1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem.h> 34 #include <rdma/ib_umem_odp.h> 35 #include <linux/kernel.h> 36 37 #include "mlx5_ib.h" 38 #include "cmd.h" 39 #include "qp.h" 40 41 #include <linux/mlx5/eq.h> 42 43 /* Contains the details of a pagefault. */ 44 struct mlx5_pagefault { 45 u32 bytes_committed; 46 u32 token; 47 u8 event_subtype; 48 u8 type; 49 union { 50 /* Initiator or send message responder pagefault details. */ 51 struct { 52 /* Received packet size, only valid for responders. */ 53 u32 packet_size; 54 /* 55 * Number of resource holding WQE, depends on type. 56 */ 57 u32 wq_num; 58 /* 59 * WQE index. Refers to either the send queue or 60 * receive queue, according to event_subtype. 61 */ 62 u16 wqe_index; 63 } wqe; 64 /* RDMA responder pagefault details */ 65 struct { 66 u32 r_key; 67 /* 68 * Received packet size, minimal size page fault 69 * resolution required for forward progress. 70 */ 71 u32 packet_size; 72 u32 rdma_op_len; 73 u64 rdma_va; 74 } rdma; 75 }; 76 77 struct mlx5_ib_pf_eq *eq; 78 struct work_struct work; 79 }; 80 81 #define MAX_PREFETCH_LEN (4*1024*1024U) 82 83 /* Timeout in ms to wait for an active mmu notifier to complete when handling 84 * a pagefault. */ 85 #define MMU_NOTIFIER_TIMEOUT 1000 86 87 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 88 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 89 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 90 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 91 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 92 93 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 94 95 static u64 mlx5_imr_ksm_entries; 96 97 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, 98 struct mlx5_ib_mr *imr, int flags) 99 { 100 struct mlx5_klm *end = pklm + nentries; 101 102 if (flags & MLX5_IB_UPD_XLT_ZAP) { 103 for (; pklm != end; pklm++, idx++) { 104 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 105 pklm->key = cpu_to_be32(imr->dev->null_mkey); 106 pklm->va = 0; 107 } 108 return; 109 } 110 111 /* 112 * The locking here is pretty subtle. Ideally the implicit_children 113 * xarray would be protected by the umem_mutex, however that is not 114 * possible. Instead this uses a weaker update-then-lock pattern: 115 * 116 * srcu_read_lock() 117 * xa_store() 118 * mutex_lock(umem_mutex) 119 * mlx5_ib_update_xlt() 120 * mutex_unlock(umem_mutex) 121 * destroy lkey 122 * 123 * ie any change the xarray must be followed by the locked update_xlt 124 * before destroying. 125 * 126 * The umem_mutex provides the acquire/release semantic needed to make 127 * the xa_store() visible to a racing thread. While SRCU is not 128 * technically required, using it gives consistent use of the SRCU 129 * locking around the xarray. 130 */ 131 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); 132 lockdep_assert_held(&imr->dev->odp_srcu); 133 134 for (; pklm != end; pklm++, idx++) { 135 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); 136 137 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 138 if (mtt) { 139 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 140 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); 141 } else { 142 pklm->key = cpu_to_be32(imr->dev->null_mkey); 143 pklm->va = 0; 144 } 145 } 146 } 147 148 static u64 umem_dma_to_mtt(dma_addr_t umem_dma) 149 { 150 u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK; 151 152 if (umem_dma & ODP_READ_ALLOWED_BIT) 153 mtt_entry |= MLX5_IB_MTT_READ; 154 if (umem_dma & ODP_WRITE_ALLOWED_BIT) 155 mtt_entry |= MLX5_IB_MTT_WRITE; 156 157 return mtt_entry; 158 } 159 160 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries, 161 struct mlx5_ib_mr *mr, int flags) 162 { 163 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 164 dma_addr_t pa; 165 size_t i; 166 167 if (flags & MLX5_IB_UPD_XLT_ZAP) 168 return; 169 170 for (i = 0; i < nentries; i++) { 171 pa = odp->dma_list[idx + i]; 172 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa)); 173 } 174 } 175 176 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries, 177 struct mlx5_ib_mr *mr, int flags) 178 { 179 if (flags & MLX5_IB_UPD_XLT_INDIRECT) { 180 populate_klm(xlt, idx, nentries, mr, flags); 181 } else { 182 populate_mtt(xlt, idx, nentries, mr, flags); 183 } 184 } 185 186 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr) 187 { 188 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 189 190 /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */ 191 mutex_lock(&odp->umem_mutex); 192 if (odp->npages) { 193 mlx5_mr_cache_invalidate(mr); 194 ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp), 195 ib_umem_end(odp)); 196 WARN_ON(odp->npages); 197 } 198 odp->private = NULL; 199 mutex_unlock(&odp->umem_mutex); 200 201 if (!mr->cache_ent) { 202 mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey); 203 WARN_ON(mr->descs); 204 } 205 } 206 207 /* 208 * This must be called after the mr has been removed from implicit_children 209 * and the SRCU synchronized. NOTE: The MR does not necessarily have to be 210 * empty here, parallel page faults could have raced with the free process and 211 * added pages to it. 212 */ 213 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt) 214 { 215 struct mlx5_ib_mr *imr = mr->parent; 216 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 217 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 218 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 219 int srcu_key; 220 221 /* implicit_child_mr's are not allowed to have deferred work */ 222 WARN_ON(atomic_read(&mr->num_deferred_work)); 223 224 if (need_imr_xlt) { 225 srcu_key = srcu_read_lock(&mr->dev->odp_srcu); 226 mutex_lock(&odp_imr->umem_mutex); 227 mlx5_ib_update_xlt(mr->parent, idx, 1, 0, 228 MLX5_IB_UPD_XLT_INDIRECT | 229 MLX5_IB_UPD_XLT_ATOMIC); 230 mutex_unlock(&odp_imr->umem_mutex); 231 srcu_read_unlock(&mr->dev->odp_srcu, srcu_key); 232 } 233 234 dma_fence_odp_mr(mr); 235 236 mr->parent = NULL; 237 mlx5_mr_cache_free(mr->dev, mr); 238 ib_umem_odp_release(odp); 239 if (atomic_dec_and_test(&imr->num_deferred_work)) 240 wake_up(&imr->q_deferred_work); 241 } 242 243 static void free_implicit_child_mr_work(struct work_struct *work) 244 { 245 struct mlx5_ib_mr *mr = 246 container_of(work, struct mlx5_ib_mr, odp_destroy.work); 247 248 free_implicit_child_mr(mr, true); 249 } 250 251 static void free_implicit_child_mr_rcu(struct rcu_head *head) 252 { 253 struct mlx5_ib_mr *mr = 254 container_of(head, struct mlx5_ib_mr, odp_destroy.rcu); 255 256 /* Freeing a MR is a sleeping operation, so bounce to a work queue */ 257 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); 258 queue_work(system_unbound_wq, &mr->odp_destroy.work); 