1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem.h> 34 #include <rdma/ib_umem_odp.h> 35 #include <linux/kernel.h> 36 37 #include "mlx5_ib.h" 38 #include "cmd.h" 39 40 #include <linux/mlx5/eq.h> 41 42 /* Contains the details of a pagefault. */ 43 struct mlx5_pagefault { 44 u32 bytes_committed; 45 u32 token; 46 u8 event_subtype; 47 u8 type; 48 union { 49 /* Initiator or send message responder pagefault details. */ 50 struct { 51 /* Received packet size, only valid for responders. */ 52 u32 packet_size; 53 /* 54 * Number of resource holding WQE, depends on type. 55 */ 56 u32 wq_num; 57 /* 58 * WQE index. Refers to either the send queue or 59 * receive queue, according to event_subtype. 60 */ 61 u16 wqe_index; 62 } wqe; 63 /* RDMA responder pagefault details */ 64 struct { 65 u32 r_key; 66 /* 67 * Received packet size, minimal size page fault 68 * resolution required for forward progress. 69 */ 70 u32 packet_size; 71 u32 rdma_op_len; 72 u64 rdma_va; 73 } rdma; 74 }; 75 76 struct mlx5_ib_pf_eq *eq; 77 struct work_struct work; 78 }; 79 80 #define MAX_PREFETCH_LEN (4*1024*1024U) 81 82 /* Timeout in ms to wait for an active mmu notifier to complete when handling 83 * a pagefault. */ 84 #define MMU_NOTIFIER_TIMEOUT 1000 85 86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 91 92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 93 94 static u64 mlx5_imr_ksm_entries; 95 96 static int check_parent(struct ib_umem_odp *odp, 97 struct mlx5_ib_mr *parent) 98 { 99 struct mlx5_ib_mr *mr = odp->private; 100 101 return mr && mr->parent == parent && !odp->dying; 102 } 103 104 static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr) 105 { 106 if (WARN_ON(!mr || !is_odp_mr(mr))) 107 return NULL; 108 109 return to_ib_umem_odp(mr->umem)->per_mm; 110 } 111 112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp) 113 { 114 struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent; 115 struct ib_ucontext_per_mm *per_mm = odp->per_mm; 116 struct rb_node *rb; 117 118 down_read(&per_mm->umem_rwsem); 119 while (1) { 120 rb = rb_next(&odp->interval_tree.rb); 121 if (!rb) 122 goto not_found; 123 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb); 124 if (check_parent(odp, parent)) 125 goto end; 126 } 127 not_found: 128 odp = NULL; 129 end: 130 up_read(&per_mm->umem_rwsem); 131 return odp; 132 } 133 134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length, 135 struct mlx5_ib_mr *parent) 136 { 137 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent); 138 struct ib_umem_odp *odp; 139 struct rb_node *rb; 140 141 down_read(&per_mm->umem_rwsem); 142 odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length); 143 if (!odp) 144 goto end; 145 146 while (1) { 147 if (check_parent(odp, parent)) 148 goto end; 149 rb = rb_next(&odp->interval_tree.rb); 150 if (!rb) 151 goto not_found; 152 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb); 153 if (ib_umem_start(odp) > start + length) 154 goto not_found; 155 } 156 not_found: 157 odp = NULL; 158 end: 159 up_read(&per_mm->umem_rwsem); 160 return odp; 161 } 162 163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset, 164 size_t nentries, struct mlx5_ib_mr *mr, int flags) 165 { 166 struct ib_pd *pd = mr->ibmr.pd; 167 struct mlx5_ib_dev *dev = to_mdev(pd->device); 168 struct ib_umem_odp *odp; 169 unsigned long va; 170 int i; 171 172 if (flags & MLX5_IB_UPD_XLT_ZAP) { 173 for (i = 0; i < nentries; i++, pklm++) { 174 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 175 pklm->key = cpu_to_be32(dev->null_mkey); 176 pklm->va = 0; 177 } 178 return; 179 } 180 181 odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE, 182 nentries * MLX5_IMR_MTT_SIZE, mr); 183 184 for (i = 0; i < nentries; i++, pklm++) { 185 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 186 va = (offset + i) * MLX5_IMR_MTT_SIZE; 187 if (odp && odp->umem.address == va) { 188 struct mlx5_ib_mr *mtt = odp->private; 189 190 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 191 odp = odp_next(odp); 192 } else { 193 pklm->key = cpu_to_be32(dev->null_mkey); 194 } 195 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n", 196 i, va, be32_to_cpu(pklm->key)); 197 } 198 } 199 200 static void mr_leaf_free_action(struct work_struct *work) 201 { 202 struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work); 203 int idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 204 struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent; 205 206 mr->parent = NULL; 207 synchronize_srcu(&mr->dev->mr_srcu); 208 209 ib_umem_release(&odp->umem); 210 if (imr->live) 211 mlx5_ib_update_xlt(imr, idx, 1, 0, 212 MLX5_IB_UPD_XLT_INDIRECT | 213 MLX5_IB_UPD_XLT_ATOMIC); 214 mlx5_mr_cache_free(mr->dev, mr); 215 216 if (atomic_dec_and_test(&imr->num_leaf_free)) 217 wake_up(&imr->q_leaf_free); 218 } 219 220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start, 221 unsigned long end) 222 { 223 struct mlx5_ib_mr *mr; 224 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / 225 sizeof(struct mlx5_mtt)) - 1; 226 u64 idx = 0, blk_start_idx = 0; 227 int in_block = 0; 228 u64 addr; 229 230 if (!umem_odp) { 231 pr_err("invalidation called on NULL umem or non-ODP umem\n"); 232 return; 233 } 234 235 mr = umem_odp->private; 236 237 if (!mr || !mr->ibmr.pd) 238 return; 239 240 start = max_t(u64, ib_umem_start(umem_odp), start); 241 end = min_t(u64, ib_umem_end(umem_odp), end); 242 243 /* 244 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 245 * while we are doing the invalidation, no page fault will attempt to 246 * overwrite the same MTTs. Concurent invalidations might race us, 247 * but they will write 0s as well, so no difference in the end result. 