context 553 * @key: the key 554 * 555 * We can have up to 4 active at a time (other than the default, which is 556 * always allowed). This is somewhat tricky, since multiple contexts may set 557 * the same key, so we reference count them, and clean up at exit. All 4 558 * partition keys are packed into a single qlogic_ib register. It's an 559 * error for a process to set the same pkey multiple times. We provide no 560 * mechanism to de-allocate a pkey at this time, we may eventually need to 561 * do that. I've used the atomic operations, and no locking, and only make 562 * a single pass through what's available. This should be more than 563 * adequate for some time. I'll think about spinlocks or the like if and as 564 * it's necessary. 565 */ 566 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key) 567 { 568 struct qib_pportdata *ppd = rcd->ppd; 569 int i, any = 0, pidx = -1; 570 u16 lkey = key & 0x7FFF; 571 int ret; 572 573 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) { 574 /* nothing to do; this key always valid */ 575 ret = 0; 576 goto bail; 577 } 578 579 if (!lkey) { 580 ret = -EINVAL; 581 goto bail; 582 } 583 584 /* 585 * Set the full membership bit, because it has to be 586 * set in the register or the packet, and it seems 587 * cleaner to set in the register than to force all 588 * callers to set it. 589 */ 590 key |= 0x8000; 591 592 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 593 if (!rcd->pkeys[i] && pidx == -1) 594 pidx = i; 595 if (rcd->pkeys[i] == key) { 596 ret = -EEXIST; 597 goto bail; 598 } 599 } 600 if (pidx == -1) { 601 ret = -EBUSY; 602 goto bail; 603 } 604 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 605 if (!ppd->pkeys[i]) { 606 any++; 607 continue; 608 } 609 if (ppd->pkeys[i] == key) { 610 atomic_t *pkrefs = &ppd->pkeyrefs[i]; 611 612 if (atomic_inc_return(pkrefs) > 1) { 613 rcd->pkeys[pidx] = key; 614 ret = 0; 615 goto bail; 616 } else { 617 /* 618 * lost race, decrement count, catch below 619 */ 620 atomic_dec(pkrefs); 621 any++; 622 } 623 } 624 if ((ppd->pkeys[i] & 0x7FFF) == lkey) { 625 /* 626 * It makes no sense to have both the limited and 627 * full membership PKEY set at the same time since 628 * the unlimited one will disable the limited one. 629 */ 630 ret = -EEXIST; 631 goto bail; 632 } 633 } 634 if (!any) { 635 ret = -EBUSY; 636 goto bail; 637 } 638 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 639 if (!ppd->pkeys[i] && 640 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) { 641 rcd->pkeys[pidx] = key; 642 ppd->pkeys[i] = key; 643 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 644 ret = 0; 645 goto bail; 646 } 647 } 648 ret = -EBUSY; 649 650 bail: 651 return ret; 652 } 653 654 /** 655 * qib_manage_rcvq - manage a context's receive queue 656 * @rcd: the context 657 * @subctxt: the subcontext 658 * @start_stop: action to carry out 659 * 660 * start_stop == 0 disables receive on the context, for use in queue 661 * overflow conditions. start_stop==1 re-enables, to be used to 662 * re-init the software copy of the head register 663 */ 664 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt, 665 int start_stop) 666 { 667 struct qib_devdata *dd = rcd->dd; 668 unsigned int rcvctrl_op; 669 670 if (subctxt) 671 goto bail; 672 /* atomically clear receive enable ctxt. */ 673 if (start_stop) { 674 /* 675 * On enable, force in-memory copy of the tail register to 676 * 0, so that protocol code doesn't have to worry about 677 * whether or not the chip has yet updated the in-memory 678 * copy or not on return from the system call. The chip 679 * always resets it's tail register back to 0 on a 680 * transition from disabled to enabled. 681 */ 682 if (rcd->rcvhdrtail_kvaddr) 683 qib_clear_rcvhdrtail(rcd); 684 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB; 685 } else 686 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS; 687 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt); 688 /* always; new head should be equal to new tail; see above */ 689 bail: 690 return 0; 691 } 692 693 static void qib_clean_part_key(struct qib_ctxtdata *rcd, 694 struct qib_devdata *dd) 695 { 696 int i, j, pchanged = 0; 697 u64 oldpkey; 698 struct qib_pportdata *ppd = rcd->ppd; 699 700 /* for debugging only */ 701 oldpkey = (u64) ppd->pkeys[0] | 702 ((u64) ppd->pkeys[1] << 16) | 703 ((u64) ppd->pkeys[2] << 32) | 704 ((u64) ppd->pkeys[3] << 48); 705 706 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 707 if (!rcd->pkeys[i]) 708 continue; 709 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) { 710 /* check for match independent of the global bit */ 711 if ((ppd->pkeys[j] & 0x7fff) != 712 (rcd->pkeys[i] & 0x7fff)) 713 continue; 714 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) { 715 ppd->pkeys[j] = 0; 716 pchanged++; 717 } 718 break; 719 } 720 rcd->pkeys[i] = 0; 721 } 722 if (pchanged) 723 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 724 } 725 726 /* common code for the mappings on dma_alloc_coherent mem */ 727 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd, 728 unsigned len, void *kvaddr, u32 write_ok, char *what) 729 { 730 struct qib_devdata *dd = rcd->dd; 731 unsigned long pfn; 732 int ret; 733 734 if ((vma->vm_end - vma->vm_start) > len) { 735 qib_devinfo(dd->pcidev, 736 "FAIL on %s: len %lx > %x\n", what, 737 vma->vm_end - vma->vm_start, len); 738 ret = -EFAULT; 739 goto bail; 740 } 741 742 /* 743 * shared context user code requires rcvhdrq mapped r/w, others 744 * only allowed readonly mapping. 