xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision b830f94f)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 
40 #include <linux/mlx5/eq.h>
41 
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44 	u32			bytes_committed;
45 	u32			token;
46 	u8			event_subtype;
47 	u8			type;
48 	union {
49 		/* Initiator or send message responder pagefault details. */
50 		struct {
51 			/* Received packet size, only valid for responders. */
52 			u32	packet_size;
53 			/*
54 			 * Number of resource holding WQE, depends on type.
55 			 */
56 			u32	wq_num;
57 			/*
58 			 * WQE index. Refers to either the send queue or
59 			 * receive queue, according to event_subtype.
60 			 */
61 			u16	wqe_index;
62 		} wqe;
63 		/* RDMA responder pagefault details */
64 		struct {
65 			u32	r_key;
66 			/*
67 			 * Received packet size, minimal size page fault
68 			 * resolution required for forward progress.
69 			 */
70 			u32	packet_size;
71 			u32	rdma_op_len;
72 			u64	rdma_va;
73 		} rdma;
74 	};
75 
76 	struct mlx5_ib_pf_eq	*eq;
77 	struct work_struct	work;
78 };
79 
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81 
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85 
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91 
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93 
94 static u64 mlx5_imr_ksm_entries;
95 
96 static int check_parent(struct ib_umem_odp *odp,
97 			       struct mlx5_ib_mr *parent)
98 {
99 	struct mlx5_ib_mr *mr = odp->private;
100 
101 	return mr && mr->parent == parent && !odp->dying;
102 }
103 
104 static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
105 {
106 	if (WARN_ON(!mr || !is_odp_mr(mr)))
107 		return NULL;
108 
109 	return to_ib_umem_odp(mr->umem)->per_mm;
110 }
111 
112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
113 {
114 	struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
115 	struct ib_ucontext_per_mm *per_mm = odp->per_mm;
116 	struct rb_node *rb;
117 
118 	down_read(&per_mm->umem_rwsem);
119 	while (1) {
120 		rb = rb_next(&odp->interval_tree.rb);
121 		if (!rb)
122 			goto not_found;
123 		odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
124 		if (check_parent(odp, parent))
125 			goto end;
126 	}
127 not_found:
128 	odp = NULL;
129 end:
130 	up_read(&per_mm->umem_rwsem);
131 	return odp;
132 }
133 
134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
135 				      struct mlx5_ib_mr *parent)
136 {
137 	struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
138 	struct ib_umem_odp *odp;
139 	struct rb_node *rb;
140 
141 	down_read(&per_mm->umem_rwsem);
142 	odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
143 	if (!odp)
144 		goto end;
145 
146 	while (1) {
147 		if (check_parent(odp, parent))
148 			goto end;
149 		rb = rb_next(&odp->interval_tree.rb);
150 		if (!rb)
151 			goto not_found;
152 		odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
153 		if (ib_umem_start(odp) > start + length)
154 			goto not_found;
155 	}
156 not_found:
157 	odp = NULL;
158 end:
159 	up_read(&per_mm->umem_rwsem);
160 	return odp;
161 }
162 
163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
164 			   size_t nentries, struct mlx5_ib_mr *mr, int flags)
165 {
166 	struct ib_pd *pd = mr->ibmr.pd;
167 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
168 	struct ib_umem_odp *odp;
169 	unsigned long va;
170 	int i;
171 
172 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
173 		for (i = 0; i < nentries; i++, pklm++) {
174 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
175 			pklm->key = cpu_to_be32(dev->null_mkey);
176 			pklm->va = 0;
177 		}
178 		return;
179 	}
180 
181 	odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
182 			 nentries * MLX5_IMR_MTT_SIZE, mr);
183 
184 	for (i = 0; i < nentries; i++, pklm++) {
185 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
186 		va = (offset + i) * MLX5_IMR_MTT_SIZE;
187 		if (odp && odp->umem.address == va) {
188 			struct mlx5_ib_mr *mtt = odp->private;
189 
190 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
191 			odp = odp_next(odp);
192 		} else {
193 			pklm->key = cpu_to_be32(dev->null_mkey);
194 		}
195 		mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
196 			    i, va, be32_to_cpu(pklm->key));
197 	}
198 }
199 
200 static void mr_leaf_free_action(struct work_struct *work)
201 {
202 	struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
203 	int idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
204 	struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
205 
206 	mr->parent = NULL;
207 	synchronize_srcu(&mr->dev->mr_srcu);
208 
209 	ib_umem_release(&odp->umem);
210 	if (imr->live)
211 		mlx5_ib_update_xlt(imr, idx, 1, 0,
212 				   MLX5_IB_UPD_XLT_INDIRECT |
213 				   MLX5_IB_UPD_XLT_ATOMIC);
214 	mlx5_mr_cache_free(mr->dev, mr);
215 
216 	if (atomic_dec_and_test(&imr->num_leaf_free))
217 		wake_up(&imr->q_leaf_free);
218 }
219 
220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
221 			      unsigned long end)
222 {
223 	struct mlx5_ib_mr *mr;
224 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
225 				    sizeof(struct mlx5_mtt)) - 1;
226 	u64 idx = 0, blk_start_idx = 0;
227 	int in_block = 0;
228 	u64 addr;
229 
230 	if (!umem_odp) {
231 		pr_err("invalidation called on NULL umem or non-ODP umem\n");
232 		return;
233 	}
234 
235 	mr = umem_odp->private;
236 
237 	if (!mr || !mr->ibmr.pd)
238 		return;
239 
240 	start = max_t(u64, ib_umem_start(umem_odp), start);
241 	end = min_t(u64, ib_umem_end(umem_odp), end);
242 
243 	/*
244 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
245 	 * while we are doing the invalidation, no page fault will attempt to
246 	 * overwrite the same MTTs.  Concurent invalidations might race us,
247 	 * but they will write 0s as well, so no difference in the end result.
248 	 */
249 
250 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
251 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
252 		/*
253 		 * Strive to write the MTTs in chunks, but avoid overwriting
254 		 * non-existing MTTs. The huristic here can be improved to
255 		 * estimate the cost of another UMR vs. the cost of bigger
256 		 * UMR.
