xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision b8265621)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 #include "qp.h"
40 
41 #include <linux/mlx5/eq.h>
42 
43 /* Contains the details of a pagefault. */
44 struct mlx5_pagefault {
45 	u32			bytes_committed;
46 	u32			token;
47 	u8			event_subtype;
48 	u8			type;
49 	union {
50 		/* Initiator or send message responder pagefault details. */
51 		struct {
52 			/* Received packet size, only valid for responders. */
53 			u32	packet_size;
54 			/*
55 			 * Number of resource holding WQE, depends on type.
56 			 */
57 			u32	wq_num;
58 			/*
59 			 * WQE index. Refers to either the send queue or
60 			 * receive queue, according to event_subtype.
61 			 */
62 			u16	wqe_index;
63 		} wqe;
64 		/* RDMA responder pagefault details */
65 		struct {
66 			u32	r_key;
67 			/*
68 			 * Received packet size, minimal size page fault
69 			 * resolution required for forward progress.
70 			 */
71 			u32	packet_size;
72 			u32	rdma_op_len;
73 			u64	rdma_va;
74 		} rdma;
75 	};
76 
77 	struct mlx5_ib_pf_eq	*eq;
78 	struct work_struct	work;
79 };
80 
81 #define MAX_PREFETCH_LEN (4*1024*1024U)
82 
83 /* Timeout in ms to wait for an active mmu notifier to complete when handling
84  * a pagefault. */
85 #define MMU_NOTIFIER_TIMEOUT 1000
86 
87 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
88 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
89 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
90 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
91 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
92 
93 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
94 
95 static u64 mlx5_imr_ksm_entries;
96 
97 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
98 			struct mlx5_ib_mr *imr, int flags)
99 {
100 	struct mlx5_klm *end = pklm + nentries;
101 
102 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
103 		for (; pklm != end; pklm++, idx++) {
104 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
105 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
106 			pklm->va = 0;
107 		}
108 		return;
109 	}
110 
111 	/*
112 	 * The locking here is pretty subtle. Ideally the implicit_children
113 	 * xarray would be protected by the umem_mutex, however that is not
114 	 * possible. Instead this uses a weaker update-then-lock pattern:
115 	 *
116 	 *  srcu_read_lock()
117 	 *    xa_store()
118 	 *    mutex_lock(umem_mutex)
119 	 *     mlx5_ib_update_xlt()
120 	 *    mutex_unlock(umem_mutex)
121 	 *    destroy lkey
122 	 *
123 	 * ie any change the xarray must be followed by the locked update_xlt
124 	 * before destroying.
125 	 *
126 	 * The umem_mutex provides the acquire/release semantic needed to make
127 	 * the xa_store() visible to a racing thread. While SRCU is not
128 	 * technically required, using it gives consistent use of the SRCU
129 	 * locking around the xarray.
130 	 */
131 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
132 	lockdep_assert_held(&imr->dev->odp_srcu);
133 
134 	for (; pklm != end; pklm++, idx++) {
135 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
136 
137 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
138 		if (mtt) {
139 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
140 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
141 		} else {
142 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
143 			pklm->va = 0;
144 		}
145 	}
146 }
147 
148 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
149 {
150 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
151 
152 	if (umem_dma & ODP_READ_ALLOWED_BIT)
153 		mtt_entry |= MLX5_IB_MTT_READ;
154 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
155 		mtt_entry |= MLX5_IB_MTT_WRITE;
156 
157 	return mtt_entry;
158 }
159 
160 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
161 			 struct mlx5_ib_mr *mr, int flags)
162 {
163 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
164 	dma_addr_t pa;
165 	size_t i;
166 
167 	if (flags & MLX5_IB_UPD_XLT_ZAP)
168 		return;
169 
170 	for (i = 0; i < nentries; i++) {
171 		pa = odp->dma_list[idx + i];
172 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
173 	}
174 }
175 
176 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
177 			   struct mlx5_ib_mr *mr, int flags)
178 {
179 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
180 		populate_klm(xlt, idx, nentries, mr, flags);
181 	} else {
182 		populate_mtt(xlt, idx, nentries, mr, flags);
183 	}
184 }
185 
186 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
187 {
188 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
189 
190 	/* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
191 	mutex_lock(&odp->umem_mutex);
192 	if (odp->npages) {
193 		mlx5_mr_cache_invalidate(mr);
194 		ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
195 					    ib_umem_end(odp));
196 		WARN_ON(odp->npages);
197 	}
198 	odp->private = NULL;
199 	mutex_unlock(&odp->umem_mutex);
200 
201 	if (!mr->cache_ent) {
202 		mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
203 		WARN_ON(mr->descs);
204 	}
205 }
206 
207 /*
208  * This must be called after the mr has been removed from implicit_children
209  * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
210  * empty here, parallel page faults could have raced with the free process and
211  * added pages to it.