745 */ 746 if (!write_ok) { 747 if (vma->vm_flags & VM_WRITE) { 748 qib_devinfo(dd->pcidev, 749 "%s must be mapped readonly\n", what); 750 ret = -EPERM; 751 goto bail; 752 } 753 754 /* don't allow them to later change with mprotect */ 755 vma->vm_flags &= ~VM_MAYWRITE; 756 } 757 758 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT; 759 ret = remap_pfn_range(vma, vma->vm_start, pfn, 760 len, vma->vm_page_prot); 761 if (ret) 762 qib_devinfo(dd->pcidev, 763 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n", 764 what, rcd->ctxt, pfn, len, ret); 765 bail: 766 return ret; 767 } 768 769 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd, 770 u64 ureg) 771 { 772 unsigned long phys; 773 unsigned long sz; 774 int ret; 775 776 /* 777 * This is real hardware, so use io_remap. This is the mechanism 778 * for the user process to update the head registers for their ctxt 779 * in the chip. 780 */ 781 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE; 782 if ((vma->vm_end - vma->vm_start) > sz) { 783 qib_devinfo(dd->pcidev, 784 "FAIL mmap userreg: reqlen %lx > PAGE\n", 785 vma->vm_end - vma->vm_start); 786 ret = -EFAULT; 787 } else { 788 phys = dd->physaddr + ureg; 789 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 790 791 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 792 ret = io_remap_pfn_range(vma, vma->vm_start, 793 phys >> PAGE_SHIFT, 794 vma->vm_end - vma->vm_start, 795 vma->vm_page_prot); 796 } 797 return ret; 798 } 799 800 static int mmap_piobufs(struct vm_area_struct *vma, 801 struct qib_devdata *dd, 802 struct qib_ctxtdata *rcd, 803 unsigned piobufs, unsigned piocnt) 804 { 805 unsigned long phys; 806 int ret; 807 808 /* 809 * When we map the PIO buffers in the chip, we want to map them as 810 * writeonly, no read possible; unfortunately, x86 doesn't allow 811 * for this in hardware, but we still prevent users from asking 812 * for it. 813 */ 814 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) { 815 qib_devinfo(dd->pcidev, 816 "FAIL mmap piobufs: reqlen %lx > PAGE\n", 817 vma->vm_end - vma->vm_start); 818 ret = -EINVAL; 819 goto bail; 820 } 821 822 phys = dd->physaddr + piobufs; 823 824 #if defined(__powerpc__) 825 /* There isn't a generic way to specify writethrough mappings */ 826 pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE; 827 pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU; 828 pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED; 829 #endif 830 831 /* 832 * don't allow them to later change to readable with mprotect (for when 833 * not initially mapped readable, as is normally the case) 834 */ 835 vma->vm_flags &= ~VM_MAYREAD; 836 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 837 838 if (qib_wc_pat) 839 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 840 841 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, 842 vma->vm_end - vma->vm_start, 843 vma->vm_page_prot); 844 bail: 845 return ret; 846 } 847 848 static int mmap_rcvegrbufs(struct vm_area_struct *vma, 849 struct qib_ctxtdata *rcd) 850 { 851 struct qib_devdata *dd = rcd->dd; 852 unsigned long start, size; 853 size_t total_size, i; 854 unsigned long pfn; 855 int ret; 856 857 size = rcd->rcvegrbuf_size; 858 total_size = rcd->rcvegrbuf_chunks * size; 859 if ((vma->vm_end - vma->vm_start) > total_size) { 860 qib_devinfo(dd->pcidev, 861 "FAIL on egr bufs: reqlen %lx > actual %lx\n", 862 vma->vm_end - vma->vm_start, 863 (unsigned long) total_size); 864 ret = -EINVAL; 865 goto bail; 866 } 867 868 if (vma->vm_flags & VM_WRITE) { 869 qib_devinfo(dd->pcidev, 870 "Can't map eager buffers as writable (flags=%lx)\n", 871 vma->vm_flags); 872 ret = -EPERM; 873 goto bail; 874 } 875 /* don't allow them to later change to writeable with mprotect */ 876 vma->vm_flags &= ~VM_MAYWRITE; 877 878 start = vma->vm_start; 879 880 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) { 881 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT; 882 ret = remap_pfn_range(vma, start, pfn, size, 883 vma->vm_page_prot); 884 if (ret < 0) 885 goto bail; 886 } 887 ret = 0; 888 889 bail: 890 return ret; 891 } 892 893 /* 894 * qib_file_vma_fault - handle a VMA page fault. 895 */ 896 static int qib_file_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 897 { 898 struct page *page; 899 900 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 901 if (!page) 902 return VM_FAULT_SIGBUS; 903 904 get_page(page); 905 vmf->page = page; 906 907 return 0; 908 } 909 910 static struct vm_operations_struct qib_file_vm_ops = { 911 .fault = qib_file_vma_fault, 912 }; 913 914 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr, 915 struct qib_ctxtdata *rcd, unsigned subctxt) 916 { 917 struct qib_devdata *dd = rcd->dd; 918 unsigned subctxt_cnt; 919 unsigned long len; 920 void *addr; 921 size_t size; 922 int ret = 0; 923 924 subctxt_cnt = rcd->subctxt_cnt; 925 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 926 927 /* 928 * Each process has all the subctxt uregbase, rcvhdrq, and 929 * rcvegrbufs mmapped - as an array for all the processes, 930 * and also separately for this process. 931 */ 932 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) { 933 addr = rcd->subctxt_uregbase; 934 size = PAGE_SIZE * subctxt_cnt; 935 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) { 936 addr = rcd->subctxt_rcvhdr_base; 937 size = rcd->rcvhdrq_size * subctxt_cnt; 938 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) { 939 addr = rcd->subctxt_rcvegrbuf; 940 size *= subctxt_cnt; 941 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase + 942 PAGE_SIZE * subctxt)) { 943 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt; 944 size = PAGE_SIZE; 945 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base + 946 rcd->rcvhdrq_size * subctxt)) { 947 addr = rcd->subctxt_rcvhdr_base + 948 rcd->rcvhdrq_size * subctxt; 949 size = rcd->rcvhdrq_size; 950 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) { 951 addr = rcd->user_event_mask; 952 size = PAGE_SIZE; 953 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf + 954 size * subctxt)) { 955 addr = rcd->subctxt_rcvegrbuf + size * subctxt; 956 /* rcvegrbufs are read-only on the slave */ 957 if (vma->vm_flags & VM_WRITE) { 958 qib_devinfo(dd->pcidev, 959 "Can't map eager buffers as writable (flags=%lx)\n", 960 vma->vm_flags); 961 ret = -EPERM; 962 goto bail; 963 } 964 /* 965 * Don't allow permission to later change to writeable 966 * with mprotect. 967 */ 968 vma->vm_flags &= ~VM_MAYWRITE; 969 } else 970 goto bail; 971 len = vma->vm_end - vma->vm_start; 972 if (len > size) { 973 ret = -EINVAL; 974 goto bail; 975 } 976 977 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT; 978 vma->vm_ops = &qib_file_vm_ops; 979 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 980 ret = 1; 981 982 bail: 983 return ret; 984 } 985 986 /** 987 * qib_mmapf - mmap various structures into user space 988 * @fp: the file pointer 989 * @vma: the VM area 990 * 991 * We use this to have a shared buffer between the kernel and the user code 992 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio 993 * buffers in the chip. We have the open and close entries so we can bump 994 * the ref count and keep the driver from being unloaded while still mapped. 995 */ 996 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma) 997 { 998 struct qib_ctxtdata *rcd; 999 struct qib_devdata *dd; 1000 u64 pgaddr, ureg; 1001 unsigned piobufs, piocnt; 1002 int ret, match = 1; 1003 1004 rcd = ctxt_fp(fp); 1005 if (!rcd || !