xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision b8d312aa)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 
40 #include <linux/mlx5/eq.h>
41 
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44 	u32			bytes_committed;
45 	u32			token;
46 	u8			event_subtype;
47 	u8			type;
48 	union {
49 		/* Initiator or send message responder pagefault details. */
50 		struct {
51 			/* Received packet size, only valid for responders. */
52 			u32	packet_size;
53 			/*
54 			 * Number of resource holding WQE, depends on type.
55 			 */
56 			u32	wq_num;
57 			/*
58 			 * WQE index. Refers to either the send queue or
59 			 * receive queue, according to event_subtype.
60 			 */
61 			u16	wqe_index;
62 		} wqe;
63 		/* RDMA responder pagefault details */
64 		struct {
65 			u32	r_key;
66 			/*
67 			 * Received packet size, minimal size page fault
68 			 * resolution required for forward progress.
69 			 */
70 			u32	packet_size;
71 			u32	rdma_op_len;
72 			u64	rdma_va;
73 		} rdma;
74 	};
75 
76 	struct mlx5_ib_pf_eq	*eq;
77 	struct work_struct	work;
78 };
79 
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81 
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85 
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91 
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93 
94 static u64 mlx5_imr_ksm_entries;
95 
96 static int check_parent(struct ib_umem_odp *odp,
97 			       struct mlx5_ib_mr *parent)
98 {
99 	struct mlx5_ib_mr *mr = odp->private;
100 
101 	return mr && mr->parent == parent && !odp->dying;
102 }
103 
104 static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
105 {
106 	if (WARN_ON(!mr || !is_odp_mr(mr)))
107 		return NULL;
108 
109 	return to_ib_umem_odp(mr->umem)->per_mm;
110 }
111 
112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
113 {
114 	struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
115 	struct ib_ucontext_per_mm *per_mm = odp->per_mm;
116 	struct rb_node *rb;
117 
118 	down_read(&per_mm->umem_rwsem);
119 	while (1) {
120 		rb = rb_next(&odp->interval_tree.rb);
121 		if (!rb)
122 			goto not_found;
123 		odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
124 		if (check_parent(odp, parent))
125 			goto end;
126 	}
127 not_found:
128 	odp = NULL;
129 end:
130 	up_read(&per_mm->umem_rwsem);
131 	return odp;
132 }
133 
134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
135 				      struct mlx5_ib_mr *parent)
136 {
137 	struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
138 	struct ib_umem_odp *odp;
139 	struct rb_node *rb;
140 
141 	down_read(&per_mm->umem_rwsem);
142 	odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
143 	if (!odp)
144 		goto end;
145 
146 	while (1) {
147 		if (check_parent(odp, parent))
148 			goto end;
149 		rb = rb_next(&odp->interval_tree.rb);
150 		if (!rb)
151 			goto not_found;
152 		odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
153 		if (ib_umem_start(odp) > start + length)
154 			goto not_found;
155 	}
156 not_found:
157 	odp = NULL;
158 end:
159 	up_read(&per_mm->umem_rwsem);
160 	return odp;
161 }
162 
163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
164 			   size_t nentries, struct mlx5_ib_mr *mr, int flags)
165 {
166 	struct ib_pd *pd = mr->ibmr.pd;
167 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
168 	struct ib_umem_odp *odp;
169 	unsigned long va;
170 	int i;
171 
172 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
173 		for (i = 0; i < nentries; i++, pklm++) {
174 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
175 			pklm->key = cpu_to_be32(dev->null_mkey);
176 			pklm->va = 0;
177 		}
178 		return;
179 	}
180 
181 	odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
182 			 nentries * MLX5_IMR_MTT_SIZE, mr);
183 
184 	for (i = 0; i < nentries; i++, pklm++) {
185 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
186 		va = (offset + i) * MLX5_IMR_MTT_SIZE;
187 		if (odp && odp->umem.address == va) {
188 			struct mlx5_ib_mr *mtt = odp->private;
189 
190 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
191 			odp = odp_next(odp);
192 		} else {
193 			pklm->key = cpu_to_be32(dev->null_mkey);
194 		}
195 		mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
196 			    i, va, be32_to_cpu(pklm->key));
197 	}
198 }
199 
200 static void mr_leaf_free_action(struct work_struct *work)
201 {
202 	struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
203 	int idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
204 	struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
205 
206 	mr->parent = NULL;
207 	synchronize_srcu(&mr->dev->mr_srcu);
208 
209 	ib_umem_release(&odp->umem);
210 	if (imr->live)
211 		mlx5_ib_update_xlt(imr, idx, 1, 0,
212 				   MLX5_IB_UPD_XLT_INDIRECT |
213 				   MLX5_IB_UPD_XLT_ATOMIC);
214 	mlx5_mr_cache_free(mr->dev, mr);
215 
216 	if (atomic_dec_and_test(&imr->num_leaf_free))
217 		wake_up(&imr->q_leaf_free);
218 }
219 
220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
221 			      unsigned long end)
222 {
223 	struct mlx5_ib_mr *mr;
224 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
225 				    sizeof(struct mlx5_mtt)) - 1;
226 	u64 idx = 0, blk_start_idx = 0;
227 	int in_block = 0;
228 	u64 addr;
229 
230 	if (!umem_odp) {
231 		pr_err("invalidation called on NULL umem or non-ODP umem\n");
232 		return;
233 	}
234 
235 	mr = umem_odp->private;
236 
237 	if (!mr || !mr->ibmr.pd)
238 		return;
239 
240 	start = max_t(u64, ib_umem_start(umem_odp), start);
241 	end = min_t(u64, ib_umem_end(umem_odp), end);
242 
243 	/*
244 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
245 	 * while we are doing the invalidation, no page fault will attempt to
246 	 * overwrite the same MTTs.  Concurent invalidations might race us,
247 	 * but they will write 0s as well, so no difference in the end result.
248 	 */
249 	mutex_lock(&umem_odp->umem_mutex);
250 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
251 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
252 		/*
253 		 * Strive to write the MTTs in chunks, but avoid overwriting
254 		 * non-existing MTTs. The huristic here can be improved to
255 		 * estimate the cost of another UMR vs. the cost of bigger
256 		 * UMR.