212  */
213 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
214 {
215 	struct mlx5_ib_mr *imr = mr->parent;
216 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
217 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
218 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
219 	int srcu_key;
220 
221 	/* implicit_child_mr's are not allowed to have deferred work */
222 	WARN_ON(atomic_read(&mr->num_deferred_work));
223 
224 	if (need_imr_xlt) {
225 		srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
226 		mutex_lock(&odp_imr->umem_mutex);
227 		mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
228 				   MLX5_IB_UPD_XLT_INDIRECT |
229 				   MLX5_IB_UPD_XLT_ATOMIC);
230 		mutex_unlock(&odp_imr->umem_mutex);
231 		srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
232 	}
233 
234 	dma_fence_odp_mr(mr);
235 
236 	mr->parent = NULL;
237 	mlx5_mr_cache_free(mr->dev, mr);
238 	ib_umem_odp_release(odp);
239 	if (atomic_dec_and_test(&imr->num_deferred_work))
240 		wake_up(&imr->q_deferred_work);
241 }
242 
243 static void free_implicit_child_mr_work(struct work_struct *work)
244 {
245 	struct mlx5_ib_mr *mr =
246 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
247 
248 	free_implicit_child_mr(mr, true);
249 }
250 
251 static void free_implicit_child_mr_rcu(struct rcu_head *head)
252 {
253 	struct mlx5_ib_mr *mr =
254 		container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
255 
256 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
257 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
258 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
259 }
260 
261 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
262 {
263 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
264 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
265 	struct mlx5_ib_mr *imr = mr->parent;
266 
267 	xa_lock(&imr->implicit_children);
268 	/*
269 	 * This can race with mlx5_ib_free_implicit_mr(), the first one to
270 	 * reach the xa lock wins the race and destroys the MR.
271 	 */
272 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
273 	    mr)
274 		goto out_unlock;
275 
276 	atomic_inc(&imr->num_deferred_work);
277 	call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
278 		  free_implicit_child_mr_rcu);
279 
280 out_unlock:
281 	xa_unlock(&imr->implicit_children);
282 }
283 
284 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
285 				     const struct mmu_notifier_range *range,
286 				     unsigned long cur_seq)
287 {
288 	struct ib_umem_odp *umem_odp =
289 		container_of(mni, struct ib_umem_odp, notifier);
290 	struct mlx5_ib_mr *mr;
291 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
292 				    sizeof(struct mlx5_mtt)) - 1;
293 	u64 idx = 0, blk_start_idx = 0;
294 	u64 invalidations = 0;
295 	unsigned long start;
296 	unsigned long end;
297 	int in_block = 0;
298 	u64 addr;
299 
300 	if (!mmu_notifier_range_blockable(range))
301 		return false;
302 
303 	mutex_lock(&umem_odp->umem_mutex);
304 	mmu_interval_set_seq(mni, cur_seq);
305 	/*
306 	 * If npages is zero then umem_odp->private may not be setup yet. This
307 	 * does not complete until after the first page is mapped for DMA.
308 	 */
309 	if (!umem_odp->npages)
310 		goto out;
311 	mr = umem_odp->private;
312 
313 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
314 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
315 
316 	/*
317 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
318 	 * while we are doing the invalidation, no page fault will attempt to
319 	 * overwrite the same MTTs.  Concurent invalidations might race us,
320 	 * but they will write 0s as well, so no difference in the end result.
321 	 */
322 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
323 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
324 		/*
325 		 * Strive to write the MTTs in chunks, but avoid overwriting
326 		 * non-existing MTTs. The huristic here can be improved to
327 		 * estimate the cost of another UMR vs. the cost of bigger
328 		 * UMR.
329 		 */
330 		if (umem_odp->dma_list[idx] &
331 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
332 			if (!in_block) {
333 				blk_start_idx = idx;
334 				in_block = 1;
335 			}
336 
337 			/* Count page invalidations */
338 			invalidations += idx - blk_start_idx + 1;
339 		} else {
340 			u64 umr_offset = idx & umr_block_mask;
341 
342 			if (in_block && umr_offset == 0) {
343 				mlx5_ib_update_xlt(mr, blk_start_idx,
344 						   idx - blk_start_idx, 0,
345 						   MLX5_IB_UPD_XLT_ZAP |
346 						   MLX5_IB_UPD_XLT_ATOMIC);
347 				in_block = 0;
348 			}
349 		}
350 	}
351 	if (in_block)
352 		mlx5_ib_update_xlt(mr, blk_start_idx,
353 				   idx - blk_start_idx + 1, 0,
354 				   MLX5_IB_UPD_XLT_ZAP |
355 				   MLX5_IB_UPD_XLT_ATOMIC);
356 
357 	mlx5_update_odp_stats(mr, invalidations, invalidations);
358 
359 	/*
360 	 * We are now sure that the device will not access the
361 	 * memory. We can safely unmap it, and mark it as dirty if
362 	 * needed.