257 		 */
258 		if (umem_odp->dma_list[idx] &
259 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
260 			if (!in_block) {
261 				blk_start_idx = idx;
262 				in_block = 1;
263 			}
264 		} else {
265 			u64 umr_offset = idx & umr_block_mask;
266 
267 			if (in_block && umr_offset == 0) {
268 				mlx5_ib_update_xlt(mr, blk_start_idx,
269 						   idx - blk_start_idx, 0,
270 						   MLX5_IB_UPD_XLT_ZAP |
271 						   MLX5_IB_UPD_XLT_ATOMIC);
272 				in_block = 0;
273 			}
274 		}
275 	}
276 	if (in_block)
277 		mlx5_ib_update_xlt(mr, blk_start_idx,
278 				   idx - blk_start_idx + 1, 0,
279 				   MLX5_IB_UPD_XLT_ZAP |
280 				   MLX5_IB_UPD_XLT_ATOMIC);
281 	/*
282 	 * We are now sure that the device will not access the
283 	 * memory. We can safely unmap it, and mark it as dirty if
284 	 * needed.
285 	 */
286 
287 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
288 
289 	if (unlikely(!umem_odp->npages && mr->parent &&
290 		     !umem_odp->dying)) {
291 		WRITE_ONCE(umem_odp->dying, 1);
292 		atomic_inc(&mr->parent->num_leaf_free);
293 		schedule_work(&umem_odp->work);
294 	}
295 }
296 
297 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
298 {
299 	struct ib_odp_caps *caps = &dev->odp_caps;
300 
301 	memset(caps, 0, sizeof(*caps));
302 
303 	if (!MLX5_CAP_GEN(dev->mdev, pg))
304 		return;
305 
306 	caps->general_caps = IB_ODP_SUPPORT;
307 
308 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
309 		dev->odp_max_size = U64_MAX;
310 	else
311 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
312 
313 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
314 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
315 
316 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
317 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
318 
319 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
320 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
321 
322 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
323 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
324 
325 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
326 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
327 
328 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
329 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
330 
331 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
332 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
333 
334 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
335 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
336 
337 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
338 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
339 
340 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
341 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
342 
343 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
344 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
345 
346 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
347 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
348 
349 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
350 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
351 
352 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
353 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
354 
355 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
356 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
357 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
358 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
359 
360 	return;
361 }
362 
363 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
364 				      struct mlx5_pagefault *pfault,
365 				      int error)
366 {
367 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
368 		     pfault->wqe.wq_num : pfault->token;
369 	u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
370 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
371 	int err;
372 
373 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
374 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
375 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
376 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
377 	MLX5_SET(page_fault_resume_in, in, error, !!error);
378 
379 	err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
380 	if (err)
381 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
382 			    wq_num, err);
383 }
384 
385 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
386 					    struct ib_umem *umem,
387 					    bool ksm, int access_flags)
388 {
389 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
390 	struct mlx5_ib_mr *mr;
391 	int err;
392 
393 	mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
394 					    MLX5_IMR_MTT_CACHE_ENTRY);
395 
396 	if (IS_ERR(mr))
397 		return mr;
398 
399 	mr->ibmr.pd = pd;
400 
401 	mr->dev = dev;
402 	mr->access_flags = access_flags;
403 	mr->mmkey.iova = 0;
404 	mr->umem = umem;
405 
406 	if (ksm) {
407 		err = mlx5_ib_update_xlt(mr, 0,
408 					 mlx5_imr_ksm_entries,
409 					 MLX5_KSM_PAGE_SHIFT,
410 					 MLX5_IB_UPD_XLT_INDIRECT |
411 					 MLX5_IB_UPD_XLT_ZAP |
412 					 MLX5_IB_UPD_XLT_ENABLE);
413 
414 	} else {
415 		err = mlx5_ib_update_xlt(mr, 0,
416 					 MLX5_IMR_MTT_ENTRIES,
417 					 PAGE_SHIFT,
418 					 MLX5_IB_UPD_XLT_ZAP |
419 					 MLX5_IB_UPD_XLT_ENABLE |
420 					 MLX5_IB_UPD_XLT_ATOMIC);
421 	}
422 
423 	if (err)
424 		goto fail;
425 
426 	mr->ibmr.lkey = mr->mmkey.key;
427 	mr->ibmr.rkey = mr->mmkey.key;
428 
429 	mr->live = 1;
430 
431 	mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
432 		    mr->mmkey.key, dev->mdev, mr);
433 
434 	return mr;
435 
436 fail:
437 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
438 	mlx5_mr_cache_free(dev, mr);
439 
440 	return ERR_PTR(err);
441 }
442 
443 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
444 						u64 io_virt, size_t bcnt)
445 {
446 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
447 	struct ib_umem_odp *odp, *result = NULL;
448 	struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
449 	u64 addr = io_virt & MLX5_IMR_MTT_MASK;
450 	int nentries = 0, start_idx = 0, ret;
451 	struct mlx5_ib_mr *mtt;
452 
453 	mutex_lock(&odp_mr->umem_mutex);
454 	odp = odp_lookup(addr, 1, mr);
455 
456 	mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
457 		    io_virt, bcnt, addr, odp);
458 
459 next_mr:
460 	if (likely(odp)) {
461 		if (nentries)
462 			nentries++;
463 	} else {
464 		odp = ib_alloc_odp_umem(odp_mr, addr,
465 					MLX5_IMR_MTT_SIZE);
466 		if (IS_ERR(odp)) {
467 			mutex_unlock(&odp_mr->umem_mutex);
468 			return ERR_CAST(odp);
469 		}
470 
471 		mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
472 					mr->access_flags);
473 		if (IS_ERR(mtt)) {
474 			mutex_unlock(&odp_mr->umem_mutex);
475 			ib_umem_release(&odp->umem);
476 			return ERR_CAST(mtt);
477 		}
478 
479 		odp->private = mtt;