257 		 */
258 		if (umem_odp->dma_list[idx] &
259 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
260 			if (!in_block) {
261 				blk_start_idx = idx;
262 				in_block = 1;
263 			}
264 		} else {
265 			u64 umr_offset = idx & umr_block_mask;
266 
267 			if (in_block && umr_offset == 0) {
268 				mlx5_ib_update_xlt(mr, blk_start_idx,
269 						   idx - blk_start_idx, 0,
270 						   MLX5_IB_UPD_XLT_ZAP |
271 						   MLX5_IB_UPD_XLT_ATOMIC);
272 				in_block = 0;
273 			}
274 		}
275 	}
276 	if (in_block)
277 		mlx5_ib_update_xlt(mr, blk_start_idx,
278 				   idx - blk_start_idx + 1, 0,
279 				   MLX5_IB_UPD_XLT_ZAP |
280 				   MLX5_IB_UPD_XLT_ATOMIC);
281 	mutex_unlock(&umem_odp->umem_mutex);
282 	/*
283 	 * We are now sure that the device will not access the
284 	 * memory. We can safely unmap it, and mark it as dirty if
285 	 * needed.
286 	 */
287 
288 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
289 
290 	if (unlikely(!umem_odp->npages && mr->parent &&
291 		     !umem_odp->dying)) {
292 		WRITE_ONCE(umem_odp->dying, 1);
293 		atomic_inc(&mr->parent->num_leaf_free);
294 		schedule_work(&umem_odp->work);
295 	}
296 }
297 
298 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
299 {
300 	struct ib_odp_caps *caps = &dev->odp_caps;
301 
302 	memset(caps, 0, sizeof(*caps));
303 
304 	if (!MLX5_CAP_GEN(dev->mdev, pg))
305 		return;
306 
307 	caps->general_caps = IB_ODP_SUPPORT;
308 
309 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
310 		dev->odp_max_size = U64_MAX;
311 	else
312 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
313 
314 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
315 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
316 
317 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
318 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
319 
320 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
321 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
322 
323 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
324 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
325 
326 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
327 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
328 
329 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
330 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
331 
332 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
333 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
334 
335 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
336 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
337 
338 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
339 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
340 
341 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
342 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
343 
344 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
345 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
346 
347 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
348 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
349 
350 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
351 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
352 
353 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
354 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
355 
356 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
357 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
358 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
359 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
360 
361 	return;
362 }
363 
364 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
365 				      struct mlx5_pagefault *pfault,
366 				      int error)
367 {
368 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
369 		     pfault->wqe.wq_num : pfault->token;
370 	u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
371 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
372 	int err;
373 
374 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
375 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
376 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
377 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
378 	MLX5_SET(page_fault_resume_in, in, error, !!error);
379 
380 	err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
381 	if (err)
382 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
383 			    wq_num, err);
384 }
385 
386 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
387 					    struct ib_umem *umem,
388 					    bool ksm, int access_flags)
389 {
390 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
391 	struct mlx5_ib_mr *mr;
392 	int err;
393 
394 	mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
395 					    MLX5_IMR_MTT_CACHE_ENTRY);
396 
397 	if (IS_ERR(mr))
398 		return mr;
399 
400 	mr->ibmr.pd = pd;
401 
402 	mr->dev = dev;
403 	mr->access_flags = access_flags;
404 	mr->mmkey.iova = 0;
405 	mr->umem = umem;
406 
407 	if (ksm) {
408 		err = mlx5_ib_update_xlt(mr, 0,
409 					 mlx5_imr_ksm_entries,
410 					 MLX5_KSM_PAGE_SHIFT,
411 					 MLX5_IB_UPD_XLT_INDIRECT |
412 					 MLX5_IB_UPD_XLT_ZAP |
413 					 MLX5_IB_UPD_XLT_ENABLE);
414 
415 	} else {
416 		err = mlx5_ib_update_xlt(mr, 0,
417 					 MLX5_IMR_MTT_ENTRIES,
418 					 PAGE_SHIFT,
419 					 MLX5_IB_UPD_XLT_ZAP |
420 					 MLX5_IB_UPD_XLT_ENABLE |
421 					 MLX5_IB_UPD_XLT_ATOMIC);
422 	}
423 
424 	if (err)
425 		goto fail;
426 
427 	mr->ibmr.lkey = mr->mmkey.key;
428 	mr->ibmr.rkey = mr->mmkey.key;
429 
430 	mr->live = 1;
431 
432 	mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
433 		    mr->mmkey.key, dev->mdev, mr);
434 
435 	return mr;
436 
437 fail:
438 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
439 	mlx5_mr_cache_free(dev, mr);
440 
441 	return ERR_PTR(err);
442 }
443 
444 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
445 						u64 io_virt, size_t bcnt)
446 {
447 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
448 	struct ib_umem_odp *odp, *result = NULL;
449 	struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
450 	u64 addr = io_virt & MLX5_IMR_MTT_MASK;
451 	int nentries = 0, start_idx = 0, ret;
452 	struct mlx5_ib_mr *mtt;
453 
454 	mutex_lock(&odp_mr->umem_mutex);
455 	odp = odp_lookup(addr, 1, mr);
456 
457 	mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
458 		    io_virt, bcnt, addr, odp);
459 
460 next_mr:
461 	if (likely(odp)) {
462 		if (nentries)
463 			nentries++;
464 	} else {
465 		odp = ib_alloc_odp_umem(odp_mr, addr,
466 					MLX5_IMR_MTT_SIZE);
467 		if (IS_ERR(odp)) {
468 			mutex_unlock(&odp_mr->umem_mutex);
469 			return ERR_CAST(odp);
470 		}
471 
472 		mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
473 					mr->access_flags);
474 		if (IS_ERR(mtt)) {
475 			mutex_unlock(&odp_mr->umem_mutex);
476 			ib_umem_release(&odp->umem);
477 			return ERR_CAST(mtt);
478 		}
479 
