1 /* 2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved. 3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/pci.h> 36 #include <linux/poll.h> 37 #include <linux/cdev.h> 38 #include <linux/swap.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/io.h> 42 #include <linux/jiffies.h> 43 #include <linux/delay.h> 44 #include <linux/export.h> 45 #include <linux/uio.h> 46 #include <linux/pgtable.h> 47 48 #include <rdma/ib.h> 49 50 #include "qib.h" 51 #include "qib_common.h" 52 #include "qib_user_sdma.h" 53 54 #undef pr_fmt 55 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt 56 57 static int qib_open(struct inode *, struct file *); 58 static int qib_close(struct inode *, struct file *); 59 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *); 60 static ssize_t qib_write_iter(struct kiocb *, struct iov_iter *); 61 static __poll_t qib_poll(struct file *, struct poll_table_struct *); 62 static int qib_mmapf(struct file *, struct vm_area_struct *); 63 64 /* 65 * This is really, really weird shit - write() and writev() here 66 * have completely unrelated semantics. Sucky userland ABI, 67 * film at 11. 68 */ 69 static const struct file_operations qib_file_ops = { 70 .owner = THIS_MODULE, 71 .write = qib_write, 72 .write_iter = qib_write_iter, 73 .open = qib_open, 74 .release = qib_close, 75 .poll = qib_poll, 76 .mmap = qib_mmapf, 77 .llseek = noop_llseek, 78 }; 79 80 /* 81 * Convert kernel virtual addresses to physical addresses so they don't 82 * potentially conflict with the chip addresses used as mmap offsets. 83 * It doesn't really matter what mmap offset we use as long as we can 84 * interpret it correctly. 85 */ 86 static u64 cvt_kvaddr(void *p) 87 { 88 struct page *page; 89 u64 paddr = 0; 90 91 page = vmalloc_to_page(p); 92 if (page) 93 paddr = page_to_pfn(page) << PAGE_SHIFT; 94 95 return paddr; 96 } 97 98 static int qib_get_base_info(struct file *fp, void __user *ubase, 99 size_t ubase_size) 100 { 101 struct qib_ctxtdata *rcd = ctxt_fp(fp); 102 int ret = 0; 103 struct qib_base_info *kinfo = NULL; 104 struct qib_devdata *dd = rcd->dd; 105 struct qib_pportdata *ppd = rcd->ppd; 106 unsigned subctxt_cnt; 107 int shared, master; 108 size_t sz; 109 110 subctxt_cnt = rcd->subctxt_cnt; 111 if (!subctxt_cnt) { 112 shared = 0; 113 master = 0; 114 subctxt_cnt = 1; 115 } else { 116 shared = 1; 117 master = !subctxt_fp(fp); 118 } 119 120 sz = sizeof(*kinfo); 121 /* If context sharing is not requested, allow the old size structure */ 122 if (!shared) 123 sz -= 7 * sizeof(u64); 124 if (ubase_size < sz) { 125 ret = -EINVAL; 126 goto bail; 127 } 128 129 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); 130 if (kinfo == NULL) { 131 ret = -ENOMEM; 132 goto bail; 133 } 134 135 ret = dd->f_get_base_info(rcd, kinfo); 136 if (ret < 0) 137 goto bail; 138 139 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt; 140 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize; 141 kinfo->spi_tidegrcnt = rcd->rcvegrcnt; 142 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize; 143 /* 144 * have to mmap whole thing 145 */ 146 kinfo->spi_rcv_egrbuftotlen = 147 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 148 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk; 149 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / 150 rcd->rcvegrbuf_chunks; 151 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt; 152 if (master) 153 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt; 154 /* 155 * for this use, may be cfgctxts summed over all chips that 156 * are are configured and present 157 */ 158 kinfo->spi_nctxts = dd->cfgctxts; 159 /* unit (chip/board) our context is on */ 160 kinfo->spi_unit = dd->unit; 161 kinfo->spi_port = ppd->port; 162 /* for now, only a single page */ 163 kinfo->spi_tid_maxsize = PAGE_SIZE; 164 165 /* 166 * Doing this per context, and based on the skip value, etc. This has 167 * to be the actual buffer size, since the protocol code treats it 168 * as an array. 169 * 170 * These have to be set to user addresses in the user code via mmap. 171 * These values are used on return to user code for the mmap target 172 * addresses only. For 32 bit, same 44 bit address problem, so use 173 * the physical address, not virtual. Before 2.6.11, using the 174 * page_address() macro worked, but in 2.6.11, even that returns the 175 * full 64 bit address (upper bits all 1's). So far, using the 176 * physical addresses (or chip offsets, for chip mapping) works, but 177 * no doubt some future kernel release will change that, and we'll be 178 * on to yet another method of dealing with this. 179 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful 180 * since the chips with non-zero rhf_offset don't normally 181 * enable tail register updates to host memory, but for testing, 182 * both can be enabled and used. 183 */ 184 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys; 185 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys; 186 kinfo->spi_rhf_offset = dd->rhf_offset; 187 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys; 188 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys; 189 /* setup per-unit (not port) status area for user programs */ 190 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + 191 (char *) ppd->statusp - 192 (char *) dd->pioavailregs_dma; 193 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt; 194 if (!shared) { 195 kinfo->spi_piocnt = rcd->piocnt; 196 kinfo->spi_piobufbase = (u64) rcd->piobufs; 197 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask); 198 } else if (master) { 199 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) + 200 (rcd->piocnt % subctxt_cnt); 201 /* Master's PIO buffers are after all the slave's */ 202 kinfo->spi_piobufbase = (u64) rcd->piobufs + 203 dd->palign * 204 (rcd->piocnt - kinfo->spi_piocnt); 205 } else { 206 unsigned slave = subctxt_fp(fp) - 1; 207 208 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt; 209 kinfo->spi_piobufbase = (u64) rcd->piobufs + 210 dd->palign * kinfo->spi_piocnt * slave; 211 } 212 213 if (shared) { 214 kinfo->spi_sendbuf_status = 215 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]); 216 /* only spi_subctxt_* fields should be set in this block! */ 217 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase); 218 219 kinfo->spi_subctxt_rcvegrbuf = 220 cvt_kvaddr(rcd->subctxt_rcvegrbuf); 221 kinfo->spi_subctxt_rcvhdr_base = 222 cvt_kvaddr(rcd->subctxt_rcvhdr_base); 223 } 224 225 /* 226 * All user buffers are 2KB buffers. If we ever support 227 * giving 4KB buffers to user processes, this will need some 228 * work. Can't use piobufbase directly, because it has 229 * both 2K and 4K buffer base values. 230 */ 231 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) / 232 dd->palign; 233 kinfo->spi_pioalign = dd->palign; 234 kinfo->spi_qpair = QIB_KD_QP; 235 /* 236 * user mode PIO buffers are always 2KB, even when 4KB can 237 * be received, and sent via the kernel; this is ibmaxlen 238 * for 2K MTU. 239 */ 240 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32); 241 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */ 242 kinfo->spi_ctxt = rcd->ctxt; 243 kinfo->spi_subctxt = subctxt_fp(fp); 244 kinfo->spi_sw_version = QIB_KERN_SWVERSION; 245 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */ 246 kinfo->spi_hw_version = dd->revision; 247 248 if (master) 249 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER; 250 251 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo); 252 if (copy_to_user(ubase, kinfo, sz)) 253 ret = -EFAULT; 254 bail: 255 kfree(kinfo); 256 return ret; 257 } 258 259 /** 260 * qib_tid_update - update a context TID 261 * @rcd: the context 262 * @fp: the qib device file 263 * @ti: the TID information 264 * 265 * The new implementation as of Oct 2004 is that the driver assigns 266 * the tid and returns it to the caller. To reduce search time, we 267 * keep a cursor for each context, walking the shadow tid array to find 268 * one that's not in use. 269 * 270 * For now, if we can't allocate the full list, we fail, although 271 * in the long run, we'll allocate as many as we can, and the 272 * caller will deal with that by trying the remaining pages later. 273 * That means that when we fail, we have to mark the tids as not in 274 * use again, in our shadow copy. 275 * 276 * It's up to the caller to free the tids when they are done. 277 * We'll unlock the pages as they free them. 278 * 279 * Also, right now we are locking one page at a time, but since 280 * the intended use of this routine is for a single group of 281 * virtually contiguous pages, that should change to improve 282 * performance. 