480 		mtt->umem = &odp->umem;
481 		mtt->mmkey.iova = addr;
482 		mtt->parent = mr;
483 		INIT_WORK(&odp->work, mr_leaf_free_action);
484 
485 		if (!nentries)
486 			start_idx = addr >> MLX5_IMR_MTT_SHIFT;
487 		nentries++;
488 	}
489 
490 	/* Return first odp if region not covered by single one */
491 	if (likely(!result))
492 		result = odp;
493 
494 	addr += MLX5_IMR_MTT_SIZE;
495 	if (unlikely(addr < io_virt + bcnt)) {
496 		odp = odp_next(odp);
497 		if (odp && odp->umem.address != addr)
498 			odp = NULL;
499 		goto next_mr;
500 	}
501 
502 	if (unlikely(nentries)) {
503 		ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
504 					 MLX5_IB_UPD_XLT_INDIRECT |
505 					 MLX5_IB_UPD_XLT_ATOMIC);
506 		if (ret) {
507 			mlx5_ib_err(dev, "Failed to update PAS\n");
508 			result = ERR_PTR(ret);
509 		}
510 	}
511 
512 	mutex_unlock(&odp_mr->umem_mutex);
513 	return result;
514 }
515 
516 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
517 					     struct ib_udata *udata,
518 					     int access_flags)
519 {
520 	struct mlx5_ib_mr *imr;
521 	struct ib_umem *umem;
522 
523 	umem = ib_umem_get(udata, 0, 0, access_flags, 0);
524 	if (IS_ERR(umem))
525 		return ERR_CAST(umem);
526 
527 	imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
528 	if (IS_ERR(imr)) {
529 		ib_umem_release(umem);
530 		return ERR_CAST(imr);
531 	}
532 
533 	imr->umem = umem;
534 	init_waitqueue_head(&imr->q_leaf_free);
535 	atomic_set(&imr->num_leaf_free, 0);
536 	atomic_set(&imr->num_pending_prefetch, 0);
537 
538 	return imr;
539 }
540 
541 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
542 			void *cookie)
543 {
544 	struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
545 
546 	if (mr->parent != imr)
547 		return 0;
548 
549 	ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
550 				    ib_umem_end(umem_odp));
551 
552 	if (umem_odp->dying)
553 		return 0;
554 
555 	WRITE_ONCE(umem_odp->dying, 1);
556 	atomic_inc(&imr->num_leaf_free);
557 	schedule_work(&umem_odp->work);
558 
559 	return 0;
560 }
561 
562 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
563 {
564 	struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
565 
566 	down_read(&per_mm->umem_rwsem);
567 	rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
568 				      mr_leaf_free, true, imr);
569 	up_read(&per_mm->umem_rwsem);
570 
571 	wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
572 }
573 
574 #define MLX5_PF_FLAGS_PREFETCH  BIT(0)
575 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
576 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
577 			u64 io_virt, size_t bcnt, u32 *bytes_mapped,
578 			u32 flags)
579 {
580 	int npages = 0, current_seq, page_shift, ret, np;
581 	bool implicit = false;
582 	struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
583 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
584 	bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
585 	u64 access_mask;
586 	u64 start_idx, page_mask;
587 	struct ib_umem_odp *odp;
588 	size_t size;
589 
590 	if (!odp_mr->page_list) {
591 		odp = implicit_mr_get_data(mr, io_virt, bcnt);
592 
593 		if (IS_ERR(odp))
594 			return PTR_ERR(odp);
595 		mr = odp->private;
596 		implicit = true;
597 	} else {
598 		odp = odp_mr;
599 	}
600 
601 next_mr:
602 	size = min_t(size_t, bcnt, ib_umem_end(odp) - io_virt);
603 
604 	page_shift = odp->page_shift;
605 	page_mask = ~(BIT(page_shift) - 1);
606 	start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
607 	access_mask = ODP_READ_ALLOWED_BIT;
608 
609 	if (prefetch && !downgrade && !mr->umem->writable) {
610 		/* prefetch with write-access must
611 		 * be supported by the MR
612 		 */
613 		ret = -EINVAL;
614 		goto out;
615 	}
616 
617 	if (mr->umem->writable && !downgrade)
618 		access_mask |= ODP_WRITE_ALLOWED_BIT;
619 
620 	current_seq = READ_ONCE(odp->notifiers_seq);
621 	/*
622 	 * Ensure the sequence number is valid for some time before we call
623 	 * gup.
624 	 */
625 	smp_rmb();
626 
627 	ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
628 					access_mask, current_seq);
629 
630 	if (ret < 0)
631 		goto out;
632 
633 	np = ret;
634 
635 	mutex_lock(&odp->umem_mutex);
636 	if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
637 					current_seq)) {
638 		/*
639 		 * No need to check whether the MTTs really belong to
640 		 * this MR, since ib_umem_odp_map_dma_pages already
641 		 * checks this.
642 		 */
643 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
644 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
645 	} else {
646 		ret = -EAGAIN;
647 	}
648 	mutex_unlock(&odp->umem_mutex);
649 
650 	if (ret < 0) {
651 		if (ret != -EAGAIN)
652 			mlx5_ib_err(dev, "Failed to update mkey page tables\n");
653 		goto out;
654 	}
655 
656 	if (bytes_mapped) {
657 		u32 new_mappings = (np << page_shift) -
658 			(io_virt - round_down(io_virt, 1 << page_shift));
659 		*bytes_mapped += min_t(u32, new_mappings, size);
660 	}
661 
662 	npages += np << (page_shift - PAGE_SHIFT);
663 	bcnt -= size;
664 
665 	if (unlikely(bcnt)) {
666 		struct ib_umem_odp *next;
667 
668 		io_virt += size;
669 		next = odp_next(odp);
670 		if (unlikely(!next || next->umem.address != io_virt)) {
671 			mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
672 				    io_virt, next);
673 			return -EAGAIN;
674 		}
675 		odp = next;
676 		mr = odp->private;
677 		goto next_mr;
678 	}
679 
680 	return npages;
681 
682 out:
683 	if (ret == -EAGAIN) {
684 		if (implicit || !odp->dying) {
685 			unsigned long timeout =
686 				msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
687 
688 			if (!wait_for_completion_timeout(
689 					&odp->notifier_completion,
690 					timeout)) {
691 				mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
692 					     current_seq, odp->notifiers_seq, odp->notifiers_count);
693 			}
694 		} else {
695 			/* The MR is being killed, kill the QP as well. */
696 			ret = -EFAULT;
697 		}
698 	}
699 
700 	return ret;
701 }
702 
703 struct pf_frame {
704 	struct pf_frame *next;
705 	u32 key;
706 	u64 io_virt;
707 	size_t bcnt;
708 	int depth;
709 };
710 
711 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
712 {
713 	if (!mmkey)
714 		return false;
715 	if (mmkey->type == MLX5_MKEY_MW)
716 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
717 	return mmkey->key == key;
718 }
719 
720 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
721 {
722 	struct mlx5_ib_mw *mw;
723 	struct mlx5_ib_devx_mr *devx_mr;
724 
725 	if (mmkey->type == MLX5_MKEY_MW) {
726 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
727 		return mw->ndescs;
728 	}
729 
730 	devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
731 			       mmkey);
732 	return devx_mr->ndescs;
733 }
734 
735 /*
736  * Handle a single data segment in a page-fault WQE or RDMA region.