480 		odp->private = mtt;
481 		mtt->umem = &odp->umem;
482 		mtt->mmkey.iova = addr;
483 		mtt->parent = mr;
484 		INIT_WORK(&odp->work, mr_leaf_free_action);
485 
486 		if (!nentries)
487 			start_idx = addr >> MLX5_IMR_MTT_SHIFT;
488 		nentries++;
489 	}
490 
491 	/* Return first odp if region not covered by single one */
492 	if (likely(!result))
493 		result = odp;
494 
495 	addr += MLX5_IMR_MTT_SIZE;
496 	if (unlikely(addr < io_virt + bcnt)) {
497 		odp = odp_next(odp);
498 		if (odp && odp->umem.address != addr)
499 			odp = NULL;
500 		goto next_mr;
501 	}
502 
503 	if (unlikely(nentries)) {
504 		ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
505 					 MLX5_IB_UPD_XLT_INDIRECT |
506 					 MLX5_IB_UPD_XLT_ATOMIC);
507 		if (ret) {
508 			mlx5_ib_err(dev, "Failed to update PAS\n");
509 			result = ERR_PTR(ret);
510 		}
511 	}
512 
513 	mutex_unlock(&odp_mr->umem_mutex);
514 	return result;
515 }
516 
517 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
518 					     struct ib_udata *udata,
519 					     int access_flags)
520 {
521 	struct mlx5_ib_mr *imr;
522 	struct ib_umem *umem;
523 
524 	umem = ib_umem_get(udata, 0, 0, access_flags, 0);
525 	if (IS_ERR(umem))
526 		return ERR_CAST(umem);
527 
528 	imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
529 	if (IS_ERR(imr)) {
530 		ib_umem_release(umem);
531 		return ERR_CAST(imr);
532 	}
533 
534 	imr->umem = umem;
535 	init_waitqueue_head(&imr->q_leaf_free);
536 	atomic_set(&imr->num_leaf_free, 0);
537 	atomic_set(&imr->num_pending_prefetch, 0);
538 
539 	return imr;
540 }
541 
542 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
543 			void *cookie)
544 {
545 	struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
546 
547 	if (mr->parent != imr)
548 		return 0;
549 
550 	ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
551 				    ib_umem_end(umem_odp));
552 
553 	if (umem_odp->dying)
554 		return 0;
555 
556 	WRITE_ONCE(umem_odp->dying, 1);
557 	atomic_inc(&imr->num_leaf_free);
558 	schedule_work(&umem_odp->work);
559 
560 	return 0;
561 }
562 
563 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
564 {
565 	struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
566 
567 	down_read(&per_mm->umem_rwsem);
568 	rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
569 				      mr_leaf_free, true, imr);
570 	up_read(&per_mm->umem_rwsem);
571 
572 	wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
573 }
574 
575 #define MLX5_PF_FLAGS_PREFETCH  BIT(0)
576 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
577 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
578 			u64 io_virt, size_t bcnt, u32 *bytes_mapped,
579 			u32 flags)
580 {
581 	int npages = 0, current_seq, page_shift, ret, np;
582 	bool implicit = false;
583 	struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
584 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
585 	bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
586 	u64 access_mask;
587 	u64 start_idx, page_mask;
588 	struct ib_umem_odp *odp;
589 	size_t size;
590 
591 	if (!odp_mr->page_list) {
592 		odp = implicit_mr_get_data(mr, io_virt, bcnt);
593 
594 		if (IS_ERR(odp))
595 			return PTR_ERR(odp);
596 		mr = odp->private;
597 		implicit = true;
598 	} else {
599 		odp = odp_mr;
600 	}
601 
602 next_mr:
603 	size = min_t(size_t, bcnt, ib_umem_end(odp) - io_virt);
604 
605 	page_shift = odp->page_shift;
606 	page_mask = ~(BIT(page_shift) - 1);
607 	start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
608 	access_mask = ODP_READ_ALLOWED_BIT;
609 
610 	if (prefetch && !downgrade && !mr->umem->writable) {
611 		/* prefetch with write-access must
612 		 * be supported by the MR
613 		 */
614 		ret = -EINVAL;
615 		goto out;
616 	}
617 
618 	if (mr->umem->writable && !downgrade)
619 		access_mask |= ODP_WRITE_ALLOWED_BIT;
620 
621 	current_seq = READ_ONCE(odp->notifiers_seq);
622 	/*
623 	 * Ensure the sequence number is valid for some time before we call
624 	 * gup.
625 	 */
626 	smp_rmb();
627 
628 	ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
629 					access_mask, current_seq);
630 
631 	if (ret < 0)
632 		goto out;
633 
634 	np = ret;
635 
636 	mutex_lock(&odp->umem_mutex);
637 	if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
638 					current_seq)) {
639 		/*
640 		 * No need to check whether the MTTs really belong to
641 		 * this MR, since ib_umem_odp_map_dma_pages already
642 		 * checks this.
643 		 */
644 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
645 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
646 	} else {
647 		ret = -EAGAIN;
648 	}
649 	mutex_unlock(&odp->umem_mutex);
650 
651 	if (ret < 0) {
652 		if (ret != -EAGAIN)
653 			mlx5_ib_err(dev, "Failed to update mkey page tables\n");
654 		goto out;
655 	}
656 
657 	if (bytes_mapped) {
658 		u32 new_mappings = (np << page_shift) -
659 			(io_virt - round_down(io_virt, 1 << page_shift));
660 		*bytes_mapped += min_t(u32, new_mappings, size);
661 	}
662 
663 	npages += np << (page_shift - PAGE_SHIFT);
664 	bcnt -= size;
665 
666 	if (unlikely(bcnt)) {
667 		struct ib_umem_odp *next;
668 
669 		io_virt += size;
670 		next = odp_next(odp);
671 		if (unlikely(!next || next->umem.address != io_virt)) {
672 			mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
673 				    io_virt, next);
674 			return -EAGAIN;
675 		}
676 		odp = next;
677 		mr = odp->private;
678 		goto next_mr;
679 	}
680 
681 	return npages;
682 
683 out:
684 	if (ret == -EAGAIN) {
685 		if (implicit || !odp->dying) {
686 			unsigned long timeout =
687 				msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
688 
689 			if (!wait_for_completion_timeout(
690 					&odp->notifier_completion,
691 					timeout)) {
692 				mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
693 					     current_seq, odp->notifiers_seq, odp->notifiers_count);
694 			}
695 		} else {
696 			/* The MR is being killed, kill the QP as well. */
697 			ret = -EFAULT;
698 		}
699 	}
700 
701 	return ret;
702 }
703 
704 struct pf_frame {
705 	struct pf_frame *next;
706 	u32 key;
707 	u64 io_virt;
708 	size_t bcnt;
709 	int depth;
710 };
711 
712 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
713 {
714 	if (!mmkey)
715 		return false;
716 	if (mmkey->type == MLX5_MKEY_MW)
717 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
718 	return mmkey->key == key;
719 }
720 
721 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
722 {
723 	struct mlx5_ib_mw *mw;
724 	struct mlx5_ib_devx_mr *devx_mr;
725 
726 	if (mmkey->type == MLX5_MKEY_MW) {
727 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
728 		return mw->ndescs;
729 	}
730 
731 	devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
732 			       mmkey);
733 	return devx_mr->ndescs;
734 }
735 
736 /*
737  * Handle a single data segment in a page-fault WQE or RDMA region.