(vma->vm_flags & VM_SHARED)) { 1006 ret = -EINVAL; 1007 goto bail; 1008 } 1009 dd = rcd->dd; 1010 1011 /* 1012 * This is the qib_do_user_init() code, mapping the shared buffers 1013 * and per-context user registers into the user process. The address 1014 * referred to by vm_pgoff is the file offset passed via mmap(). 1015 * For shared contexts, this is the kernel vmalloc() address of the 1016 * pages to share with the master. 1017 * For non-shared or master ctxts, this is a physical address. 1018 * We only do one mmap for each space mapped. 1019 */ 1020 pgaddr = vma->vm_pgoff << PAGE_SHIFT; 1021 1022 /* 1023 * Check for 0 in case one of the allocations failed, but user 1024 * called mmap anyway. 1025 */ 1026 if (!pgaddr) { 1027 ret = -EINVAL; 1028 goto bail; 1029 } 1030 1031 /* 1032 * Physical addresses must fit in 40 bits for our hardware. 1033 * Check for kernel virtual addresses first, anything else must 1034 * match a HW or memory address. 1035 */ 1036 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp)); 1037 if (ret) { 1038 if (ret > 0) 1039 ret = 0; 1040 goto bail; 1041 } 1042 1043 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt; 1044 if (!rcd->subctxt_cnt) { 1045 /* ctxt is not shared */ 1046 piocnt = rcd->piocnt; 1047 piobufs = rcd->piobufs; 1048 } else if (!subctxt_fp(fp)) { 1049 /* caller is the master */ 1050 piocnt = (rcd->piocnt / rcd->subctxt_cnt) + 1051 (rcd->piocnt % rcd->subctxt_cnt); 1052 piobufs = rcd->piobufs + 1053 dd->palign * (rcd->piocnt - piocnt); 1054 } else { 1055 unsigned slave = subctxt_fp(fp) - 1; 1056 1057 /* caller is a slave */ 1058 piocnt = rcd->piocnt / rcd->subctxt_cnt; 1059 piobufs = rcd->piobufs + dd->palign * piocnt * slave; 1060 } 1061 1062 if (pgaddr == ureg) 1063 ret = mmap_ureg(vma, dd, ureg); 1064 else if (pgaddr == piobufs) 1065 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt); 1066 else if (pgaddr == dd->pioavailregs_phys) 1067 /* in-memory copy of pioavail registers */ 1068 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1069 (void *) dd->pioavailregs_dma, 0, 1070 "pioavail registers"); 1071 else if (pgaddr == rcd->rcvegr_phys) 1072 ret = mmap_rcvegrbufs(vma, rcd); 1073 else if (pgaddr == (u64) rcd->rcvhdrq_phys) 1074 /* 1075 * The rcvhdrq itself; multiple pages, contiguous 1076 * from an i/o perspective. Shared contexts need 1077 * to map r/w, so we allow writing. 1078 */ 1079 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size, 1080 rcd->rcvhdrq, 1, "rcvhdrq"); 1081 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys) 1082 /* in-memory copy of rcvhdrq tail register */ 1083 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1084 rcd->rcvhdrtail_kvaddr, 0, 1085 "rcvhdrq tail"); 1086 else 1087 match = 0; 1088 if (!match) 1089 ret = -EINVAL; 1090 1091 vma->vm_private_data = NULL; 1092 1093 if (ret < 0) 1094 qib_devinfo(dd->pcidev, 1095 "mmap Failure %d: off %llx len %lx\n", 1096 -ret, (unsigned long long)pgaddr, 1097 vma->vm_end - vma->vm_start); 1098 bail: 1099 return ret; 1100 } 1101 1102 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd, 1103 struct file *fp, 1104 struct poll_table_struct *pt) 1105 { 1106 struct qib_devdata *dd = rcd->dd; 1107 unsigned pollflag; 1108 1109 poll_wait(fp, &rcd->wait, pt); 1110 1111 spin_lock_irq(&dd->uctxt_lock); 1112 if (rcd->urgent != rcd->urgent_poll) { 1113 pollflag = POLLIN | POLLRDNORM; 1114 rcd->urgent_poll = rcd->urgent; 1115 } else { 1116 pollflag = 0; 1117 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag); 1118 } 1119 spin_unlock_irq(&dd->uctxt_lock); 1120 1121 return pollflag; 1122 } 1123 1124 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd, 1125 struct file *fp, 1126 struct poll_table_struct *pt) 1127 { 1128 struct qib_devdata *dd = rcd->dd; 1129 unsigned pollflag; 1130 1131 poll_wait(fp, &rcd->wait, pt); 1132 1133 spin_lock_irq(&dd->uctxt_lock); 1134 if (dd->f_hdrqempty(rcd)) { 1135 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag); 1136 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt); 1137 pollflag = 0; 1138 } else 1139 pollflag = POLLIN | POLLRDNORM; 1140 spin_unlock_irq(&dd->uctxt_lock); 1141 1142 return pollflag; 1143 } 1144 1145 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt) 1146 { 1147 struct qib_ctxtdata *rcd; 1148 unsigned pollflag; 1149 1150 rcd = ctxt_fp(fp); 1151 if (!rcd) 1152 pollflag = POLLERR; 1153 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT) 1154 pollflag = qib_poll_urgent(rcd, fp, pt); 1155 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV) 1156 pollflag = qib_poll_next(rcd, fp, pt); 1157 else /* invalid */ 1158 pollflag = POLLERR; 1159 1160 return pollflag; 1161 } 1162 1163 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd) 1164 { 1165 struct qib_filedata *fd = fp->private_data; 1166 const unsigned int weight = cpumask_weight(¤t->cpus_allowed); 1167 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus); 1168 int local_cpu; 1169 1170 /* 1171 * If process has NOT already set it's affinity, select and 1172 * reserve a processor for it on the local NUMA node. 1173 */ 1174 if ((weight >= qib_cpulist_count) && 1175 (cpumask_weight(local_mask) <= qib_cpulist_count)) { 1176 for_each_cpu(local_cpu, local_mask) 1177 if (!test_and_set_bit(local_cpu, qib_cpulist)) { 1178 fd->rec_cpu_num = local_cpu; 1179 return; 1180 } 1181 } 1182 1183 /* 1184 * If process has NOT already set it's affinity, select and 1185 * reserve a processor for it, as a rendevous for all 1186 * users of the driver. If they don't actually later 1187 * set affinity to this cpu, or set it to some other cpu, 1188 * it just means that sooner or later we don't recommend 1189 * a cpu, and let the scheduler do it's best. 1190 */ 1191 if (weight >= qib_cpulist_count) { 1192 int cpu; 1193 1194 cpu = find_first_zero_bit(qib_cpulist, 1195 qib_cpulist_count); 1196 if (cpu == qib_cpulist_count) 1197 qib_dev_err(dd, 1198 "no cpus avail for affinity PID %u\n", 1199 current->pid); 1200 else { 1201 __set_bit(cpu, qib_cpulist); 1202 fd->rec_cpu_num = cpu; 1203 } 1204 } 1205 } 1206 1207 /* 1208 * Check that userland and driver are compatible for subcontexts. 