737  *
738  * Returns number of OS pages retrieved on success. The caller may continue to
739  * the next data segment.
740  * Can return the following error codes:
741  * -EAGAIN to designate a temporary error. The caller will abort handling the
742  *  page fault and resolve it.
743  * -EFAULT when there's an error mapping the requested pages. The caller will
744  *  abort the page fault handling.
745  */
746 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
747 					 struct ib_pd *pd, u32 key,
748 					 u64 io_virt, size_t bcnt,
749 					 u32 *bytes_committed,
750 					 u32 *bytes_mapped, u32 flags)
751 {
752 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
753 	bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
754 	struct pf_frame *head = NULL, *frame;
755 	struct mlx5_core_mkey *mmkey;
756 	struct mlx5_ib_mr *mr;
757 	struct mlx5_klm *pklm;
758 	u32 *out = NULL;
759 	size_t offset;
760 	int ndescs;
761 
762 	srcu_key = srcu_read_lock(&dev->mr_srcu);
763 
764 	io_virt += *bytes_committed;
765 	bcnt -= *bytes_committed;
766 
767 next_mr:
768 	mmkey = xa_load(&dev->mdev->priv.mkey_table, mlx5_base_mkey(key));
769 	if (!mkey_is_eq(mmkey, key)) {
770 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
771 		ret = -EFAULT;
772 		goto srcu_unlock;
773 	}
774 
775 	if (prefetch && mmkey->type != MLX5_MKEY_MR) {
776 		mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n");
777 		ret = -EINVAL;
778 		goto srcu_unlock;
779 	}
780 
781 	switch (mmkey->type) {
782 	case MLX5_MKEY_MR:
783 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
784 		if (!mr->live || !mr->ibmr.pd) {
785 			mlx5_ib_dbg(dev, "got dead MR\n");
786 			ret = -EFAULT;
787 			goto srcu_unlock;
788 		}
789 
790 		if (prefetch) {
791 			if (!is_odp_mr(mr) ||
792 			    mr->ibmr.pd != pd) {
793 				mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n",
794 					    is_odp_mr(mr) ?  "MR is not ODP" :
795 					    "PD is not of the MR");
796 				ret = -EINVAL;
797 				goto srcu_unlock;
798 			}
799 		}
800 
801 		if (!is_odp_mr(mr)) {
802 			mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
803 				    key);
804 			if (bytes_mapped)
805 				*bytes_mapped += bcnt;
806 			ret = 0;
807 			goto srcu_unlock;
808 		}
809 
810 		ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags);
811 		if (ret < 0)
812 			goto srcu_unlock;
813 
814 		npages += ret;
815 		ret = 0;
816 		break;
817 
818 	case MLX5_MKEY_MW:
819 	case MLX5_MKEY_INDIRECT_DEVX:
820 		ndescs = get_indirect_num_descs(mmkey);
821 
822 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
823 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
824 			ret = -EFAULT;
825 			goto srcu_unlock;
826 		}
827 
828 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
829 			sizeof(*pklm) * (ndescs - 2);
830 
831 		if (outlen > cur_outlen) {
832 			kfree(out);
833 			out = kzalloc(outlen, GFP_KERNEL);
834 			if (!out) {
835 				ret = -ENOMEM;
836 				goto srcu_unlock;
837 			}
838 			cur_outlen = outlen;
839 		}
840 
841 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
842 						       bsf0_klm0_pas_mtt0_1);
843 
844 		ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
845 		if (ret)
846 			goto srcu_unlock;
847 
848 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
849 					      memory_key_mkey_entry.start_addr);
850 
851 		for (i = 0; bcnt && i < ndescs; i++, pklm++) {
852 			if (offset >= be32_to_cpu(pklm->bcount)) {
853 				offset -= be32_to_cpu(pklm->bcount);
854 				continue;
855 			}
856 
857 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
858 			if (!frame) {
859 				ret = -ENOMEM;
860 				goto srcu_unlock;
861 			}
862 
863 			frame->key = be32_to_cpu(pklm->key);
864 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
865 			frame->bcnt = min_t(size_t, bcnt,
866 					    be32_to_cpu(pklm->bcount) - offset);
867 			frame->depth = depth + 1;
868 			frame->next = head;
869 			head = frame;
870 
871 			bcnt -= frame->bcnt;
872 			offset = 0;
873 		}
874 		break;
875 
876 	default:
877 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
878 		ret = -EFAULT;
879 		goto srcu_unlock;
880 	}
881 
882 	if (head) {
883 		frame = head;
884 		head = frame->next;
885 
886 		key = frame->key;
887 		io_virt = frame->io_virt;
888 		bcnt = frame->bcnt;
889 		depth = frame->depth;
890 		kfree(frame);
891 
892 		goto next_mr;
893 	}
894 
895 srcu_unlock:
896 	while (head) {
897 		frame = head;
898 		head = frame->next;
899 		kfree(frame);
900 	}
901 	kfree(out);
902 
903 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
904 	*bytes_committed = 0;
905 	return ret ? ret : npages;
906 }
907 
908 /**
909  * Parse a series of data segments for page fault handling.
910  *
911  * @pfault contains page fault information.
912  * @wqe points at the first data segment in the WQE.
913  * @wqe_end points after the end of the WQE.
914  * @bytes_mapped receives the number of bytes that the function was able to
915  *               map. This allows the caller to decide intelligently whether
916  *               enough memory was mapped to resolve the page fault
917  *               successfully (e.g. enough for the next MTU, or the entire
918  *               WQE).
919  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
920  *                  the committed bytes).
921  *
922  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
923  * negative error code.