738  *
739  * Returns number of OS pages retrieved on success. The caller may continue to
740  * the next data segment.
741  * Can return the following error codes:
742  * -EAGAIN to designate a temporary error. The caller will abort handling the
743  *  page fault and resolve it.
744  * -EFAULT when there's an error mapping the requested pages. The caller will
745  *  abort the page fault handling.
746  */
747 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
748 					 struct ib_pd *pd, u32 key,
749 					 u64 io_virt, size_t bcnt,
750 					 u32 *bytes_committed,
751 					 u32 *bytes_mapped, u32 flags)
752 {
753 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
754 	bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
755 	struct pf_frame *head = NULL, *frame;
756 	struct mlx5_core_mkey *mmkey;
757 	struct mlx5_ib_mr *mr;
758 	struct mlx5_klm *pklm;
759 	u32 *out = NULL;
760 	size_t offset;
761 	int ndescs;
762 
763 	srcu_key = srcu_read_lock(&dev->mr_srcu);
764 
765 	io_virt += *bytes_committed;
766 	bcnt -= *bytes_committed;
767 
768 next_mr:
769 	mmkey = xa_load(&dev->mdev->priv.mkey_table, mlx5_base_mkey(key));
770 	if (!mkey_is_eq(mmkey, key)) {
771 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
772 		ret = -EFAULT;
773 		goto srcu_unlock;
774 	}
775 
776 	if (prefetch && mmkey->type != MLX5_MKEY_MR) {
777 		mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n");
778 		ret = -EINVAL;
779 		goto srcu_unlock;
780 	}
781 
782 	switch (mmkey->type) {
783 	case MLX5_MKEY_MR:
784 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
785 		if (!mr->live || !mr->ibmr.pd) {
786 			mlx5_ib_dbg(dev, "got dead MR\n");
787 			ret = -EFAULT;
788 			goto srcu_unlock;
789 		}
790 
791 		if (prefetch) {
792 			if (!is_odp_mr(mr) ||
793 			    mr->ibmr.pd != pd) {
794 				mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n",
795 					    is_odp_mr(mr) ?  "MR is not ODP" :
796 					    "PD is not of the MR");
797 				ret = -EINVAL;
798 				goto srcu_unlock;
799 			}
800 		}
801 
802 		if (!is_odp_mr(mr)) {
803 			mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
804 				    key);
805 			if (bytes_mapped)
806 				*bytes_mapped += bcnt;
807 			ret = 0;
808 			goto srcu_unlock;
809 		}
810 
811 		ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags);
812 		if (ret < 0)
813 			goto srcu_unlock;
814 
815 		npages += ret;
816 		ret = 0;
817 		break;
818 
819 	case MLX5_MKEY_MW:
820 	case MLX5_MKEY_INDIRECT_DEVX:
821 		ndescs = get_indirect_num_descs(mmkey);
822 
823 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
824 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
825 			ret = -EFAULT;
826 			goto srcu_unlock;
827 		}
828 
829 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
830 			sizeof(*pklm) * (ndescs - 2);
831 
832 		if (outlen > cur_outlen) {
833 			kfree(out);
834 			out = kzalloc(outlen, GFP_KERNEL);
835 			if (!out) {
836 				ret = -ENOMEM;
837 				goto srcu_unlock;
838 			}
839 			cur_outlen = outlen;
840 		}
841 
842 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
843 						       bsf0_klm0_pas_mtt0_1);
844 
845 		ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
846 		if (ret)
847 			goto srcu_unlock;
848 
849 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
850 					      memory_key_mkey_entry.start_addr);
851 
852 		for (i = 0; bcnt && i < ndescs; i++, pklm++) {
853 			if (offset >= be32_to_cpu(pklm->bcount)) {
854 				offset -= be32_to_cpu(pklm->bcount);
855 				continue;
856 			}
857 
858 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
859 			if (!frame) {
860 				ret = -ENOMEM;
861 				goto srcu_unlock;
862 			}
863 
864 			frame->key = be32_to_cpu(pklm->key);
865 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
866 			frame->bcnt = min_t(size_t, bcnt,
867 					    be32_to_cpu(pklm->bcount) - offset);
868 			frame->depth = depth + 1;
869 			frame->next = head;
870 			head = frame;
871 
872 			bcnt -= frame->bcnt;
873 			offset = 0;
874 		}
875 		break;
876 
877 	default:
878 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
879 		ret = -EFAULT;
880 		goto srcu_unlock;
881 	}
882 
883 	if (head) {
884 		frame = head;
885 		head = frame->next;
886 
887 		key = frame->key;
888 		io_virt = frame->io_virt;
889 		bcnt = frame->bcnt;
890 		depth = frame->depth;
891 		kfree(frame);
892 
893 		goto next_mr;
894 	}
895 
896 srcu_unlock:
897 	while (head) {
898 		frame = head;
899 		head = frame->next;
900 		kfree(frame);
901 	}
902 	kfree(out);
903 
904 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
905 	*bytes_committed = 0;
906 	return ret ? ret : npages;
907 }
908 
909 /**
910  * Parse a series of data segments for page fault handling.
911  *
912  * @pfault contains page fault information.
913  * @wqe points at the first data segment in the WQE.
914  * @wqe_end points after the end of the WQE.
915  * @bytes_mapped receives the number of bytes that the function was able to
916  *               map. This allows the caller to decide intelligently whether
917  *               enough memory was mapped to resolve the page fault
918  *               successfully (e.g. enough for the next MTU, or the entire
919  *               WQE).
920  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
921  *                  the committed bytes).
922  *
923  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
924  * negative error code.