259 } 260 261 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) 262 { 263 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 264 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 265 struct mlx5_ib_mr *imr = mr->parent; 266 267 xa_lock(&imr->implicit_children); 268 /* 269 * This can race with mlx5_ib_free_implicit_mr(), the first one to 270 * reach the xa lock wins the race and destroys the MR. 271 */ 272 if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) != 273 mr) 274 goto out_unlock; 275 276 atomic_inc(&imr->num_deferred_work); 277 call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu, 278 free_implicit_child_mr_rcu); 279 280 out_unlock: 281 xa_unlock(&imr->implicit_children); 282 } 283 284 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, 285 const struct mmu_notifier_range *range, 286 unsigned long cur_seq) 287 { 288 struct ib_umem_odp *umem_odp = 289 container_of(mni, struct ib_umem_odp, notifier); 290 struct mlx5_ib_mr *mr; 291 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / 292 sizeof(struct mlx5_mtt)) - 1; 293 u64 idx = 0, blk_start_idx = 0; 294 u64 invalidations = 0; 295 unsigned long start; 296 unsigned long end; 297 int in_block = 0; 298 u64 addr; 299 300 if (!mmu_notifier_range_blockable(range)) 301 return false; 302 303 mutex_lock(&umem_odp->umem_mutex); 304 mmu_interval_set_seq(mni, cur_seq); 305 /* 306 * If npages is zero then umem_odp->private may not be setup yet. This 307 * does not complete until after the first page is mapped for DMA. 308 */ 309 if (!umem_odp->npages) 310 goto out; 311 mr = umem_odp->private; 312 313 start = max_t(u64, ib_umem_start(umem_odp), range->start); 314 end = min_t(u64, ib_umem_end(umem_odp), range->end); 315 316 /* 317 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 318 * while we are doing the invalidation, no page fault will attempt to 319 * overwrite the same MTTs. Concurent invalidations might race us, 320 * but they will write 0s as well, so no difference in the end result. 321 */ 322 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { 323 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 324 /* 325 * Strive to write the MTTs in chunks, but avoid overwriting 326 * non-existing MTTs. The huristic here can be improved to 327 * estimate the cost of another UMR vs. the cost of bigger 328 * UMR. 329 */ 330 if (umem_odp->dma_list[idx] & 331 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 332 if (!in_block) { 333 blk_start_idx = idx; 334 in_block = 1; 335 } 336 337 /* Count page invalidations */ 338 invalidations += idx - blk_start_idx + 1; 339 } else { 340 u64 umr_offset = idx & umr_block_mask; 341 342 if (in_block && umr_offset == 0) { 343 mlx5_ib_update_xlt(mr, blk_start_idx, 344 idx - blk_start_idx, 0, 345 MLX5_IB_UPD_XLT_ZAP | 346 MLX5_IB_UPD_XLT_ATOMIC); 347 in_block = 0; 348 } 349 } 350 } 351 if (in_block) 352 mlx5_ib_update_xlt(mr, blk_start_idx, 353 idx - blk_start_idx + 1, 0, 354 MLX5_IB_UPD_XLT_ZAP | 355 MLX5_IB_UPD_XLT_ATOMIC); 356 357 mlx5_update_odp_stats(mr, invalidations, invalidations); 358 359 /* 360 * We are now sure that the device will not access the 361 * memory. We can safely unmap it, and mark it as dirty if 362 * needed. 363 */ 364 365 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 366 367 if (unlikely(!umem_odp->npages && mr->parent)) 368 destroy_unused_implicit_child_mr(mr); 369 out: 370 mutex_unlock(&umem_odp->umem_mutex); 371 return true; 372 } 373 374 const struct mmu_interval_notifier_ops mlx5_mn_ops = { 375 .invalidate = mlx5_ib_invalidate_range, 376 }; 377 378 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) 379 { 380 struct ib_odp_caps *caps = &dev->odp_caps; 381 382 memset(caps, 0, sizeof(*caps)); 383 384 if (!MLX5_CAP_GEN(dev->mdev, pg) || 385 !mlx5_ib_can_use_umr(dev, true, 0)) 386 return; 387 388 caps->general_caps = IB_ODP_SUPPORT; 389 390 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 391 dev->odp_max_size = U64_MAX; 392 else 393 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 394 395 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) 396 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 397 398 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) 399 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 400 401 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) 402 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 403 404 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) 405 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 406 407 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) 408 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 409 410 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) 411 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 412 413 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) 414 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 415 416 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) 417 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 418 419 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) 420 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 421 422 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) 423 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 424 425 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) 426 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 427 428 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) 429 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 430 431 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) 432 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 433 434 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) 435 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 436 437 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 438 MLX5_CAP_GEN(dev->mdev, null_mkey) && 439 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && 440 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) 441 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 442 } 443 444 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 445 struct mlx5_pagefault *pfault, 446 int error) 447 { 448 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 449 pfault->wqe.wq_num : pfault->token; 450 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {}; 451 int err; 452 453 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 454 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); 455 MLX5_SET(page_fault_resume_in, in, token, pfault->token); 456 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); 457 MLX5_SET(page_fault_resume_in, in, error, !!error); 458 459 