924  */
925 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
926 				   struct mlx5_pagefault *pfault,
927 				   void *wqe,
928 				   void *wqe_end, u32 *bytes_mapped,
929 				   u32 *total_wqe_bytes, bool receive_queue)
930 {
931 	int ret = 0, npages = 0;
932 	u64 io_virt;
933 	u32 key;
934 	u32 byte_count;
935 	size_t bcnt;
936 	int inline_segment;
937 
938 	if (bytes_mapped)
939 		*bytes_mapped = 0;
940 	if (total_wqe_bytes)
941 		*total_wqe_bytes = 0;
942 
943 	while (wqe < wqe_end) {
944 		struct mlx5_wqe_data_seg *dseg = wqe;
945 
946 		io_virt = be64_to_cpu(dseg->addr);
947 		key = be32_to_cpu(dseg->lkey);
948 		byte_count = be32_to_cpu(dseg->byte_count);
949 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
950 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
951 
952 		if (inline_segment) {
953 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
954 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
955 				     16);
956 		} else {
957 			wqe += sizeof(*dseg);
958 		}
959 
960 		/* receive WQE end of sg list. */
961 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
962 		    io_virt == 0)
963 			break;
964 
965 		if (!inline_segment && total_wqe_bytes) {
966 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
967 					pfault->bytes_committed);
968 		}
969 
970 		/* A zero length data segment designates a length of 2GB. */
971 		if (bcnt == 0)
972 			bcnt = 1U << 31;
973 
974 		if (inline_segment || bcnt <= pfault->bytes_committed) {
975 			pfault->bytes_committed -=
976 				min_t(size_t, bcnt,
977 				      pfault->bytes_committed);
978 			continue;
979 		}
980 
981 		ret = pagefault_single_data_segment(dev, NULL, key,
982 						    io_virt, bcnt,
983 						    &pfault->bytes_committed,
984 						    bytes_mapped, 0);
985 		if (ret < 0)
986 			break;
987 		npages += ret;
988 	}
989 
990 	return ret < 0 ? ret : npages;
991 }
992 
993 static const u32 mlx5_ib_odp_opcode_cap[] = {
994 	[MLX5_OPCODE_SEND]	       = IB_ODP_SUPPORT_SEND,
995 	[MLX5_OPCODE_SEND_IMM]	       = IB_ODP_SUPPORT_SEND,
996 	[MLX5_OPCODE_SEND_INVAL]       = IB_ODP_SUPPORT_SEND,
997 	[MLX5_OPCODE_RDMA_WRITE]       = IB_ODP_SUPPORT_WRITE,
998 	[MLX5_OPCODE_RDMA_WRITE_IMM]   = IB_ODP_SUPPORT_WRITE,
999 	[MLX5_OPCODE_RDMA_READ]	       = IB_ODP_SUPPORT_READ,
1000 	[MLX5_OPCODE_ATOMIC_CS]	       = IB_ODP_SUPPORT_ATOMIC,
1001 	[MLX5_OPCODE_ATOMIC_FA]	       = IB_ODP_SUPPORT_ATOMIC,
1002 };
1003 
1004 /*
1005  * Parse initiator WQE. Advances the wqe pointer to point at the
1006  * scatter-gather list, and set wqe_end to the end of the WQE.
1007  */
1008 static int mlx5_ib_mr_initiator_pfault_handler(
1009 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1010 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1011 {
1012 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1013 	u16 wqe_index = pfault->wqe.wqe_index;
1014 	u32 transport_caps;
1015 	struct mlx5_base_av *av;
1016 	unsigned ds, opcode;
1017 #if defined(DEBUG)
1018 	u32 ctrl_wqe_index, ctrl_qpn;
1019 #endif
1020 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1021 
1022 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1023 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1024 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1025 			    ds, wqe_length);
1026 		return -EFAULT;
1027 	}
1028 
1029 	if (ds == 0) {
1030 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1031 			    wqe_index, qpn);
1032 		return -EFAULT;
1033 	}
1034 
1035 #if defined(DEBUG)
1036 	ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
1037 			MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
1038 			MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
1039 	if (wqe_index != ctrl_wqe_index) {
1040 		mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
1041 			    wqe_index, qpn,
1042 			    ctrl_wqe_index);
1043 		return -EFAULT;
1044 	}
1045 
1046 	ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
1047 		MLX5_WQE_CTRL_QPN_SHIFT;
1048 	if (qpn != ctrl_qpn) {
1049 		mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
1050 			    wqe_index, qpn,
1051 			    ctrl_qpn);
1052 		return -EFAULT;
1053 	}
1054 #endif /* DEBUG */
1055 
1056 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1057 	*wqe += sizeof(*ctrl);
1058 
1059 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1060 		 MLX5_WQE_CTRL_OPCODE_MASK;
1061 
1062 	switch (qp->ibqp.qp_type) {
1063 	case IB_QPT_XRC_INI:
1064 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1065 		transport_caps = dev->odp_caps.per_transport_caps.xrc_odp_caps;
1066 		break;
1067 	case IB_QPT_RC:
1068 		transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
1069 		break;
1070 	case IB_QPT_UD:
1071 		transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
1072 		break;
1073 	default:
1074 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
1075 			    qp->ibqp.qp_type);
1076 		return -EFAULT;
1077 	}
1078 
1079 	if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
1080 		     !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
1081 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
1082 			    opcode);
1083 		return -EFAULT;
1084 	}
1085 
1086 	if (qp->ibqp.qp_type == IB_QPT_UD) {
1087 		av = *wqe;
1088 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1089 			*wqe += sizeof(struct mlx5_av);
1090 		else
1091 			*wqe += sizeof(struct mlx5_base_av);
1092 	}
1093 
1094 	switch (opcode) {
1095 	case MLX5_OPCODE_RDMA_WRITE:
1096 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1097 	case MLX5_OPCODE_RDMA_READ:
1098 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1099 		break;
1100 	case MLX5_OPCODE_ATOMIC_CS:
1101 	case MLX5_OPCODE_ATOMIC_FA:
1102 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1103 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1104 		break;
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Parse responder WQE and set wqe_end to the end of the WQE.