248 */ 249 250 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { 251 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 252 /* 253 * Strive to write the MTTs in chunks, but avoid overwriting 254 * non-existing MTTs. The huristic here can be improved to 255 * estimate the cost of another UMR vs. the cost of bigger 256 * UMR. 257 */ 258 if (umem_odp->dma_list[idx] & 259 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 260 if (!in_block) { 261 blk_start_idx = idx; 262 in_block = 1; 263 } 264 } else { 265 u64 umr_offset = idx & umr_block_mask; 266 267 if (in_block && umr_offset == 0) { 268 mlx5_ib_update_xlt(mr, blk_start_idx, 269 idx - blk_start_idx, 0, 270 MLX5_IB_UPD_XLT_ZAP | 271 MLX5_IB_UPD_XLT_ATOMIC); 272 in_block = 0; 273 } 274 } 275 } 276 if (in_block) 277 mlx5_ib_update_xlt(mr, blk_start_idx, 278 idx - blk_start_idx + 1, 0, 279 MLX5_IB_UPD_XLT_ZAP | 280 MLX5_IB_UPD_XLT_ATOMIC); 281 /* 282 * We are now sure that the device will not access the 283 * memory. We can safely unmap it, and mark it as dirty if 284 * needed. 285 */ 286 287 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 288 289 if (unlikely(!umem_odp->npages && mr->parent && 290 !umem_odp->dying)) { 291 WRITE_ONCE(umem_odp->dying, 1); 292 atomic_inc(&mr->parent->num_leaf_free); 293 schedule_work(&umem_odp->work); 294 } 295 } 296 297 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) 298 { 299 struct ib_odp_caps *caps = &dev->odp_caps; 300 301 memset(caps, 0, sizeof(*caps)); 302 303 if (!MLX5_CAP_GEN(dev->mdev, pg)) 304 return; 305 306 caps->general_caps = IB_ODP_SUPPORT; 307 308 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 309 dev->odp_max_size = U64_MAX; 310 else 311 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 312 313 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) 314 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 315 316 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) 317 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 318 319 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) 320 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 321 322 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) 323 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 324 325 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) 326 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 327 328 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) 329 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 330 331 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) 332 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 333 334 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) 335 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 336 337 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) 338 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 339 340 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) 341 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 342 343 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) 344 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 345 346 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) 347 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 348 349 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) 350 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 351 352 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) 353 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 354 355 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 356 MLX5_CAP_GEN(dev->mdev, null_mkey) && 357 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 358 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 359 360 return; 361 } 362 363 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 364 struct mlx5_pagefault *pfault, 365 int error) 366 { 367 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 368 pfault->wqe.wq_num : pfault->token; 369 u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { }; 370 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = { }; 371 int err; 372 373 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 374 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); 375 MLX5_SET(page_fault_resume_in, in, token, pfault->token); 376 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); 377 MLX5_SET(page_fault_resume_in, in, error, !!error); 378 379 err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out)); 380 if (err) 381 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 382 wq_num, err); 383 } 384 385 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd, 386 struct ib_umem *umem, 387 bool ksm, int access_flags) 388 { 389 struct mlx5_ib_dev *dev = to_mdev(pd->device); 390 struct mlx5_ib_mr *mr; 391 int err; 392 393 mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY : 394 MLX5_IMR_MTT_CACHE_ENTRY); 395 396 if (IS_ERR(mr)) 397 return mr; 398 399 mr->ibmr.pd = pd; 400 401 mr->dev = dev; 402 mr->access_flags = access_flags; 403 mr->mmkey.iova = 0; 404 mr->umem = umem; 405 406 if (ksm) { 407 err = mlx5_ib_update_xlt(mr, 0, 408 mlx5_imr_ksm_entries, 409 MLX5_KSM_PAGE_SHIFT, 410 MLX5_IB_UPD_XLT_INDIRECT | 411 MLX5_IB_UPD_XLT_ZAP | 412 MLX5_IB_UPD_XLT_ENABLE); 413 414 } else { 415 err = mlx5_ib_update_xlt(mr, 0, 416 MLX5_IMR_MTT_ENTRIES, 417 PAGE_SHIFT, 418 MLX5_IB_UPD_XLT_ZAP | 419 MLX5_IB_UPD_XLT_ENABLE | 420 MLX5_IB_UPD_XLT_ATOMIC); 421 } 422 423 if (err) 424 goto fail; 425 426 mr->ibmr.lkey = mr->mmkey.key; 427 mr->ibmr.rkey = mr->mmkey.key; 428 429 mr->live = 1; 430 431 mlx5_ib_dbg(dev, "key %x dev %p mr %p\n", 432 mr->mmkey.key, dev->mdev, mr); 433 434 return mr; 435 436 fail: 437 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 438 mlx5_mr_cache_free(dev, mr); 439 440 return ERR_PTR(err); 441 } 442 443 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr, 444 u64 io_virt, size_t bcnt) 445 { 446 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device); 447 struct ib_umem_odp *odp, *result = NULL; 448 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem); 449 u64 addr = io_virt & MLX5_IMR_MTT_MASK; 450 int nentries = 0, start_idx = 0, ret; 451 struct mlx5_ib_mr *mtt; 452 453 mutex_lock(&odp_mr->umem_mutex); 454 odp = odp_lookup(addr, 1, mr); 455 456 mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n", 457 io_virt, bcnt, addr, odp); 458 459 next_mr: 460 if (likely(odp)) { 461 if (nentries) 462 nentries++; 463 } else { 464 odp = ib_alloc_odp_umem(odp_mr, addr, 465 MLX5_IMR_MTT_SIZE); 466 if (IS_ERR(odp)) { 467 mutex_unlock(&odp_mr->umem_mutex); 468 return ERR_CAST(odp); 469 } 470 471 mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0, 472 mr->access_flags); 473 if (IS_ERR(mtt)) { 