err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in); 460 if (err) 461 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 462 wq_num, err); 463 } 464 465 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, 466 unsigned long idx) 467 { 468 struct ib_umem_odp *odp; 469 struct mlx5_ib_mr *mr; 470 struct mlx5_ib_mr *ret; 471 int err; 472 473 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), 474 idx * MLX5_IMR_MTT_SIZE, 475 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); 476 if (IS_ERR(odp)) 477 return ERR_CAST(odp); 478 479 ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY); 480 if (IS_ERR(mr)) 481 goto out_umem; 482 483 mr->ibmr.pd = imr->ibmr.pd; 484 mr->access_flags = imr->access_flags; 485 mr->umem = &odp->umem; 486 mr->ibmr.lkey = mr->mmkey.key; 487 mr->ibmr.rkey = mr->mmkey.key; 488 mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE; 489 mr->parent = imr; 490 odp->private = mr; 491 492 err = mlx5_ib_update_xlt(mr, 0, 493 MLX5_IMR_MTT_ENTRIES, 494 PAGE_SHIFT, 495 MLX5_IB_UPD_XLT_ZAP | 496 MLX5_IB_UPD_XLT_ENABLE); 497 if (err) { 498 ret = ERR_PTR(err); 499 goto out_mr; 500 } 501 502 /* 503 * Once the store to either xarray completes any error unwind has to 504 * use synchronize_srcu(). Avoid this with xa_reserve() 505 */ 506 ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, 507 GFP_KERNEL); 508 if (unlikely(ret)) { 509 if (xa_is_err(ret)) { 510 ret = ERR_PTR(xa_err(ret)); 511 goto out_mr; 512 } 513 /* 514 * Another thread beat us to creating the child mr, use 515 * theirs. 516 */ 517 goto out_mr; 518 } 519 520 mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr); 521 return mr; 522 523 out_mr: 524 mlx5_mr_cache_free(imr->dev, mr); 525 out_umem: 526 ib_umem_odp_release(odp); 527 return ret; 528 } 529 530 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 531 struct ib_udata *udata, 532 int access_flags) 533 { 534 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); 535 struct ib_umem_odp *umem_odp; 536 struct mlx5_ib_mr *imr; 537 int err; 538 539 umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags); 540 if (IS_ERR(umem_odp)) 541 return ERR_CAST(umem_odp); 542 543 imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY); 544 if (IS_ERR(imr)) { 545 err = PTR_ERR(imr); 546 goto out_umem; 547 } 548 549 imr->ibmr.pd = &pd->ibpd; 550 imr->access_flags = access_flags; 551 imr->mmkey.iova = 0; 552 imr->umem = &umem_odp->umem; 553 imr->ibmr.lkey = imr->mmkey.key; 554 imr->ibmr.rkey = imr->mmkey.key; 555 imr->umem = &umem_odp->umem; 556 imr->is_odp_implicit = true; 557 atomic_set(&imr->num_deferred_work, 0); 558 init_waitqueue_head(&imr->q_deferred_work); 559 xa_init(&imr->implicit_children); 560 561 err = mlx5_ib_update_xlt(imr, 0, 562 mlx5_imr_ksm_entries, 563 MLX5_KSM_PAGE_SHIFT, 564 MLX5_IB_UPD_XLT_INDIRECT | 565 MLX5_IB_UPD_XLT_ZAP | 566 MLX5_IB_UPD_XLT_ENABLE); 567 if (err) 568 goto out_mr; 569 570 err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key), 571 &imr->mmkey, GFP_KERNEL)); 572 if (err) 573 goto out_mr; 574 575 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); 576 return imr; 577 out_mr: 578 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 579 mlx5_mr_cache_free(dev, imr); 580 out_umem: 581 ib_umem_odp_release(umem_odp); 582 return ERR_PTR(err); 583 } 584 585 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) 586 { 587 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 588 struct mlx5_ib_dev *dev = imr->dev; 589 struct list_head destroy_list; 590 struct mlx5_ib_mr *mtt; 591 struct mlx5_ib_mr *tmp; 592 unsigned long idx; 593 594 INIT_LIST_HEAD(&destroy_list); 595 596 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key)); 597 /* 598 * This stops the SRCU protected page fault path from touching either 599 * the imr or any children. The page fault path can only reach the 600 * children xarray via the imr. 601 */ 602 synchronize_srcu(&dev->odp_srcu); 603 604 /* 605 * All work on the prefetch list must be completed, xa_erase() prevented 606 * new work from being created. 607 */ 608 wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work)); 609 610 /* 611 * At this point it is forbidden for any other thread to enter 612 * pagefault_mr() on this imr. It is already forbidden to call 613 * pagefault_mr() on an implicit child. Due to this additions to 614 * implicit_children are prevented. 615 */ 616 617 /* 618 * Block destroy_unused_implicit_child_mr() from incrementing 619 * num_deferred_work. 620 */ 621 xa_lock(&imr->implicit_children); 622 xa_for_each (&imr->implicit_children, idx, mtt) { 623 __xa_erase(&imr->implicit_children, idx); 624 list_add(&mtt->odp_destroy.elm, &destroy_list); 625 } 626 xa_unlock(&imr->implicit_children); 627 628 /* 629 * Wait for any concurrent destroy_unused_implicit_child_mr() to 630 * complete. 631 */ 632 wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work)); 633 634 /* 635 * Fence the imr before we destroy the children. This allows us to 636 * skip updating the XLT of the imr during destroy of the child mkey 637 * the imr points to. 638 */ 639 mlx5_mr_cache_invalidate(imr); 640 641 list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm) 642 free_implicit_child_mr(mtt, false); 643 644 mlx5_mr_cache_free(dev, imr); 645 ib_umem_odp_release(odp_imr); 646 } 647 648 /** 649 * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR 650 * @mr: to fence 651 * 652 * On return no parallel threads will be touching this MR and no DMA will be 653 * active. 654 */ 655 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr) 656 { 657 /* Prevent new page faults and prefetch requests from succeeding */ 658 xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)); 659 660 /* Wait for all running page-fault handlers to finish. */ 661 synchronize_srcu(&mr->dev->odp_srcu); 662 663 wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work)); 664 665 dma_fence_odp_mr(mr); 666 } 667 668 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 669 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, 670 u64 user_va, size_t bcnt, u32 *bytes_mapped, 671 u32 flags) 672 { 673 int page_shift, ret, np; 674 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 675 unsigned long current_seq; 676 u64 access_mask; 677 u64 start_idx; 678 679 page_shift = odp->page_shift; 680 start_idx = (user_va - ib_umem_start(odp)) >> page_shift; 681 access_mask = ODP_READ_ALLOWED_BIT; 682 683 if (odp->umem.writable && !downgrade) 684 access_mask |= ODP_WRITE_ALLOWED_BIT; 685 686 current_seq = mmu_interval_read_begin(&odp->notifier); 687 688 np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask, 689 current_seq); 690 if (np < 0) 691 return np; 692 693 