1209 */ 1210 static int qib_compatible_subctxts(int user_swmajor, int user_swminor) 1211 { 1212 /* this code is written long-hand for clarity */ 1213 if (QIB_USER_SWMAJOR != user_swmajor) { 1214 /* no promise of compatibility if major mismatch */ 1215 return 0; 1216 } 1217 if (QIB_USER_SWMAJOR == 1) { 1218 switch (QIB_USER_SWMINOR) { 1219 case 0: 1220 case 1: 1221 case 2: 1222 /* no subctxt implementation so cannot be compatible */ 1223 return 0; 1224 case 3: 1225 /* 3 is only compatible with itself */ 1226 return user_swminor == 3; 1227 default: 1228 /* >= 4 are compatible (or are expected to be) */ 1229 return user_swminor <= QIB_USER_SWMINOR; 1230 } 1231 } 1232 /* make no promises yet for future major versions */ 1233 return 0; 1234 } 1235 1236 static int init_subctxts(struct qib_devdata *dd, 1237 struct qib_ctxtdata *rcd, 1238 const struct qib_user_info *uinfo) 1239 { 1240 int ret = 0; 1241 unsigned num_subctxts; 1242 size_t size; 1243 1244 /* 1245 * If the user is requesting zero subctxts, 1246 * skip the subctxt allocation. 1247 */ 1248 if (uinfo->spu_subctxt_cnt <= 0) 1249 goto bail; 1250 num_subctxts = uinfo->spu_subctxt_cnt; 1251 1252 /* Check for subctxt compatibility */ 1253 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16, 1254 uinfo->spu_userversion & 0xffff)) { 1255 qib_devinfo(dd->pcidev, 1256 "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n", 1257 (int) (uinfo->spu_userversion >> 16), 1258 (int) (uinfo->spu_userversion & 0xffff), 1259 QIB_USER_SWMAJOR, QIB_USER_SWMINOR); 1260 goto bail; 1261 } 1262 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) { 1263 ret = -EINVAL; 1264 goto bail; 1265 } 1266 1267 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts); 1268 if (!rcd->subctxt_uregbase) { 1269 ret = -ENOMEM; 1270 goto bail; 1271 } 1272 /* Note: rcd->rcvhdrq_size isn't initialized yet. */ 1273 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * 1274 sizeof(u32), PAGE_SIZE) * num_subctxts; 1275 rcd->subctxt_rcvhdr_base = vmalloc_user(size); 1276 if (!rcd->subctxt_rcvhdr_base) { 1277 ret = -ENOMEM; 1278 goto bail_ureg; 1279 } 1280 1281 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks * 1282 rcd->rcvegrbuf_size * 1283 num_subctxts); 1284 if (!rcd->subctxt_rcvegrbuf) { 1285 ret = -ENOMEM; 1286 goto bail_rhdr; 1287 } 1288 1289 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt; 1290 rcd->subctxt_id = uinfo->spu_subctxt_id; 1291 rcd->active_slaves = 1; 1292 rcd->redirect_seq_cnt = 1; 1293 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1294 goto bail; 1295 1296 bail_rhdr: 1297 vfree(rcd->subctxt_rcvhdr_base); 1298 bail_ureg: 1299 vfree(rcd->subctxt_uregbase); 1300 rcd->subctxt_uregbase = NULL; 1301 bail: 1302 return ret; 1303 } 1304 1305 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt, 1306 struct file *fp, const struct qib_user_info *uinfo) 1307 { 1308 struct qib_filedata *fd = fp->private_data; 1309 struct qib_devdata *dd = ppd->dd; 1310 struct qib_ctxtdata *rcd; 1311 void *ptmp = NULL; 1312 int ret; 1313 int numa_id; 1314 1315 assign_ctxt_affinity(fp, dd); 1316 1317 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ? 1318 cpu_to_node(fd->rec_cpu_num) : 1319 numa_node_id()) : dd->assigned_node_id; 1320 1321 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id); 1322 1323 /* 1324 * Allocate memory for use in qib_tid_update() at open to 1325 * reduce cost of expected send setup per message segment 1326 */ 1327 if (rcd) 1328 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) + 1329 dd->rcvtidcnt * sizeof(struct page **), 1330 GFP_KERNEL); 1331 1332 if (!rcd || !ptmp) { 1333 qib_dev_err(dd, 1334 "Unable to allocate ctxtdata memory, failing open\n"); 1335 ret = -ENOMEM; 1336 goto bailerr; 1337 } 1338 rcd->userversion = uinfo->spu_userversion; 1339 ret = init_subctxts(dd, rcd, uinfo); 1340 if (ret) 1341 goto bailerr; 1342 rcd->tid_pg_list = ptmp; 1343 rcd->pid = current->pid; 1344 init_waitqueue_head(&dd->rcd[ctxt]->wait); 1345 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm)); 1346 ctxt_fp(fp) = rcd; 1347 qib_stats.sps_ctxts++; 1348 dd->freectxts--; 1349 ret = 0; 1350 goto bail; 1351 1352 bailerr: 1353 if (fd->rec_cpu_num != -1) 1354 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1355 1356 dd->rcd[ctxt] = NULL; 1357 kfree(rcd); 1358 kfree(ptmp); 1359 bail: 1360 return ret; 1361 } 1362 1363 static inline int usable(struct qib_pportdata *ppd) 1364 { 1365 struct qib_devdata *dd = ppd->dd; 1366 1367 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid && 1368 (ppd->lflags & QIBL_LINKACTIVE); 1369 } 1370 1371 /* 1372 * Select a context on the given device, either using a requested port 1373 * or the port based on the context number. 1374 */ 1375 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port, 1376 const struct qib_user_info *uinfo) 1377 { 1378 struct qib_pportdata *ppd = NULL; 1379 int ret, ctxt; 1380 1381 if (port) { 1382 if (!usable(dd->pport + port - 1)) { 1383 ret = -ENETDOWN; 1384 goto done; 1385 } else 1386 ppd = dd->pport + port - 1; 1387 } 1388 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt]; 1389 ctxt++) 1390 ; 1391 if (ctxt == dd->cfgctxts) { 1392 ret = -EBUSY; 1393 goto done; 1394 } 1395 if (!ppd) { 1396 u32 pidx = ctxt % dd->num_pports; 1397 1398 if (usable(dd->pport + pidx)) 1399 ppd = dd->pport + pidx; 1400 else { 1401 for (pidx = 0; pidx < dd->num_pports && !ppd; 1402 pidx++) 1403 if (usable(dd->pport + pidx)) 1404 ppd = dd->pport + pidx; 1405 } 1406 } 1407 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN; 1408 done: 1409 return ret; 1410 } 1411 1412 static int find_free_ctxt(int unit, struct file *fp, 1413 const struct qib_user_info *uinfo) 1414 { 1415 struct qib_devdata *dd = qib_lookup(unit); 1416 int ret; 1417 1418 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports)) 1419 ret = -ENODEV; 1420 else 1421 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo); 1422 1423 return ret; 1424 } 1425 1426 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo, 1427 unsigned alg) 1428 { 1429 struct qib_devdata *udd = NULL; 1430 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i; 1431 u32 port = uinfo->spu_port, ctxt; 1432 1433 devmax = qib_count_units(&npresent, &nup); 1434 if (!npresent) { 1435 ret = -ENXIO; 1436 goto done; 1437 } 1438 if (nup == 0) { 1439 ret = -ENETDOWN; 1440 goto done; 1441 } 1442 1443 if (alg == QIB_PORT_ALG_ACROSS) { 1444 unsigned inuse = ~0U; 1445 1446 /* find device (with ACTIVE ports) with fewest ctxts in use */ 1447 for (ndev = 0; ndev < devmax; ndev++) { 1448 struct qib_devdata *dd = qib_lookup(ndev); 1449 unsigned cused = 0, cfree = 