474 mutex_unlock(&odp_mr->umem_mutex); 475 ib_umem_release(&odp->umem); 476 return ERR_CAST(mtt); 477 } 478 479 odp->private = mtt; 480 mtt->umem = &odp->umem; 481 mtt->mmkey.iova = addr; 482 mtt->parent = mr; 483 INIT_WORK(&odp->work, mr_leaf_free_action); 484 485 if (!nentries) 486 start_idx = addr >> MLX5_IMR_MTT_SHIFT; 487 nentries++; 488 } 489 490 /* Return first odp if region not covered by single one */ 491 if (likely(!result)) 492 result = odp; 493 494 addr += MLX5_IMR_MTT_SIZE; 495 if (unlikely(addr < io_virt + bcnt)) { 496 odp = odp_next(odp); 497 if (odp && odp->umem.address != addr) 498 odp = NULL; 499 goto next_mr; 500 } 501 502 if (unlikely(nentries)) { 503 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0, 504 MLX5_IB_UPD_XLT_INDIRECT | 505 MLX5_IB_UPD_XLT_ATOMIC); 506 if (ret) { 507 mlx5_ib_err(dev, "Failed to update PAS\n"); 508 result = ERR_PTR(ret); 509 } 510 } 511 512 mutex_unlock(&odp_mr->umem_mutex); 513 return result; 514 } 515 516 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 517 struct ib_udata *udata, 518 int access_flags) 519 { 520 struct mlx5_ib_mr *imr; 521 struct ib_umem *umem; 522 523 umem = ib_umem_get(udata, 0, 0, access_flags, 0); 524 if (IS_ERR(umem)) 525 return ERR_CAST(umem); 526 527 imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags); 528 if (IS_ERR(imr)) { 529 ib_umem_release(umem); 530 return ERR_CAST(imr); 531 } 532 533 imr->umem = umem; 534 init_waitqueue_head(&imr->q_leaf_free); 535 atomic_set(&imr->num_leaf_free, 0); 536 atomic_set(&imr->num_pending_prefetch, 0); 537 538 return imr; 539 } 540 541 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end, 542 void *cookie) 543 { 544 struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie; 545 546 if (mr->parent != imr) 547 return 0; 548 549 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp), 550 ib_umem_end(umem_odp)); 551 552 if (umem_odp->dying) 553 return 0; 554 555 WRITE_ONCE(umem_odp->dying, 1); 556 atomic_inc(&imr->num_leaf_free); 557 schedule_work(&umem_odp->work); 558 559 return 0; 560 } 561 562 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) 563 { 564 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr); 565 566 down_read(&per_mm->umem_rwsem); 567 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX, 568 mr_leaf_free, true, imr); 569 up_read(&per_mm->umem_rwsem); 570 571 wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free)); 572 } 573 574 #define MLX5_PF_FLAGS_PREFETCH BIT(0) 575 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 576 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 577 u64 io_virt, size_t bcnt, u32 *bytes_mapped, 578 u32 flags) 579 { 580 int npages = 0, current_seq, page_shift, ret, np; 581 bool implicit = false; 582 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem); 583 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 584 bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH; 585 u64 access_mask; 586 u64 start_idx, page_mask; 587 struct ib_umem_odp *odp; 588 size_t size; 589 590 if (!odp_mr->page_list) { 591 odp = implicit_mr_get_data(mr, io_virt, bcnt); 592 593 if (IS_ERR(odp)) 594 return PTR_ERR(odp); 595 mr = odp->private; 596 implicit = true; 597 } else { 598 odp = odp_mr; 599 } 600 601 next_mr: 602 size = min_t(size_t, bcnt, ib_umem_end(odp) - io_virt); 603 604 page_shift = odp->page_shift; 605 page_mask = ~(BIT(page_shift) - 1); 606 start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift; 607 access_mask = ODP_READ_ALLOWED_BIT; 608 609 if (prefetch && !downgrade && !mr->umem->writable) { 610 /* prefetch with write-access must 611 * be supported by the MR 612 */ 613 ret = -EINVAL; 614 goto out; 615 } 616 617 if (mr->umem->writable && !downgrade) 618 access_mask |= ODP_WRITE_ALLOWED_BIT; 619 620 current_seq = READ_ONCE(odp->notifiers_seq); 621 /* 622 * Ensure the sequence number is valid for some time before we call 623 * gup. 624 */ 625 smp_rmb(); 626 627 ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size, 628 access_mask, current_seq); 629 630 if (ret < 0) 631 goto out; 632 633 np = ret; 634 635 mutex_lock(&odp->umem_mutex); 636 if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem), 637 current_seq)) { 638 /* 639 * No need to check whether the MTTs really belong to 640 * this MR, since ib_umem_odp_map_dma_pages already 641 * checks this. 642 */ 643 ret = mlx5_ib_update_xlt(mr, start_idx, np, 644 page_shift, MLX5_IB_UPD_XLT_ATOMIC); 645 } else { 646 ret = -EAGAIN; 647 } 648 mutex_unlock(&odp->umem_mutex); 649 650 if (ret < 0) { 651 if (ret != -EAGAIN) 652 mlx5_ib_err(dev, "Failed to update mkey page tables\n"); 653 goto out; 654 } 655 656 if (bytes_mapped) { 657 u32 new_mappings = (np << page_shift) - 658 (io_virt - round_down(io_virt, 1 << page_shift)); 659 *bytes_mapped += min_t(u32, new_mappings, size); 660 } 661 662 npages += np << (page_shift - PAGE_SHIFT); 663 bcnt -= size; 664 665 if (unlikely(bcnt)) { 666 struct ib_umem_odp *next; 667 668 io_virt += size; 669 next = odp_next(odp); 670 if (unlikely(!next || next->umem.address != io_virt)) { 671 mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n", 672 io_virt, next); 673 return -EAGAIN; 674 } 675 odp = next; 676 mr = odp->private; 677 goto next_mr; 678 } 679 680 return npages; 681 682 out: 683 if (ret == -EAGAIN) { 684 if (implicit || !odp->dying) { 685 unsigned long timeout = 686 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT); 687 688 if (!wait_for_completion_timeout( 689 &odp->notifier_completion, 690 timeout)) { 691 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n", 692 current_seq, odp->notifiers_seq, odp->notifiers_count); 693 } 694 } else { 695 /* The MR is being killed, kill the QP as well. */ 696 ret = -EFAULT; 697 } 698 } 699 700 return ret; 701 } 702 703 struct pf_frame { 704 struct pf_frame *next; 705 u32 key; 706 u64 io_virt; 707 size_t bcnt; 708 int depth; 709 }; 710 711 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key) 712 { 713 if (!mmkey) 714 return false; 715 if (mmkey->type == MLX5_MKEY_MW) 716 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 717 return mmkey->key == key; 718 } 719 720 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey) 721 { 722 struct mlx5_ib_mw *mw; 723 struct mlx5_ib_devx_mr *devx_mr; 724 725 if (mmkey->type == MLX5_MKEY_MW) { 726 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey); 727 return mw->ndescs; 728 } 729 730 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr, 731 mmkey); 732 return devx_mr->ndescs; 733 } 734 735 /* 736 * Handle a single data segment in a page-fault WQE or RDMA region. 