363 	 */
364 
365 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
366 
367 	if (unlikely(!umem_odp->npages && mr->parent))
368 		destroy_unused_implicit_child_mr(mr);
369 out:
370 	mutex_unlock(&umem_odp->umem_mutex);
371 	return true;
372 }
373 
374 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
375 	.invalidate = mlx5_ib_invalidate_range,
376 };
377 
378 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
379 {
380 	struct ib_odp_caps *caps = &dev->odp_caps;
381 
382 	memset(caps, 0, sizeof(*caps));
383 
384 	if (!MLX5_CAP_GEN(dev->mdev, pg) ||
385 	    !mlx5_ib_can_use_umr(dev, true, 0))
386 		return;
387 
388 	caps->general_caps = IB_ODP_SUPPORT;
389 
390 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
391 		dev->odp_max_size = U64_MAX;
392 	else
393 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
394 
395 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
396 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
397 
398 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
399 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
400 
401 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
402 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
403 
404 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
405 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
406 
407 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
408 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
409 
410 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
411 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
412 
413 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
414 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
415 
416 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
417 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
418 
419 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
420 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
421 
422 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
423 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
424 
425 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
426 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
427 
428 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
429 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
430 
431 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
432 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
433 
434 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
435 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
436 
437 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
438 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
439 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
440 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
441 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
442 }
443 
444 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
445 				      struct mlx5_pagefault *pfault,
446 				      int error)
447 {
448 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
449 		     pfault->wqe.wq_num : pfault->token;
450 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
451 	int err;
452 
453 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
454 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
455 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
456 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
457 	MLX5_SET(page_fault_resume_in, in, error, !!error);
458 
459 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
460 	if (err)
461 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
462 			    wq_num, err);
463 }
464 
465 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
466 						unsigned long idx)
467 {
468 	struct ib_umem_odp *odp;
469 	struct mlx5_ib_mr *mr;
470 	struct mlx5_ib_mr *ret;
471 	int err;
472 
473 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
474 				      idx * MLX5_IMR_MTT_SIZE,
475 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
476 	if (IS_ERR(odp))
477 		return ERR_CAST(odp);
478 
479 	ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
480 	if (IS_ERR(mr))
481 		goto out_umem;
482 
483 	mr->ibmr.pd = imr->ibmr.pd;
484 	mr->access_flags = imr->access_flags;
485 	mr->umem = &odp->umem;
486 	mr->ibmr.lkey = mr->mmkey.key;
487 	mr->ibmr.rkey = mr->mmkey.key;
488 	mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
489 	mr->parent = imr;
490 	odp->private = mr;
491 
492 	err = mlx5_ib_update_xlt(mr, 0,
493 				 MLX5_IMR_MTT_ENTRIES,
494 				 PAGE_SHIFT,
495 				 MLX5_IB_UPD_XLT_ZAP |
496 				 MLX5_IB_UPD_XLT_ENABLE);
497 	if (err) {
498 		ret = ERR_PTR(err);
499 		goto out_mr;
500 	}
501 
502 	/*
503 	 * Once the store to either xarray completes any error unwind has to
504 	 * use synchronize_srcu(). Avoid this with xa_reserve()
505 	 */
506 	ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
507 			 GFP_KERNEL);
508 	if (unlikely(ret)) {
509 		if (xa_is_err(ret)) {
510 			ret = ERR_PTR(xa_err(ret));
511 			goto out_mr;
512 		}
513 		/*
514 		 * Another thread beat us to creating the child mr, use
515 		 * theirs.
516 		 */
517 		goto out_mr;
518 	}
519 
520 	mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
521 	return mr;
522 
523 out_mr:
524 	mlx5_mr_cache_free(imr->dev, mr);
525 out_umem:
526 	ib_umem_odp_release(odp);
527 	return ret;
528 }
529 
530 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
531 					     struct ib_udata *udata,
532 					     int access_flags)
533 {
534 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
535 	struct ib_umem_odp *umem_odp;
536 	struct mlx5_ib_mr *imr;
537 	int err;
538 
539 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
540 	if (IS_ERR(umem_odp))
541 		return ERR_CAST(umem_odp);
542 
543 	imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
544 	if (IS_ERR(imr)) {
545 		err = PTR_ERR(imr);
546 		goto out_umem;
547 	}
548 
549 	imr->ibmr.pd = &pd->ibpd;
550 	imr->access_flags = access_flags;
551 	imr->mmkey.iova = 0;
552 	imr->umem = &umem_odp->umem;
553 	imr->ibmr.lkey = imr->mmkey.key;
554 	imr->ibmr.rkey = imr->mmkey.key;
555 	imr->umem = &umem_odp->umem;
556 	imr->is_odp_implicit = true;
557 	atomic_set(&imr->num_deferred_work, 0);
558 	init_waitqueue_head(&imr->q_deferred_work);
559 	xa_init(&imr->implicit_children);
560 
561 	err = mlx5_ib_update_xlt(imr, 0,
562 				 mlx5_imr_ksm_entries,
563 				 MLX5_KSM_PAGE_SHIFT,
564 				 MLX5_IB_UPD_XLT_INDIRECT |
565 				 MLX5_IB_UPD_XLT_ZAP |
566 				 MLX5_IB_UPD_XLT_ENABLE);
567 	if (err)
568 		goto out_mr;
569 
570 	err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
571 			      &imr->mmkey, GFP_KERNEL));
572 	if (err)
573 		goto out_mr;
574 
575 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
576 	return imr;
577 out_mr:
578 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
579 	mlx5_mr_cache_free(dev, imr);
580 out_umem:
581 	ib_umem_odp_release(umem_odp);
582 	return ERR_PTR(err);
583 }
584 
585 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
586 {
587 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
588 	struct mlx5_ib_dev *dev = imr->dev;
589 	struct list_head destroy_list;
590 	struct mlx5_ib_mr *mtt;
591 	struct mlx5_ib_mr *tmp;
592 	unsigned long idx;
593 
594 	INIT_LIST_HEAD(&destroy_list);
595 
596 	xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
597 	/*
598 	 * This stops the SRCU protected page fault path from touching either
599 	 * the imr or any children. The page fault path can only reach the
600 	 * children xarray via the imr.
601 	 */
602 	synchronize_srcu(&dev->odp_srcu);
603 
604 	/*
605 	 * All work on the prefetch list must be completed, xa_erase() prevented
606 	 * new work from being created.
607 	 */
608 	wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
609 
610 	/*
611 	 * At this point it is forbidden for any other thread to enter
612 	 * pagefault_mr() on this imr. It is already forbidden to call
613 	 * pagefault_mr() on an implicit child. Due to this additions to
614 	 * implicit_children are prevented.
615 	 */
616 
617 	/*
618 	 * Block destroy_unused_implicit_child_mr() from incrementing
619 	 * num_deferred_work.