925  */
926 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
927 				   struct mlx5_pagefault *pfault,
928 				   void *wqe,
929 				   void *wqe_end, u32 *bytes_mapped,
930 				   u32 *total_wqe_bytes, bool receive_queue)
931 {
932 	int ret = 0, npages = 0;
933 	u64 io_virt;
934 	u32 key;
935 	u32 byte_count;
936 	size_t bcnt;
937 	int inline_segment;
938 
939 	if (bytes_mapped)
940 		*bytes_mapped = 0;
941 	if (total_wqe_bytes)
942 		*total_wqe_bytes = 0;
943 
944 	while (wqe < wqe_end) {
945 		struct mlx5_wqe_data_seg *dseg = wqe;
946 
947 		io_virt = be64_to_cpu(dseg->addr);
948 		key = be32_to_cpu(dseg->lkey);
949 		byte_count = be32_to_cpu(dseg->byte_count);
950 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
951 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
952 
953 		if (inline_segment) {
954 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
955 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
956 				     16);
957 		} else {
958 			wqe += sizeof(*dseg);
959 		}
960 
961 		/* receive WQE end of sg list. */
962 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
963 		    io_virt == 0)
964 			break;
965 
966 		if (!inline_segment && total_wqe_bytes) {
967 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
968 					pfault->bytes_committed);
969 		}
970 
971 		/* A zero length data segment designates a length of 2GB. */
972 		if (bcnt == 0)
973 			bcnt = 1U << 31;
974 
975 		if (inline_segment || bcnt <= pfault->bytes_committed) {
976 			pfault->bytes_committed -=
977 				min_t(size_t, bcnt,
978 				      pfault->bytes_committed);
979 			continue;
980 		}
981 
982 		ret = pagefault_single_data_segment(dev, NULL, key,
983 						    io_virt, bcnt,
984 						    &pfault->bytes_committed,
985 						    bytes_mapped, 0);
986 		if (ret < 0)
987 			break;
988 		npages += ret;
989 	}
990 
991 	return ret < 0 ? ret : npages;
992 }
993 
994 static const u32 mlx5_ib_odp_opcode_cap[] = {
995 	[MLX5_OPCODE_SEND]	       = IB_ODP_SUPPORT_SEND,
996 	[MLX5_OPCODE_SEND_IMM]	       = IB_ODP_SUPPORT_SEND,
997 	[MLX5_OPCODE_SEND_INVAL]       = IB_ODP_SUPPORT_SEND,
998 	[MLX5_OPCODE_RDMA_WRITE]       = IB_ODP_SUPPORT_WRITE,
999 	[MLX5_OPCODE_RDMA_WRITE_IMM]   = IB_ODP_SUPPORT_WRITE,
1000 	[MLX5_OPCODE_RDMA_READ]	       = IB_ODP_SUPPORT_READ,
1001 	[MLX5_OPCODE_ATOMIC_CS]	       = IB_ODP_SUPPORT_ATOMIC,
1002 	[MLX5_OPCODE_ATOMIC_FA]	       = IB_ODP_SUPPORT_ATOMIC,
1003 };
1004 
1005 /*
1006  * Parse initiator WQE. Advances the wqe pointer to point at the
1007  * scatter-gather list, and set wqe_end to the end of the WQE.
1008  */
1009 static int mlx5_ib_mr_initiator_pfault_handler(
1010 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1011 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1012 {
1013 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1014 	u16 wqe_index = pfault->wqe.wqe_index;
1015 	u32 transport_caps;
1016 	struct mlx5_base_av *av;
1017 	unsigned ds, opcode;
1018 #if defined(DEBUG)
1019 	u32 ctrl_wqe_index, ctrl_qpn;
1020 #endif
1021 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1022 
1023 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1024 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1025 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1026 			    ds, wqe_length);
1027 		return -EFAULT;
1028 	}
1029 
1030 	if (ds == 0) {
1031 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1032 			    wqe_index, qpn);
1033 		return -EFAULT;
1034 	}
1035 
1036 #if defined(DEBUG)
1037 	ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
1038 			MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
1039 			MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
1040 	if (wqe_index != ctrl_wqe_index) {
1041 		mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
1042 			    wqe_index, qpn,
1043 			    ctrl_wqe_index);
1044 		return -EFAULT;
1045 	}
1046 
1047 	ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
1048 		MLX5_WQE_CTRL_QPN_SHIFT;
1049 	if (qpn != ctrl_qpn) {
1050 		mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
1051 			    wqe_index, qpn,
1052 			    ctrl_qpn);
1053 		return -EFAULT;
1054 	}
1055 #endif /* DEBUG */
1056 
1057 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1058 	*wqe += sizeof(*ctrl);
1059 
1060 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1061 		 MLX5_WQE_CTRL_OPCODE_MASK;
1062 
1063 	switch (qp->ibqp.qp_type) {
1064 	case IB_QPT_XRC_INI:
1065 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1066 		transport_caps = dev->odp_caps.per_transport_caps.xrc_odp_caps;
1067 		break;
1068 	case IB_QPT_RC:
1069 		transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
1070 		break;
1071 	case IB_QPT_UD:
1072 		transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
1073 		break;
1074 	default:
1075 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
1076 			    qp->ibqp.qp_type);
1077 		return -EFAULT;
1078 	}
1079 
1080 	if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
1081 		     !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
1082 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
1083 			    opcode);
1084 		return -EFAULT;
1085 	}
1086 
1087 	if (qp->ibqp.qp_type == IB_QPT_UD) {
1088 		av = *wqe;
1089 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1090 			*wqe += sizeof(struct mlx5_av);
1091 		else
1092 			*wqe += sizeof(struct mlx5_base_av);
1093 	}
1094 
1095 	switch (opcode) {
1096 	case MLX5_OPCODE_RDMA_WRITE:
1097 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1098 	case MLX5_OPCODE_RDMA_READ:
1099 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1100 		break;
1101 	case MLX5_OPCODE_ATOMIC_CS:
1102 	case MLX5_OPCODE_ATOMIC_FA:
1103 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1104 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1105 		break;
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 /*
1112  * Parse responder WQE and set wqe_end to the end of the WQE.