mutex_lock(&odp->umem_mutex); 694 if (!mmu_interval_read_retry(&odp->notifier, current_seq)) { 695 /* 696 * No need to check whether the MTTs really belong to 697 * this MR, since ib_umem_odp_map_dma_pages already 698 * checks this. 699 */ 700 ret = mlx5_ib_update_xlt(mr, start_idx, np, 701 page_shift, MLX5_IB_UPD_XLT_ATOMIC); 702 } else { 703 ret = -EAGAIN; 704 } 705 mutex_unlock(&odp->umem_mutex); 706 707 if (ret < 0) { 708 if (ret != -EAGAIN) 709 mlx5_ib_err(mr->dev, 710 "Failed to update mkey page tables\n"); 711 goto out; 712 } 713 714 if (bytes_mapped) { 715 u32 new_mappings = (np << page_shift) - 716 (user_va - round_down(user_va, 1 << page_shift)); 717 718 *bytes_mapped += min_t(u32, new_mappings, bcnt); 719 } 720 721 return np << (page_shift - PAGE_SHIFT); 722 723 out: 724 return ret; 725 } 726 727 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, 728 struct ib_umem_odp *odp_imr, u64 user_va, 729 size_t bcnt, u32 *bytes_mapped, u32 flags) 730 { 731 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; 732 unsigned long upd_start_idx = end_idx + 1; 733 unsigned long upd_len = 0; 734 unsigned long npages = 0; 735 int err; 736 int ret; 737 738 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || 739 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) 740 return -EFAULT; 741 742 /* Fault each child mr that intersects with our interval. */ 743 while (bcnt) { 744 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; 745 struct ib_umem_odp *umem_odp; 746 struct mlx5_ib_mr *mtt; 747 u64 len; 748 749 mtt = xa_load(&imr->implicit_children, idx); 750 if (unlikely(!mtt)) { 751 mtt = implicit_get_child_mr(imr, idx); 752 if (IS_ERR(mtt)) { 753 ret = PTR_ERR(mtt); 754 goto out; 755 } 756 upd_start_idx = min(upd_start_idx, idx); 757 upd_len = idx - upd_start_idx + 1; 758 } 759 760 umem_odp = to_ib_umem_odp(mtt->umem); 761 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - 762 user_va; 763 764 ret = pagefault_real_mr(mtt, umem_odp, user_va, len, 765 bytes_mapped, flags); 766 if (ret < 0) 767 goto out; 768 user_va += len; 769 bcnt -= len; 770 npages += ret; 771 } 772 773 ret = npages; 774 775 /* 776 * Any time the implicit_children are changed we must perform an 777 * update of the xlt before exiting to ensure the HW and the 778 * implicit_children remains synchronized. 779 */ 780 out: 781 if (likely(!upd_len)) 782 return ret; 783 784 /* 785 * Notice this is not strictly ordered right, the KSM is updated after 786 * the implicit_children is updated, so a parallel page fault could 787 * see a MR that is not yet visible in the KSM. This is similar to a 788 * parallel page fault seeing a MR that is being concurrently removed 789 * from the KSM. Both of these improbable situations are resolved 790 * safely by resuming the HW and then taking another page fault. The 791 * next pagefault handler will see the new information. 792 */ 793 mutex_lock(&odp_imr->umem_mutex); 794 err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0, 795 MLX5_IB_UPD_XLT_INDIRECT | 796 MLX5_IB_UPD_XLT_ATOMIC); 797 mutex_unlock(&odp_imr->umem_mutex); 798 if (err) { 799 mlx5_ib_err(imr->dev, "Failed to update PAS\n"); 800 return err; 801 } 802 return ret; 803 } 804 805 /* 806 * Returns: 807 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are 808 * not accessible, or the MR is no longer valid. 809 * -EAGAIN/-ENOMEM: The operation should be retried 810 * 811 * -EINVAL/others: General internal malfunction 812 * >0: Number of pages mapped 813 */ 814 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, 815 u32 *bytes_mapped, u32 flags) 816 { 817 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 818 819 if (unlikely(io_virt < mr->mmkey.iova)) 820 return -EFAULT; 821 822 if (!odp->is_implicit_odp) { 823 u64 user_va; 824 825 if (check_add_overflow(io_virt - mr->mmkey.iova, 826 (u64)odp->umem.address, &user_va)) 827 return -EFAULT; 828 if (unlikely(user_va >= ib_umem_end(odp) || 829 ib_umem_end(odp) - user_va < bcnt)) 830 return -EFAULT; 831 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped, 832 flags); 833 } 834 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, 835 flags); 836 } 837 838 struct pf_frame { 839 struct pf_frame *next; 840 u32 key; 841 u64 io_virt; 842 size_t bcnt; 843 int depth; 844 }; 845 846 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key) 847 { 848 if (!mmkey) 849 return false; 850 if (mmkey->type == MLX5_MKEY_MW) 851 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 852 return mmkey->key == key; 853 } 854 855 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey) 856 { 857 struct mlx5_ib_mw *mw; 858 struct mlx5_ib_devx_mr *devx_mr; 859 860 if (mmkey->type == MLX5_MKEY_MW) { 861 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey); 862 return mw->ndescs; 863 } 864 865 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr, 866 mmkey); 867 return devx_mr->ndescs; 868 } 869 870 /* 871 * Handle a single data segment in a page-fault WQE or RDMA region. 872 * 873 * Returns number of OS pages retrieved on success. The caller may continue to 874 * the next data segment. 875 * Can return the following error codes: 876 * -EAGAIN to designate a temporary error. The caller will abort handling the 877 * page fault and resolve it. 878 * -EFAULT when there's an error mapping the requested pages. The caller will 879 * abort the page fault handling. 880 */ 881 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 882 struct ib_pd *pd, u32 key, 883 u64 io_virt, size_t bcnt, 884 u32 *bytes_committed, 885 u32 *bytes_mapped) 886 { 887 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0; 888 struct pf_frame *head = NULL, *frame; 889 struct mlx5_core_mkey *mmkey; 890 struct mlx5_ib_mr *mr; 891 struct mlx5_klm *pklm; 892 u32 *out = NULL; 893 size_t offset; 894 int ndescs; 895 896 srcu_key = srcu_read_lock(&dev->odp_srcu); 897 898 io_virt += *bytes_committed; 899 bcnt -= *bytes_committed; 900 901 next_mr: 902 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); 903 if (!mmkey) { 904 mlx5_ib_dbg( 905 dev, 906 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 907 key); 908 if (bytes_mapped) 909 *bytes_mapped += bcnt; 910 /* 911 * The user could specify a SGL with multiple lkeys and only 912 * some of them are ODP. Treat the non-ODP ones as fully 913 * faulted. 914 */ 915 ret = 0; 916 goto srcu_unlock; 917 } 918 if (!mkey_is_eq(mmkey, key)) { 919 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); 920 ret = -EFAULT; 921 goto srcu_unlock; 922 } 923 924 switch (mmkey->type) { 925 case MLX5_MKEY_MR: 926 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 927 928 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0); 929 if (ret < 0) 930 goto srcu_unlock; 931 932 /* 933 * When prefetching a page, page fault is generated 934 * in order to bring the page to the main memory. 