737 * 738 * Returns number of OS pages retrieved on success. The caller may continue to 739 * the next data segment. 740 * Can return the following error codes: 741 * -EAGAIN to designate a temporary error. The caller will abort handling the 742 * page fault and resolve it. 743 * -EFAULT when there's an error mapping the requested pages. The caller will 744 * abort the page fault handling. 745 */ 746 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 747 struct ib_pd *pd, u32 key, 748 u64 io_virt, size_t bcnt, 749 u32 *bytes_committed, 750 u32 *bytes_mapped, u32 flags) 751 { 752 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0; 753 bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH; 754 struct pf_frame *head = NULL, *frame; 755 struct mlx5_core_mkey *mmkey; 756 struct mlx5_ib_mr *mr; 757 struct mlx5_klm *pklm; 758 u32 *out = NULL; 759 size_t offset; 760 int ndescs; 761 762 srcu_key = srcu_read_lock(&dev->mr_srcu); 763 764 io_virt += *bytes_committed; 765 bcnt -= *bytes_committed; 766 767 next_mr: 768 mmkey = xa_load(&dev->mdev->priv.mkey_table, mlx5_base_mkey(key)); 769 if (!mkey_is_eq(mmkey, key)) { 770 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); 771 ret = -EFAULT; 772 goto srcu_unlock; 773 } 774 775 if (prefetch && mmkey->type != MLX5_MKEY_MR) { 776 mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n"); 777 ret = -EINVAL; 778 goto srcu_unlock; 779 } 780 781 switch (mmkey->type) { 782 case MLX5_MKEY_MR: 783 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 784 if (!mr->live || !mr->ibmr.pd) { 785 mlx5_ib_dbg(dev, "got dead MR\n"); 786 ret = -EFAULT; 787 goto srcu_unlock; 788 } 789 790 if (prefetch) { 791 if (!is_odp_mr(mr) || 792 mr->ibmr.pd != pd) { 793 mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n", 794 is_odp_mr(mr) ? "MR is not ODP" : 795 "PD is not of the MR"); 796 ret = -EINVAL; 797 goto srcu_unlock; 798 } 799 } 800 801 if (!is_odp_mr(mr)) { 802 mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 803 key); 804 if (bytes_mapped) 805 *bytes_mapped += bcnt; 806 ret = 0; 807 goto srcu_unlock; 808 } 809 810 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags); 811 if (ret < 0) 812 goto srcu_unlock; 813 814 npages += ret; 815 ret = 0; 816 break; 817 818 case MLX5_MKEY_MW: 819 case MLX5_MKEY_INDIRECT_DEVX: 820 ndescs = get_indirect_num_descs(mmkey); 821 822 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 823 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 824 ret = -EFAULT; 825 goto srcu_unlock; 826 } 827 828 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 829 sizeof(*pklm) * (ndescs - 2); 830 831 if (outlen > cur_outlen) { 832 kfree(out); 833 out = kzalloc(outlen, GFP_KERNEL); 834 if (!out) { 835 ret = -ENOMEM; 836 goto srcu_unlock; 837 } 838 cur_outlen = outlen; 839 } 840 841 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 842 bsf0_klm0_pas_mtt0_1); 843 844 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen); 845 if (ret) 846 goto srcu_unlock; 847 848 offset = io_virt - MLX5_GET64(query_mkey_out, out, 849 memory_key_mkey_entry.start_addr); 850 851 for (i = 0; bcnt && i < ndescs; i++, pklm++) { 852 if (offset >= be32_to_cpu(pklm->bcount)) { 853 offset -= be32_to_cpu(pklm->bcount); 854 continue; 855 } 856 857 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 858 if (!frame) { 859 ret = -ENOMEM; 860 goto srcu_unlock; 861 } 862 863 frame->key = be32_to_cpu(pklm->key); 864 frame->io_virt = be64_to_cpu(pklm->va) + offset; 865 frame->bcnt = min_t(size_t, bcnt, 866 be32_to_cpu(pklm->bcount) - offset); 867 frame->depth = depth + 1; 868 frame->next = head; 869 head = frame; 870 871 bcnt -= frame->bcnt; 872 offset = 0; 873 } 874 break; 875 876 default: 877 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 878 ret = -EFAULT; 879 goto srcu_unlock; 880 } 881 882 if (head) { 883 frame = head; 884 head = frame->next; 885 886 key = frame->key; 887 io_virt = frame->io_virt; 888 bcnt = frame->bcnt; 889 depth = frame->depth; 890 kfree(frame); 891 892 goto next_mr; 893 } 894 895 srcu_unlock: 896 while (head) { 897 frame = head; 898 head = frame->next; 899 kfree(frame); 900 } 901 kfree(out); 902 903 srcu_read_unlock(&dev->mr_srcu, srcu_key); 904 *bytes_committed = 0; 905 return ret ? ret : npages; 906 } 907 908 /** 909 * Parse a series of data segments for page fault handling. 910 * 911 * @pfault contains page fault information. 912 * @wqe points at the first data segment in the WQE. 913 * @wqe_end points after the end of the WQE. 914 * @bytes_mapped receives the number of bytes that the function was able to 915 * map. This allows the caller to decide intelligently whether 916 * enough memory was mapped to resolve the page fault 917 * successfully (e.g. enough for the next MTU, or the entire 918 * WQE). 919 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus 920 * the committed bytes). 