283 */ 284 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp, 285 const struct qib_tid_info *ti) 286 { 287 int ret = 0, ntids; 288 u32 tid, ctxttid, cnt, i, tidcnt, tidoff; 289 u16 *tidlist; 290 struct qib_devdata *dd = rcd->dd; 291 u64 physaddr; 292 unsigned long vaddr; 293 u64 __iomem *tidbase; 294 unsigned long tidmap[8]; 295 struct page **pagep = NULL; 296 unsigned subctxt = subctxt_fp(fp); 297 298 if (!dd->pageshadow) { 299 ret = -ENOMEM; 300 goto done; 301 } 302 303 cnt = ti->tidcnt; 304 if (!cnt) { 305 ret = -EFAULT; 306 goto done; 307 } 308 ctxttid = rcd->ctxt * dd->rcvtidcnt; 309 if (!rcd->subctxt_cnt) { 310 tidcnt = dd->rcvtidcnt; 311 tid = rcd->tidcursor; 312 tidoff = 0; 313 } else if (!subctxt) { 314 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 315 (dd->rcvtidcnt % rcd->subctxt_cnt); 316 tidoff = dd->rcvtidcnt - tidcnt; 317 ctxttid += tidoff; 318 tid = tidcursor_fp(fp); 319 } else { 320 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 321 tidoff = tidcnt * (subctxt - 1); 322 ctxttid += tidoff; 323 tid = tidcursor_fp(fp); 324 } 325 if (cnt > tidcnt) { 326 /* make sure it all fits in tid_pg_list */ 327 qib_devinfo(dd->pcidev, 328 "Process tried to allocate %u TIDs, only trying max (%u)\n", 329 cnt, tidcnt); 330 cnt = tidcnt; 331 } 332 pagep = (struct page **) rcd->tid_pg_list; 333 tidlist = (u16 *) &pagep[dd->rcvtidcnt]; 334 pagep += tidoff; 335 tidlist += tidoff; 336 337 memset(tidmap, 0, sizeof(tidmap)); 338 /* before decrement; chip actual # */ 339 ntids = tidcnt; 340 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) + 341 dd->rcvtidbase + 342 ctxttid * sizeof(*tidbase)); 343 344 /* virtual address of first page in transfer */ 345 vaddr = ti->tidvaddr; 346 if (!access_ok((void __user *) vaddr, 347 cnt * PAGE_SIZE)) { 348 ret = -EFAULT; 349 goto done; 350 } 351 ret = qib_get_user_pages(vaddr, cnt, pagep); 352 if (ret) { 353 /* 354 * if (ret == -EBUSY) 355 * We can't continue because the pagep array won't be 356 * initialized. This should never happen, 357 * unless perhaps the user has mpin'ed the pages 358 * themselves. 359 */ 360 qib_devinfo( 361 dd->pcidev, 362 "Failed to lock addr %p, %u pages: errno %d\n", 363 (void *) vaddr, cnt, -ret); 364 goto done; 365 } 366 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { 367 dma_addr_t daddr; 368 369 for (; ntids--; tid++) { 370 if (tid == tidcnt) 371 tid = 0; 372 if (!dd->pageshadow[ctxttid + tid]) 373 break; 374 } 375 if (ntids < 0) { 376 /* 377 * Oops, wrapped all the way through their TIDs, 378 * and didn't have enough free; see comments at 379 * start of routine 380 */ 381 i--; /* last tidlist[i] not filled in */ 382 ret = -ENOMEM; 383 break; 384 } 385 ret = qib_map_page(dd->pcidev, pagep[i], &daddr); 386 if (ret) 387 break; 388 389 tidlist[i] = tid + tidoff; 390 /* we "know" system pages and TID pages are same size */ 391 dd->pageshadow[ctxttid + tid] = pagep[i]; 392 dd->physshadow[ctxttid + tid] = daddr; 393 /* 394 * don't need atomic or it's overhead 395 */ 396 __set_bit(tid, tidmap); 397 physaddr = dd->physshadow[ctxttid + tid]; 398 /* PERFORMANCE: below should almost certainly be cached */ 399 dd->f_put_tid(dd, &tidbase[tid], 400 RCVHQ_RCV_TYPE_EXPECTED, physaddr); 401 /* 402 * don't check this tid in qib_ctxtshadow, since we 403 * just filled it in; start with the next one. 404 */ 405 tid++; 406 } 407 408 if (ret) { 409 u32 limit; 410 cleanup: 411 /* jump here if copy out of updated info failed... */ 412 /* same code that's in qib_free_tid() */ 413 limit = sizeof(tidmap) * BITS_PER_BYTE; 414 if (limit > tidcnt) 415 /* just in case size changes in future */ 416 limit = tidcnt; 417 tid = find_first_bit((const unsigned long *)tidmap, limit); 418 for (; tid < limit; tid++) { 419 if (!test_bit(tid, tidmap)) 420 continue; 421 if (dd->pageshadow[ctxttid + tid]) { 422 dma_addr_t phys; 423 424 phys = dd->physshadow[ctxttid + tid]; 425 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 426 /* PERFORMANCE: below should almost certainly 427 * be cached 428 */ 429 dd->f_put_tid(dd, &tidbase[tid], 430 RCVHQ_RCV_TYPE_EXPECTED, 431 dd->tidinvalid); 432 dma_unmap_page(&dd->pcidev->dev, phys, 433 PAGE_SIZE, DMA_FROM_DEVICE); 434 dd->pageshadow[ctxttid + tid] = NULL; 435 } 436 } 437 qib_release_user_pages(pagep, cnt); 438 } else { 439 /* 440 * Copy the updated array, with qib_tid's filled in, back 441 * to user. Since we did the copy in already, this "should 442 * never fail" If it does, we have to clean up... 443 */ 444 if (copy_to_user((void __user *) 445 (unsigned long) ti->tidlist, 446 tidlist, cnt * sizeof(*tidlist))) { 447 ret = -EFAULT; 448 goto cleanup; 449 } 450 if (copy_to_user(u64_to_user_ptr(ti->tidmap), 451 tidmap, sizeof(tidmap))) { 452 ret = -EFAULT; 453 goto cleanup; 454 } 455 if (tid == tidcnt) 456 tid = 0; 457 if (!rcd->subctxt_cnt) 458 rcd->tidcursor = tid; 459 else 460 tidcursor_fp(fp) = tid; 461 } 462 463 done: 464 return ret; 465 } 466 467 /** 468 * qib_tid_free - free a context TID 469 * @rcd: the context 470 * @subctxt: the subcontext 471 * @ti: the TID info 472 * 473 * right now we are unlocking one page at a time, but since 474 * the intended use of this routine is for a single group of 475 * virtually contiguous pages, that should change to improve 476 * performance. We check that the TID is in range for this context 477 * but otherwise don't check validity; if user has an error and 478 * frees the wrong tid, it's only their own data that can thereby 479 * be corrupted. We do check that the TID was in use, for sanity 480 * We always use our idea of the saved address, not the address that 481 * they pass in to us. 482 */ 483 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt, 484 const struct qib_tid_info *ti) 485 { 486 int ret = 0; 487 u32 tid, ctxttid, cnt, limit, tidcnt; 488 struct qib_devdata *dd = rcd->dd; 489 u64 __iomem *tidbase; 490 unsigned long tidmap[8]; 491 492 if (!dd->pageshadow) { 493 ret = -ENOMEM; 494 goto done; 495 } 496 497 if (copy_from_user(tidmap, u64_to_user_ptr(ti->tidmap), 498 sizeof(tidmap))) { 499 ret = -EFAULT; 500 goto done; 501 } 502 503 ctxttid = rcd->ctxt * dd->rcvtidcnt; 504 if (!rcd->subctxt_cnt) 505 tidcnt = dd->rcvtidcnt; 506 else if (!subctxt) { 507 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 508 (dd->rcvtidcnt % rcd->subctxt_cnt); 509 ctxttid += dd->rcvtidcnt - tidcnt; 510 } else { 511 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 512 ctxttid += tidcnt * (subctxt - 1); 513 } 514 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) + 515 dd->rcvtidbase + 516 ctxttid * sizeof(*tidbase)); 517 518 limit = sizeof(tidmap) * BITS_PER_BYTE; 519 if (limit > tidcnt) 520 /* just in case size changes in future */ 521 limit = tidcnt; 522 tid = find_first_bit(tidmap, limit); 523 for (cnt = 0; tid < limit; tid++) { 524 /* 525 * small optimization; if we detect a run of 3 or so without 526 * any set, use find_first_bit again. That's mainly to 527 * accelerate the case where we wrapped, so we have some at 528 * the beginning, and some at the end, and a big gap 529 * in the middle. 530 */ 531 if (!test_bit(tid, tidmap)) 532 continue; 533 cnt++; 534 if (dd->pageshadow[ctxttid + tid]) { 535 struct page *p; 536 dma_addr_t phys; 537 538 p = dd->pageshadow[ctxttid + tid]; 539 dd->pageshadow[ctxttid + tid] = NULL; 540 phys = dd->physshadow[ctxttid + tid]; 541 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 542 /* PERFORMANCE: below should almost certainly be 543 * cached 544 */ 545 dd->f_put_tid(dd, &tidbase[tid], 546 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); 547 dma_unmap_page(&dd->pcidev->dev, phys, PAGE_SIZE, 548 DMA_FROM_DEVICE); 549 qib_release_user_pages(&p, 1); 550 } 551 } 552 done: 553 return ret; 554 } 555 556 /** 557 * qib_set_part_key - set a partition key 558 * @rcd: the context 559 * @key: the key 560 * 561 * We can have up to 4 active at a time (other than the default, which is 562 * always allowed). This is somewhat tricky, since multiple contexts may set 563 * the same key, so we reference count them, and clean up at exit. All 4 564 * partition keys are packed into a single qlogic_ib register. It's an 565 * error for a process to set the same pkey multiple times. We provide no 566 * mechanism to de-allocate a pkey at this time, we may eventually need to 567 * do that. I've used the atomic operations, and no locking, and only make 568 * a single pass through what's available. This should be more than 569 * adequate for some time. I'll think about spinlocks or the like if and as 570 * it's necessary. 