935 * In the current flow, page faults are being counted. 936 */ 937 mlx5_update_odp_stats(mr, faults, ret); 938 939 npages += ret; 940 ret = 0; 941 break; 942 943 case MLX5_MKEY_MW: 944 case MLX5_MKEY_INDIRECT_DEVX: 945 ndescs = get_indirect_num_descs(mmkey); 946 947 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 948 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 949 ret = -EFAULT; 950 goto srcu_unlock; 951 } 952 953 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 954 sizeof(*pklm) * (ndescs - 2); 955 956 if (outlen > cur_outlen) { 957 kfree(out); 958 out = kzalloc(outlen, GFP_KERNEL); 959 if (!out) { 960 ret = -ENOMEM; 961 goto srcu_unlock; 962 } 963 cur_outlen = outlen; 964 } 965 966 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 967 bsf0_klm0_pas_mtt0_1); 968 969 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen); 970 if (ret) 971 goto srcu_unlock; 972 973 offset = io_virt - MLX5_GET64(query_mkey_out, out, 974 memory_key_mkey_entry.start_addr); 975 976 for (i = 0; bcnt && i < ndescs; i++, pklm++) { 977 if (offset >= be32_to_cpu(pklm->bcount)) { 978 offset -= be32_to_cpu(pklm->bcount); 979 continue; 980 } 981 982 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 983 if (!frame) { 984 ret = -ENOMEM; 985 goto srcu_unlock; 986 } 987 988 frame->key = be32_to_cpu(pklm->key); 989 frame->io_virt = be64_to_cpu(pklm->va) + offset; 990 frame->bcnt = min_t(size_t, bcnt, 991 be32_to_cpu(pklm->bcount) - offset); 992 frame->depth = depth + 1; 993 frame->next = head; 994 head = frame; 995 996 bcnt -= frame->bcnt; 997 offset = 0; 998 } 999 break; 1000 1001 default: 1002 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 1003 ret = -EFAULT; 1004 goto srcu_unlock; 1005 } 1006 1007 if (head) { 1008 frame = head; 1009 head = frame->next; 1010 1011 key = frame->key; 1012 io_virt = frame->io_virt; 1013 bcnt = frame->bcnt; 1014 depth = frame->depth; 1015 kfree(frame); 1016 1017 goto next_mr; 1018 } 1019 1020 srcu_unlock: 1021 while (head) { 1022 frame = head; 1023 head = frame->next; 1024 kfree(frame); 1025 } 1026 kfree(out); 1027 1028 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1029 *bytes_committed = 0; 1030 return ret ? ret : npages; 1031 } 1032 1033 /** 1034 * Parse a series of data segments for page fault handling. 1035 * 1036 * @pfault contains page fault information. 1037 * @wqe points at the first data segment in the WQE. 1038 * @wqe_end points after the end of the WQE. 1039 * @bytes_mapped receives the number of bytes that the function was able to 1040 * map. This allows the caller to decide intelligently whether 1041 * enough memory was mapped to resolve the page fault 1042 * successfully (e.g. enough for the next MTU, or the entire 1043 * WQE). 1044 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus 1045 * the committed bytes). 1046 * 1047 * Returns the number of pages loaded if positive, zero for an empty WQE, or a 1048 * negative error code. 1049 */ 1050 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 1051 struct mlx5_pagefault *pfault, 1052 void *wqe, 1053 void *wqe_end, u32 *bytes_mapped, 1054 u32 *total_wqe_bytes, bool receive_queue) 1055 { 1056 int ret = 0, npages = 0; 1057 u64 io_virt; 1058 u32 key; 1059 u32 byte_count; 1060 size_t bcnt; 1061 int inline_segment; 1062 1063 if (bytes_mapped) 1064 *bytes_mapped = 0; 1065 if (total_wqe_bytes) 1066 *total_wqe_bytes = 0; 1067 1068 while (wqe < wqe_end) { 1069 struct mlx5_wqe_data_seg *dseg = wqe; 1070 1071 io_virt = be64_to_cpu(dseg->addr); 1072 key = be32_to_cpu(dseg->lkey); 1073 byte_count = be32_to_cpu(dseg->byte_count); 1074 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 1075 bcnt = byte_count & ~MLX5_INLINE_SEG; 1076 1077 if (inline_segment) { 1078 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 1079 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 1080 16); 1081 } else { 1082 wqe += sizeof(*dseg); 1083 } 1084 1085 /* receive WQE end of sg list. */ 1086 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && 1087 io_virt == 0) 1088 break; 1089 1090 if (!inline_segment && total_wqe_bytes) { 1091 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 1092 pfault->bytes_committed); 1093 } 1094 1095 /* A zero length data segment designates a length of 2GB. */ 1096 if (bcnt == 0) 1097 bcnt = 1U << 31; 1098 1099 if (inline_segment || bcnt <= pfault->bytes_committed) { 1100 pfault->bytes_committed -= 1101 min_t(size_t, bcnt, 1102 pfault->bytes_committed); 1103 continue; 1104 } 1105 1106 ret = pagefault_single_data_segment(dev, NULL, key, 1107 io_virt, bcnt, 1108 &pfault->bytes_committed, 1109 bytes_mapped); 1110 if (ret < 0) 1111 break; 1112 npages += ret; 1113 } 1114 1115 return ret < 0 ? ret : npages; 1116 } 1117 1118 /* 1119 * Parse initiator WQE. Advances the wqe pointer to point at the 1120 * scatter-gather list, and set wqe_end to the end of the WQE. 1121 */ 1122 static int mlx5_ib_mr_initiator_pfault_handler( 1123 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1124 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1125 { 1126 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1127 u16 wqe_index = pfault->wqe.wqe_index; 1128 struct mlx5_base_av *av; 1129 unsigned ds, opcode; 1130 u32 qpn = qp->trans_qp.base.mqp.qpn; 1131 1132 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1133 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1134 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1135 ds, wqe_length); 1136 return -EFAULT; 1137 } 1138 1139 if (ds == 0) { 1140 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1141 wqe_index, qpn); 1142 return -EFAULT; 1143 } 1144 1145 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1146 *wqe += sizeof(*ctrl); 1147 1148 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1149 MLX5_WQE_CTRL_OPCODE_MASK; 1150 1151 if (qp->ibqp.qp_type == IB_QPT_XRC_INI) 1152 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1153 1154 if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) { 1155 av = *wqe; 1156 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1157 *wqe += sizeof(struct mlx5_av); 1158 else 1159 *wqe += sizeof(struct mlx5_base_av); 1160 } 1161 1162 switch (opcode) { 1163 case MLX5_OPCODE_RDMA_WRITE: 1164 case MLX5_OPCODE_RDMA_WRITE_IMM: 1165 case MLX5_OPCODE_RDMA_READ: 1166 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1167 break; 1168 case MLX5_OPCODE_ATOMIC_CS: 1169 case MLX5_OPCODE_ATOMIC_FA: 1170 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1171 