921 * 922 * Returns the number of pages loaded if positive, zero for an empty WQE, or a 923 * negative error code. 924 */ 925 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 926 struct mlx5_pagefault *pfault, 927 void *wqe, 928 void *wqe_end, u32 *bytes_mapped, 929 u32 *total_wqe_bytes, bool receive_queue) 930 { 931 int ret = 0, npages = 0; 932 u64 io_virt; 933 u32 key; 934 u32 byte_count; 935 size_t bcnt; 936 int inline_segment; 937 938 if (bytes_mapped) 939 *bytes_mapped = 0; 940 if (total_wqe_bytes) 941 *total_wqe_bytes = 0; 942 943 while (wqe < wqe_end) { 944 struct mlx5_wqe_data_seg *dseg = wqe; 945 946 io_virt = be64_to_cpu(dseg->addr); 947 key = be32_to_cpu(dseg->lkey); 948 byte_count = be32_to_cpu(dseg->byte_count); 949 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 950 bcnt = byte_count & ~MLX5_INLINE_SEG; 951 952 if (inline_segment) { 953 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 954 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 955 16); 956 } else { 957 wqe += sizeof(*dseg); 958 } 959 960 /* receive WQE end of sg list. */ 961 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && 962 io_virt == 0) 963 break; 964 965 if (!inline_segment && total_wqe_bytes) { 966 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 967 pfault->bytes_committed); 968 } 969 970 /* A zero length data segment designates a length of 2GB. */ 971 if (bcnt == 0) 972 bcnt = 1U << 31; 973 974 if (inline_segment || bcnt <= pfault->bytes_committed) { 975 pfault->bytes_committed -= 976 min_t(size_t, bcnt, 977 pfault->bytes_committed); 978 continue; 979 } 980 981 ret = pagefault_single_data_segment(dev, NULL, key, 982 io_virt, bcnt, 983 &pfault->bytes_committed, 984 bytes_mapped, 0); 985 if (ret < 0) 986 break; 987 npages += ret; 988 } 989 990 return ret < 0 ? ret : npages; 991 } 992 993 static const u32 mlx5_ib_odp_opcode_cap[] = { 994 [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND, 995 [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND, 996 [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND, 997 [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE, 998 [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE, 999 [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ, 1000 [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC, 1001 [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC, 1002 }; 1003 1004 /* 1005 * Parse initiator WQE. Advances the wqe pointer to point at the 1006 * scatter-gather list, and set wqe_end to the end of the WQE. 1007 */ 1008 static int mlx5_ib_mr_initiator_pfault_handler( 1009 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1010 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1011 { 1012 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1013 u16 wqe_index = pfault->wqe.wqe_index; 1014 u32 transport_caps; 1015 struct mlx5_base_av *av; 1016 unsigned ds, opcode; 1017 #if defined(DEBUG) 1018 u32 ctrl_wqe_index, ctrl_qpn; 1019 #endif 1020 u32 qpn = qp->trans_qp.base.mqp.qpn; 1021 1022 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1023 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1024 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1025 ds, wqe_length); 1026 return -EFAULT; 1027 } 1028 1029 if (ds == 0) { 1030 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1031 wqe_index, qpn); 1032 return -EFAULT; 1033 } 1034 1035 #if defined(DEBUG) 1036 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) & 1037 MLX5_WQE_CTRL_WQE_INDEX_MASK) >> 1038 MLX5_WQE_CTRL_WQE_INDEX_SHIFT; 1039 if (wqe_index != ctrl_wqe_index) { 1040 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n", 1041 wqe_index, qpn, 1042 ctrl_wqe_index); 1043 return -EFAULT; 1044 } 1045 1046 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >> 1047 MLX5_WQE_CTRL_QPN_SHIFT; 1048 if (qpn != ctrl_qpn) { 1049 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n", 1050 wqe_index, qpn, 1051 ctrl_qpn); 1052 return -EFAULT; 1053 } 1054 #endif /* DEBUG */ 1055 1056 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1057 *wqe += sizeof(*ctrl); 1058 1059 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1060 MLX5_WQE_CTRL_OPCODE_MASK; 1061 1062 switch (qp->ibqp.qp_type) { 1063 case IB_QPT_XRC_INI: 1064 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1065 transport_caps = dev->odp_caps.per_transport_caps.xrc_odp_caps; 1066 break; 1067 case IB_QPT_RC: 1068 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps; 1069 break; 1070 case IB_QPT_UD: 1071 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps; 1072 break; 1073 default: 1074 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n", 1075 qp->ibqp.qp_type); 1076 return -EFAULT; 1077 } 1078 1079 if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) || 1080 !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) { 1081 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n", 1082 opcode); 1083 return -EFAULT; 1084 } 1085 1086 if (qp->ibqp.qp_type == IB_QPT_UD) { 1087 av = *wqe; 1088 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1089 *wqe += sizeof(struct mlx5_av); 1090 else 1091 *wqe += sizeof(struct mlx5_base_av); 1092 } 1093 1094 switch (opcode) { 1095 case MLX5_OPCODE_RDMA_WRITE: 1096 case MLX5_OPCODE_RDMA_WRITE_IMM: 1097 case MLX5_OPCODE_RDMA_READ: 1098 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1099 break; 1100 case MLX5_OPCODE_ATOMIC_CS: 1101 case MLX5_OPCODE_ATOMIC_FA: 1102 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1103 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1104 break; 1105 } 1106 1107 return 0; 1108 } 1109 1110 /* 1111 * Parse responder WQE and set wqe_end to the end of the WQE. 1112 */ 1113 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1114 struct mlx5_ib_srq *srq, 1115 void **wqe, void **wqe_end, 1116 int wqe_length) 1117 { 1118 int wqe_size = 1 << srq->msrq.wqe_shift; 1119 1120 if (wqe_size > wqe_length) { 1121 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1122 return -EFAULT; 1123 } 1124 1125 *wqe_end = *wqe + wqe_size; 1126 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1127 1128 return 0; 1129 } 1130 1131 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1132 struct mlx5_ib_qp *qp, 1133 void *wqe, void **wqe_end, 1134 int wqe_length) 1135 { 1136 struct mlx5_ib_wq *wq = &qp->rq; 1137 int wqe_size = 1 << wq->wqe_shift; 1138 1139 if (qp->wq_sig) { 1140 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1141 return -EFAULT; 1142 } 1143 1144 if (wqe_size > wqe_length) { 1145 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1146 return -EFAULT; 1147 } 1148 1149 switch (qp->ibqp.qp_type) { 1150 case IB_QPT_RC: 1151 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps & 1152 IB_ODP_SUPPORT_RECV)) 1153 goto invalid_transport_or_opcode; 1154 break; 1155 default: 1156 invalid_transport_or_opcode: 1157 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n", 1158 qp->ibqp.qp_type); 1159 return -EFAULT; 1160 } 1161 1162 *wqe_end = wqe + wqe_size; 1163 1164 return 0; 1165 } 1166 1167 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1168 