571 */ 572 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key) 573 { 574 struct qib_pportdata *ppd = rcd->ppd; 575 int i, pidx = -1; 576 bool any = false; 577 u16 lkey = key & 0x7FFF; 578 579 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) 580 /* nothing to do; this key always valid */ 581 return 0; 582 583 if (!lkey) 584 return -EINVAL; 585 586 /* 587 * Set the full membership bit, because it has to be 588 * set in the register or the packet, and it seems 589 * cleaner to set in the register than to force all 590 * callers to set it. 591 */ 592 key |= 0x8000; 593 594 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 595 if (!rcd->pkeys[i] && pidx == -1) 596 pidx = i; 597 if (rcd->pkeys[i] == key) 598 return -EEXIST; 599 } 600 if (pidx == -1) 601 return -EBUSY; 602 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 603 if (!ppd->pkeys[i]) { 604 any = true; 605 continue; 606 } 607 if (ppd->pkeys[i] == key) { 608 atomic_t *pkrefs = &ppd->pkeyrefs[i]; 609 610 if (atomic_inc_return(pkrefs) > 1) { 611 rcd->pkeys[pidx] = key; 612 return 0; 613 } 614 /* 615 * lost race, decrement count, catch below 616 */ 617 atomic_dec(pkrefs); 618 any = true; 619 } 620 if ((ppd->pkeys[i] & 0x7FFF) == lkey) 621 /* 622 * It makes no sense to have both the limited and 623 * full membership PKEY set at the same time since 624 * the unlimited one will disable the limited one. 625 */ 626 return -EEXIST; 627 } 628 if (!any) 629 return -EBUSY; 630 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 631 if (!ppd->pkeys[i] && 632 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) { 633 rcd->pkeys[pidx] = key; 634 ppd->pkeys[i] = key; 635 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 636 return 0; 637 } 638 } 639 return -EBUSY; 640 } 641 642 /** 643 * qib_manage_rcvq - manage a context's receive queue 644 * @rcd: the context 645 * @subctxt: the subcontext 646 * @start_stop: action to carry out 647 * 648 * start_stop == 0 disables receive on the context, for use in queue 649 * overflow conditions. start_stop==1 re-enables, to be used to 650 * re-init the software copy of the head register 651 */ 652 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt, 653 int start_stop) 654 { 655 struct qib_devdata *dd = rcd->dd; 656 unsigned int rcvctrl_op; 657 658 if (subctxt) 659 goto bail; 660 /* atomically clear receive enable ctxt. */ 661 if (start_stop) { 662 /* 663 * On enable, force in-memory copy of the tail register to 664 * 0, so that protocol code doesn't have to worry about 665 * whether or not the chip has yet updated the in-memory 666 * copy or not on return from the system call. The chip 667 * always resets it's tail register back to 0 on a 668 * transition from disabled to enabled. 669 */ 670 if (rcd->rcvhdrtail_kvaddr) 671 qib_clear_rcvhdrtail(rcd); 672 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB; 673 } else 674 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS; 675 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt); 676 /* always; new head should be equal to new tail; see above */ 677 bail: 678 return 0; 679 } 680 681 static void qib_clean_part_key(struct qib_ctxtdata *rcd, 682 struct qib_devdata *dd) 683 { 684 int i, j, pchanged = 0; 685 struct qib_pportdata *ppd = rcd->ppd; 686 687 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 688 if (!rcd->pkeys[i]) 689 continue; 690 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) { 691 /* check for match independent of the global bit */ 692 if ((ppd->pkeys[j] & 0x7fff) != 693 (rcd->pkeys[i] & 0x7fff)) 694 continue; 695 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) { 696 ppd->pkeys[j] = 0; 697 pchanged++; 698 } 699 break; 700 } 701 rcd->pkeys[i] = 0; 702 } 703 if (pchanged) 704 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 705 } 706 707 /* common code for the mappings on dma_alloc_coherent mem */ 708 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd, 709 unsigned len, void *kvaddr, u32 write_ok, char *what) 710 { 711 struct qib_devdata *dd = rcd->dd; 712 unsigned long pfn; 713 int ret; 714 715 if ((vma->vm_end - vma->vm_start) > len) { 716 qib_devinfo(dd->pcidev, 717 "FAIL on %s: len %lx > %x\n", what, 718 vma->vm_end - vma->vm_start, len); 719 ret = -EFAULT; 720 goto bail; 721 } 722 723 /* 724 * shared context user code requires rcvhdrq mapped r/w, others 725 * only allowed readonly mapping. 726 */ 727 if (!write_ok) { 728 if (vma->vm_flags & VM_WRITE) { 729 qib_devinfo(dd->pcidev, 730 "%s must be mapped readonly\n", what); 731 ret = -EPERM; 732 goto bail; 733 } 734 735 /* don't allow them to later change with mprotect */ 736 vma->vm_flags &= ~VM_MAYWRITE; 737 } 738 739 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT; 740 ret = remap_pfn_range(vma, vma->vm_start, pfn, 741 len, vma->vm_page_prot); 742 if (ret) 743 qib_devinfo(dd->pcidev, 744 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n", 745 what, rcd->ctxt, pfn, len, ret); 746 bail: 747 return ret; 748 } 749 750 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd, 751 u64 ureg) 752 { 753 unsigned long phys; 754 unsigned long sz; 755 int ret; 756 757 /* 758 * This is real hardware, so use io_remap. This is the mechanism 759 * for the user process to update the head registers for their ctxt 760 * in the chip. 761 */ 762 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE; 763 if ((vma->vm_end - vma->vm_start) > sz) { 764 qib_devinfo(dd->pcidev, 765 "FAIL mmap userreg: reqlen %lx > PAGE\n", 766 vma->vm_end - vma->vm_start); 767 ret = -EFAULT; 768 } else { 769 phys = dd->physaddr + ureg; 770 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 771 772 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 773 ret = io_remap_pfn_range(vma, vma->vm_start, 774 phys >> PAGE_SHIFT, 775 vma->vm_end - vma->vm_start, 776 vma->vm_page_prot); 777 } 778 return ret; 779 } 780 781 static int mmap_piobufs(struct vm_area_struct *vma, 782 struct qib_devdata *dd, 783 struct qib_ctxtdata *rcd, 784 unsigned piobufs, unsigned piocnt) 785 { 786 unsigned long phys; 787 int ret; 788 789 /* 790 * When we map the PIO buffers in the chip, we want to map them as 791 * writeonly, no read possible; unfortunately, x86 doesn't allow 792 * for this in hardware, but we still prevent users from asking 793 * for it. 794 */ 795 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) { 796 qib_devinfo(dd->pcidev, 797 "FAIL mmap piobufs: reqlen %lx > PAGE\n", 798 vma->vm_end - vma->vm_start); 799 ret = -EINVAL; 800 goto bail; 801 } 802 803 phys = dd->physaddr + piobufs; 804 805 #if defined(__powerpc__) 806 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 807 #endif 808 809 /* 810 * don't allow them to later change to readable with mprotect (for when 811 * not initially mapped readable, as is normally the case) 812 */ 813 vma->vm_flags &= ~VM_MAYREAD; 814 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 815 816 /* We used PAT if wc_cookie == 0 */ 817 if (!dd->wc_cookie) 818 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 819 820 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, 821 vma->vm_end - vma->vm_start, 822 vma->vm_page_prot); 823 bail: 824 return ret; 825 } 826 827 static int mmap_rcvegrbufs(struct vm_area_struct *vma, 828 struct qib_ctxtdata *rcd) 829 { 830 struct qib_devdata *dd = rcd->dd; 831 unsigned long start, size; 832 size_t total_size, i; 833 unsigned long pfn; 834 int ret; 835 836 size = rcd->rcvegrbuf_size; 837 total_size = rcd->rcvegrbuf_chunks * size; 838 if ((vma->vm_end - vma->vm_start) > total_size) { 839 qib_devinfo(dd->pcidev, 840 "FAIL on egr bufs: reqlen %lx > actual %lx\n", 841 vma->vm_end - vma->vm_start, 842 (unsigned long) total_size); 843 ret = -EINVAL; 844 goto bail; 845 } 846 847 if (vma->vm_flags & VM_WRITE) { 848 qib_devinfo(dd->pcidev, 849 "Can't map eager buffers as writable (flags=%lx)\n", 850 vma->vm_flags); 851 ret = -EPERM; 852 goto bail; 853 } 854 /* don't allow them to later change to writeable with mprotect */ 855 vma->vm_flags &= ~VM_MAYWRITE; 856 857 start = vma->vm_start; 858 859 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) { 860 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT; 861 ret = remap_pfn_range(vma, start, pfn, size, 862 vma->vm_page_prot); 863 if (ret < 0) 864 goto bail; 865 } 866 ret = 0; 867 868 bail: 869 return ret; 870 } 871 872 /* 873 * qib_file_vma_fault - handle a VMA page fault. 