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1172 break; 1173 } 1174 1175 return 0; 1176 } 1177 1178 /* 1179 * Parse responder WQE and set wqe_end to the end of the WQE. 1180 */ 1181 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1182 struct mlx5_ib_srq *srq, 1183 void **wqe, void **wqe_end, 1184 int wqe_length) 1185 { 1186 int wqe_size = 1 << srq->msrq.wqe_shift; 1187 1188 if (wqe_size > wqe_length) { 1189 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1190 return -EFAULT; 1191 } 1192 1193 *wqe_end = *wqe + wqe_size; 1194 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1195 1196 return 0; 1197 } 1198 1199 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1200 struct mlx5_ib_qp *qp, 1201 void *wqe, void **wqe_end, 1202 int wqe_length) 1203 { 1204 struct mlx5_ib_wq *wq = &qp->rq; 1205 int wqe_size = 1 << wq->wqe_shift; 1206 1207 if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) { 1208 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1209 return -EFAULT; 1210 } 1211 1212 if (wqe_size > wqe_length) { 1213 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1214 return -EFAULT; 1215 } 1216 1217 *wqe_end = wqe + wqe_size; 1218 1219 return 0; 1220 } 1221 1222 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1223 u32 wq_num, int pf_type) 1224 { 1225 struct mlx5_core_rsc_common *common = NULL; 1226 struct mlx5_core_srq *srq; 1227 1228 switch (pf_type) { 1229 case MLX5_WQE_PF_TYPE_RMP: 1230 srq = mlx5_cmd_get_srq(dev, wq_num); 1231 if (srq) 1232 common = &srq->common; 1233 break; 1234 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1235 case MLX5_WQE_PF_TYPE_RESP: 1236 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1237 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP); 1238 break; 1239 default: 1240 break; 1241 } 1242 1243 return common; 1244 } 1245 1246 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1247 { 1248 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1249 1250 return to_mibqp(mqp); 1251 } 1252 1253 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1254 { 1255 struct mlx5_core_srq *msrq = 1256 container_of(res, struct mlx5_core_srq, common); 1257 1258 return to_mibsrq(msrq); 1259 } 1260 1261 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1262 struct mlx5_pagefault *pfault) 1263 { 1264 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1265 u16 wqe_index = pfault->wqe.wqe_index; 1266 void *wqe, *wqe_start = NULL, *wqe_end = NULL; 1267 u32 bytes_mapped, total_wqe_bytes; 1268 struct mlx5_core_rsc_common *res; 1269 int resume_with_error = 1; 1270 struct mlx5_ib_qp *qp; 1271 size_t bytes_copied; 1272 int ret = 0; 1273 1274 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1275 if (!res) { 1276 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1277 return; 1278 } 1279 1280 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1281 res->res != MLX5_RES_XSRQ) { 1282 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1283 pfault->type); 1284 goto resolve_page_fault; 1285 } 1286 1287 wqe_start = (void *)__get_free_page(GFP_KERNEL); 1288 if (!wqe_start) { 1289 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1290 goto resolve_page_fault; 1291 } 1292 1293 wqe = wqe_start; 1294 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1295 if (qp && sq) { 1296 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1297 &bytes_copied); 1298 if (ret) 1299 goto read_user; 1300 ret = mlx5_ib_mr_initiator_pfault_handler( 1301 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1302 } else if (qp && !sq) { 1303 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1304 &bytes_copied); 1305 if (ret) 1306 goto read_user; 1307 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1308 dev, qp, wqe, &wqe_end, bytes_copied); 1309 } else if (!qp) { 1310 struct mlx5_ib_srq *srq = res_to_srq(res); 1311 1312 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1313 &bytes_copied); 1314 if (ret) 1315 goto read_user; 1316 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1317 dev, srq, &wqe, &wqe_end, bytes_copied); 1318 } 1319 1320 if (ret < 0 || wqe >= wqe_end) 1321 goto resolve_page_fault; 1322 1323 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1324 &total_wqe_bytes, !sq); 1325 if (ret == -EAGAIN) 1326 goto out; 1327 1328 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1329 goto resolve_page_fault; 1330 1331 out: 1332 ret = 0; 1333 resume_with_error = 0; 1334 1335 read_user: 1336 if (ret) 1337 mlx5_ib_err( 1338 dev, 1339 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", 1340 ret, wqe_index, pfault->token); 1341 1342 resolve_page_fault: 1343 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1344 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1345 pfault->wqe.wq_num, resume_with_error, 1346 pfault->type); 1347 mlx5_core_res_put(res); 1348 free_page((unsigned long)wqe_start); 1349 } 1350 1351 static int pages_in_range(u64 address, u32 length) 1352 { 1353 return (ALIGN(address + length, PAGE_SIZE) - 1354 (address & PAGE_MASK)) >> PAGE_SHIFT; 1355 } 1356 1357 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1358 struct mlx5_pagefault *pfault) 1359 { 1360 u64 address; 1361 u32 length; 1362 u32 prefetch_len = pfault->bytes_committed; 1363 int prefetch_activated = 0; 1364 u32 rkey = pfault->rdma.r_key; 1365 int ret; 1366 1367 /* The RDMA responder handler handles the page fault in two parts. 1368 * First it brings the necessary pages for the current packet 1369 * (and uses the pfault context), and then (after resuming the QP) 1370 * prefetches more pages. The second operation cannot use the pfault 1371 * context and therefore uses the dummy_pfault context allocated on 1372 * the stack */ 1373 pfault->rdma.rdma_va += pfault->bytes_committed; 1374 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1375 pfault->rdma.rdma_op_len); 1376 pfault->bytes_committed = 0; 1377 1378 address = pfault->rdma.rdma_va; 1379 length = pfault->rdma.rdma_op_len; 1380 1381 /* For some operations, the hardware cannot tell the exact message 1382 * length, and in those cases it reports zero. Use prefetch 1383 * logic. */ 1384 if (length == 0) { 1385 prefetch_activated = 1; 1386 length = pfault->rdma.packet_size; 1387 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1388 } 1389 1390 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1391 &pfault->bytes_committed, NULL); 1392 if (ret == -EAGAIN) { 1393 /* We're racing with an invalidation, don't prefetch */ 1394 prefetch_activated = 0; 1395 } else if (ret < 0 || pages_in_range(address, length) > ret) { 1396 mlx5_ib_page_fault_resume(dev, pfault, 1); 1397 if (ret != -ENOENT) 1398 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", 