620 	 */
621 	xa_lock(&imr->implicit_children);
622 	xa_for_each (&imr->implicit_children, idx, mtt) {
623 		__xa_erase(&imr->implicit_children, idx);
624 		list_add(&mtt->odp_destroy.elm, &destroy_list);
625 	}
626 	xa_unlock(&imr->implicit_children);
627 
628 	/*
629 	 * Wait for any concurrent destroy_unused_implicit_child_mr() to
630 	 * complete.
631 	 */
632 	wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
633 
634 	/*
635 	 * Fence the imr before we destroy the children. This allows us to
636 	 * skip updating the XLT of the imr during destroy of the child mkey
637 	 * the imr points to.
638 	 */
639 	mlx5_mr_cache_invalidate(imr);
640 
641 	list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
642 		free_implicit_child_mr(mtt, false);
643 
644 	mlx5_mr_cache_free(dev, imr);
645 	ib_umem_odp_release(odp_imr);
646 }
647 
648 /**
649  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
650  * @mr: to fence
651  *
652  * On return no parallel threads will be touching this MR and no DMA will be
653  * active.
654  */
655 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
656 {
657 	/* Prevent new page faults and prefetch requests from succeeding */
658 	xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
659 
660 	/* Wait for all running page-fault handlers to finish. */
661 	synchronize_srcu(&mr->dev->odp_srcu);
662 
663 	wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work));
664 
665 	dma_fence_odp_mr(mr);
666 }
667 
668 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
669 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
670 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
671 			     u32 flags)
672 {
673 	int page_shift, ret, np;
674 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
675 	unsigned long current_seq;
676 	u64 access_mask;
677 	u64 start_idx;
678 
679 	page_shift = odp->page_shift;
680 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
681 	access_mask = ODP_READ_ALLOWED_BIT;
682 
683 	if (odp->umem.writable && !downgrade)
684 		access_mask |= ODP_WRITE_ALLOWED_BIT;
685 
686 	current_seq = mmu_interval_read_begin(&odp->notifier);
687 
688 	np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
689 				       current_seq);
690 	if (np < 0)
691 		return np;
692 
693 	mutex_lock(&odp->umem_mutex);
694 	if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
695 		/*
696 		 * No need to check whether the MTTs really belong to
697 		 * this MR, since ib_umem_odp_map_dma_pages already
698 		 * checks this.
699 		 */
700 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
701 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
702 	} else {
703 		ret = -EAGAIN;
704 	}
705 	mutex_unlock(&odp->umem_mutex);
706 
707 	if (ret < 0) {
708 		if (ret != -EAGAIN)
709 			mlx5_ib_err(mr->dev,
710 				    "Failed to update mkey page tables\n");
711 		goto out;
712 	}
713 
714 	if (bytes_mapped) {
715 		u32 new_mappings = (np << page_shift) -
716 			(user_va - round_down(user_va, 1 << page_shift));
717 
718 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
719 	}
720 
721 	return np << (page_shift - PAGE_SHIFT);
722 
723 out:
724 	return ret;
725 }
726 
727 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
728 				 struct ib_umem_odp *odp_imr, u64 user_va,
729 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
730 {
731 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
732 	unsigned long upd_start_idx = end_idx + 1;
733 	unsigned long upd_len = 0;
734 	unsigned long npages = 0;
735 	int err;
736 	int ret;
737 
738 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
739 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
740 		return -EFAULT;
741 
742 	/* Fault each child mr that intersects with our interval. */
743 	while (bcnt) {
744 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
745 		struct ib_umem_odp *umem_odp;
746 		struct mlx5_ib_mr *mtt;
747 		u64 len;
748 
749 		mtt = xa_load(&imr->implicit_children, idx);
750 		if (unlikely(!mtt)) {
751 			mtt = implicit_get_child_mr(imr, idx);
752 			if (IS_ERR(mtt)) {
753 				ret = PTR_ERR(mtt);
754 				goto out;
755 			}
756 			upd_start_idx = min(upd_start_idx, idx);
757 			upd_len = idx - upd_start_idx + 1;
758 		}
759 
760 		umem_odp = to_ib_umem_odp(mtt->umem);
761 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
762 		      user_va;
763 
764 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
765 					bytes_mapped, flags);
766 		if (ret < 0)
767 			goto out;
768 		user_va += len;
769 		bcnt -= len;
770 		npages += ret;
771 	}
772 
773 	ret = npages;
774 
775 	/*
776 	 * Any time the implicit_children are changed we must perform an
777 	 * update of the xlt before exiting to ensure the HW and the
778 	 * implicit_children remains synchronized.
779 	 */
780 out:
781 	if (likely(!upd_len))
782 		return ret;
783 
784 	/*
785 	 * Notice this is not strictly ordered right, the KSM is updated after
786 	 * the implicit_children is updated, so a parallel page fault could
787 	 * see a MR that is not yet visible in the KSM.  This is similar to a
788 	 * parallel page fault seeing a MR that is being concurrently removed
789 	 * from the KSM. Both of these improbable situations are resolved
790 	 * safely by resuming the HW and then taking another page fault. The
791 	 * next pagefault handler will see the new information.
792 	 */
793 	mutex_lock(&odp_imr->umem_mutex);
794 	err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
795 				 MLX5_IB_UPD_XLT_INDIRECT |
796 					 MLX5_IB_UPD_XLT_ATOMIC);
797 	mutex_unlock(&odp_imr->umem_mutex);
798 	if (err) {
799 		mlx5_ib_err(imr->dev, "Failed to update PAS\n");
800 		return err;
801 	}
802 	return ret;
803 }
804 
805 /*
806  * Returns:
807  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
808  *           not accessible, or the MR is no longer valid.