874 */ 875 static vm_fault_t qib_file_vma_fault(struct vm_fault *vmf) 876 { 877 struct page *page; 878 879 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 880 if (!page) 881 return VM_FAULT_SIGBUS; 882 883 get_page(page); 884 vmf->page = page; 885 886 return 0; 887 } 888 889 static const struct vm_operations_struct qib_file_vm_ops = { 890 .fault = qib_file_vma_fault, 891 }; 892 893 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr, 894 struct qib_ctxtdata *rcd, unsigned subctxt) 895 { 896 struct qib_devdata *dd = rcd->dd; 897 unsigned subctxt_cnt; 898 unsigned long len; 899 void *addr; 900 size_t size; 901 int ret = 0; 902 903 subctxt_cnt = rcd->subctxt_cnt; 904 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 905 906 /* 907 * Each process has all the subctxt uregbase, rcvhdrq, and 908 * rcvegrbufs mmapped - as an array for all the processes, 909 * and also separately for this process. 910 */ 911 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) { 912 addr = rcd->subctxt_uregbase; 913 size = PAGE_SIZE * subctxt_cnt; 914 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) { 915 addr = rcd->subctxt_rcvhdr_base; 916 size = rcd->rcvhdrq_size * subctxt_cnt; 917 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) { 918 addr = rcd->subctxt_rcvegrbuf; 919 size *= subctxt_cnt; 920 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase + 921 PAGE_SIZE * subctxt)) { 922 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt; 923 size = PAGE_SIZE; 924 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base + 925 rcd->rcvhdrq_size * subctxt)) { 926 addr = rcd->subctxt_rcvhdr_base + 927 rcd->rcvhdrq_size * subctxt; 928 size = rcd->rcvhdrq_size; 929 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) { 930 addr = rcd->user_event_mask; 931 size = PAGE_SIZE; 932 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf + 933 size * subctxt)) { 934 addr = rcd->subctxt_rcvegrbuf + size * subctxt; 935 /* rcvegrbufs are read-only on the slave */ 936 if (vma->vm_flags & VM_WRITE) { 937 qib_devinfo(dd->pcidev, 938 "Can't map eager buffers as writable (flags=%lx)\n", 939 vma->vm_flags); 940 ret = -EPERM; 941 goto bail; 942 } 943 /* 944 * Don't allow permission to later change to writeable 945 * with mprotect. 946 */ 947 vma->vm_flags &= ~VM_MAYWRITE; 948 } else 949 goto bail; 950 len = vma->vm_end - vma->vm_start; 951 if (len > size) { 952 ret = -EINVAL; 953 goto bail; 954 } 955 956 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT; 957 vma->vm_ops = &qib_file_vm_ops; 958 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 959 ret = 1; 960 961 bail: 962 return ret; 963 } 964 965 /** 966 * qib_mmapf - mmap various structures into user space 967 * @fp: the file pointer 968 * @vma: the VM area 969 * 970 * We use this to have a shared buffer between the kernel and the user code 971 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio 972 * buffers in the chip. We have the open and close entries so we can bump 973 * the ref count and keep the driver from being unloaded while still mapped. 974 */ 975 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma) 976 { 977 struct qib_ctxtdata *rcd; 978 struct qib_devdata *dd; 979 u64 pgaddr, ureg; 980 unsigned piobufs, piocnt; 981 int ret, match = 1; 982 983 rcd = ctxt_fp(fp); 984 if (!rcd || !(vma->vm_flags & VM_SHARED)) { 985 ret = -EINVAL; 986 goto bail; 987 } 988 dd = rcd->dd; 989 990 /* 991 * This is the qib_do_user_init() code, mapping the shared buffers 992 * and per-context user registers into the user process. The address 993 * referred to by vm_pgoff is the file offset passed via mmap(). 994 * For shared contexts, this is the kernel vmalloc() address of the 995 * pages to share with the master. 996 * For non-shared or master ctxts, this is a physical address. 997 * We only do one mmap for each space mapped. 998 */ 999 pgaddr = vma->vm_pgoff << PAGE_SHIFT; 1000 1001 /* 1002 * Check for 0 in case one of the allocations failed, but user 1003 * called mmap anyway. 1004 */ 1005 if (!pgaddr) { 1006 ret = -EINVAL; 1007 goto bail; 1008 } 1009 1010 /* 1011 * Physical addresses must fit in 40 bits for our hardware. 1012 * Check for kernel virtual addresses first, anything else must 1013 * match a HW or memory address. 1014 */ 1015 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp)); 1016 if (ret) { 1017 if (ret > 0) 1018 ret = 0; 1019 goto bail; 1020 } 1021 1022 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt; 1023 if (!rcd->subctxt_cnt) { 1024 /* ctxt is not shared */ 1025 piocnt = rcd->piocnt; 1026 piobufs = rcd->piobufs; 1027 } else if (!subctxt_fp(fp)) { 1028 /* caller is the master */ 1029 piocnt = (rcd->piocnt / rcd->subctxt_cnt) + 1030 (rcd->piocnt % rcd->subctxt_cnt); 1031 piobufs = rcd->piobufs + 1032 dd->palign * (rcd->piocnt - piocnt); 1033 } else { 1034 unsigned slave = subctxt_fp(fp) - 1; 1035 1036 /* caller is a slave */ 1037 piocnt = rcd->piocnt / rcd->subctxt_cnt; 1038 piobufs = rcd->piobufs + dd->palign * piocnt * slave; 1039 } 1040 1041 if (pgaddr == ureg) 1042 ret = mmap_ureg(vma, dd, ureg); 1043 else if (pgaddr == piobufs) 1044 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt); 1045 else if (pgaddr == dd->pioavailregs_phys) 1046 /* in-memory copy of pioavail registers */ 1047 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1048 (void *) dd->pioavailregs_dma, 0, 1049 "pioavail registers"); 1050 else if (pgaddr == rcd->rcvegr_phys) 1051 ret = mmap_rcvegrbufs(vma, rcd); 1052 else if (pgaddr == (u64) rcd->rcvhdrq_phys) 1053 /* 1054 * The rcvhdrq itself; multiple pages, contiguous 1055 * from an i/o perspective. Shared contexts need 1056 * to map r/w, so we allow writing. 1057 */ 1058 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size, 1059 rcd->rcvhdrq, 1, "rcvhdrq"); 1060 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys) 1061 /* in-memory copy of rcvhdrq tail register */ 1062 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1063 rcd->rcvhdrtail_kvaddr, 0, 1064 "rcvhdrq tail"); 1065 else 1066 match = 0; 1067 if (!match) 1068 ret = -EINVAL; 1069 1070 vma->vm_private_data = NULL; 1071 1072 if (ret < 0) 1073 qib_devinfo(dd->pcidev, 1074 "mmap Failure %d: off %llx len %lx\n", 1075 -ret, (unsigned long long)pgaddr, 1076 vma->vm_end - vma->vm_start); 1077 bail: 1078 return ret; 1079 } 1080 1081 static __poll_t qib_poll_urgent(struct qib_ctxtdata *rcd, 1082 struct file *fp, 1083 struct poll_table_struct *pt) 1084 { 1085 struct qib_devdata *dd = rcd->dd; 1086 __poll_t pollflag; 1087 1088 poll_wait(fp, &rcd->wait, pt); 1089 1090 spin_lock_irq(&dd->uctxt_lock); 1091 if (rcd->urgent != rcd->urgent_poll) { 1092 pollflag = EPOLLIN | EPOLLRDNORM; 1093 rcd->urgent_poll = rcd->urgent; 1094 } else { 1095 pollflag = 0; 1096 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag); 1097 } 1098 spin_unlock_irq(&dd->uctxt_lock); 1099 1100 return pollflag; 1101 } 1102 1103 static __poll_t qib_poll_next(struct qib_ctxtdata *rcd, 1104 struct file *fp, 1105 struct poll_table_struct *pt) 1106 { 1107 struct qib_devdata *dd = rcd->dd; 1108 __poll_t pollflag; 1109 1110 poll_wait(fp, &rcd->wait, pt); 1111 1112 spin_lock_irq(&dd->uctxt_lock); 1113 if (dd->f_hdrqempty(rcd)) { 1114 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag); 1115 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt); 1116 pollflag = 0; 1117 } else 1118 pollflag = EPOLLIN | EPOLLRDNORM; 1119 spin_unlock_irq(&dd->uctxt_lock); 1120 1121 return pollflag; 1122 } 1123 1124 static __poll_t qib_poll(struct file *fp, struct poll_table_struct *pt) 1125 { 1126 struct qib_ctxtdata *rcd; 1127 __poll_t pollflag; 1128 1129 rcd = ctxt_fp(fp); 1130 if (!rcd) 1131 pollflag = EPOLLERR; 1132 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT) 1133 pollflag = qib_poll_urgent(rcd, fp, pt); 1134 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV) 1135 pollflag = qib_poll_next(rcd, fp, pt); 1136 else /* invalid */ 1137 pollflag = EPOLLERR; 1138 1139 return pollflag; 1140 } 1141 1142 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd) 1143 { 1144 struct qib_filedata *fd = fp->private_data; 1145 const unsigned int weight = current->nr_cpus_allowed; 1146 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus); 1147 int local_cpu; 1148 1149 /* 1150 * If process has NOT already set it's affinity, select and 1151 * reserve a processor for it on the local NUMA node. 1152 */ 1153 if ((weight >= qib_cpulist_count) && 1154 (cpumask_weight(local_mask) <= qib_cpulist_count)) { 1155 for_each_cpu(local_cpu, local_mask) 1156 if (!test_and_set_bit(local_cpu, qib_cpulist)) { 1157 fd->rec_cpu_num = local_cpu; 1158 return; 1159 } 1160 } 1161 1162 /* 1163 * If process has NOT already set it's affinity, select and 1164 * reserve a processor for it, as a rendevous for all 1165 * users of the driver. If they don't actually later 1166 * set affinity to this cpu, or set it to some other cpu, 1167 * it just means that sooner or later we don't recommend 1168 * a cpu, and let the scheduler do it's best. 1169 */ 1170 if (weight >= qib_cpulist_count) { 1171 int cpu; 1172 1173 cpu = find_first_zero_bit(qib_cpulist, 1174 qib_cpulist_count); 1175 if (cpu == qib_cpulist_count) 1176 qib_dev_err(dd, 1177 "no cpus avail for affinity PID %u\n", 1178 current->pid); 1179 else { 1180 __set_bit(cpu, qib_cpulist); 1181 fd->rec_cpu_num = cpu; 1182 } 1183 } 1184 } 1185 1186 /* 1187 * Check that userland and driver are compatible for subcontexts. 