u32 wq_num, int pf_type) 1169 { 1170 struct mlx5_core_rsc_common *common = NULL; 1171 struct mlx5_core_srq *srq; 1172 1173 switch (pf_type) { 1174 case MLX5_WQE_PF_TYPE_RMP: 1175 srq = mlx5_cmd_get_srq(dev, wq_num); 1176 if (srq) 1177 common = &srq->common; 1178 break; 1179 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1180 case MLX5_WQE_PF_TYPE_RESP: 1181 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1182 common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP); 1183 break; 1184 default: 1185 break; 1186 } 1187 1188 return common; 1189 } 1190 1191 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1192 { 1193 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1194 1195 return to_mibqp(mqp); 1196 } 1197 1198 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1199 { 1200 struct mlx5_core_srq *msrq = 1201 container_of(res, struct mlx5_core_srq, common); 1202 1203 return to_mibsrq(msrq); 1204 } 1205 1206 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1207 struct mlx5_pagefault *pfault) 1208 { 1209 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1210 u16 wqe_index = pfault->wqe.wqe_index; 1211 void *wqe = NULL, *wqe_end = NULL; 1212 u32 bytes_mapped, total_wqe_bytes; 1213 struct mlx5_core_rsc_common *res; 1214 int resume_with_error = 1; 1215 struct mlx5_ib_qp *qp; 1216 size_t bytes_copied; 1217 int ret = 0; 1218 1219 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1220 if (!res) { 1221 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1222 return; 1223 } 1224 1225 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1226 res->res != MLX5_RES_XSRQ) { 1227 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1228 pfault->type); 1229 goto resolve_page_fault; 1230 } 1231 1232 wqe = (void *)__get_free_page(GFP_KERNEL); 1233 if (!wqe) { 1234 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1235 goto resolve_page_fault; 1236 } 1237 1238 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1239 if (qp && sq) { 1240 ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1241 &bytes_copied); 1242 if (ret) 1243 goto read_user; 1244 ret = mlx5_ib_mr_initiator_pfault_handler( 1245 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1246 } else if (qp && !sq) { 1247 ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1248 &bytes_copied); 1249 if (ret) 1250 goto read_user; 1251 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1252 dev, qp, wqe, &wqe_end, bytes_copied); 1253 } else if (!qp) { 1254 struct mlx5_ib_srq *srq = res_to_srq(res); 1255 1256 ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1257 &bytes_copied); 1258 if (ret) 1259 goto read_user; 1260 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1261 dev, srq, &wqe, &wqe_end, bytes_copied); 1262 } 1263 1264 if (ret < 0 || wqe >= wqe_end) 1265 goto resolve_page_fault; 1266 1267 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1268 &total_wqe_bytes, !sq); 1269 if (ret == -EAGAIN) 1270 goto out; 1271 1272 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1273 goto resolve_page_fault; 1274 1275 out: 1276 ret = 0; 1277 resume_with_error = 0; 1278 1279 read_user: 1280 if (ret) 1281 mlx5_ib_err( 1282 dev, 1283 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", 1284 ret, wqe_index, pfault->token); 1285 1286 resolve_page_fault: 1287 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1288 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1289 pfault->wqe.wq_num, resume_with_error, 1290 pfault->type); 1291 mlx5_core_res_put(res); 1292 free_page((unsigned long)wqe); 1293 } 1294 1295 static int pages_in_range(u64 address, u32 length) 1296 { 1297 return (ALIGN(address + length, PAGE_SIZE) - 1298 (address & PAGE_MASK)) >> PAGE_SHIFT; 1299 } 1300 1301 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1302 struct mlx5_pagefault *pfault) 1303 { 1304 u64 address; 1305 u32 length; 1306 u32 prefetch_len = pfault->bytes_committed; 1307 int prefetch_activated = 0; 1308 u32 rkey = pfault->rdma.r_key; 1309 int ret; 1310 1311 /* The RDMA responder handler handles the page fault in two parts. 1312 * First it brings the necessary pages for the current packet 1313 * (and uses the pfault context), and then (after resuming the QP) 1314 * prefetches more pages. The second operation cannot use the pfault 1315 * context and therefore uses the dummy_pfault context allocated on 1316 * the stack */ 1317 pfault->rdma.rdma_va += pfault->bytes_committed; 1318 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1319 pfault->rdma.rdma_op_len); 1320 pfault->bytes_committed = 0; 1321 1322 address = pfault->rdma.rdma_va; 1323 length = pfault->rdma.rdma_op_len; 1324 1325 /* For some operations, the hardware cannot tell the exact message 1326 * length, and in those cases it reports zero. Use prefetch 1327 * logic. */ 1328 if (length == 0) { 1329 prefetch_activated = 1; 1330 length = pfault->rdma.packet_size; 1331 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1332 } 1333 1334 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1335 &pfault->bytes_committed, NULL, 1336 0); 1337 if (ret == -EAGAIN) { 1338 /* We're racing with an invalidation, don't prefetch */ 1339 prefetch_activated = 0; 1340 } else if (ret < 0 || pages_in_range(address, length) > ret) { 1341 mlx5_ib_page_fault_resume(dev, pfault, 1); 1342 if (ret != -ENOENT) 1343 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", 1344 ret, pfault->token, pfault->type); 1345 return; 1346 } 1347 1348 mlx5_ib_page_fault_resume(dev, pfault, 0); 1349 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", 1350 pfault->token, pfault->type, 1351 prefetch_activated); 1352 1353 /* At this point, there might be a new pagefault already arriving in 1354 * the eq, switch to the dummy pagefault for the rest of the 1355 * processing. We're still OK with the objects being alive as the 1356 * work-queue is being fenced. */ 1357 1358 if (prefetch_activated) { 1359 u32 bytes_committed = 0; 1360 1361 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1362 prefetch_len, 1363 &bytes_committed, NULL, 1364 0); 1365 if (ret < 0 && ret != -EAGAIN) { 1366 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", 