809  *  -EAGAIN/-ENOMEM: The operation should be retried
810  *
811  *  -EINVAL/others: General internal malfunction
812  *  >0: Number of pages mapped
813  */
814 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
815 			u32 *bytes_mapped, u32 flags)
816 {
817 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
818 
819 	if (unlikely(io_virt < mr->mmkey.iova))
820 		return -EFAULT;
821 
822 	if (!odp->is_implicit_odp) {
823 		u64 user_va;
824 
825 		if (check_add_overflow(io_virt - mr->mmkey.iova,
826 				       (u64)odp->umem.address, &user_va))
827 			return -EFAULT;
828 		if (unlikely(user_va >= ib_umem_end(odp) ||
829 			     ib_umem_end(odp) - user_va < bcnt))
830 			return -EFAULT;
831 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
832 					 flags);
833 	}
834 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
835 				     flags);
836 }
837 
838 struct pf_frame {
839 	struct pf_frame *next;
840 	u32 key;
841 	u64 io_virt;
842 	size_t bcnt;
843 	int depth;
844 };
845 
846 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
847 {
848 	if (!mmkey)
849 		return false;
850 	if (mmkey->type == MLX5_MKEY_MW)
851 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
852 	return mmkey->key == key;
853 }
854 
855 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
856 {
857 	struct mlx5_ib_mw *mw;
858 	struct mlx5_ib_devx_mr *devx_mr;
859 
860 	if (mmkey->type == MLX5_MKEY_MW) {
861 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
862 		return mw->ndescs;
863 	}
864 
865 	devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
866 			       mmkey);
867 	return devx_mr->ndescs;
868 }
869 
870 /*
871  * Handle a single data segment in a page-fault WQE or RDMA region.
872  *
873  * Returns number of OS pages retrieved on success. The caller may continue to
874  * the next data segment.
875  * Can return the following error codes:
876  * -EAGAIN to designate a temporary error. The caller will abort handling the
877  *  page fault and resolve it.
878  * -EFAULT when there's an error mapping the requested pages. The caller will
879  *  abort the page fault handling.
880  */
881 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
882 					 struct ib_pd *pd, u32 key,
883 					 u64 io_virt, size_t bcnt,
884 					 u32 *bytes_committed,
885 					 u32 *bytes_mapped)
886 {
887 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
888 	struct pf_frame *head = NULL, *frame;
889 	struct mlx5_core_mkey *mmkey;
890 	struct mlx5_ib_mr *mr;
891 	struct mlx5_klm *pklm;
892 	u32 *out = NULL;
893 	size_t offset;
894 	int ndescs;
895 
896 	srcu_key = srcu_read_lock(&dev->odp_srcu);
897 
898 	io_virt += *bytes_committed;
899 	bcnt -= *bytes_committed;
900 
901 next_mr:
902 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
903 	if (!mmkey) {
904 		mlx5_ib_dbg(
905 			dev,
906 			"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
907 			key);
908 		if (bytes_mapped)
909 			*bytes_mapped += bcnt;
910 		/*
911 		 * The user could specify a SGL with multiple lkeys and only
912 		 * some of them are ODP. Treat the non-ODP ones as fully
913 		 * faulted.
914 		 */
915 		ret = 0;
916 		goto srcu_unlock;
917 	}
918 	if (!mkey_is_eq(mmkey, key)) {
919 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
920 		ret = -EFAULT;
921 		goto srcu_unlock;
922 	}
923 
924 	switch (mmkey->type) {
925 	case MLX5_MKEY_MR:
926 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
927 
928 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
929 		if (ret < 0)
930 			goto srcu_unlock;
931 
932 		/*
933 		 * When prefetching a page, page fault is generated
934 		 * in order to bring the page to the main memory.
935 		 * In the current flow, page faults are being counted.
936 		 */
937 		mlx5_update_odp_stats(mr, faults, ret);
938 
939 		npages += ret;
940 		ret = 0;
941 		break;
942 
943 	case MLX5_MKEY_MW:
944 	case MLX5_MKEY_INDIRECT_DEVX:
945 		ndescs = get_indirect_num_descs(mmkey);
946 
947 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
948 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
949 			ret = -EFAULT;
950 			goto srcu_unlock;
951 		}
952 
953 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
954 			sizeof(*pklm) * (ndescs - 2);
955 
956 		if (outlen > cur_outlen) {
957 			kfree(out);
958 			out = kzalloc(outlen, GFP_KERNEL);
959 			if (!out) {
960 				ret = -ENOMEM;
961 				goto srcu_unlock;
962 			}
963 			cur_outlen = outlen;
964 		}
965 
966 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
967 						       bsf0_klm0_pas_mtt0_1);
968 
969 		ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
970 		if (ret)
971 			goto srcu_unlock;
972 
973 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
974 					      memory_key_mkey_entry.start_addr);
975 
976 		for (i = 0; bcnt && i < ndescs; i++, pklm++) {
977 			if (offset >= be32_to_cpu(pklm->bcount)) {
978 				offset -= be32_to_cpu(pklm->bcount);
979 				continue;
980 			}
981 
982 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
983 			if (!frame) {
984 				ret = -ENOMEM;
985 				goto srcu_unlock;
986 			}
987 
988 			frame->key = be32_to_cpu(pklm->key);
989 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
990 			frame->bcnt = min_t(size_t, bcnt,
991 					    be32_to_cpu(pklm->bcount) - offset);
992 			frame->depth = depth + 1;
993 			frame->next = head;
994 			head = frame;
995 
996 			bcnt -= frame->bcnt;
997 			offset = 0;
998 		}
999 		break;
1000 
1001 	default:
1002 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1003 		ret = -EFAULT;
1004 		goto srcu_unlock;
1005 	}
1006 
1007 	if (head) {
1008 		frame = head;
1009 		head = frame->next;
1010 
1011 		key = frame->key;
1012 		io_virt = frame->io_virt;
1013 		bcnt = frame->bcnt;
1014 		depth = frame->depth;
1015 		kfree(frame);
1016 
1017 		goto next_mr;
1018 	}
1019 
1020 srcu_unlock:
1021 	while (head) {
1022 		frame = head;
1023 		head = frame->next;
1024 		kfree(frame);
1025 	}
1026 	kfree(out);
1027 
1028 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1029 	*bytes_committed = 0;
1030 	return ret ? ret : npages;
1031 }
1032 
1033 /**
1034  * Parse a series of data segments for page fault handling.