1399 ret, pfault->token, pfault->type); 1400 return; 1401 } 1402 1403 mlx5_ib_page_fault_resume(dev, pfault, 0); 1404 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", 1405 pfault->token, pfault->type, 1406 prefetch_activated); 1407 1408 /* At this point, there might be a new pagefault already arriving in 1409 * the eq, switch to the dummy pagefault for the rest of the 1410 * processing. We're still OK with the objects being alive as the 1411 * work-queue is being fenced. */ 1412 1413 if (prefetch_activated) { 1414 u32 bytes_committed = 0; 1415 1416 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1417 prefetch_len, 1418 &bytes_committed, NULL); 1419 if (ret < 0 && ret != -EAGAIN) { 1420 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", 1421 ret, pfault->token, address, prefetch_len); 1422 } 1423 } 1424 } 1425 1426 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1427 { 1428 u8 event_subtype = pfault->event_subtype; 1429 1430 switch (event_subtype) { 1431 case MLX5_PFAULT_SUBTYPE_WQE: 1432 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1433 break; 1434 case MLX5_PFAULT_SUBTYPE_RDMA: 1435 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1436 break; 1437 default: 1438 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1439 event_subtype); 1440 mlx5_ib_page_fault_resume(dev, pfault, 1); 1441 } 1442 } 1443 1444 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1445 { 1446 struct mlx5_pagefault *pfault = container_of(work, 1447 struct mlx5_pagefault, 1448 work); 1449 struct mlx5_ib_pf_eq *eq = pfault->eq; 1450 1451 mlx5_ib_pfault(eq->dev, pfault); 1452 mempool_free(pfault, eq->pool); 1453 } 1454 1455 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1456 { 1457 struct mlx5_eqe_page_fault *pf_eqe; 1458 struct mlx5_pagefault *pfault; 1459 struct mlx5_eqe *eqe; 1460 int cc = 0; 1461 1462 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1463 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1464 if (!pfault) { 1465 schedule_work(&eq->work); 1466 break; 1467 } 1468 1469 pf_eqe = &eqe->data.page_fault; 1470 pfault->event_subtype = eqe->sub_type; 1471 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); 1472 1473 mlx5_ib_dbg(eq->dev, 1474 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", 1475 eqe->sub_type, pfault->bytes_committed); 1476 1477 switch (eqe->sub_type) { 1478 case MLX5_PFAULT_SUBTYPE_RDMA: 1479 /* RDMA based event */ 1480 pfault->type = 1481 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1482 pfault->token = 1483 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1484 MLX5_24BIT_MASK; 1485 pfault->rdma.r_key = 1486 be32_to_cpu(pf_eqe->rdma.r_key); 1487 pfault->rdma.packet_size = 1488 be16_to_cpu(pf_eqe->rdma.packet_length); 1489 pfault->rdma.rdma_op_len = 1490 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1491 pfault->rdma.rdma_va = 1492 be64_to_cpu(pf_eqe->rdma.rdma_va); 1493 mlx5_ib_dbg(eq->dev, 1494 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", 1495 pfault->type, pfault->token, 1496 pfault->rdma.r_key); 1497 mlx5_ib_dbg(eq->dev, 1498 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1499 pfault->rdma.rdma_op_len, 1500 pfault->rdma.rdma_va); 1501 break; 1502 1503 case MLX5_PFAULT_SUBTYPE_WQE: 1504 /* WQE based event */ 1505 pfault->type = 1506 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1507 pfault->token = 1508 be32_to_cpu(pf_eqe->wqe.token); 1509 pfault->wqe.wq_num = 1510 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1511 MLX5_24BIT_MASK; 1512 pfault->wqe.wqe_index = 1513 be16_to_cpu(pf_eqe->wqe.wqe_index); 1514 pfault->wqe.packet_size = 1515 be16_to_cpu(pf_eqe->wqe.packet_length); 1516 mlx5_ib_dbg(eq->dev, 1517 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1518 pfault->type, pfault->token, 1519 pfault->wqe.wq_num, 1520 pfault->wqe.wqe_index); 1521 break; 1522 1523 default: 1524 mlx5_ib_warn(eq->dev, 1525 "Unsupported page fault event sub-type: 0x%02hhx\n", 1526 eqe->sub_type); 1527 /* Unsupported page faults should still be 1528 * resolved by the page fault handler 1529 */ 1530 } 1531 1532 pfault->eq = eq; 1533 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1534 queue_work(eq->wq, &pfault->work); 1535 1536 cc = mlx5_eq_update_cc(eq->core, ++cc); 1537 } 1538 1539 mlx5_eq_update_ci(eq->core, cc, 1); 1540 } 1541 1542 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, 1543 void *data) 1544 { 1545 struct mlx5_ib_pf_eq *eq = 1546 container_of(nb, struct mlx5_ib_pf_eq, irq_nb); 1547 unsigned long flags; 1548 1549 if (spin_trylock_irqsave(&eq->lock, flags)) { 1550 mlx5_ib_eq_pf_process(eq); 1551 spin_unlock_irqrestore(&eq->lock, flags); 1552 } else { 1553 schedule_work(&eq->work); 1554 } 1555 1556 return IRQ_HANDLED; 1557 } 1558 1559 /* mempool_refill() was proposed but unfortunately wasn't accepted 1560 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1561 * Cheap workaround. 1562 */ 1563 static void mempool_refill(mempool_t *pool) 1564 { 1565 while (pool->curr_nr < pool->min_nr) 1566 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1567 } 1568 1569 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1570 { 1571 struct mlx5_ib_pf_eq *eq = 1572 container_of(work, struct mlx5_ib_pf_eq, work); 1573 1574 mempool_refill(eq->pool); 1575 1576 spin_lock_irq(&eq->lock); 1577 mlx5_ib_eq_pf_process(eq); 1578 spin_unlock_irq(&eq->lock); 1579 } 1580 1581 enum { 1582 MLX5_IB_NUM_PF_EQE = 0x1000, 1583 MLX5_IB_NUM_PF_DRAIN = 64, 1584 }; 1585 1586 static int 1587 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1588 { 1589 struct mlx5_eq_param param = {}; 1590 int err; 1591 1592 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1593 spin_lock_init(&eq->lock); 1594 eq->dev = dev; 1595 1596 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1597 sizeof(struct mlx5_pagefault)); 1598 if (!eq->pool) 1599 return -ENOMEM; 1600 1601 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1602 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1603 MLX5_NUM_CMD_EQE); 1604 if (!eq->wq) { 1605 err = -ENOMEM; 1606 goto err_mempool; 1607 } 1608 1609 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; 1610 param = (struct mlx5_eq_param) { 1611 .irq_index = 0, 1612 .nent = MLX5_IB_NUM_PF_EQE, 1613 }; 1614 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; 1615 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); 1616 if (IS_ERR(eq->core)) { 1617 err = PTR_ERR(eq->core); 1618 goto err_wq; 1619 } 1620 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); 1621 if (err) { 1622 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); 1623 goto err_eq; 1624 } 1625 1626 return 0; 1627 err_eq: 1628 