1188 */ 1189 static int qib_compatible_subctxts(int user_swmajor, int user_swminor) 1190 { 1191 /* this code is written long-hand for clarity */ 1192 if (QIB_USER_SWMAJOR != user_swmajor) { 1193 /* no promise of compatibility if major mismatch */ 1194 return 0; 1195 } 1196 if (QIB_USER_SWMAJOR == 1) { 1197 switch (QIB_USER_SWMINOR) { 1198 case 0: 1199 case 1: 1200 case 2: 1201 /* no subctxt implementation so cannot be compatible */ 1202 return 0; 1203 case 3: 1204 /* 3 is only compatible with itself */ 1205 return user_swminor == 3; 1206 default: 1207 /* >= 4 are compatible (or are expected to be) */ 1208 return user_swminor <= QIB_USER_SWMINOR; 1209 } 1210 } 1211 /* make no promises yet for future major versions */ 1212 return 0; 1213 } 1214 1215 static int init_subctxts(struct qib_devdata *dd, 1216 struct qib_ctxtdata *rcd, 1217 const struct qib_user_info *uinfo) 1218 { 1219 int ret = 0; 1220 unsigned num_subctxts; 1221 size_t size; 1222 1223 /* 1224 * If the user is requesting zero subctxts, 1225 * skip the subctxt allocation. 1226 */ 1227 if (uinfo->spu_subctxt_cnt <= 0) 1228 goto bail; 1229 num_subctxts = uinfo->spu_subctxt_cnt; 1230 1231 /* Check for subctxt compatibility */ 1232 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16, 1233 uinfo->spu_userversion & 0xffff)) { 1234 qib_devinfo(dd->pcidev, 1235 "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n", 1236 (int) (uinfo->spu_userversion >> 16), 1237 (int) (uinfo->spu_userversion & 0xffff), 1238 QIB_USER_SWMAJOR, QIB_USER_SWMINOR); 1239 goto bail; 1240 } 1241 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) { 1242 ret = -EINVAL; 1243 goto bail; 1244 } 1245 1246 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts); 1247 if (!rcd->subctxt_uregbase) { 1248 ret = -ENOMEM; 1249 goto bail; 1250 } 1251 /* Note: rcd->rcvhdrq_size isn't initialized yet. */ 1252 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * 1253 sizeof(u32), PAGE_SIZE) * num_subctxts; 1254 rcd->subctxt_rcvhdr_base = vmalloc_user(size); 1255 if (!rcd->subctxt_rcvhdr_base) { 1256 ret = -ENOMEM; 1257 goto bail_ureg; 1258 } 1259 1260 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks * 1261 rcd->rcvegrbuf_size * 1262 num_subctxts); 1263 if (!rcd->subctxt_rcvegrbuf) { 1264 ret = -ENOMEM; 1265 goto bail_rhdr; 1266 } 1267 1268 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt; 1269 rcd->subctxt_id = uinfo->spu_subctxt_id; 1270 rcd->active_slaves = 1; 1271 rcd->redirect_seq_cnt = 1; 1272 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1273 goto bail; 1274 1275 bail_rhdr: 1276 vfree(rcd->subctxt_rcvhdr_base); 1277 bail_ureg: 1278 vfree(rcd->subctxt_uregbase); 1279 rcd->subctxt_uregbase = NULL; 1280 bail: 1281 return ret; 1282 } 1283 1284 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt, 1285 struct file *fp, const struct qib_user_info *uinfo) 1286 { 1287 struct qib_filedata *fd = fp->private_data; 1288 struct qib_devdata *dd = ppd->dd; 1289 struct qib_ctxtdata *rcd; 1290 void *ptmp = NULL; 1291 int ret; 1292 int numa_id; 1293 1294 assign_ctxt_affinity(fp, dd); 1295 1296 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ? 1297 cpu_to_node(fd->rec_cpu_num) : 1298 numa_node_id()) : dd->assigned_node_id; 1299 1300 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id); 1301 1302 /* 1303 * Allocate memory for use in qib_tid_update() at open to 1304 * reduce cost of expected send setup per message segment 1305 */ 1306 if (rcd) 1307 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) + 1308 dd->rcvtidcnt * sizeof(struct page **), 1309 GFP_KERNEL); 1310 1311 if (!rcd || !ptmp) { 1312 qib_dev_err(dd, 1313 "Unable to allocate ctxtdata memory, failing open\n"); 1314 ret = -ENOMEM; 1315 goto bailerr; 1316 } 1317 rcd->userversion = uinfo->spu_userversion; 1318 ret = init_subctxts(dd, rcd, uinfo); 1319 if (ret) 1320 goto bailerr; 1321 rcd->tid_pg_list = ptmp; 1322 rcd->pid = current->pid; 1323 init_waitqueue_head(&dd->rcd[ctxt]->wait); 1324 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm)); 1325 ctxt_fp(fp) = rcd; 1326 qib_stats.sps_ctxts++; 1327 dd->freectxts--; 1328 ret = 0; 1329 goto bail; 1330 1331 bailerr: 1332 if (fd->rec_cpu_num != -1) 1333 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1334 1335 dd->rcd[ctxt] = NULL; 1336 kfree(rcd); 1337 kfree(ptmp); 1338 bail: 1339 return ret; 1340 } 1341 1342 static inline int usable(struct qib_pportdata *ppd) 1343 { 1344 struct qib_devdata *dd = ppd->dd; 1345 1346 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid && 1347 (ppd->lflags & QIBL_LINKACTIVE); 1348 } 1349 1350 /* 1351 * Select a context on the given device, either using a requested port 1352 * or the port based on the context number. 1353 */ 1354 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port, 1355 const struct qib_user_info *uinfo) 1356 { 1357 struct qib_pportdata *ppd = NULL; 1358 int ret, ctxt; 1359 1360 if (port) { 1361 if (!usable(dd->pport + port - 1)) { 1362 ret = -ENETDOWN; 1363 goto done; 1364 } else 1365 ppd = dd->pport + port - 1; 1366 } 1367 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt]; 1368 ctxt++) 1369 ; 1370 if (ctxt == dd->cfgctxts) { 1371 ret = -EBUSY; 1372 goto done; 1373 } 1374 if (!ppd) { 1375 u32 pidx = ctxt % dd->num_pports; 1376 1377 if (usable(dd->pport + pidx)) 1378 ppd = dd->pport + pidx; 1379 else { 1380 for (pidx = 0; pidx < dd->num_pports && !ppd; 1381 pidx++) 1382 if (usable(dd->pport + pidx)) 1383 ppd = dd->pport + pidx; 1384 } 1385 } 1386 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN; 1387 done: 1388 return ret; 1389 } 1390 1391 static int find_free_ctxt(int unit, struct file *fp, 1392 const struct qib_user_info *uinfo) 1393 { 1394 struct qib_devdata *dd = qib_lookup(unit); 1395 int ret; 1396 1397 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports)) 1398 ret = -ENODEV; 1399 else 1400 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo); 1401 1402 return ret; 1403 } 1404 1405 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo, 1406 unsigned alg) 1407 { 1408 struct qib_devdata *udd = NULL; 1409 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i; 1410 u32 port = uinfo->spu_port, ctxt; 1411 1412 devmax = qib_count_units(&npresent, &nup); 1413 if (!npresent) { 1414 ret = -ENXIO; 1415 goto done; 1416 } 1417 if (nup == 0) { 1418 ret = -ENETDOWN; 1419 goto done; 1420 } 1421 1422 if (alg == QIB_PORT_ALG_ACROSS) { 1423 unsigned inuse = ~0U; 1424 1425 /* find device (with ACTIVE ports) with fewest ctxts in use */ 1426 for (ndev = 0; ndev < devmax; ndev++) { 1427 struct qib_devdata *dd = qib_lookup(ndev); 1428 unsigned cused = 0, cfree = 0, pusable = 0; 1429 1430 if (!dd) 1431 continue; 1432 if (port && port <= dd->num_pports && 1433 usable(dd->pport + port - 1)) 1434 pusable = 1; 1435 else 1436 for (i = 0; i < dd->num_pports; i++) 1437 if (usable(dd->pport + i)) 1438 pusable++; 1439 if (!pusable) 1440 continue; 1441 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; 1442 ctxt++) 1443 if (dd->rcd[ctxt]) 1444 cused++; 1445 else 1446 cfree++; 1447 if (cfree && cused < inuse) { 1448 udd = dd; 1449 inuse = cused; 1450 } 1451 } 1452 if (udd) { 1453 ret = choose_port_ctxt(fp, udd, port, uinfo); 1454 goto done; 1455 } 1456 } else { 1457 for (ndev = 0; ndev < devmax; ndev++) { 1458 struct qib_devdata *dd = qib_lookup(ndev); 1459 1460 if (dd) { 1461 ret = choose_port_ctxt(fp, dd, port, uinfo); 1462 if (!ret) 1463 goto done; 1464 if (ret == -EBUSY) 1465 dusable++; 1466 } 1467 } 1468 } 1469 ret = dusable ? -EBUSY : -ENETDOWN; 1470 1471 done: 1472 return ret; 1473 } 1474 1475 static int find_shared_ctxt(struct file *fp, 1476 const struct qib_user_info *uinfo) 1477 { 1478 int devmax, ndev, i; 1479 int ret = 0; 1480 1481 devmax = qib_count_units(NULL, NULL); 1482 1483 for (ndev = 0; ndev < devmax; ndev++) { 1484 struct qib_devdata *dd = qib_lookup(ndev); 1485 1486 /* device portion of usable() */ 1487 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase)) 1488 continue; 1489 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) { 1490 struct qib_ctxtdata *rcd = dd->rcd[i]; 1491 1492 /* Skip ctxts which are not yet open */ 1493 if (!rcd || !rcd->cnt) 1494 continue; 1495 /* Skip ctxt if it doesn't match the requested one */ 1496 if (rcd->subctxt_id != uinfo->spu_subctxt_id) 1497 continue; 1498 /* Verify the sharing process matches the master */ 1499 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt || 1500 rcd->userversion != uinfo->spu_userversion || 1501 rcd->cnt >= rcd->subctxt_cnt) { 1502 ret = -EINVAL; 1503 goto done; 1504 } 1505 ctxt_fp(fp) = rcd; 1506 subctxt_fp(fp) = rcd->cnt++; 1507 rcd->subpid[subctxt_fp(fp)] = current->pid; 1508 tidcursor_fp(fp) = 0; 1509 rcd->active_slaves |= 1 << subctxt_fp(fp); 1510 ret = 1; 1511 goto done; 1512 } 1513 } 1514 1515 done: 1516 return ret; 1517 } 1518 1519 static int qib_open(struct inode *in, struct file *fp) 1520 { 1521 /* The real work is performed later in qib_assign_ctxt() */ 1522 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL); 1523 if (fp->private_data) /* no cpu affinity by default */ 1524 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1; 1525 return fp->private_data ? 0 : -ENOMEM; 1526 } 1527 1528 static int find_hca(unsigned int cpu, int *unit) 1529 { 1530 int ret = 0, devmax, npresent, nup, ndev; 1531 1532 *unit = -1; 1533 1534 devmax = qib_count_units(&npresent, &nup); 1535 if (!npresent) { 1536 ret = -ENXIO; 1537 goto done; 1538 } 1539 if (!nup) { 1540 ret = -ENETDOWN; 1541 goto done; 1542 } 1543 for (ndev = 0; ndev < devmax; ndev++) { 1544 struct qib_devdata *dd = qib_lookup(ndev); 1545 1546 if (dd) { 1547 if (pcibus_to_node(dd->pcidev->bus) < 0) { 1548 ret = -EINVAL; 1549 goto done; 1550 } 1551 if (cpu_to_node(cpu) == 1552 pcibus_to_node(dd->pcidev->bus)) { 1553 *unit = ndev; 1554 goto done; 1555 } 1556 } 1557 } 1558 done: 1559 return ret; 1560 } 1561 1562 static int do_qib_user_sdma_queue_create(struct file *fp) 1563 { 1564 struct qib_filedata *fd = fp->private_data; 1565 struct qib_ctxtdata *rcd = fd->rcd; 1566 struct qib_devdata *dd = rcd->dd; 1567 1568 if (dd->flags & QIB_HAS_SEND_DMA) { 1569 1570 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev, 1571 dd->unit, 1572 rcd->ctxt, 1573 fd->subctxt); 1574 if (!fd->pq) 1575 return -ENOMEM; 1576 } 1577 1578 return 0; 1579 } 1580 1581 /* 1582 * Get ctxt early, so can set affinity prior to memory allocation. 1583 */ 1584 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo) 1585 { 1586 int ret; 1587 int i_minor; 1588 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS; 1589 1590 /* Check to be sure we haven't already initialized this file */ 1591 if (ctxt_fp(fp)) { 1592 ret = -EINVAL; 1593 goto done; 1594 } 1595 1596 /* for now, if major version is different, bail */ 1597 swmajor = uinfo->spu_userversion >> 16; 1598 if (swmajor != QIB_USER_SWMAJOR) { 1599 ret = -ENODEV; 1600 goto done; 1601 } 1602 1603 swminor = uinfo->spu_userversion & 0xffff; 1604 1605 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT) 1606 alg = uinfo->spu_port_alg; 1607 1608 mutex_lock(&qib_mutex); 1609 1610 if (qib_compatible_subctxts(swmajor, swminor) && 1611 uinfo->spu_subctxt_cnt) { 1612 ret = find_shared_ctxt(fp, uinfo); 1613 if (ret > 0) { 1614 ret = do_qib_user_sdma_queue_create(fp); 1615 if (!ret) 1616 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd); 1617 goto done_ok; 1618 } 1619 } 1620 1621 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE; 1622 if (i_minor) 1623 ret = find_free_ctxt(i_minor - 1, fp, uinfo); 1624 else { 1625 int unit; 1626 const unsigned int cpu = cpumask_first(current->cpus_ptr); 1627 const unsigned int weight = current->nr_cpus_allowed; 1628 1629 if (weight == 1 && !test_bit(cpu, qib_cpulist)) 1630 if (!find_hca(cpu, &unit) && unit >= 0) 1631 if (!find_free_ctxt(unit, fp, uinfo)) { 1632 ret = 0; 1633 goto done_chk_sdma; 1634 } 1635 ret = get_a_ctxt(fp, uinfo, alg); 1636 } 1637 1638 done_chk_sdma: 1639 if (!ret) 1640 ret = do_qib_user_sdma_queue_create(fp); 1641 done_ok: 1642 mutex_unlock(&qib_mutex); 1643 1644 done: 1645 return ret; 1646 } 1647 1648 1649 static int qib_do_user_init(struct file *fp, 1650 const struct qib_user_info *uinfo) 1651 { 1652 int ret; 1653 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1654 struct qib_devdata *dd; 1655 unsigned uctxt; 1656 1657 /* Subctxts don't need to initialize anything since master did it. */ 1658 if (subctxt_fp(fp)) { 1659 ret = wait_event_interruptible(rcd->wait, 1660 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag)); 1661 goto bail; 1662 } 1663 1664 dd = rcd->dd; 1665 1666 /* some ctxts may get extra buffers, calculate that here */ 1667 uctxt = rcd->ctxt - dd->first_user_ctxt; 1668 if (uctxt < dd->ctxts_extrabuf) { 1669 rcd->piocnt = dd->pbufsctxt + 1; 1670 rcd->pio_base = rcd->piocnt * uctxt; 1671 } else { 1672 rcd->piocnt = dd->pbufsctxt; 1673 rcd->pio_base = rcd->piocnt * uctxt + 1674 dd->ctxts_extrabuf; 1675 } 1676 1677 /* 1678 * All user buffers are 2KB buffers. If we ever support 1679 * giving 4KB buffers to user processes, this will need some 1680 * work. Can't use piobufbase directly, because it has 1681 * both 2K and 4K buffer base values. So check and handle. 1682 */ 1683 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) { 1684 if (rcd->pio_base >= dd->piobcnt2k) { 1685 qib_dev_err(dd, 1686 "%u:ctxt%u: no 2KB buffers available\n", 1687 dd->unit, rcd->ctxt); 1688 ret = -ENOBUFS; 1689 goto bail; 1690 } 1691 rcd->piocnt = dd->piobcnt2k - rcd->pio_base; 1692 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n", 1693 rcd->ctxt, rcd->piocnt); 1694 } 1695 1696 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign; 1697 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1698 TXCHK_CHG_TYPE_USER, rcd); 1699 /* 1700 * try to ensure that processes start up with consistent avail update 1701 * for their own range, at least. If system very quiet, it might 1702 * have the in-memory copy out of date at startup for this range of 1703 * buffers, when a context gets re-used. Do after the chg_pioavail 1704 * and before the rest of setup, so it's "almost certain" the dma 1705 * will have occurred (can't 100% guarantee, but should be many 1706 * decimals of 9s, with this ordering), given how much else happens 1707 * after this. 1708 */ 1709 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP); 1710 1711 /* 1712 * Now allocate the rcvhdr Q and eager TIDs; skip the TID 1713 * array for time being. If rcd->ctxt > chip-supported, 1714 * we need to do extra stuff here to handle by handling overflow 1715 * through ctxt 0, someday 1716 */ 1717 ret = qib_create_rcvhdrq(dd, rcd); 1718 if (!ret) 1719 ret = qib_setup_eagerbufs(rcd); 1720 if (ret) 1721 goto bail_pio; 1722 1723 rcd->tidcursor = 0; /* start at beginning after open */ 1724 1725 /* initialize poll variables... */ 1726 rcd->urgent = 0; 1727 rcd->urgent_poll = 0; 1728 1729 /* 1730 * Now enable the ctxt for receive. 1731 * For chips that are set to DMA the tail register to memory 1732 * when they change (and when the update bit transitions from 1733 * 0 to 1. So for those chips, we turn it off and then back on. 1734 * This will (very briefly) affect any other open ctxts, but the 1735 * duration is very short, and therefore isn't an issue. We 1736 * explicitly set the in-memory tail copy to 0 beforehand, so we 1737 * don't have to wait to be sure the DMA update has happened 1738 * (chip resets head/tail to 0 on transition to enable). 