1035  *
1036  * @pfault contains page fault information.
1037  * @wqe points at the first data segment in the WQE.
1038  * @wqe_end points after the end of the WQE.
1039  * @bytes_mapped receives the number of bytes that the function was able to
1040  *               map. This allows the caller to decide intelligently whether
1041  *               enough memory was mapped to resolve the page fault
1042  *               successfully (e.g. enough for the next MTU, or the entire
1043  *               WQE).
1044  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1045  *                  the committed bytes).
1046  *
1047  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1048  * negative error code.
1049  */
1050 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1051 				   struct mlx5_pagefault *pfault,
1052 				   void *wqe,
1053 				   void *wqe_end, u32 *bytes_mapped,
1054 				   u32 *total_wqe_bytes, bool receive_queue)
1055 {
1056 	int ret = 0, npages = 0;
1057 	u64 io_virt;
1058 	u32 key;
1059 	u32 byte_count;
1060 	size_t bcnt;
1061 	int inline_segment;
1062 
1063 	if (bytes_mapped)
1064 		*bytes_mapped = 0;
1065 	if (total_wqe_bytes)
1066 		*total_wqe_bytes = 0;
1067 
1068 	while (wqe < wqe_end) {
1069 		struct mlx5_wqe_data_seg *dseg = wqe;
1070 
1071 		io_virt = be64_to_cpu(dseg->addr);
1072 		key = be32_to_cpu(dseg->lkey);
1073 		byte_count = be32_to_cpu(dseg->byte_count);
1074 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1075 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1076 
1077 		if (inline_segment) {
1078 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1079 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1080 				     16);
1081 		} else {
1082 			wqe += sizeof(*dseg);
1083 		}
1084 
1085 		/* receive WQE end of sg list. */
1086 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1087 		    io_virt == 0)
1088 			break;
1089 
1090 		if (!inline_segment && total_wqe_bytes) {
1091 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1092 					pfault->bytes_committed);
1093 		}
1094 
1095 		/* A zero length data segment designates a length of 2GB. */
1096 		if (bcnt == 0)
1097 			bcnt = 1U << 31;
1098 
1099 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1100 			pfault->bytes_committed -=
1101 				min_t(size_t, bcnt,
1102 				      pfault->bytes_committed);
1103 			continue;
1104 		}
1105 
1106 		ret = pagefault_single_data_segment(dev, NULL, key,
1107 						    io_virt, bcnt,
1108 						    &pfault->bytes_committed,
1109 						    bytes_mapped);
1110 		if (ret < 0)
1111 			break;
1112 		npages += ret;
1113 	}
1114 
1115 	return ret < 0 ? ret : npages;
1116 }
1117 
1118 /*
1119  * Parse initiator WQE. Advances the wqe pointer to point at the
1120  * scatter-gather list, and set wqe_end to the end of the WQE.
1121  */
1122 static int mlx5_ib_mr_initiator_pfault_handler(
1123 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1124 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1125 {
1126 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1127 	u16 wqe_index = pfault->wqe.wqe_index;
1128 	struct mlx5_base_av *av;
1129 	unsigned ds, opcode;
1130 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1131 
1132 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1133 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1134 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1135 			    ds, wqe_length);
1136 		return -EFAULT;
1137 	}
1138 
1139 	if (ds == 0) {
1140 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1141 			    wqe_index, qpn);
1142 		return -EFAULT;
1143 	}
1144 
1145 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1146 	*wqe += sizeof(*ctrl);
1147 
1148 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1149 		 MLX5_WQE_CTRL_OPCODE_MASK;
1150 
1151 	if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1152 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1153 
1154 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1155 		av = *wqe;
1156 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1157 			*wqe += sizeof(struct mlx5_av);
1158 		else
1159 			*wqe += sizeof(struct mlx5_base_av);
1160 	}
1161 
1162 	switch (opcode) {
1163 	case MLX5_OPCODE_RDMA_WRITE:
1164 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1165 	case MLX5_OPCODE_RDMA_READ:
1166 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1167 		break;
1168 	case MLX5_OPCODE_ATOMIC_CS:
1169 	case MLX5_OPCODE_ATOMIC_FA:
1170 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1171 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1172 		break;
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 /*
1179  * Parse responder WQE and set wqe_end to the end of the WQE.