1113  */
1114 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1115 						   struct mlx5_ib_srq *srq,
1116 						   void **wqe, void **wqe_end,
1117 						   int wqe_length)
1118 {
1119 	int wqe_size = 1 << srq->msrq.wqe_shift;
1120 
1121 	if (wqe_size > wqe_length) {
1122 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1123 		return -EFAULT;
1124 	}
1125 
1126 	*wqe_end = *wqe + wqe_size;
1127 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1128 
1129 	return 0;
1130 }
1131 
1132 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1133 						  struct mlx5_ib_qp *qp,
1134 						  void *wqe, void **wqe_end,
1135 						  int wqe_length)
1136 {
1137 	struct mlx5_ib_wq *wq = &qp->rq;
1138 	int wqe_size = 1 << wq->wqe_shift;
1139 
1140 	if (qp->wq_sig) {
1141 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1142 		return -EFAULT;
1143 	}
1144 
1145 	if (wqe_size > wqe_length) {
1146 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1147 		return -EFAULT;
1148 	}
1149 
1150 	switch (qp->ibqp.qp_type) {
1151 	case IB_QPT_RC:
1152 		if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1153 		      IB_ODP_SUPPORT_RECV))
1154 			goto invalid_transport_or_opcode;
1155 		break;
1156 	default:
1157 invalid_transport_or_opcode:
1158 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1159 			    qp->ibqp.qp_type);
1160 		return -EFAULT;
1161 	}
1162 
1163 	*wqe_end = wqe + wqe_size;
1164 
1165 	return 0;
1166 }
1167 
1168 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1169 						       u32 wq_num, int pf_type)
1170 {
1171 	struct mlx5_core_rsc_common *common = NULL;
1172 	struct mlx5_core_srq *srq;
1173 
1174 	switch (pf_type) {
1175 	case MLX5_WQE_PF_TYPE_RMP:
1176 		srq = mlx5_cmd_get_srq(dev, wq_num);
1177 		if (srq)
1178 			common = &srq->common;
1179 		break;
1180 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1181 	case MLX5_WQE_PF_TYPE_RESP:
1182 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1183 		common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1184 		break;
1185 	default:
1186 		break;
1187 	}
1188 
1189 	return common;
1190 }
1191 
1192 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1193 {
1194 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1195 
1196 	return to_mibqp(mqp);
1197 }
1198 
1199 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1200 {
1201 	struct mlx5_core_srq *msrq =
1202 		container_of(res, struct mlx5_core_srq, common);
1203 
1204 	return to_mibsrq(msrq);
1205 }
1206 
1207 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1208 					  struct mlx5_pagefault *pfault)
1209 {
1210 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1211 	u16 wqe_index = pfault->wqe.wqe_index;
1212 	void *wqe = NULL, *wqe_end = NULL;
1213 	u32 bytes_mapped, total_wqe_bytes;
1214 	struct mlx5_core_rsc_common *res;
1215 	int resume_with_error = 1;
1216 	struct mlx5_ib_qp *qp;
1217 	size_t bytes_copied;
1218 	int ret = 0;
1219 
1220 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1221 	if (!res) {
1222 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1223 		return;
1224 	}
1225 
1226 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1227 	    res->res != MLX5_RES_XSRQ) {
1228 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1229 			    pfault->type);
1230 		goto resolve_page_fault;
1231 	}
1232 
1233 	wqe = (void *)__get_free_page(GFP_KERNEL);
1234 	if (!wqe) {
1235 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1236 		goto resolve_page_fault;
1237 	}
1238 
1239 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1240 	if (qp && sq) {
1241 		ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1242 					       &bytes_copied);
1243 		if (ret)
1244 			goto read_user;
1245 		ret = mlx5_ib_mr_initiator_pfault_handler(
1246 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1247 	} else if (qp && !sq) {
1248 		ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1249 					       &bytes_copied);
1250 		if (ret)
1251 			goto read_user;
1252 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1253 			dev, qp, wqe, &wqe_end, bytes_copied);
1254 	} else if (!qp) {
1255 		struct mlx5_ib_srq *srq = res_to_srq(res);
1256 
1257 		ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1258 						&bytes_copied);
1259 		if (ret)
1260 			goto read_user;
1261 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1262 			dev, srq, &wqe, &wqe_end, bytes_copied);
1263 	}
1264 
1265 	if (ret < 0 || wqe >= wqe_end)
1266 		goto resolve_page_fault;
1267 
1268 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1269 				      &total_wqe_bytes, !sq);
1270 	if (ret == -EAGAIN)
1271 		goto out;
1272 
1273 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1274 		goto resolve_page_fault;
1275 
1276 out:
1277 	ret = 0;
1278 	resume_with_error = 0;
1279 
1280 read_user:
1281 	if (ret)
1282 		mlx5_ib_err(
1283 			dev,
1284 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1285 			ret, wqe_index, pfault->token);
1286 
1287 resolve_page_fault:
1288 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1289 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1290 		    pfault->wqe.wq_num, resume_with_error,
1291 		    pfault->type);
1292 	mlx5_core_res_put(res);
1293 	free_page((unsigned long)wqe);
1294 }
1295 
1296 static int pages_in_range(u64 address, u32 length)
1297 {
1298 	return (ALIGN(address + length, PAGE_SIZE) -
1299 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1300 }
1301 
1302 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1303 					   struct mlx5_pagefault *pfault)
1304 {
1305 	u64 address;
1306 	u32 length;
1307 	u32 prefetch_len = pfault->bytes_committed;
1308 	int prefetch_activated = 0;
1309 	u32 rkey = pfault->rdma.r_key;
1310 	int ret;
1311 
1312 	/* The RDMA responder handler handles the page fault in two parts.
1313 	 * First it brings the necessary pages for the current packet
1314 	 * (and uses the pfault context), and then (after resuming the QP)
1315 	 * prefetches more pages. The second operation cannot use the pfault
1316 	 * context and therefore uses the dummy_pfault context allocated on
1317 	 * the stack */
1318 	pfault->rdma.rdma_va += pfault->bytes_committed;
1319 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1320 					 pfault->rdma.rdma_op_len);
1321 	pfault->bytes_committed = 0;
1322 
1323 	address = pfault->rdma.rdma_va;
1324 	length  = pfault->rdma.rdma_op_len;
1325 
1326 	/* For some operations, the hardware cannot tell the exact message
1327 	 * length, and in those cases it reports zero. Use prefetch
1328 	 * logic. */
1329 	if (length == 0) {
1330 		prefetch_activated = 1;
1331 		length = pfault->rdma.packet_size;
1332 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1333 	}
1334 
1335 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1336 					    &pfault->bytes_committed, NULL,
1337 					    0);
1338 	if (ret == -EAGAIN) {
1339 		/* We're racing with an invalidation, don't prefetch */
1340 		prefetch_activated = 0;
1341 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1342 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1343 		if (ret != -ENOENT)