1112  */
1113 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1114 						   struct mlx5_ib_srq *srq,
1115 						   void **wqe, void **wqe_end,
1116 						   int wqe_length)
1117 {
1118 	int wqe_size = 1 << srq->msrq.wqe_shift;
1119 
1120 	if (wqe_size > wqe_length) {
1121 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1122 		return -EFAULT;
1123 	}
1124 
1125 	*wqe_end = *wqe + wqe_size;
1126 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1127 
1128 	return 0;
1129 }
1130 
1131 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1132 						  struct mlx5_ib_qp *qp,
1133 						  void *wqe, void **wqe_end,
1134 						  int wqe_length)
1135 {
1136 	struct mlx5_ib_wq *wq = &qp->rq;
1137 	int wqe_size = 1 << wq->wqe_shift;
1138 
1139 	if (qp->wq_sig) {
1140 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1141 		return -EFAULT;
1142 	}
1143 
1144 	if (wqe_size > wqe_length) {
1145 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1146 		return -EFAULT;
1147 	}
1148 
1149 	switch (qp->ibqp.qp_type) {
1150 	case IB_QPT_RC:
1151 		if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1152 		      IB_ODP_SUPPORT_RECV))
1153 			goto invalid_transport_or_opcode;
1154 		break;
1155 	default:
1156 invalid_transport_or_opcode:
1157 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1158 			    qp->ibqp.qp_type);
1159 		return -EFAULT;
1160 	}
1161 
1162 	*wqe_end = wqe + wqe_size;
1163 
1164 	return 0;
1165 }
1166 
1167 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1168 						       u32 wq_num, int pf_type)
1169 {
1170 	struct mlx5_core_rsc_common *common = NULL;
1171 	struct mlx5_core_srq *srq;
1172 
1173 	switch (pf_type) {
1174 	case MLX5_WQE_PF_TYPE_RMP:
1175 		srq = mlx5_cmd_get_srq(dev, wq_num);
1176 		if (srq)
1177 			common = &srq->common;
1178 		break;
1179 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1180 	case MLX5_WQE_PF_TYPE_RESP:
1181 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1182 		common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1183 		break;
1184 	default:
1185 		break;
1186 	}
1187 
1188 	return common;
1189 }
1190 
1191 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1192 {
1193 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1194 
1195 	return to_mibqp(mqp);
1196 }
1197 
1198 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1199 {
1200 	struct mlx5_core_srq *msrq =
1201 		container_of(res, struct mlx5_core_srq, common);
1202 
1203 	return to_mibsrq(msrq);
1204 }
1205 
1206 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1207 					  struct mlx5_pagefault *pfault)
1208 {
1209 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1210 	u16 wqe_index = pfault->wqe.wqe_index;
1211 	void *wqe = NULL, *wqe_end = NULL;
1212 	u32 bytes_mapped, total_wqe_bytes;
1213 	struct mlx5_core_rsc_common *res;
1214 	int resume_with_error = 1;
1215 	struct mlx5_ib_qp *qp;
1216 	size_t bytes_copied;
1217 	int ret = 0;
1218 
1219 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1220 	if (!res) {
1221 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1222 		return;
1223 	}
1224 
1225 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1226 	    res->res != MLX5_RES_XSRQ) {
1227 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1228 			    pfault->type);
1229 		goto resolve_page_fault;
1230 	}
1231 
1232 	wqe = (void *)__get_free_page(GFP_KERNEL);
1233 	if (!wqe) {
1234 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1235 		goto resolve_page_fault;
1236 	}
1237 
1238 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1239 	if (qp && sq) {
1240 		ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1241 					       &bytes_copied);
1242 		if (ret)
1243 			goto read_user;
1244 		ret = mlx5_ib_mr_initiator_pfault_handler(
1245 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1246 	} else if (qp && !sq) {
1247 		ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1248 					       &bytes_copied);
1249 		if (ret)
1250 			goto read_user;
1251 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1252 			dev, qp, wqe, &wqe_end, bytes_copied);
1253 	} else if (!qp) {
1254 		struct mlx5_ib_srq *srq = res_to_srq(res);
1255 
1256 		ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1257 						&bytes_copied);
1258 		if (ret)
1259 			goto read_user;
1260 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1261 			dev, srq, &wqe, &wqe_end, bytes_copied);
1262 	}
1263 
1264 	if (ret < 0 || wqe >= wqe_end)
1265 		goto resolve_page_fault;
1266 
1267 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1268 				      &total_wqe_bytes, !sq);
1269 	if (ret == -EAGAIN)
1270 		goto out;
1271 
1272 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1273 		goto resolve_page_fault;
1274 
1275 out:
1276 	ret = 0;
1277 	resume_with_error = 0;
1278 
1279 read_user:
1280 	if (ret)
1281 		mlx5_ib_err(
1282 			dev,
1283 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1284 			ret, wqe_index, pfault->token);
1285 
1286 resolve_page_fault:
1287 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1288 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1289 		    pfault->wqe.wq_num, resume_with_error,
1290 		    pfault->type);
1291 	mlx5_core_res_put(res);
1292 	free_page((unsigned long)wqe);
1293 }
1294 
1295 static int pages_in_range(u64 address, u32 length)
1296 {
1297 	return (ALIGN(address + length, PAGE_SIZE) -
1298 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1299 }
1300 
1301 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1302 					   struct mlx5_pagefault *pfault)
1303 {
1304 	u64 address;
1305 	u32 length;
1306 	u32 prefetch_len = pfault->bytes_committed;
1307 	int prefetch_activated = 0;
1308 	u32 rkey = pfault->rdma.r_key;
1309 	int ret;
1310 
1311 	/* The RDMA responder handler handles the page fault in two parts.
1312 	 * First it brings the necessary pages for the current packet
1313 	 * (and uses the pfault context), and then (after resuming the QP)
1314 	 * prefetches more pages. The second operation cannot use the pfault
1315 	 * context and therefore uses the dummy_pfault context allocated on
1316 	 * the stack */
1317 	pfault->rdma.rdma_va += pfault->bytes_committed;
1318 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1319 					 pfault->rdma.rdma_op_len);
1320 	pfault->bytes_committed = 0;
1321 
1322 	address = pfault->rdma.rdma_va;
1323 	length  = pfault->rdma.rdma_op_len;
1324 
1325 	/* For some operations, the hardware cannot tell the exact message
1326 	 * length, and in those cases it reports zero. Use prefetch
1327 	 * logic. */
1328 	if (length == 0) {
1329 		prefetch_activated = 1;
1330 		length = pfault->rdma.packet_size;
1331 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1332 	}
1333 
1334 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1335 					    &pfault->bytes_committed, NULL,
1336 					    0);
1337 	if (ret == -EAGAIN) {
1338 		/* We're racing with an invalidation, don't prefetch */
1339 		prefetch_activated = 0;
1340 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1341 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1342 		if (ret != -ENOENT)