1367 ret, pfault->token, address, prefetch_len); 1368 } 1369 } 1370 } 1371 1372 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1373 { 1374 u8 event_subtype = pfault->event_subtype; 1375 1376 switch (event_subtype) { 1377 case MLX5_PFAULT_SUBTYPE_WQE: 1378 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1379 break; 1380 case MLX5_PFAULT_SUBTYPE_RDMA: 1381 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1382 break; 1383 default: 1384 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1385 event_subtype); 1386 mlx5_ib_page_fault_resume(dev, pfault, 1); 1387 } 1388 } 1389 1390 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1391 { 1392 struct mlx5_pagefault *pfault = container_of(work, 1393 struct mlx5_pagefault, 1394 work); 1395 struct mlx5_ib_pf_eq *eq = pfault->eq; 1396 1397 mlx5_ib_pfault(eq->dev, pfault); 1398 mempool_free(pfault, eq->pool); 1399 } 1400 1401 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1402 { 1403 struct mlx5_eqe_page_fault *pf_eqe; 1404 struct mlx5_pagefault *pfault; 1405 struct mlx5_eqe *eqe; 1406 int cc = 0; 1407 1408 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1409 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1410 if (!pfault) { 1411 schedule_work(&eq->work); 1412 break; 1413 } 1414 1415 pf_eqe = &eqe->data.page_fault; 1416 pfault->event_subtype = eqe->sub_type; 1417 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); 1418 1419 mlx5_ib_dbg(eq->dev, 1420 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", 1421 eqe->sub_type, pfault->bytes_committed); 1422 1423 switch (eqe->sub_type) { 1424 case MLX5_PFAULT_SUBTYPE_RDMA: 1425 /* RDMA based event */ 1426 pfault->type = 1427 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1428 pfault->token = 1429 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1430 MLX5_24BIT_MASK; 1431 pfault->rdma.r_key = 1432 be32_to_cpu(pf_eqe->rdma.r_key); 1433 pfault->rdma.packet_size = 1434 be16_to_cpu(pf_eqe->rdma.packet_length); 1435 pfault->rdma.rdma_op_len = 1436 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1437 pfault->rdma.rdma_va = 1438 be64_to_cpu(pf_eqe->rdma.rdma_va); 1439 mlx5_ib_dbg(eq->dev, 1440 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", 1441 pfault->type, pfault->token, 1442 pfault->rdma.r_key); 1443 mlx5_ib_dbg(eq->dev, 1444 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1445 pfault->rdma.rdma_op_len, 1446 pfault->rdma.rdma_va); 1447 break; 1448 1449 case MLX5_PFAULT_SUBTYPE_WQE: 1450 /* WQE based event */ 1451 pfault->type = 1452 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1453 pfault->token = 1454 be32_to_cpu(pf_eqe->wqe.token); 1455 pfault->wqe.wq_num = 1456 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1457 MLX5_24BIT_MASK; 1458 pfault->wqe.wqe_index = 1459 be16_to_cpu(pf_eqe->wqe.wqe_index); 1460 pfault->wqe.packet_size = 1461 be16_to_cpu(pf_eqe->wqe.packet_length); 1462 mlx5_ib_dbg(eq->dev, 1463 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1464 pfault->type, pfault->token, 1465 pfault->wqe.wq_num, 1466 pfault->wqe.wqe_index); 1467 break; 1468 1469 default: 1470 mlx5_ib_warn(eq->dev, 1471 "Unsupported page fault event sub-type: 0x%02hhx\n", 1472 eqe->sub_type); 1473 /* Unsupported page faults should still be 1474 * resolved by the page fault handler 1475 */ 1476 } 1477 1478 pfault->eq = eq; 1479 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1480 queue_work(eq->wq, &pfault->work); 1481 1482 cc = mlx5_eq_update_cc(eq->core, ++cc); 1483 } 1484 1485 mlx5_eq_update_ci(eq->core, cc, 1); 1486 } 1487 1488 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, 1489 void *data) 1490 { 1491 struct mlx5_ib_pf_eq *eq = 1492 container_of(nb, struct mlx5_ib_pf_eq, irq_nb); 1493 unsigned long flags; 1494 1495 if (spin_trylock_irqsave(&eq->lock, flags)) { 1496 mlx5_ib_eq_pf_process(eq); 1497 spin_unlock_irqrestore(&eq->lock, flags); 1498 } else { 1499 schedule_work(&eq->work); 1500 } 1501 1502 return IRQ_HANDLED; 1503 } 1504 1505 /* mempool_refill() was proposed but unfortunately wasn't accepted 1506 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1507 * Cheap workaround. 1508 */ 1509 static void mempool_refill(mempool_t *pool) 1510 { 1511 while (pool->curr_nr < pool->min_nr) 1512 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1513 } 1514 1515 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1516 { 1517 struct mlx5_ib_pf_eq *eq = 1518 container_of(work, struct mlx5_ib_pf_eq, work); 1519 1520 mempool_refill(eq->pool); 1521 1522 spin_lock_irq(&eq->lock); 1523 mlx5_ib_eq_pf_process(eq); 1524 spin_unlock_irq(&eq->lock); 1525 } 1526 1527 enum { 1528 MLX5_IB_NUM_PF_EQE = 0x1000, 1529 MLX5_IB_NUM_PF_DRAIN = 64, 1530 }; 1531 1532 static int 1533 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1534 { 1535 struct mlx5_eq_param param = {}; 1536 int err; 1537 1538 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1539 spin_lock_init(&eq->lock); 1540 eq->dev = dev; 1541 1542 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1543 sizeof(struct mlx5_pagefault)); 1544 if (!eq->pool) 1545 return -ENOMEM; 1546 1547 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1548 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1549 MLX5_NUM_CMD_EQE); 1550 if (!eq->wq) { 1551 err = -ENOMEM; 1552 goto err_mempool; 1553 } 1554 1555 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; 1556 param = (struct mlx5_eq_param) { 1557 .irq_index = 0, 1558 .nent = MLX5_IB_NUM_PF_EQE, 1559 }; 1560 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; 1561 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); 1562 if (IS_ERR(eq->core)) { 1563 err = PTR_ERR(eq->core); 1564 goto err_wq; 1565 } 1566 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); 1567 if (err) { 1568 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); 1569 goto err_eq; 1570 } 1571 1572 return 0; 1573 err_eq: 1574 mlx5_eq_destroy_generic(dev->mdev, eq->core); 1575 err_wq: 1576 destroy_workqueue(eq->wq); 1577 err_mempool: 1578 mempool_destroy(eq->pool); 1579 return err; 1580 } 1581 1582 static int 1583 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1584 { 1585 int err; 1586 1587 