1344 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1345 				    ret, pfault->token, pfault->type);
1346 		return;
1347 	}
1348 
1349 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1350 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1351 		    pfault->token, pfault->type,
1352 		    prefetch_activated);
1353 
1354 	/* At this point, there might be a new pagefault already arriving in
1355 	 * the eq, switch to the dummy pagefault for the rest of the
1356 	 * processing. We're still OK with the objects being alive as the
1357 	 * work-queue is being fenced. */
1358 
1359 	if (prefetch_activated) {
1360 		u32 bytes_committed = 0;
1361 
1362 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1363 						    prefetch_len,
1364 						    &bytes_committed, NULL,
1365 						    0);
1366 		if (ret < 0 && ret != -EAGAIN) {
1367 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1368 				    ret, pfault->token, address, prefetch_len);
1369 		}
1370 	}
1371 }
1372 
1373 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1374 {
1375 	u8 event_subtype = pfault->event_subtype;
1376 
1377 	switch (event_subtype) {
1378 	case MLX5_PFAULT_SUBTYPE_WQE:
1379 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1380 		break;
1381 	case MLX5_PFAULT_SUBTYPE_RDMA:
1382 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1383 		break;
1384 	default:
1385 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1386 			    event_subtype);
1387 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1388 	}
1389 }
1390 
1391 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1392 {
1393 	struct mlx5_pagefault *pfault = container_of(work,
1394 						     struct mlx5_pagefault,
1395 						     work);
1396 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1397 
1398 	mlx5_ib_pfault(eq->dev, pfault);
1399 	mempool_free(pfault, eq->pool);
1400 }
1401 
1402 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1403 {
1404 	struct mlx5_eqe_page_fault *pf_eqe;
1405 	struct mlx5_pagefault *pfault;
1406 	struct mlx5_eqe *eqe;
1407 	int cc = 0;
1408 
1409 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1410 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1411 		if (!pfault) {
1412 			schedule_work(&eq->work);
1413 			break;
1414 		}
1415 
1416 		pf_eqe = &eqe->data.page_fault;
1417 		pfault->event_subtype = eqe->sub_type;
1418 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1419 
1420 		mlx5_ib_dbg(eq->dev,
1421 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1422 			    eqe->sub_type, pfault->bytes_committed);
1423 
1424 		switch (eqe->sub_type) {
1425 		case MLX5_PFAULT_SUBTYPE_RDMA:
1426 			/* RDMA based event */
1427 			pfault->type =
1428 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1429 			pfault->token =
1430 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1431 				MLX5_24BIT_MASK;
1432 			pfault->rdma.r_key =
1433 				be32_to_cpu(pf_eqe->rdma.r_key);
1434 			pfault->rdma.packet_size =
1435 				be16_to_cpu(pf_eqe->rdma.packet_length);
1436 			pfault->rdma.rdma_op_len =
1437 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1438 			pfault->rdma.rdma_va =
1439 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1440 			mlx5_ib_dbg(eq->dev,
1441 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1442 				    pfault->type, pfault->token,
1443 				    pfault->rdma.r_key);
1444 			mlx5_ib_dbg(eq->dev,
1445 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1446 				    pfault->rdma.rdma_op_len,
1447 				    pfault->rdma.rdma_va);
1448 			break;
1449 
1450 		case MLX5_PFAULT_SUBTYPE_WQE:
1451 			/* WQE based event */
1452 			pfault->type =
1453 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1454 			pfault->token =
1455 				be32_to_cpu(pf_eqe->wqe.token);
1456 			pfault->wqe.wq_num =
1457 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1458 				MLX5_24BIT_MASK;
1459 			pfault->wqe.wqe_index =
1460 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1461 			pfault->wqe.packet_size =
1462 				be16_to_cpu(pf_eqe->wqe.packet_length);
1463 			mlx5_ib_dbg(eq->dev,
1464 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1465 				    pfault->type, pfault->token,
1466 				    pfault->wqe.wq_num,
1467 				    pfault->wqe.wqe_index);
1468 			break;
1469 
1470 		default:
1471 			mlx5_ib_warn(eq->dev,
1472 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1473 				     eqe->sub_type);
1474 			/* Unsupported page faults should still be
1475 			 * resolved by the page fault handler
1476 			 */
1477 		}
1478 
1479 		pfault->eq = eq;
1480 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1481 		queue_work(eq->wq, &pfault->work);
1482 
1483 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1484 	}
1485 
1486 	mlx5_eq_update_ci(eq->core, cc, 1);
1487 }
1488 
1489 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1490 			     void *data)
1491 {
1492 	struct mlx5_ib_pf_eq *eq =
1493 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1494 	unsigned long flags;
1495 
1496 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1497 		mlx5_ib_eq_pf_process(eq);
1498 		spin_unlock_irqrestore(&eq->lock, flags);
1499 	} else {
1500 		schedule_work(&eq->work);
1501 	}
1502 
1503 	return IRQ_HANDLED;
1504 }
1505 
1506 /* mempool_refill() was proposed but unfortunately wasn't accepted
1507  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1508  * Cheap workaround.
1509  */
1510 static void mempool_refill(mempool_t *pool)
1511 {
1512 	while (pool->curr_nr < pool->min_nr)
1513 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1514 }
1515 
1516 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1517 {
1518 	struct mlx5_ib_pf_eq *eq =
1519 		container_of(work, struct mlx5_ib_pf_eq, work);
1520 
1521 	mempool_refill(eq->pool);
1522 
1523 	spin_lock_irq(&eq->lock);
1524 	mlx5_ib_eq_pf_process(eq);
1525 	spin_unlock_irq(&eq->lock);
1526 }
1527 
1528 enum {
1529 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1530 	MLX5_IB_NUM_PF_DRAIN	= 64,
1531 };
1532 
1533 static int
1534 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1535 {
1536 	struct mlx5_eq_param param = {};
1537 	int err;
1538 
1539 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1540 	spin_lock_init(&eq->lock);
1541 	eq->dev = dev;
1542 
1543 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1544 					       sizeof(struct mlx5_pagefault));
1545 	if (!eq->pool)
1546 		return -ENOMEM;
1547 
1548 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1549 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1550 				 MLX5_NUM_CMD_EQE);
1551 	if (!eq->wq) {
1552 		err = -ENOMEM;
1553 		goto err_mempool;
1554 	}
1555 
1556 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1557 	param = (struct mlx5_eq_param) {
1558 		.irq_index = 0,
1559 		.nent = MLX5_IB_NUM_PF_EQE,
1560 	};
1561 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1562 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1563 	if (IS_ERR(eq->core)) {
1564 		err = PTR_ERR(eq->core);
1565 		goto err_wq;