1343 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1344 				    ret, pfault->token, pfault->type);
1345 		return;
1346 	}
1347 
1348 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1349 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1350 		    pfault->token, pfault->type,
1351 		    prefetch_activated);
1352 
1353 	/* At this point, there might be a new pagefault already arriving in
1354 	 * the eq, switch to the dummy pagefault for the rest of the
1355 	 * processing. We're still OK with the objects being alive as the
1356 	 * work-queue is being fenced. */
1357 
1358 	if (prefetch_activated) {
1359 		u32 bytes_committed = 0;
1360 
1361 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1362 						    prefetch_len,
1363 						    &bytes_committed, NULL,
1364 						    0);
1365 		if (ret < 0 && ret != -EAGAIN) {
1366 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1367 				    ret, pfault->token, address, prefetch_len);
1368 		}
1369 	}
1370 }
1371 
1372 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1373 {
1374 	u8 event_subtype = pfault->event_subtype;
1375 
1376 	switch (event_subtype) {
1377 	case MLX5_PFAULT_SUBTYPE_WQE:
1378 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1379 		break;
1380 	case MLX5_PFAULT_SUBTYPE_RDMA:
1381 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1382 		break;
1383 	default:
1384 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1385 			    event_subtype);
1386 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1387 	}
1388 }
1389 
1390 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1391 {
1392 	struct mlx5_pagefault *pfault = container_of(work,
1393 						     struct mlx5_pagefault,
1394 						     work);
1395 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1396 
1397 	mlx5_ib_pfault(eq->dev, pfault);
1398 	mempool_free(pfault, eq->pool);
1399 }
1400 
1401 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1402 {
1403 	struct mlx5_eqe_page_fault *pf_eqe;
1404 	struct mlx5_pagefault *pfault;
1405 	struct mlx5_eqe *eqe;
1406 	int cc = 0;
1407 
1408 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1409 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1410 		if (!pfault) {
1411 			schedule_work(&eq->work);
1412 			break;
1413 		}
1414 
1415 		pf_eqe = &eqe->data.page_fault;
1416 		pfault->event_subtype = eqe->sub_type;
1417 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1418 
1419 		mlx5_ib_dbg(eq->dev,
1420 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1421 			    eqe->sub_type, pfault->bytes_committed);
1422 
1423 		switch (eqe->sub_type) {
1424 		case MLX5_PFAULT_SUBTYPE_RDMA:
1425 			/* RDMA based event */
1426 			pfault->type =
1427 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1428 			pfault->token =
1429 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1430 				MLX5_24BIT_MASK;
1431 			pfault->rdma.r_key =
1432 				be32_to_cpu(pf_eqe->rdma.r_key);
1433 			pfault->rdma.packet_size =
1434 				be16_to_cpu(pf_eqe->rdma.packet_length);
1435 			pfault->rdma.rdma_op_len =
1436 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1437 			pfault->rdma.rdma_va =
1438 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1439 			mlx5_ib_dbg(eq->dev,
1440 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1441 				    pfault->type, pfault->token,
1442 				    pfault->rdma.r_key);
1443 			mlx5_ib_dbg(eq->dev,
1444 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1445 				    pfault->rdma.rdma_op_len,
1446 				    pfault->rdma.rdma_va);
1447 			break;
1448 
1449 		case MLX5_PFAULT_SUBTYPE_WQE:
1450 			/* WQE based event */
1451 			pfault->type =
1452 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1453 			pfault->token =
1454 				be32_to_cpu(pf_eqe->wqe.token);
1455 			pfault->wqe.wq_num =
1456 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1457 				MLX5_24BIT_MASK;
1458 			pfault->wqe.wqe_index =
1459 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1460 			pfault->wqe.packet_size =
1461 				be16_to_cpu(pf_eqe->wqe.packet_length);
1462 			mlx5_ib_dbg(eq->dev,
1463 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1464 				    pfault->type, pfault->token,
1465 				    pfault->wqe.wq_num,
1466 				    pfault->wqe.wqe_index);
1467 			break;
1468 
1469 		default:
1470 			mlx5_ib_warn(eq->dev,
1471 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1472 				     eqe->sub_type);
1473 			/* Unsupported page faults should still be
1474 			 * resolved by the page fault handler
1475 			 */
1476 		}
1477 
1478 		pfault->eq = eq;
1479 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1480 		queue_work(eq->wq, &pfault->work);
1481 
1482 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1483 	}
1484 
1485 	mlx5_eq_update_ci(eq->core, cc, 1);
1486 }
1487 
1488 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1489 			     void *data)
1490 {
1491 	struct mlx5_ib_pf_eq *eq =
1492 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1493 	unsigned long flags;
1494 
1495 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1496 		mlx5_ib_eq_pf_process(eq);
1497 		spin_unlock_irqrestore(&eq->lock, flags);
1498 	} else {
1499 		schedule_work(&eq->work);
1500 	}
1501 
1502 	return IRQ_HANDLED;
1503 }
1504 
1505 /* mempool_refill() was proposed but unfortunately wasn't accepted
1506  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1507  * Cheap workaround.
1508  */
1509 static void mempool_refill(mempool_t *pool)
1510 {
1511 	while (pool->curr_nr < pool->min_nr)
1512 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1513 }
1514 
1515 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1516 {
1517 	struct mlx5_ib_pf_eq *eq =
1518 		container_of(work, struct mlx5_ib_pf_eq, work);
1519 
1520 	mempool_refill(eq->pool);
1521 
1522 	spin_lock_irq(&eq->lock);
1523 	mlx5_ib_eq_pf_process(eq);
1524 	spin_unlock_irq(&eq->lock);
1525 }
1526 
1527 enum {
1528 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1529 	MLX5_IB_NUM_PF_DRAIN	= 64,
1530 };
1531 
1532 static int
1533 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1534 {
1535 	struct mlx5_eq_param param = {};
1536 	int err;
1537 
1538 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1539 	spin_lock_init(&eq->lock);
1540 	eq->dev = dev;
1541 
1542 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1543 					       sizeof(struct mlx5_pagefault));
1544 	if (!eq->pool)
1545 		return -ENOMEM;
1546 
1547 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1548 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1549 				 MLX5_NUM_CMD_EQE);
1550 	if (!eq->wq) {
1551 		err = -ENOMEM;
1552 		goto err_mempool;
1553 	}
1554 
1555 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1556 	param = (struct mlx5_eq_param) {
1557 		.irq_index = 0,
1558 		.nent = MLX5_IB_NUM_PF_EQE,
1559 	};
1560 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1561 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1562 	if (IS_ERR(eq->core)) {
1563 		err = PTR_ERR(eq->core);
1564 		goto err_wq;