1739 */ 1740 if (rcd->rcvhdrtail_kvaddr) 1741 qib_clear_rcvhdrtail(rcd); 1742 1743 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB, 1744 rcd->ctxt); 1745 1746 /* Notify any waiting slaves */ 1747 if (rcd->subctxt_cnt) { 1748 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1749 wake_up(&rcd->wait); 1750 } 1751 return 0; 1752 1753 bail_pio: 1754 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1755 TXCHK_CHG_TYPE_KERN, rcd); 1756 bail: 1757 return ret; 1758 } 1759 1760 /** 1761 * unlock_expected_tids - unlock any expected TID entries context still had 1762 * in use 1763 * @rcd: ctxt 1764 * 1765 * We don't actually update the chip here, because we do a bulk update 1766 * below, using f_clear_tids. 1767 */ 1768 static void unlock_expected_tids(struct qib_ctxtdata *rcd) 1769 { 1770 struct qib_devdata *dd = rcd->dd; 1771 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt; 1772 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt; 1773 1774 for (i = ctxt_tidbase; i < maxtid; i++) { 1775 struct page *p = dd->pageshadow[i]; 1776 dma_addr_t phys; 1777 1778 if (!p) 1779 continue; 1780 1781 phys = dd->physshadow[i]; 1782 dd->physshadow[i] = dd->tidinvalid; 1783 dd->pageshadow[i] = NULL; 1784 dma_unmap_page(&dd->pcidev->dev, phys, PAGE_SIZE, 1785 DMA_FROM_DEVICE); 1786 qib_release_user_pages(&p, 1); 1787 cnt++; 1788 } 1789 } 1790 1791 static int qib_close(struct inode *in, struct file *fp) 1792 { 1793 struct qib_filedata *fd; 1794 struct qib_ctxtdata *rcd; 1795 struct qib_devdata *dd; 1796 unsigned long flags; 1797 unsigned ctxt; 1798 1799 mutex_lock(&qib_mutex); 1800 1801 fd = fp->private_data; 1802 fp->private_data = NULL; 1803 rcd = fd->rcd; 1804 if (!rcd) { 1805 mutex_unlock(&qib_mutex); 1806 goto bail; 1807 } 1808 1809 dd = rcd->dd; 1810 1811 /* ensure all pio buffer writes in progress are flushed */ 1812 qib_flush_wc(); 1813 1814 /* drain user sdma queue */ 1815 if (fd->pq) { 1816 qib_user_sdma_queue_drain(rcd->ppd, fd->pq); 1817 qib_user_sdma_queue_destroy(fd->pq); 1818 } 1819 1820 if (fd->rec_cpu_num != -1) 1821 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1822 1823 if (--rcd->cnt) { 1824 /* 1825 * XXX If the master closes the context before the slave(s), 1826 * revoke the mmap for the eager receive queue so 1827 * the slave(s) don't wait for receive data forever. 1828 */ 1829 rcd->active_slaves &= ~(1 << fd->subctxt); 1830 rcd->subpid[fd->subctxt] = 0; 1831 mutex_unlock(&qib_mutex); 1832 goto bail; 1833 } 1834 1835 /* early; no interrupt users after this */ 1836 spin_lock_irqsave(&dd->uctxt_lock, flags); 1837 ctxt = rcd->ctxt; 1838 dd->rcd[ctxt] = NULL; 1839 rcd->pid = 0; 1840 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1841 1842 if (rcd->rcvwait_to || rcd->piowait_to || 1843 rcd->rcvnowait || rcd->pionowait) { 1844 rcd->rcvwait_to = 0; 1845 rcd->piowait_to = 0; 1846 rcd->rcvnowait = 0; 1847 rcd->pionowait = 0; 1848 } 1849 if (rcd->flag) 1850 rcd->flag = 0; 1851 1852 if (dd->kregbase) { 1853 /* atomically clear receive enable ctxt and intr avail. */ 1854 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS | 1855 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt); 1856 1857 /* clean up the pkeys for this ctxt user */ 1858 qib_clean_part_key(rcd, dd); 1859 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt); 1860 qib_chg_pioavailkernel(dd, rcd->pio_base, 1861 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL); 1862 1863 dd->f_clear_tids(dd, rcd); 1864 1865 if (dd->pageshadow) 1866 unlock_expected_tids(rcd); 1867 qib_stats.sps_ctxts--; 1868 dd->freectxts++; 1869 } 1870 1871 mutex_unlock(&qib_mutex); 1872 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */ 1873 1874 bail: 1875 kfree(fd); 1876 return 0; 1877 } 1878 1879 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo) 1880 { 1881 struct qib_ctxt_info info; 1882 int ret; 1883 size_t sz; 1884 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1885 struct qib_filedata *fd; 1886 1887 fd = fp->private_data; 1888 1889 info.num_active = qib_count_active_units(); 1890 info.unit = rcd->dd->unit; 1891 info.port = rcd->ppd->port; 1892 info.ctxt = rcd->ctxt; 1893 info.subctxt = subctxt_fp(fp); 1894 /* Number of user ctxts available for this device. */ 1895 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt; 1896 info.num_subctxts = rcd->subctxt_cnt; 1897 info.rec_cpu = fd->rec_cpu_num; 1898 sz = sizeof(info); 1899 1900 if (copy_to_user(uinfo, &info, sz)) { 1901 ret = -EFAULT; 1902 goto bail; 1903 } 1904 ret = 0; 1905 1906 bail: 1907 return ret; 1908 } 1909 1910 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq, 1911 u32 __user *inflightp) 1912 { 1913 const u32 val = qib_user_sdma_inflight_counter(pq); 1914 1915 if (put_user(val, inflightp)) 1916 return -EFAULT; 1917 1918 return 0; 1919 } 1920 1921 static int qib_sdma_get_complete(struct qib_pportdata *ppd, 1922 struct qib_user_sdma_queue *pq, 1923 u32 __user *completep) 1924 { 1925 u32 val; 1926 int err; 1927 1928 if (!pq) 1929 return -EINVAL; 1930 1931 err = qib_user_sdma_make_progress(ppd, pq); 1932 if (err < 0) 1933 return err; 1934 1935 val = qib_user_sdma_complete_counter(pq); 1936 if (put_user(val, completep)) 1937 return -EFAULT; 1938 1939 return 0; 1940 } 1941 1942 static int disarm_req_delay(struct qib_ctxtdata *rcd) 1943 { 1944 int ret = 0; 1945 1946 if (!usable(rcd->ppd)) { 1947 int i; 1948 /* 1949 * if link is down, or otherwise not usable, delay 1950 * the caller up to 30 seconds, so we don't thrash 1951 * in trying to get the chip back to ACTIVE, and 1952 * set flag so they make the call again. 1953 */ 1954 if (rcd->user_event_mask) { 1955 /* 1956 * subctxt_cnt is 0 if not shared, so do base 1957 * separately, first, then remaining subctxt, if any 1958 */ 1959 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1960 &rcd->user_event_mask[0]); 1961 for (i = 1; i < rcd->subctxt_cnt; i++) 1962 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1963 &rcd->user_event_mask[i]); 1964 } 1965 for (i = 0; !usable(rcd->ppd) && i < 300; i++) 1966 msleep(100); 1967 ret = -ENETDOWN; 1968 } 1969 return ret; 1970 } 1971 1972 /* 1973 * Find all user contexts in use, and set the specified bit in their 1974 * event mask. 1975 * See also find_ctxt() for a similar use, that is specific to send buffers. 1976 */ 1977 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit) 1978 { 1979 struct qib_ctxtdata *rcd; 1980 unsigned ctxt; 1981 int ret = 0; 1982 unsigned long flags; 1983 1984 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags); 1985 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts; 1986 ctxt++) { 1987 rcd = ppd->dd->rcd[ctxt]; 1988 if (!rcd) 1989 continue; 1990 if (rcd->user_event_mask) { 1991 int i; 1992 /* 1993 * subctxt_cnt is 0 if not shared, so do base 1994 * separately, first, then remaining subctxt, if any 1995 */ 1996 set_bit(evtbit, &rcd->user_event_mask[0]); 1997 for (i = 1; i < rcd->subctxt_cnt; i++) 1998 set_bit(evtbit, &rcd->user_event_mask[i]); 1999 } 2000 ret = 1; 2001 break; 2002 } 2003 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags); 2004 2005 return ret; 2006 } 2007 2008 /* 2009 * clear the event notifier events for this context. 2010 * For the DISARM_BUFS case, we also take action (this obsoletes 2011 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards 2012 * compatibility. 2013 * Other bits don't currently require actions, just atomically clear. 2014 * User process then performs actions appropriate to bit having been 2015 * set, if desired, and checks again in future. 2016 */ 2017 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt, 2018 unsigned long events) 2019 { 2020 int ret = 0, i; 2021 2022 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) { 2023 if (!test_bit(i, &events)) 2024 continue; 2025 if (i == _QIB_EVENT_DISARM_BUFS_BIT) { 2026 (void)qib_disarm_piobufs_ifneeded(rcd); 2027 ret = disarm_req_delay(rcd); 2028 } else 2029 clear_bit(i, &rcd->user_event_mask[subctxt]); 2030 } 2031 return ret; 2032 } 2033 2034 static ssize_t qib_write(struct file *fp, const char __user *data, 2035 size_t count, loff_t *off) 2036 { 2037 const struct qib_cmd __user *ucmd; 2038 struct qib_ctxtdata *rcd; 2039 const void __user *src; 2040 size_t consumed, copy = 0; 2041 struct qib_cmd cmd; 2042 ssize_t ret = 0; 2043 void *dest; 2044 2045 if (!ib_safe_file_access(fp)) { 2046 pr_err_once("qib_write: process %d (%s) changed security contexts after opening file descriptor, this is not allowed.