0, pusable = 0; 1450 1451 if (!dd) 1452 continue; 1453 if (port && port <= dd->num_pports && 1454 usable(dd->pport + port - 1)) 1455 pusable = 1; 1456 else 1457 for (i = 0; i < dd->num_pports; i++) 1458 if (usable(dd->pport + i)) 1459 pusable++; 1460 if (!pusable) 1461 continue; 1462 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; 1463 ctxt++) 1464 if (dd->rcd[ctxt]) 1465 cused++; 1466 else 1467 cfree++; 1468 if (cfree && cused < inuse) { 1469 udd = dd; 1470 inuse = cused; 1471 } 1472 } 1473 if (udd) { 1474 ret = choose_port_ctxt(fp, udd, port, uinfo); 1475 goto done; 1476 } 1477 } else { 1478 for (ndev = 0; ndev < devmax; ndev++) { 1479 struct qib_devdata *dd = qib_lookup(ndev); 1480 1481 if (dd) { 1482 ret = choose_port_ctxt(fp, dd, port, uinfo); 1483 if (!ret) 1484 goto done; 1485 if (ret == -EBUSY) 1486 dusable++; 1487 } 1488 } 1489 } 1490 ret = dusable ? -EBUSY : -ENETDOWN; 1491 1492 done: 1493 return ret; 1494 } 1495 1496 static int find_shared_ctxt(struct file *fp, 1497 const struct qib_user_info *uinfo) 1498 { 1499 int devmax, ndev, i; 1500 int ret = 0; 1501 1502 devmax = qib_count_units(NULL, NULL); 1503 1504 for (ndev = 0; ndev < devmax; ndev++) { 1505 struct qib_devdata *dd = qib_lookup(ndev); 1506 1507 /* device portion of usable() */ 1508 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase)) 1509 continue; 1510 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) { 1511 struct qib_ctxtdata *rcd = dd->rcd[i]; 1512 1513 /* Skip ctxts which are not yet open */ 1514 if (!rcd || !rcd->cnt) 1515 continue; 1516 /* Skip ctxt if it doesn't match the requested one */ 1517 if (rcd->subctxt_id != uinfo->spu_subctxt_id) 1518 continue; 1519 /* Verify the sharing process matches the master */ 1520 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt || 1521 rcd->userversion != uinfo->spu_userversion || 1522 rcd->cnt >= rcd->subctxt_cnt) { 1523 ret = -EINVAL; 1524 goto done; 1525 } 1526 ctxt_fp(fp) = rcd; 1527 subctxt_fp(fp) = rcd->cnt++; 1528 rcd->subpid[subctxt_fp(fp)] = current->pid; 1529 tidcursor_fp(fp) = 0; 1530 rcd->active_slaves |= 1 << subctxt_fp(fp); 1531 ret = 1; 1532 goto done; 1533 } 1534 } 1535 1536 done: 1537 return ret; 1538 } 1539 1540 static int qib_open(struct inode *in, struct file *fp) 1541 { 1542 /* The real work is performed later in qib_assign_ctxt() */ 1543 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL); 1544 if (fp->private_data) /* no cpu affinity by default */ 1545 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1; 1546 return fp->private_data ? 0 : -ENOMEM; 1547 } 1548 1549 static int find_hca(unsigned int cpu, int *unit) 1550 { 1551 int ret = 0, devmax, npresent, nup, ndev; 1552 1553 *unit = -1; 1554 1555 devmax = qib_count_units(&npresent, &nup); 1556 if (!npresent) { 1557 ret = -ENXIO; 1558 goto done; 1559 } 1560 if (!nup) { 1561 ret = -ENETDOWN; 1562 goto done; 1563 } 1564 for (ndev = 0; ndev < devmax; ndev++) { 1565 struct qib_devdata *dd = qib_lookup(ndev); 1566 1567 if (dd) { 1568 if (pcibus_to_node(dd->pcidev->bus) < 0) { 1569 ret = -EINVAL; 1570 goto done; 1571 } 1572 if (cpu_to_node(cpu) == 1573 pcibus_to_node(dd->pcidev->bus)) { 1574 *unit = ndev; 1575 goto done; 1576 } 1577 } 1578 } 1579 done: 1580 return ret; 1581 } 1582 1583 static int do_qib_user_sdma_queue_create(struct file *fp) 1584 { 1585 struct qib_filedata *fd = fp->private_data; 1586 struct qib_ctxtdata *rcd = fd->rcd; 1587 struct qib_devdata *dd = rcd->dd; 1588 1589 if (dd->flags & QIB_HAS_SEND_DMA) { 1590 1591 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev, 1592 dd->unit, 1593 rcd->ctxt, 1594 fd->subctxt); 1595 if (!fd->pq) 1596 return -ENOMEM; 1597 } 1598 1599 return 0; 1600 } 1601 1602 /* 1603 * Get ctxt early, so can set affinity prior to memory allocation. 1604 */ 1605 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo) 1606 { 1607 int ret; 1608 int i_minor; 1609 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS; 1610 1611 /* Check to be sure we haven't already initialized this file */ 1612 if (ctxt_fp(fp)) { 1613 ret = -EINVAL; 1614 goto done; 1615 } 1616 1617 /* for now, if major version is different, bail */ 1618 swmajor = uinfo->spu_userversion >> 16; 1619 if (swmajor != QIB_USER_SWMAJOR) { 1620 ret = -ENODEV; 1621 goto done; 1622 } 1623 1624 swminor = uinfo->spu_userversion & 0xffff; 1625 1626 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT) 1627 alg = uinfo->spu_port_alg; 1628 1629 mutex_lock(&qib_mutex); 1630 1631 if (qib_compatible_subctxts(swmajor, swminor) && 1632 uinfo->spu_subctxt_cnt) { 1633 ret = find_shared_ctxt(fp, uinfo); 1634 if (ret > 0) { 1635 ret = do_qib_user_sdma_queue_create(fp); 1636 if (!ret) 1637 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd); 1638 goto done_ok; 1639 } 1640 } 1641 1642 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE; 1643 if (i_minor) 1644 ret = find_free_ctxt(i_minor - 1, fp, uinfo); 1645 else { 1646 int unit; 1647 const unsigned int cpu = cpumask_first(¤t->cpus_allowed); 1648 const unsigned int weight = 1649 cpumask_weight(¤t->cpus_allowed); 1650 1651 if (weight == 1 && !test_bit(cpu, qib_cpulist)) 1652 if (!find_hca(cpu, &unit) && unit >= 0) 1653 if (!find_free_ctxt(unit, fp, uinfo)) { 1654 ret = 0; 1655 goto done_chk_sdma; 1656 } 1657 ret = get_a_ctxt(fp, uinfo, alg); 1658 } 1659 1660 done_chk_sdma: 1661 if (!ret) 1662 ret = do_qib_user_sdma_queue_create(fp); 1663 done_ok: 1664 mutex_unlock(&qib_mutex); 1665 1666 done: 1667 return ret; 1668 } 1669 1670 1671 static int qib_do_user_init(struct file *fp, 1672 const struct qib_user_info *uinfo) 1673 { 1674 int ret; 1675 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1676 struct qib_devdata *dd; 1677 unsigned uctxt; 1678 1679 /* Subctxts don't need to initialize anything since master did it. */ 1680 if (subctxt_fp(fp)) { 1681 ret = wait_event_interruptible(rcd->wait, 1682 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag)); 1683 goto bail; 1684 } 1685 1686 dd = rcd->dd; 1687 1688 /* some ctxts may get extra buffers, calculate that here */ 1689 uctxt = rcd->ctxt - dd->first_user_ctxt; 1690 if (uctxt < dd->ctxts_extrabuf) { 1691 rcd->piocnt = dd->pbufsctxt + 1; 1692 rcd->pio_base = rcd->piocnt * uctxt; 1693 } else { 1694 rcd->piocnt = dd->pbufsctxt; 1695 rcd->pio_base = rcd->piocnt * uctxt + 1696 dd->ctxts_extrabuf; 1697 } 1698 1699 /* 1700 * All user buffers are 2KB buffers. If we ever support 1701 * giving 4KB buffers to user processes, this will need some 1702 * work. Can't use piobufbase directly, because it has 1703 * both 2K and 4K buffer base values. So check and handle. 