1180  */
1181 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1182 						   struct mlx5_ib_srq *srq,
1183 						   void **wqe, void **wqe_end,
1184 						   int wqe_length)
1185 {
1186 	int wqe_size = 1 << srq->msrq.wqe_shift;
1187 
1188 	if (wqe_size > wqe_length) {
1189 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1190 		return -EFAULT;
1191 	}
1192 
1193 	*wqe_end = *wqe + wqe_size;
1194 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1195 
1196 	return 0;
1197 }
1198 
1199 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1200 						  struct mlx5_ib_qp *qp,
1201 						  void *wqe, void **wqe_end,
1202 						  int wqe_length)
1203 {
1204 	struct mlx5_ib_wq *wq = &qp->rq;
1205 	int wqe_size = 1 << wq->wqe_shift;
1206 
1207 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1208 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1209 		return -EFAULT;
1210 	}
1211 
1212 	if (wqe_size > wqe_length) {
1213 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1214 		return -EFAULT;
1215 	}
1216 
1217 	*wqe_end = wqe + wqe_size;
1218 
1219 	return 0;
1220 }
1221 
1222 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1223 						       u32 wq_num, int pf_type)
1224 {
1225 	struct mlx5_core_rsc_common *common = NULL;
1226 	struct mlx5_core_srq *srq;
1227 
1228 	switch (pf_type) {
1229 	case MLX5_WQE_PF_TYPE_RMP:
1230 		srq = mlx5_cmd_get_srq(dev, wq_num);
1231 		if (srq)
1232 			common = &srq->common;
1233 		break;
1234 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1235 	case MLX5_WQE_PF_TYPE_RESP:
1236 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1237 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1238 		break;
1239 	default:
1240 		break;
1241 	}
1242 
1243 	return common;
1244 }
1245 
1246 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1247 {
1248 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1249 
1250 	return to_mibqp(mqp);
1251 }
1252 
1253 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1254 {
1255 	struct mlx5_core_srq *msrq =
1256 		container_of(res, struct mlx5_core_srq, common);
1257 
1258 	return to_mibsrq(msrq);
1259 }
1260 
1261 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1262 					  struct mlx5_pagefault *pfault)
1263 {
1264 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1265 	u16 wqe_index = pfault->wqe.wqe_index;
1266 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1267 	u32 bytes_mapped, total_wqe_bytes;
1268 	struct mlx5_core_rsc_common *res;
1269 	int resume_with_error = 1;
1270 	struct mlx5_ib_qp *qp;
1271 	size_t bytes_copied;
1272 	int ret = 0;
1273 
1274 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1275 	if (!res) {
1276 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1277 		return;
1278 	}
1279 
1280 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1281 	    res->res != MLX5_RES_XSRQ) {
1282 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1283 			    pfault->type);
1284 		goto resolve_page_fault;
1285 	}
1286 
1287 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1288 	if (!wqe_start) {
1289 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1290 		goto resolve_page_fault;
1291 	}
1292 
1293 	wqe = wqe_start;
1294 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1295 	if (qp && sq) {
1296 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1297 					  &bytes_copied);
1298 		if (ret)
1299 			goto read_user;
1300 		ret = mlx5_ib_mr_initiator_pfault_handler(
1301 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1302 	} else if (qp && !sq) {
1303 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1304 					  &bytes_copied);
1305 		if (ret)
1306 			goto read_user;
1307 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1308 			dev, qp, wqe, &wqe_end, bytes_copied);
1309 	} else if (!qp) {
1310 		struct mlx5_ib_srq *srq = res_to_srq(res);
1311 
1312 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1313 					   &bytes_copied);
1314 		if (ret)
1315 			goto read_user;
1316 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1317 			dev, srq, &wqe, &wqe_end, bytes_copied);
1318 	}
1319 
1320 	if (ret < 0 || wqe >= wqe_end)
1321 		goto resolve_page_fault;
1322 
1323 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1324 				      &total_wqe_bytes, !sq);
1325 	if (ret == -EAGAIN)
1326 		goto out;
1327 
1328 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1329 		goto resolve_page_fault;
1330 
1331 out:
1332 	ret = 0;
1333 	resume_with_error = 0;
1334 
1335 read_user:
1336 	if (ret)
1337 		mlx5_ib_err(
1338 			dev,
1339 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1340 			ret, wqe_index, pfault->token);
1341 
1342 resolve_page_fault:
1343 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1344 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1345 		    pfault->wqe.wq_num, resume_with_error,
1346 		    pfault->type);
1347 	mlx5_core_res_put(res);
1348 	free_page((unsigned long)wqe_start);
1349 }
1350 
1351 static int pages_in_range(u64 address, u32 length)
1352 {
1353 	return (ALIGN(address + length, PAGE_SIZE) -
1354 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1355 }
1356 
1357 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1358 					   struct mlx5_pagefault *pfault)
1359 {
1360 	u64 address;
1361 	u32 length;
1362 	u32 prefetch_len = pfault->bytes_committed;
1363 	int prefetch_activated = 0;
1364 	u32 rkey = pfault->rdma.r_key;
1365 	int ret;
1366 
1367 	/* The RDMA responder handler handles the page fault in two parts.