\n", 2047 task_tgid_vnr(current), current->comm); 2048 return -EACCES; 2049 } 2050 2051 if (count < sizeof(cmd.type)) { 2052 ret = -EINVAL; 2053 goto bail; 2054 } 2055 2056 ucmd = (const struct qib_cmd __user *) data; 2057 2058 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { 2059 ret = -EFAULT; 2060 goto bail; 2061 } 2062 2063 consumed = sizeof(cmd.type); 2064 2065 switch (cmd.type) { 2066 case QIB_CMD_ASSIGN_CTXT: 2067 case QIB_CMD_USER_INIT: 2068 copy = sizeof(cmd.cmd.user_info); 2069 dest = &cmd.cmd.user_info; 2070 src = &ucmd->cmd.user_info; 2071 break; 2072 2073 case QIB_CMD_RECV_CTRL: 2074 copy = sizeof(cmd.cmd.recv_ctrl); 2075 dest = &cmd.cmd.recv_ctrl; 2076 src = &ucmd->cmd.recv_ctrl; 2077 break; 2078 2079 case QIB_CMD_CTXT_INFO: 2080 copy = sizeof(cmd.cmd.ctxt_info); 2081 dest = &cmd.cmd.ctxt_info; 2082 src = &ucmd->cmd.ctxt_info; 2083 break; 2084 2085 case QIB_CMD_TID_UPDATE: 2086 case QIB_CMD_TID_FREE: 2087 copy = sizeof(cmd.cmd.tid_info); 2088 dest = &cmd.cmd.tid_info; 2089 src = &ucmd->cmd.tid_info; 2090 break; 2091 2092 case QIB_CMD_SET_PART_KEY: 2093 copy = sizeof(cmd.cmd.part_key); 2094 dest = &cmd.cmd.part_key; 2095 src = &ucmd->cmd.part_key; 2096 break; 2097 2098 case QIB_CMD_DISARM_BUFS: 2099 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */ 2100 copy = 0; 2101 src = NULL; 2102 dest = NULL; 2103 break; 2104 2105 case QIB_CMD_POLL_TYPE: 2106 copy = sizeof(cmd.cmd.poll_type); 2107 dest = &cmd.cmd.poll_type; 2108 src = &ucmd->cmd.poll_type; 2109 break; 2110 2111 case QIB_CMD_ARMLAUNCH_CTRL: 2112 copy = sizeof(cmd.cmd.armlaunch_ctrl); 2113 dest = &cmd.cmd.armlaunch_ctrl; 2114 src = &ucmd->cmd.armlaunch_ctrl; 2115 break; 2116 2117 case QIB_CMD_SDMA_INFLIGHT: 2118 copy = sizeof(cmd.cmd.sdma_inflight); 2119 dest = &cmd.cmd.sdma_inflight; 2120 src = &ucmd->cmd.sdma_inflight; 2121 break; 2122 2123 case QIB_CMD_SDMA_COMPLETE: 2124 copy = sizeof(cmd.cmd.sdma_complete); 2125 dest = &cmd.cmd.sdma_complete; 2126 src = &ucmd->cmd.sdma_complete; 2127 break; 2128 2129 case QIB_CMD_ACK_EVENT: 2130 copy = sizeof(cmd.cmd.event_mask); 2131 dest = &cmd.cmd.event_mask; 2132 src = &ucmd->cmd.event_mask; 2133 break; 2134 2135 default: 2136 ret = -EINVAL; 2137 goto bail; 2138 } 2139 2140 if (copy) { 2141 if ((count - consumed) < copy) { 2142 ret = -EINVAL; 2143 goto bail; 2144 } 2145 if (copy_from_user(dest, src, copy)) { 2146 ret = -EFAULT; 2147 goto bail; 2148 } 2149 consumed += copy; 2150 } 2151 2152 rcd = ctxt_fp(fp); 2153 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) { 2154 ret = -EINVAL; 2155 goto bail; 2156 } 2157 2158 switch (cmd.type) { 2159 case QIB_CMD_ASSIGN_CTXT: 2160 if (rcd) { 2161 ret = -EINVAL; 2162 goto bail; 2163 } 2164 2165 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info); 2166 if (ret) 2167 goto bail; 2168 break; 2169 2170 case QIB_CMD_USER_INIT: 2171 ret = qib_do_user_init(fp, &cmd.cmd.user_info); 2172 if (ret) 2173 goto bail; 2174 ret = qib_get_base_info(fp, u64_to_user_ptr( 2175 cmd.cmd.user_info.spu_base_info), 2176 cmd.cmd.user_info.spu_base_info_size); 2177 break; 2178 2179 case QIB_CMD_RECV_CTRL: 2180 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl); 2181 break; 2182 2183 case QIB_CMD_CTXT_INFO: 2184 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *) 2185 (unsigned long) cmd.cmd.ctxt_info); 2186 break; 2187 2188 case QIB_CMD_TID_UPDATE: 2189 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info); 2190 break; 2191 2192 case QIB_CMD_TID_FREE: 2193 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info); 2194 break; 2195 2196 case QIB_CMD_SET_PART_KEY: 2197 ret = qib_set_part_key(rcd, cmd.cmd.part_key); 2198 break; 2199 2200 case QIB_CMD_DISARM_BUFS: 2201 (void)qib_disarm_piobufs_ifneeded(rcd); 2202 ret = disarm_req_delay(rcd); 2203 break; 2204 2205 case QIB_CMD_PIOAVAILUPD: 2206 qib_force_pio_avail_update(rcd->dd); 2207 break; 2208 2209 case QIB_CMD_POLL_TYPE: 2210 rcd->poll_type = cmd.cmd.poll_type; 2211 break; 2212 2213 case QIB_CMD_ARMLAUNCH_CTRL: 2214 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl); 2215 break; 2216 2217 case QIB_CMD_SDMA_INFLIGHT: 2218 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp), 2219 (u32 __user *) (unsigned long) 2220 cmd.cmd.sdma_inflight); 2221 break; 2222 2223 case QIB_CMD_SDMA_COMPLETE: 2224 ret = qib_sdma_get_complete(rcd->ppd, 2225 user_sdma_queue_fp(fp), 2226 (u32 __user *) (unsigned long) 2227 cmd.cmd.sdma_complete); 2228 break; 2229 2230 case QIB_CMD_ACK_EVENT: 2231 ret = qib_user_event_ack(rcd, subctxt_fp(fp), 2232 cmd.cmd.event_mask); 2233 break; 2234 } 2235 2236 if (ret >= 0) 2237 ret = consumed; 2238 2239 bail: 2240 return ret; 2241 } 2242 2243 static ssize_t qib_write_iter(struct kiocb *iocb, struct iov_iter *from) 2244 { 2245 struct qib_filedata *fp = iocb->ki_filp->private_data; 2246 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp); 2247 struct qib_user_sdma_queue *pq = fp->pq; 2248 2249 if (!iter_is_iovec(from) || !from->nr_segs || !pq) 2250 return -EINVAL; 2251 2252 return qib_user_sdma_writev(rcd, pq, from->iov, from->nr_segs); 2253 } 2254 2255 static struct class *qib_class; 2256 static dev_t qib_dev; 2257 2258 int qib_cdev_init(int minor, const char *name, 2259 const struct file_operations *fops, 2260 struct cdev **cdevp, struct device **devp) 2261 { 2262 const dev_t dev = MKDEV(MAJOR(qib_dev), minor); 2263 struct cdev *cdev; 2264 struct device *device = NULL; 2265 int ret; 2266 2267 cdev = cdev_alloc(); 2268 if (!cdev) { 2269 pr_err("Could not allocate cdev for minor %d, %s\n", 2270 minor, name); 2271 ret = -ENOMEM; 2272 goto done; 2273 } 2274 2275 cdev->owner = THIS_MODULE; 2276 cdev->ops = fops; 2277 kobject_set_name(&cdev->kobj, name); 2278 2279 ret = cdev_add(cdev, dev, 1); 2280 if (ret < 0) { 2281 pr_err("Could not add cdev for minor %d, %s (err %d)\n", 2282 minor, name, -ret); 2283 goto err_cdev; 2284 } 2285 2286 device = device_create(qib_class, NULL, dev, NULL, "%s", name); 2287 if (!IS_ERR(device)) 2288 goto done; 2289 ret = PTR_ERR(device); 2290 device = NULL; 2291 pr_err("Could not create device for minor %d, %s (err %d)\n", 2292 minor, name, -ret); 2293 err_cdev: 2294 cdev_del(cdev); 2295 cdev = NULL; 2296 done: 2297 *cdevp = cdev; 2298 *devp = device; 2299 return ret; 2300 } 2301 2302 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp) 2303 { 2304 struct device *device = *devp; 2305 2306 if (device) { 2307 device_unregister(device); 2308 *devp = NULL; 2309 } 2310 2311 if (*cdevp) { 2312 cdev_del(*cdevp); 2313 *cdevp = NULL; 2314 } 2315 } 2316 2317 static struct cdev *wildcard_cdev; 2318 static struct device *wildcard_device; 2319 2320 int __init qib_dev_init(void) 2321 { 2322 int ret; 2323 2324 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME); 2325 if (ret < 0) { 2326 pr_err("Could not allocate chrdev region (err %d)\n", -ret); 2327 goto done; 2328 } 2329 2330 qib_class = class_create(THIS_MODULE, "ipath"); 2331 if (IS_ERR(qib_class)) { 2332 ret = PTR_ERR(qib_class); 2333 pr_err("Could not create device class (err %d)\n", -ret); 2334 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2335 } 2336 2337 done: 2338 return ret; 2339 } 2340 2341 void qib_dev_cleanup(void) 2342 { 2343 if (qib_class) { 2344 class_destroy(qib_class); 2345 qib_class = NULL; 2346 } 2347 2348 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2349 } 2350 2351 static atomic_t user_count = ATOMIC_INIT(0); 2352 2353 static void qib_user_remove(struct qib_devdata *dd) 2354 { 2355 if (atomic_dec_return(&user_count) == 0) 2356 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device); 2357 2358 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device); 2359 } 2360 2361 static int qib_user_add(struct qib_devdata *dd) 2362 { 2363 char name[10]; 2364 int ret; 2365 2366 if (atomic_inc_return(&user_count) == 1) { 2367 ret = qib_cdev_init(0, "ipath", &qib_file_ops, 2368 &wildcard_cdev, &wildcard_device); 2369 if (ret) 2370 goto done; 2371 } 2372 2373 snprintf(name, sizeof(name), "ipath%d", dd->unit); 2374 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops, 2375 &dd->user_cdev, &dd->user_device); 2376 if (ret) 2377 qib_user_remove(dd); 2378 done: 2379 return ret; 2380 } 2381 2382 /* 2383 * Create per-unit files in /dev 2384 */ 2385 int qib_device_create(struct qib_devdata *dd) 2386 { 2387 int r, ret; 2388 2389 r = qib_user_add(dd); 2390 ret = qib_diag_add(dd); 2391 if (r && !ret) 2392 ret = r; 2393 return ret; 2394 } 2395 2396 /* 2397 * Remove per-unit files in /dev 2398 * void, core kernel returns no errors for this stuff 2399 */ 2400 void qib_device_remove(struct qib_devdata *dd) 2401 { 2402 qib_user_remove(dd); 2403 qib_diag_remove(dd); 2404 } 2405