1704 */ 1705 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) { 1706 if (rcd->pio_base >= dd->piobcnt2k) { 1707 qib_dev_err(dd, 1708 "%u:ctxt%u: no 2KB buffers available\n", 1709 dd->unit, rcd->ctxt); 1710 ret = -ENOBUFS; 1711 goto bail; 1712 } 1713 rcd->piocnt = dd->piobcnt2k - rcd->pio_base; 1714 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n", 1715 rcd->ctxt, rcd->piocnt); 1716 } 1717 1718 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign; 1719 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1720 TXCHK_CHG_TYPE_USER, rcd); 1721 /* 1722 * try to ensure that processes start up with consistent avail update 1723 * for their own range, at least. If system very quiet, it might 1724 * have the in-memory copy out of date at startup for this range of 1725 * buffers, when a context gets re-used. Do after the chg_pioavail 1726 * and before the rest of setup, so it's "almost certain" the dma 1727 * will have occurred (can't 100% guarantee, but should be many 1728 * decimals of 9s, with this ordering), given how much else happens 1729 * after this. 1730 */ 1731 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP); 1732 1733 /* 1734 * Now allocate the rcvhdr Q and eager TIDs; skip the TID 1735 * array for time being. If rcd->ctxt > chip-supported, 1736 * we need to do extra stuff here to handle by handling overflow 1737 * through ctxt 0, someday 1738 */ 1739 ret = qib_create_rcvhdrq(dd, rcd); 1740 if (!ret) 1741 ret = qib_setup_eagerbufs(rcd); 1742 if (ret) 1743 goto bail_pio; 1744 1745 rcd->tidcursor = 0; /* start at beginning after open */ 1746 1747 /* initialize poll variables... */ 1748 rcd->urgent = 0; 1749 rcd->urgent_poll = 0; 1750 1751 /* 1752 * Now enable the ctxt for receive. 1753 * For chips that are set to DMA the tail register to memory 1754 * when they change (and when the update bit transitions from 1755 * 0 to 1. So for those chips, we turn it off and then back on. 1756 * This will (very briefly) affect any other open ctxts, but the 1757 * duration is very short, and therefore isn't an issue. We 1758 * explicitly set the in-memory tail copy to 0 beforehand, so we 1759 * don't have to wait to be sure the DMA update has happened 1760 * (chip resets head/tail to 0 on transition to enable). 1761 */ 1762 if (rcd->rcvhdrtail_kvaddr) 1763 qib_clear_rcvhdrtail(rcd); 1764 1765 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB, 1766 rcd->ctxt); 1767 1768 /* Notify any waiting slaves */ 1769 if (rcd->subctxt_cnt) { 1770 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1771 wake_up(&rcd->wait); 1772 } 1773 return 0; 1774 1775 bail_pio: 1776 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1777 TXCHK_CHG_TYPE_KERN, rcd); 1778 bail: 1779 return ret; 1780 } 1781 1782 /** 1783 * unlock_exptid - unlock any expected TID entries context still had in use 1784 * @rcd: ctxt 1785 * 1786 * We don't actually update the chip here, because we do a bulk update 1787 * below, using f_clear_tids. 1788 */ 1789 static void unlock_expected_tids(struct qib_ctxtdata *rcd) 1790 { 1791 struct qib_devdata *dd = rcd->dd; 1792 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt; 1793 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt; 1794 1795 for (i = ctxt_tidbase; i < maxtid; i++) { 1796 struct page *p = dd->pageshadow[i]; 1797 dma_addr_t phys; 1798 1799 if (!p) 1800 continue; 1801 1802 phys = dd->physshadow[i]; 1803 dd->physshadow[i] = dd->tidinvalid; 1804 dd->pageshadow[i] = NULL; 1805 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 1806 PCI_DMA_FROMDEVICE); 1807 qib_release_user_pages(&p, 1); 1808 cnt++; 1809 } 1810 } 1811 1812 static int qib_close(struct inode *in, struct file *fp) 1813 { 1814 int ret = 0; 1815 struct qib_filedata *fd; 1816 struct qib_ctxtdata *rcd; 1817 struct qib_devdata *dd; 1818 unsigned long flags; 1819 unsigned ctxt; 1820 pid_t pid; 1821 1822 mutex_lock(&qib_mutex); 1823 1824 fd = fp->private_data; 1825 fp->private_data = NULL; 1826 rcd = fd->rcd; 1827 if (!rcd) { 1828 mutex_unlock(&qib_mutex); 1829 goto bail; 1830 } 1831 1832 dd = rcd->dd; 1833 1834 /* ensure all pio buffer writes in progress are flushed */ 1835 qib_flush_wc(); 1836 1837 /* drain user sdma queue */ 1838 if (fd->pq) { 1839 qib_user_sdma_queue_drain(rcd->ppd, fd->pq); 1840 qib_user_sdma_queue_destroy(fd->pq); 1841 } 1842 1843 if (fd->rec_cpu_num != -1) 1844 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1845 1846 if (--rcd->cnt) { 1847 /* 1848 * XXX If the master closes the context before the slave(s), 1849 * revoke the mmap for the eager receive queue so 1850 * the slave(s) don't wait for receive data forever. 1851 */ 1852 rcd->active_slaves &= ~(1 << fd->subctxt); 1853 rcd->subpid[fd->subctxt] = 0; 1854 mutex_unlock(&qib_mutex); 1855 goto bail; 1856 } 1857 1858 /* early; no interrupt users after this */ 1859 spin_lock_irqsave(&dd->uctxt_lock, flags); 1860 ctxt = rcd->ctxt; 1861 dd->rcd[ctxt] = NULL; 1862 pid = rcd->pid; 1863 rcd->pid = 0; 1864 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1865 1866 if (rcd->rcvwait_to || rcd->piowait_to || 1867 rcd->rcvnowait || rcd->pionowait) { 1868 rcd->rcvwait_to = 0; 1869 rcd->piowait_to = 0; 1870 rcd->rcvnowait = 0; 1871 rcd->pionowait = 0; 1872 } 1873 if (rcd->flag) 1874 rcd->flag = 0; 1875 1876 if (dd->kregbase) { 1877 /* atomically clear receive enable ctxt and intr avail. */ 1878 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS | 1879 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt); 1880 1881 /* clean up the pkeys for this ctxt user */ 1882 qib_clean_part_key(rcd, dd); 1883 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt); 1884 qib_chg_pioavailkernel(dd, rcd->pio_base, 1885 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL); 1886 1887 dd->f_clear_tids(dd, rcd); 1888 1889 if (dd->pageshadow) 1890 unlock_expected_tids(rcd); 1891 qib_stats.sps_ctxts--; 1892 dd->freectxts++; 1893 } 1894 1895 mutex_unlock(&qib_mutex); 1896 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */ 1897 1898 bail: 1899 kfree(fd); 1900 return ret; 1901 } 1902 1903 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo) 1904 { 1905 struct qib_ctxt_info info; 1906 int ret; 1907 size_t sz; 1908 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1909 struct qib_filedata *fd; 1910 1911 