1565 	}
1566 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1567 	if (err) {
1568 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1569 		goto err_eq;
1570 	}
1571 
1572 	return 0;
1573 err_eq:
1574 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1575 err_wq:
1576 	destroy_workqueue(eq->wq);
1577 err_mempool:
1578 	mempool_destroy(eq->pool);
1579 	return err;
1580 }
1581 
1582 static int
1583 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1584 {
1585 	int err;
1586 
1587 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1588 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1589 	cancel_work_sync(&eq->work);
1590 	destroy_workqueue(eq->wq);
1591 	mempool_destroy(eq->pool);
1592 
1593 	return err;
1594 }
1595 
1596 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1597 {
1598 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1599 		return;
1600 
1601 	switch (ent->order - 2) {
1602 	case MLX5_IMR_MTT_CACHE_ENTRY:
1603 		ent->page = PAGE_SHIFT;
1604 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1605 			   sizeof(struct mlx5_mtt) /
1606 			   MLX5_IB_UMR_OCTOWORD;
1607 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1608 		ent->limit = 0;
1609 		break;
1610 
1611 	case MLX5_IMR_KSM_CACHE_ENTRY:
1612 		ent->page = MLX5_KSM_PAGE_SHIFT;
1613 		ent->xlt = mlx5_imr_ksm_entries *
1614 			   sizeof(struct mlx5_klm) /
1615 			   MLX5_IB_UMR_OCTOWORD;
1616 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1617 		ent->limit = 0;
1618 		break;
1619 	}
1620 }
1621 
1622 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1623 	.advise_mr = mlx5_ib_advise_mr,
1624 };
1625 
1626 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1627 {
1628 	int ret = 0;
1629 
1630 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT)
1631 		ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1632 
1633 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1634 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1635 		if (ret) {
1636 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1637 			return ret;
1638 		}
1639 	}
1640 
1641 	if (!MLX5_CAP_GEN(dev->mdev, pg))
1642 		return ret;
1643 
1644 	ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1645 
1646 	return ret;
1647 }
1648 
1649 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1650 {
1651 	if (!MLX5_CAP_GEN(dev->mdev, pg))
1652 		return;
1653 
1654 	mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1655 }
1656 
1657 int mlx5_ib_odp_init(void)
1658 {
1659 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1660 				       MLX5_IMR_MTT_BITS);
1661 
1662 	return 0;
1663 }
1664 
1665 struct prefetch_mr_work {
1666 	struct work_struct work;
1667 	struct ib_pd *pd;
1668 	u32 pf_flags;
1669 	u32 num_sge;
1670 	struct ib_sge sg_list[0];
1671 };
1672 
1673 static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev,
1674 				     struct ib_sge *sg_list, u32 num_sge,
1675 				     u32 from)
1676 {
1677 	u32 i;
1678 	int srcu_key;
1679 
1680 	srcu_key = srcu_read_lock(&dev->mr_srcu);
1681 
1682 	for (i = from; i < num_sge; ++i) {
1683 		struct mlx5_core_mkey *mmkey;
1684 		struct mlx5_ib_mr *mr;
1685 
1686 		mmkey = xa_load(&dev->mdev->priv.mkey_table,
1687 				mlx5_base_mkey(sg_list[i].lkey));
1688 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1689 		atomic_dec(&mr->num_pending_prefetch);
1690 	}
1691 
1692 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
1693 }
1694 
1695 static bool num_pending_prefetch_inc(struct ib_pd *pd,
1696 				     struct ib_sge *sg_list, u32 num_sge)
1697 {
1698 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1699 	bool ret = true;
1700 	u32 i;
1701 
1702 	for (i = 0; i < num_sge; ++i) {
1703 		struct mlx5_core_mkey *mmkey;
1704 		struct mlx5_ib_mr *mr;
1705 
1706 		mmkey = xa_load(&dev->mdev->priv.mkey_table,
1707 				mlx5_base_mkey(sg_list[i].lkey));
1708 		if (!mmkey || mmkey->key != sg_list[i].lkey) {
1709 			ret = false;
1710 			break;
1711 		}
1712 
1713 		if (mmkey->type != MLX5_MKEY_MR) {
1714 			ret = false;
1715 			break;
1716 		}
1717 
1718 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1719 
1720 		if (mr->ibmr.pd != pd) {
1721 			ret = false;
1722 			break;
1723 		}
1724 
1725 		if (!mr->live) {
1726 			ret = false;
1727 			break;
1728 		}
1729 
1730 		atomic_inc(&mr->num_pending_prefetch);
1731 	}
1732 
1733 	if (!ret)
1734 		num_pending_prefetch_dec(dev, sg_list, i, 0);
1735 
1736 	return ret;
1737 }
1738 
1739 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags,
1740 				    struct ib_sge *sg_list, u32 num_sge)
1741 {
1742 	u32 i;
1743 	int ret = 0;
1744 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1745 
1746 	for (i = 0; i < num_sge; ++i) {
1747 		struct ib_sge *sg = &sg_list[i];
1748 		int bytes_committed = 0;
1749 
1750 		ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr,
1751 						    sg->length,
1752 						    &bytes_committed, NULL,
1753 						    pf_flags);
1754 		if (ret < 0)
1755 			break;
1756 	}
1757 
1758 	return ret < 0 ? ret : 0;
1759 }
1760 
1761 static void mlx5_ib_prefetch_mr_work(struct work_struct *work)
1762 {
1763 	struct prefetch_mr_work *w =
1764 		container_of(work, struct prefetch_mr_work, work);
1765 
1766 	if (ib_device_try_get(w->pd->device)) {
1767 		mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list,
1768 					 w->num_sge);
1769 		ib_device_put(w->pd->device);
1770 	}
1771 
1772 	num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list,
1773 				 w->num_sge, 0);
1774 	kfree(w);
1775 }
1776 
1777 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1778 			       enum ib_uverbs_advise_mr_advice advice,
1779 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1780 {
1781 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1782 	u32 pf_flags = MLX5_PF_FLAGS_PREFETCH;
1783 	struct prefetch_mr_work *work;
1784 	bool valid_req;
1785 	int srcu_key;
1786 
1787 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1788 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1789 
1790 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1791 		return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list,
1792 						num_sge);
1793 
1794 	work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL);
1795 	if (!work)
1796 		return -ENOMEM;
1797 
1798 	memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge));
1799 
1800 	/* It is guaranteed that the pd when work is executed is the pd when
1801 	 * work was queued since pd can't be destroyed while it holds MRs and
1802 	 * destroying a MR leads to flushing the workquque
1803 	 */
1804 	work->pd = pd;
1805 	work->pf_flags = pf_flags;
1806 	work->num_sge = num_sge;
1807 
1808 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1809 
1810 	srcu_key = srcu_read_lock(&dev->mr_srcu);
1811 
1812 	valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge);
1813 	if (valid_req)
1814 		queue_work(system_unbound_wq, &work->work);
1815 	else
1816 		kfree(work);
1817 
1818 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
1819 
1820 	return valid_req ? 0 : -EINVAL;
1821 }
1822