mlx5_eq_destroy_generic(dev->mdev, eq->core); 1629 err_wq: 1630 destroy_workqueue(eq->wq); 1631 err_mempool: 1632 mempool_destroy(eq->pool); 1633 return err; 1634 } 1635 1636 static int 1637 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1638 { 1639 int err; 1640 1641 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); 1642 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1643 cancel_work_sync(&eq->work); 1644 destroy_workqueue(eq->wq); 1645 mempool_destroy(eq->pool); 1646 1647 return err; 1648 } 1649 1650 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) 1651 { 1652 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1653 return; 1654 1655 switch (ent->order - 2) { 1656 case MLX5_IMR_MTT_CACHE_ENTRY: 1657 ent->page = PAGE_SHIFT; 1658 ent->xlt = MLX5_IMR_MTT_ENTRIES * 1659 sizeof(struct mlx5_mtt) / 1660 MLX5_IB_UMR_OCTOWORD; 1661 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 1662 ent->limit = 0; 1663 break; 1664 1665 case MLX5_IMR_KSM_CACHE_ENTRY: 1666 ent->page = MLX5_KSM_PAGE_SHIFT; 1667 ent->xlt = mlx5_imr_ksm_entries * 1668 sizeof(struct mlx5_klm) / 1669 MLX5_IB_UMR_OCTOWORD; 1670 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; 1671 ent->limit = 0; 1672 break; 1673 } 1674 } 1675 1676 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1677 .advise_mr = mlx5_ib_advise_mr, 1678 }; 1679 1680 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1681 { 1682 int ret = 0; 1683 1684 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1685 return ret; 1686 1687 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1688 1689 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { 1690 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); 1691 if (ret) { 1692 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); 1693 return ret; 1694 } 1695 } 1696 1697 ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq); 1698 1699 return ret; 1700 } 1701 1702 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1703 { 1704 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1705 return; 1706 1707 mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq); 1708 } 1709 1710 int mlx5_ib_odp_init(void) 1711 { 1712 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1713 MLX5_IMR_MTT_BITS); 1714 1715 return 0; 1716 } 1717 1718 struct prefetch_mr_work { 1719 struct work_struct work; 1720 u32 pf_flags; 1721 u32 num_sge; 1722 struct { 1723 u64 io_virt; 1724 struct mlx5_ib_mr *mr; 1725 size_t length; 1726 } frags[]; 1727 }; 1728 1729 static void destroy_prefetch_work(struct prefetch_mr_work *work) 1730 { 1731 u32 i; 1732 1733 for (i = 0; i < work->num_sge; ++i) 1734 if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work)) 1735 wake_up(&work->frags[i].mr->q_deferred_work); 1736 kvfree(work); 1737 } 1738 1739 static struct mlx5_ib_mr * 1740 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 1741 u32 lkey) 1742 { 1743 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1744 struct mlx5_core_mkey *mmkey; 1745 struct ib_umem_odp *odp; 1746 struct mlx5_ib_mr *mr; 1747 1748 lockdep_assert_held(&dev->odp_srcu); 1749 1750 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); 1751 if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR) 1752 return NULL; 1753 1754 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1755 1756 if (mr->ibmr.pd != pd) 1757 return NULL; 1758 1759 odp = to_ib_umem_odp(mr->umem); 1760 1761 /* prefetch with write-access must be supported by the MR */ 1762 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1763 !odp->umem.writable) 1764 return NULL; 1765 1766 return mr; 1767 } 1768 1769 static void mlx5_ib_prefetch_mr_work(struct work_struct *w) 1770 { 1771 struct prefetch_mr_work *work = 1772 container_of(w, struct prefetch_mr_work, work); 1773 u32 bytes_mapped = 0; 1774 u32 i; 1775 1776 for (i = 0; i < work->num_sge; ++i) 1777 pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, 1778 work->frags[i].length, &bytes_mapped, 1779 work->pf_flags); 1780 1781 destroy_prefetch_work(work); 1782 } 1783 1784 static bool init_prefetch_work(struct ib_pd *pd, 1785 enum ib_uverbs_advise_mr_advice advice, 1786 u32 pf_flags, struct prefetch_mr_work *work, 1787 struct ib_sge *sg_list, u32 num_sge) 1788 { 1789 u32 i; 1790 1791 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1792 work->pf_flags = pf_flags; 1793 1794 for (i = 0; i < num_sge; ++i) { 1795 work->frags[i].io_virt = sg_list[i].addr; 1796 work->frags[i].length = sg_list[i].length; 1797 work->frags[i].mr = 1798 get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1799 if (!work->frags[i].mr) { 1800 work->num_sge = i - 1; 1801 if (i) 1802 destroy_prefetch_work(work); 1803 return false; 1804 } 1805 1806 /* Keep the MR pointer will valid outside the SRCU */ 1807 atomic_inc(&work->frags[i].mr->num_deferred_work); 1808 } 1809 work->num_sge = num_sge; 1810 return true; 1811 } 1812 1813 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, 1814 enum ib_uverbs_advise_mr_advice advice, 1815 u32 pf_flags, struct ib_sge *sg_list, 1816 u32 num_sge) 1817 { 1818 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1819 u32 bytes_mapped = 0; 1820 int srcu_key; 1821 int ret = 0; 1822 u32 i; 1823 1824 srcu_key = srcu_read_lock(&dev->odp_srcu); 1825 for (i = 0; i < num_sge; ++i) { 1826 struct mlx5_ib_mr *mr; 1827 1828 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1829 if (!mr) { 1830 ret = -ENOENT; 1831 goto out; 1832 } 1833 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, 1834 &bytes_mapped, pf_flags); 1835 if (ret < 0) 1836 goto out; 1837 } 1838 ret = 0; 1839 1840 out: 1841 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1842 return ret; 1843 } 1844 1845 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 1846 enum ib_uverbs_advise_mr_advice advice, 1847 u32 flags, struct ib_sge *sg_list, u32 num_sge) 1848 { 1849 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1850 u32 pf_flags = 0; 1851 struct prefetch_mr_work *work; 1852 int srcu_key; 1853 1854 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 1855 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 1856 1857 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 1858 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, 1859 num_sge); 1860 1861 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); 1862 if (!work) 1863 return -ENOMEM; 1864 1865 srcu_key = srcu_read_lock(&dev->odp_srcu); 1866 if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) { 1867 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1868 return -EINVAL; 1869 } 1870 queue_work(system_unbound_wq, &work->work); 1871 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1872 return 0; 1873 } 1874