fd = fp->private_data; 1912 1913 info.num_active = qib_count_active_units(); 1914 info.unit = rcd->dd->unit; 1915 info.port = rcd->ppd->port; 1916 info.ctxt = rcd->ctxt; 1917 info.subctxt = subctxt_fp(fp); 1918 /* Number of user ctxts available for this device. */ 1919 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt; 1920 info.num_subctxts = rcd->subctxt_cnt; 1921 info.rec_cpu = fd->rec_cpu_num; 1922 sz = sizeof(info); 1923 1924 if (copy_to_user(uinfo, &info, sz)) { 1925 ret = -EFAULT; 1926 goto bail; 1927 } 1928 ret = 0; 1929 1930 bail: 1931 return ret; 1932 } 1933 1934 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq, 1935 u32 __user *inflightp) 1936 { 1937 const u32 val = qib_user_sdma_inflight_counter(pq); 1938 1939 if (put_user(val, inflightp)) 1940 return -EFAULT; 1941 1942 return 0; 1943 } 1944 1945 static int qib_sdma_get_complete(struct qib_pportdata *ppd, 1946 struct qib_user_sdma_queue *pq, 1947 u32 __user *completep) 1948 { 1949 u32 val; 1950 int err; 1951 1952 if (!pq) 1953 return -EINVAL; 1954 1955 err = qib_user_sdma_make_progress(ppd, pq); 1956 if (err < 0) 1957 return err; 1958 1959 val = qib_user_sdma_complete_counter(pq); 1960 if (put_user(val, completep)) 1961 return -EFAULT; 1962 1963 return 0; 1964 } 1965 1966 static int disarm_req_delay(struct qib_ctxtdata *rcd) 1967 { 1968 int ret = 0; 1969 1970 if (!usable(rcd->ppd)) { 1971 int i; 1972 /* 1973 * if link is down, or otherwise not usable, delay 1974 * the caller up to 30 seconds, so we don't thrash 1975 * in trying to get the chip back to ACTIVE, and 1976 * set flag so they make the call again. 1977 */ 1978 if (rcd->user_event_mask) { 1979 /* 1980 * subctxt_cnt is 0 if not shared, so do base 1981 * separately, first, then remaining subctxt, if any 1982 */ 1983 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1984 &rcd->user_event_mask[0]); 1985 for (i = 1; i < rcd->subctxt_cnt; i++) 1986 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1987 &rcd->user_event_mask[i]); 1988 } 1989 for (i = 0; !usable(rcd->ppd) && i < 300; i++) 1990 msleep(100); 1991 ret = -ENETDOWN; 1992 } 1993 return ret; 1994 } 1995 1996 /* 1997 * Find all user contexts in use, and set the specified bit in their 1998 * event mask. 1999 * See also find_ctxt() for a similar use, that is specific to send buffers. 2000 */ 2001 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit) 2002 { 2003 struct qib_ctxtdata *rcd; 2004 unsigned ctxt; 2005 int ret = 0; 2006 unsigned long flags; 2007 2008 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags); 2009 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts; 2010 ctxt++) { 2011 rcd = ppd->dd->rcd[ctxt]; 2012 if (!rcd) 2013 continue; 2014 if (rcd->user_event_mask) { 2015 int i; 2016 /* 2017 * subctxt_cnt is 0 if not shared, so do base 2018 * separately, first, then remaining subctxt, if any 2019 */ 2020 set_bit(evtbit, &rcd->user_event_mask[0]); 2021 for (i = 1; i < rcd->subctxt_cnt; i++) 2022 set_bit(evtbit, &rcd->user_event_mask[i]); 2023 } 2024 ret = 1; 2025 break; 2026 } 2027 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags); 2028 2029 return ret; 2030 } 2031 2032 /* 2033 * clear the event notifier events for this context. 2034 * For the DISARM_BUFS case, we also take action (this obsoletes 2035 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards 2036 * compatibility. 2037 * Other bits don't currently require actions, just atomically clear. 2038 * User process then performs actions appropriate to bit having been 2039 * set, if desired, and checks again in future. 2040 */ 2041 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt, 2042 unsigned long events) 2043 { 2044 int ret = 0, i; 2045 2046 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) { 2047 if (!test_bit(i, &events)) 2048 continue; 2049 if (i == _QIB_EVENT_DISARM_BUFS_BIT) { 2050 (void)qib_disarm_piobufs_ifneeded(rcd); 2051 ret = disarm_req_delay(rcd); 2052 } else 2053 clear_bit(i, &rcd->user_event_mask[subctxt]); 2054 } 2055 return ret; 2056 } 2057 2058 static ssize_t qib_write(struct file *fp, const char __user *data, 2059 size_t count, loff_t *off) 2060 { 2061 const struct qib_cmd __user *ucmd; 2062 struct qib_ctxtdata *rcd; 2063 const void __user *src; 2064 size_t consumed, copy = 0; 2065 struct qib_cmd cmd; 2066 ssize_t ret = 0; 2067 void *dest; 2068 2069 if (count < sizeof(cmd.type)) { 2070 ret = -EINVAL; 2071 goto bail; 2072 } 2073 2074 ucmd = (const struct qib_cmd __user *) data; 2075 2076 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { 2077 ret = -EFAULT; 2078 goto bail; 2079 } 2080 2081 consumed = sizeof(cmd.type); 2082 2083 switch (cmd.type) { 2084 case QIB_CMD_ASSIGN_CTXT: 2085 case QIB_CMD_USER_INIT: 2086 copy = sizeof(cmd.cmd.user_info); 2087 dest = &cmd.cmd.user_info; 2088 src = &ucmd->cmd.user_info; 2089 break; 2090 2091 case QIB_CMD_RECV_CTRL: 2092 copy = sizeof(cmd.cmd.recv_ctrl); 2093 dest = &cmd.cmd.recv_ctrl; 2094 src = &ucmd->cmd.recv_ctrl; 2095 break; 2096 2097 case QIB_CMD_CTXT_INFO: 2098 copy = sizeof(cmd.cmd.ctxt_info); 2099 dest = &cmd.cmd.ctxt_info; 2100 src = &ucmd->cmd.ctxt_info; 2101 break; 2102 2103 case QIB_CMD_TID_UPDATE: 2104 case QIB_CMD_TID_FREE: 2105 copy = sizeof(cmd.cmd.tid_info); 2106 dest = &cmd.cmd.tid_info; 2107 src = &ucmd->cmd.tid_info; 2108 break; 2109 2110 case QIB_CMD_SET_PART_KEY: 2111 copy = sizeof(cmd.cmd.part_key); 2112 dest = &cmd.cmd.part_key; 2113 src = &ucmd->cmd.part_key; 2114 break; 2115 2116 case QIB_CMD_DISARM_BUFS: 2117 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */ 2118 copy = 0; 2119 src = NULL; 2120 dest = NULL; 2121 break; 2122 2123 case QIB_CMD_POLL_TYPE: 2124 copy = sizeof(cmd.cmd.poll_type); 2125 dest = &cmd.cmd.poll_type; 2126 src = &ucmd->cmd.poll_type; 2127 break; 2128 2129 case QIB_CMD_ARMLAUNCH_CTRL: 2130 copy = sizeof(cmd.cmd.armlaunch_ctrl); 2131 dest = &cmd.cmd.armlaunch_ctrl; 2132 src = &ucmd->cmd.armlaunch_ctrl; 2133 break; 2134 2135 case QIB_CMD_SDMA_INFLIGHT: 2136 copy = sizeof(cmd.cmd.sdma_inflight); 2137 dest = &cmd.cmd.sdma_inflight; 2138 src = &ucmd->cmd.sdma_inflight; 2139 break; 2140 2141 case QIB_CMD_SDMA_COMPLETE: 2142 copy = sizeof(cmd.cmd.sdma_complete); 2143 dest = &cmd.cmd.sdma_complete; 2144 src = &ucmd->cmd.sdma_complete; 2145 break; 2146 2147 case QIB_CMD_ACK_EVENT: 2148 copy = sizeof(cmd.cmd.event_mask); 2149 dest = &cmd.cmd.event_mask; 2150 src = &ucmd->cmd.event_mask; 2151 break; 2152 2153 default: 