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); 1588 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1589 cancel_work_sync(&eq->work); 1590 destroy_workqueue(eq->wq); 1591 mempool_destroy(eq->pool); 1592 1593 return err; 1594 } 1595 1596 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) 1597 { 1598 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1599 return; 1600 1601 switch (ent->order - 2) { 1602 case MLX5_IMR_MTT_CACHE_ENTRY: 1603 ent->page = PAGE_SHIFT; 1604 ent->xlt = MLX5_IMR_MTT_ENTRIES * 1605 sizeof(struct mlx5_mtt) / 1606 MLX5_IB_UMR_OCTOWORD; 1607 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 1608 ent->limit = 0; 1609 break; 1610 1611 case MLX5_IMR_KSM_CACHE_ENTRY: 1612 ent->page = MLX5_KSM_PAGE_SHIFT; 1613 ent->xlt = mlx5_imr_ksm_entries * 1614 sizeof(struct mlx5_klm) / 1615 MLX5_IB_UMR_OCTOWORD; 1616 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; 1617 ent->limit = 0; 1618 break; 1619 } 1620 } 1621 1622 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1623 .advise_mr = mlx5_ib_advise_mr, 1624 }; 1625 1626 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1627 { 1628 int ret = 0; 1629 1630 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT) 1631 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1632 1633 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { 1634 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); 1635 if (ret) { 1636 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); 1637 return ret; 1638 } 1639 } 1640 1641 if (!MLX5_CAP_GEN(dev->mdev, pg)) 1642 return ret; 1643 1644 ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq); 1645 1646 return ret; 1647 } 1648 1649 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1650 { 1651 if (!MLX5_CAP_GEN(dev->mdev, pg)) 1652 return; 1653 1654 mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq); 1655 } 1656 1657 int mlx5_ib_odp_init(void) 1658 { 1659 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1660 MLX5_IMR_MTT_BITS); 1661 1662 return 0; 1663 } 1664 1665 struct prefetch_mr_work { 1666 struct work_struct work; 1667 struct ib_pd *pd; 1668 u32 pf_flags; 1669 u32 num_sge; 1670 struct ib_sge sg_list[0]; 1671 }; 1672 1673 static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev, 1674 struct ib_sge *sg_list, u32 num_sge, 1675 u32 from) 1676 { 1677 u32 i; 1678 int srcu_key; 1679 1680 srcu_key = srcu_read_lock(&dev->mr_srcu); 1681 1682 for (i = from; i < num_sge; ++i) { 1683 struct mlx5_core_mkey *mmkey; 1684 struct mlx5_ib_mr *mr; 1685 1686 mmkey = xa_load(&dev->mdev->priv.mkey_table, 1687 mlx5_base_mkey(sg_list[i].lkey)); 1688 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1689 atomic_dec(&mr->num_pending_prefetch); 1690 } 1691 1692 srcu_read_unlock(&dev->mr_srcu, srcu_key); 1693 } 1694 1695 static bool num_pending_prefetch_inc(struct ib_pd *pd, 1696 struct ib_sge *sg_list, u32 num_sge) 1697 { 1698 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1699 bool ret = true; 1700 u32 i; 1701 1702 for (i = 0; i < num_sge; ++i) { 1703 struct mlx5_core_mkey *mmkey; 1704 struct mlx5_ib_mr *mr; 1705 1706 mmkey = xa_load(&dev->mdev->priv.mkey_table, 1707 mlx5_base_mkey(sg_list[i].lkey)); 1708 if (!mmkey || mmkey->key != sg_list[i].lkey) { 1709 ret = false; 1710 break; 1711 } 1712 1713 if (mmkey->type != MLX5_MKEY_MR) { 1714 ret = false; 1715 break; 1716 } 1717 1718 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1719 1720 if (mr->ibmr.pd != pd) { 1721 ret = false; 1722 break; 1723 } 1724 1725 if (!mr->live) { 1726 ret = false; 1727 break; 1728 } 1729 1730 atomic_inc(&mr->num_pending_prefetch); 1731 } 1732 1733 if (!ret) 1734 num_pending_prefetch_dec(dev, sg_list, i, 0); 1735 1736 return ret; 1737 } 1738 1739 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags, 1740 struct ib_sge *sg_list, u32 num_sge) 1741 { 1742 u32 i; 1743 int ret = 0; 1744 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1745 1746 for (i = 0; i < num_sge; ++i) { 1747 struct ib_sge *sg = &sg_list[i]; 1748 int bytes_committed = 0; 1749 1750 ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr, 1751 sg->length, 1752 &bytes_committed, NULL, 1753 pf_flags); 1754 if (ret < 0) 1755 break; 1756 } 1757 1758 return ret < 0 ? ret : 0; 1759 } 1760 1761 static void mlx5_ib_prefetch_mr_work(struct work_struct *work) 1762 { 1763 struct prefetch_mr_work *w = 1764 container_of(work, struct prefetch_mr_work, work); 1765 1766 if (ib_device_try_get(w->pd->device)) { 1767 mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list, 1768 w->num_sge); 1769 ib_device_put(w->pd->device); 1770 } 1771 1772 num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list, 1773 w->num_sge, 0); 1774 kfree(w); 1775 } 1776 1777 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 1778 enum ib_uverbs_advise_mr_advice advice, 1779 u32 flags, struct ib_sge *sg_list, u32 num_sge) 1780 { 1781 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1782 u32 pf_flags = MLX5_PF_FLAGS_PREFETCH; 1783 struct prefetch_mr_work *work; 1784 bool valid_req; 1785 int srcu_key; 1786 1787 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 1788 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 1789 1790 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 1791 return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list, 1792 num_sge); 1793 1794 work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL); 1795 if (!work) 1796 return -ENOMEM; 1797 1798 memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge)); 1799 1800 /* It is guaranteed that the pd when work is executed is the pd when 1801 * work was queued since pd can't be destroyed while it holds MRs and 1802 * destroying a MR leads to flushing the workquque 1803 */ 1804 work->pd = pd; 1805 work->pf_flags = pf_flags; 1806 work->num_sge = num_sge; 1807 1808 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1809 1810 srcu_key = srcu_read_lock(&dev->mr_srcu); 1811 1812 valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge); 1813 if (valid_req) 1814 queue_work(system_unbound_wq, &work->work); 1815 else 1816 kfree(work); 1817 1818 srcu_read_unlock(&dev->mr_srcu, srcu_key); 1819 1820 return valid_req ? 0 : -EINVAL; 1821 } 1822