1566 	}
1567 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1568 	if (err) {
1569 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1570 		goto err_eq;
1571 	}
1572 
1573 	return 0;
1574 err_eq:
1575 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1576 err_wq:
1577 	destroy_workqueue(eq->wq);
1578 err_mempool:
1579 	mempool_destroy(eq->pool);
1580 	return err;
1581 }
1582 
1583 static int
1584 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1585 {
1586 	int err;
1587 
1588 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1589 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1590 	cancel_work_sync(&eq->work);
1591 	destroy_workqueue(eq->wq);
1592 	mempool_destroy(eq->pool);
1593 
1594 	return err;
1595 }
1596 
1597 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1598 {
1599 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1600 		return;
1601 
1602 	switch (ent->order - 2) {
1603 	case MLX5_IMR_MTT_CACHE_ENTRY:
1604 		ent->page = PAGE_SHIFT;
1605 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1606 			   sizeof(struct mlx5_mtt) /
1607 			   MLX5_IB_UMR_OCTOWORD;
1608 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1609 		ent->limit = 0;
1610 		break;
1611 
1612 	case MLX5_IMR_KSM_CACHE_ENTRY:
1613 		ent->page = MLX5_KSM_PAGE_SHIFT;
1614 		ent->xlt = mlx5_imr_ksm_entries *
1615 			   sizeof(struct mlx5_klm) /
1616 			   MLX5_IB_UMR_OCTOWORD;
1617 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1618 		ent->limit = 0;
1619 		break;
1620 	}
1621 }
1622 
1623 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1624 	.advise_mr = mlx5_ib_advise_mr,
1625 };
1626 
1627 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1628 {
1629 	int ret = 0;
1630 
1631 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT)
1632 		ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1633 
1634 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1635 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1636 		if (ret) {
1637 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1638 			return ret;
1639 		}
1640 	}
1641 
1642 	if (!MLX5_CAP_GEN(dev->mdev, pg))
1643 		return ret;
1644 
1645 	ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1646 
1647 	return ret;
1648 }
1649 
1650 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1651 {
1652 	if (!MLX5_CAP_GEN(dev->mdev, pg))
1653 		return;
1654 
1655 	mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1656 }
1657 
1658 int mlx5_ib_odp_init(void)
1659 {
1660 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1661 				       MLX5_IMR_MTT_BITS);
1662 
1663 	return 0;
1664 }
1665 
1666 struct prefetch_mr_work {
1667 	struct work_struct work;
1668 	struct ib_pd *pd;
1669 	u32 pf_flags;
1670 	u32 num_sge;
1671 	struct ib_sge sg_list[0];
1672 };
1673 
1674 static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev,
1675 				     struct ib_sge *sg_list, u32 num_sge,
1676 				     u32 from)
1677 {
1678 	u32 i;
1679 	int srcu_key;
1680 
1681 	srcu_key = srcu_read_lock(&dev->mr_srcu);
1682 
1683 	for (i = from; i < num_sge; ++i) {
1684 		struct mlx5_core_mkey *mmkey;
1685 		struct mlx5_ib_mr *mr;
1686 
1687 		mmkey = xa_load(&dev->mdev->priv.mkey_table,
1688 				mlx5_base_mkey(sg_list[i].lkey));
1689 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1690 		atomic_dec(&mr->num_pending_prefetch);
1691 	}
1692 
1693 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
1694 }
1695 
1696 static bool num_pending_prefetch_inc(struct ib_pd *pd,
1697 				     struct ib_sge *sg_list, u32 num_sge)
1698 {
1699 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1700 	bool ret = true;
1701 	u32 i;
1702 
1703 	for (i = 0; i < num_sge; ++i) {
1704 		struct mlx5_core_mkey *mmkey;
1705 		struct mlx5_ib_mr *mr;
1706 
1707 		mmkey = xa_load(&dev->mdev->priv.mkey_table,
1708 				mlx5_base_mkey(sg_list[i].lkey));
1709 		if (!mmkey || mmkey->key != sg_list[i].lkey) {
1710 			ret = false;
1711 			break;
1712 		}
1713 
1714 		if (mmkey->type != MLX5_MKEY_MR) {
1715 			ret = false;
1716 			break;
1717 		}
1718 
1719 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1720 
1721 		if (mr->ibmr.pd != pd) {
1722 			ret = false;
1723 			break;
1724 		}
1725 
1726 		if (!mr->live) {
1727 			ret = false;
1728 			break;
1729 		}
1730 
1731 		atomic_inc(&mr->num_pending_prefetch);
1732 	}
1733 
1734 	if (!ret)
1735 		num_pending_prefetch_dec(dev, sg_list, i, 0);
1736 
1737 	return ret;
1738 }
1739 
1740 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags,
1741 				    struct ib_sge *sg_list, u32 num_sge)
1742 {
1743 	u32 i;
1744 	int ret = 0;
1745 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1746 
1747 	for (i = 0; i < num_sge; ++i) {
1748 		struct ib_sge *sg = &sg_list[i];
1749 		int bytes_committed = 0;
1750 
1751 		ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr,
1752 						    sg->length,
1753 						    &bytes_committed, NULL,
1754 						    pf_flags);
1755 		if (ret < 0)
1756 			break;
1757 	}
1758 
1759 	return ret < 0 ? ret : 0;
1760 }
1761 
1762 static void mlx5_ib_prefetch_mr_work(struct work_struct *work)
1763 {
1764 	struct prefetch_mr_work *w =
1765 		container_of(work, struct prefetch_mr_work, work);
1766 
1767 	if (ib_device_try_get(w->pd->device)) {
1768 		mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list,
1769 					 w->num_sge);
1770 		ib_device_put(w->pd->device);
1771 	}
1772 
1773 	num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list,
1774 				 w->num_sge, 0);
1775 	kvfree(w);
1776 }
1777 
1778 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1779 			       enum ib_uverbs_advise_mr_advice advice,
1780 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1781 {
1782 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1783 	u32 pf_flags = MLX5_PF_FLAGS_PREFETCH;
1784 	struct prefetch_mr_work *work;
1785 	bool valid_req;
1786 	int srcu_key;
1787 
1788 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1789 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1790 
1791 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1792 		return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list,
1793 						num_sge);
1794 
1795 	work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL);
1796 	if (!work)
1797 		return -ENOMEM;
1798 
1799 	memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge));
1800 
1801 	/* It is guaranteed that the pd when work is executed is the pd when
1802 	 * work was queued since pd can't be destroyed while it holds MRs and
1803 	 * destroying a MR leads to flushing the workquque
1804 	 */
1805 	work->pd = pd;
1806 	work->pf_flags = pf_flags;
1807 	work->num_sge = num_sge;
1808 
1809 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1810 
1811 	srcu_key = srcu_read_lock(&dev->mr_srcu);
1812 
1813 	valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge);
1814 	if (valid_req)
1815 		queue_work(system_unbound_wq, &work->work);
1816 	else
1817 		kvfree(work);
1818 
1819 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
1820 
1821 	return valid_req ? 0 : -EINVAL;
1822 }
1823