2154 ret = -EINVAL; 2155 goto bail; 2156 } 2157 2158 if (copy) { 2159 if ((count - consumed) < copy) { 2160 ret = -EINVAL; 2161 goto bail; 2162 } 2163 if (copy_from_user(dest, src, copy)) { 2164 ret = -EFAULT; 2165 goto bail; 2166 } 2167 consumed += copy; 2168 } 2169 2170 rcd = ctxt_fp(fp); 2171 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) { 2172 ret = -EINVAL; 2173 goto bail; 2174 } 2175 2176 switch (cmd.type) { 2177 case QIB_CMD_ASSIGN_CTXT: 2178 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info); 2179 if (ret) 2180 goto bail; 2181 break; 2182 2183 case QIB_CMD_USER_INIT: 2184 ret = qib_do_user_init(fp, &cmd.cmd.user_info); 2185 if (ret) 2186 goto bail; 2187 ret = qib_get_base_info(fp, (void __user *) (unsigned long) 2188 cmd.cmd.user_info.spu_base_info, 2189 cmd.cmd.user_info.spu_base_info_size); 2190 break; 2191 2192 case QIB_CMD_RECV_CTRL: 2193 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl); 2194 break; 2195 2196 case QIB_CMD_CTXT_INFO: 2197 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *) 2198 (unsigned long) cmd.cmd.ctxt_info); 2199 break; 2200 2201 case QIB_CMD_TID_UPDATE: 2202 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info); 2203 break; 2204 2205 case QIB_CMD_TID_FREE: 2206 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info); 2207 break; 2208 2209 case QIB_CMD_SET_PART_KEY: 2210 ret = qib_set_part_key(rcd, cmd.cmd.part_key); 2211 break; 2212 2213 case QIB_CMD_DISARM_BUFS: 2214 (void)qib_disarm_piobufs_ifneeded(rcd); 2215 ret = disarm_req_delay(rcd); 2216 break; 2217 2218 case QIB_CMD_PIOAVAILUPD: 2219 qib_force_pio_avail_update(rcd->dd); 2220 break; 2221 2222 case QIB_CMD_POLL_TYPE: 2223 rcd->poll_type = cmd.cmd.poll_type; 2224 break; 2225 2226 case QIB_CMD_ARMLAUNCH_CTRL: 2227 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl); 2228 break; 2229 2230 case QIB_CMD_SDMA_INFLIGHT: 2231 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp), 2232 (u32 __user *) (unsigned long) 2233 cmd.cmd.sdma_inflight); 2234 break; 2235 2236 case QIB_CMD_SDMA_COMPLETE: 2237 ret = qib_sdma_get_complete(rcd->ppd, 2238 user_sdma_queue_fp(fp), 2239 (u32 __user *) (unsigned long) 2240 cmd.cmd.sdma_complete); 2241 break; 2242 2243 case QIB_CMD_ACK_EVENT: 2244 ret = qib_user_event_ack(rcd, subctxt_fp(fp), 2245 cmd.cmd.event_mask); 2246 break; 2247 } 2248 2249 if (ret >= 0) 2250 ret = consumed; 2251 2252 bail: 2253 return ret; 2254 } 2255 2256 static ssize_t qib_write_iter(struct kiocb *iocb, struct iov_iter *from) 2257 { 2258 struct qib_filedata *fp = iocb->ki_filp->private_data; 2259 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp); 2260 struct qib_user_sdma_queue *pq = fp->pq; 2261 2262 if (!iter_is_iovec(from) || !from->nr_segs || !pq) 2263 return -EINVAL; 2264 2265 return qib_user_sdma_writev(rcd, pq, from->iov, from->nr_segs); 2266 } 2267 2268 static struct class *qib_class; 2269 static dev_t qib_dev; 2270 2271 int qib_cdev_init(int minor, const char *name, 2272 const struct file_operations *fops, 2273 struct cdev **cdevp, struct device **devp) 2274 { 2275 const dev_t dev = MKDEV(MAJOR(qib_dev), minor); 2276 struct cdev *cdev; 2277 struct device *device = NULL; 2278 int ret; 2279 2280 cdev = cdev_alloc(); 2281 if (!cdev) { 2282 pr_err("Could not allocate cdev for minor %d, %s\n", 2283 minor, name); 2284 ret = -ENOMEM; 2285 goto done; 2286 } 2287 2288 cdev->owner = THIS_MODULE; 2289 cdev->ops = fops; 2290 kobject_set_name(&cdev->kobj, name); 2291 2292 ret = cdev_add(cdev, dev, 1); 2293 if (ret < 0) { 2294 pr_err("Could not add cdev for minor %d, %s (err %d)\n", 2295 minor, name, -ret); 2296 goto err_cdev; 2297 } 2298 2299 device = device_create(qib_class, NULL, dev, NULL, "%s", name); 2300 if (!IS_ERR(device)) 2301 goto done; 2302 ret = PTR_ERR(device); 2303 device = NULL; 2304 pr_err("Could not create device for minor %d, %s (err %d)\n", 2305 minor, name, -ret); 2306 err_cdev: 2307 cdev_del(cdev); 2308 cdev = NULL; 2309 done: 2310 *cdevp = cdev; 2311 *devp = device; 2312 return ret; 2313 } 2314 2315 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp) 2316 { 2317 struct device *device = *devp; 2318 2319 if (device) { 2320 device_unregister(device); 2321 *devp = NULL; 2322 } 2323 2324 if (*cdevp) { 2325 cdev_del(*cdevp); 2326 *cdevp = NULL; 2327 } 2328 } 2329 2330 static struct cdev *wildcard_cdev; 2331 static struct device *wildcard_device; 2332 2333 int __init qib_dev_init(void) 2334 { 2335 int ret; 2336 2337 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME); 2338 if (ret < 0) { 2339 pr_err("Could not allocate chrdev region (err %d)\n", -ret); 2340 goto done; 2341 } 2342 2343 qib_class = class_create(THIS_MODULE, "ipath"); 2344 if (IS_ERR(qib_class)) { 2345 ret = PTR_ERR(qib_class); 2346 pr_err("Could not create device class (err %d)\n", -ret); 2347 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2348 } 2349 2350 done: 2351 return ret; 2352 } 2353 2354 void qib_dev_cleanup(void) 2355 { 2356 if (qib_class) { 2357 class_destroy(qib_class); 2358 qib_class = NULL; 2359 } 2360 2361 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2362 } 2363 2364 static atomic_t user_count = ATOMIC_INIT(0); 2365 2366 static void qib_user_remove(struct qib_devdata *dd) 2367 { 2368 if (atomic_dec_return(&user_count) == 0) 2369 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device); 2370 2371 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device); 2372 } 2373 2374 static int qib_user_add(struct qib_devdata *dd) 2375 { 2376 char name[10]; 2377 int ret; 2378 2379 if (atomic_inc_return(&user_count) == 1) { 2380 ret = qib_cdev_init(0, "ipath", &qib_file_ops, 2381 &wildcard_cdev, &wildcard_device); 2382 if (ret) 2383 goto done; 2384 } 2385 2386 snprintf(name, sizeof(name), "ipath%d", dd->unit); 2387 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops, 2388 &dd->user_cdev, &dd->user_device); 2389 if (ret) 2390 qib_user_remove(dd); 2391 done: 2392 return ret; 2393 } 2394 2395 /* 2396 * Create per-unit files in /dev 2397 */ 2398 int qib_device_create(struct qib_devdata *dd) 2399 { 2400 int r, ret; 2401 2402 r = qib_user_add(dd); 2403 ret = qib_diag_add(dd); 2404 if (r && !ret) 2405 ret = r; 2406 return ret; 2407 } 2408 2409 /* 2410 * Remove per-unit files in /dev 2411 * void, core kernel returns no errors for this stuff 2412 */ 2413 void qib_device_remove(struct qib_devdata *dd) 2414 { 2415 qib_user_remove(dd); 2416 qib_diag_remove(dd); 2417 } 2418