1368 	 * First it brings the necessary pages for the current packet
1369 	 * (and uses the pfault context), and then (after resuming the QP)
1370 	 * prefetches more pages. The second operation cannot use the pfault
1371 	 * context and therefore uses the dummy_pfault context allocated on
1372 	 * the stack */
1373 	pfault->rdma.rdma_va += pfault->bytes_committed;
1374 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1375 					 pfault->rdma.rdma_op_len);
1376 	pfault->bytes_committed = 0;
1377 
1378 	address = pfault->rdma.rdma_va;
1379 	length  = pfault->rdma.rdma_op_len;
1380 
1381 	/* For some operations, the hardware cannot tell the exact message
1382 	 * length, and in those cases it reports zero. Use prefetch
1383 	 * logic. */
1384 	if (length == 0) {
1385 		prefetch_activated = 1;
1386 		length = pfault->rdma.packet_size;
1387 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1388 	}
1389 
1390 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1391 					    &pfault->bytes_committed, NULL);
1392 	if (ret == -EAGAIN) {
1393 		/* We're racing with an invalidation, don't prefetch */
1394 		prefetch_activated = 0;
1395 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1396 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1397 		if (ret != -ENOENT)
1398 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1399 				    ret, pfault->token, pfault->type);
1400 		return;
1401 	}
1402 
1403 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1404 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1405 		    pfault->token, pfault->type,
1406 		    prefetch_activated);
1407 
1408 	/* At this point, there might be a new pagefault already arriving in
1409 	 * the eq, switch to the dummy pagefault for the rest of the
1410 	 * processing. We're still OK with the objects being alive as the
1411 	 * work-queue is being fenced. */
1412 
1413 	if (prefetch_activated) {
1414 		u32 bytes_committed = 0;
1415 
1416 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1417 						    prefetch_len,
1418 						    &bytes_committed, NULL);
1419 		if (ret < 0 && ret != -EAGAIN) {
1420 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1421 				    ret, pfault->token, address, prefetch_len);
1422 		}
1423 	}
1424 }
1425 
1426 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1427 {
1428 	u8 event_subtype = pfault->event_subtype;
1429 
1430 	switch (event_subtype) {
1431 	case MLX5_PFAULT_SUBTYPE_WQE:
1432 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1433 		break;
1434 	case MLX5_PFAULT_SUBTYPE_RDMA:
1435 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1436 		break;
1437 	default:
1438 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1439 			    event_subtype);
1440 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1441 	}
1442 }
1443 
1444 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1445 {
1446 	struct mlx5_pagefault *pfault = container_of(work,
1447 						     struct mlx5_pagefault,
1448 						     work);
1449 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1450 
1451 	mlx5_ib_pfault(eq->dev, pfault);
1452 	mempool_free(pfault, eq->pool);
1453 }
1454 
1455 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1456 {
1457 	struct mlx5_eqe_page_fault *pf_eqe;
1458 	struct mlx5_pagefault *pfault;
1459 	struct mlx5_eqe *eqe;
1460 	int cc = 0;
1461 
1462 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1463 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1464 		if (!pfault) {
1465 			schedule_work(&eq->work);
1466 			break;
1467 		}
1468 
1469 		pf_eqe = &eqe->data.page_fault;
1470 		pfault->event_subtype = eqe->sub_type;
1471 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1472 
1473 		mlx5_ib_dbg(eq->dev,
1474 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1475 			    eqe->sub_type, pfault->bytes_committed);
1476 
1477 		switch (eqe->sub_type) {
1478 		case MLX5_PFAULT_SUBTYPE_RDMA:
1479 			/* RDMA based event */
1480 			pfault->type =
1481 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1482 			pfault->token =
1483 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1484 				MLX5_24BIT_MASK;
1485 			pfault->rdma.r_key =
1486 				be32_to_cpu(pf_eqe->rdma.r_key);
1487 			pfault->rdma.packet_size =
1488 				be16_to_cpu(pf_eqe->rdma.packet_length);
1489 			pfault->rdma.rdma_op_len =
1490 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1491 			pfault->rdma.rdma_va =
1492 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1493 			mlx5_ib_dbg(eq->dev,
1494 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1495 				    pfault->type, pfault->token,
1496 				    pfault->rdma.r_key);
1497 			mlx5_ib_dbg(eq->dev,
1498 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1499 				    pfault->rdma.rdma_op_len,
1500 				    pfault->rdma.rdma_va);
1501 			break;
1502 
1503 		case MLX5_PFAULT_SUBTYPE_WQE:
1504 			/* WQE based event */
1505 			pfault->type =
1506 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1507 			pfault->token =
1508 				be32_to_cpu(pf_eqe->wqe.token);
1509 			pfault->wqe.wq_num =
1510 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1511 				MLX5_24BIT_MASK;
1512 			pfault->wqe.wqe_index =
1513 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1514 			pfault->wqe.packet_size =
1515 				be16_to_cpu(pf_eqe->wqe.packet_length);
1516 			mlx5_ib_dbg(eq->dev,
1517 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1518 				    pfault->type, pfault->token,
1519 				    pfault->wqe.wq_num,
1520 				    pfault->wqe.wqe_index);
1521 			break;
1522 
1523 		default:
1524 			mlx5_ib_warn(eq->dev,
1525 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1526 				     eqe->sub_type);
1527 			/* Unsupported page faults should still be
1528 			 * resolved by the page fault handler
1529 			 */
1530 		}
1531 
1532 		pfault->eq = eq;
1533 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1534 		queue_work(eq->wq, &pfault->work);
1535 
1536 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1537 	}
1538 
1539 	mlx5_eq_update_ci(eq->core, cc, 1);
1540 }
1541 
1542 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1543 			     void *data)
1544 {
1545 	struct mlx5_ib_pf_eq *eq =
1546 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1547 	unsigned long flags;
1548 
1549 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1550 		mlx5_ib_eq_pf_process(eq);
1551 		spin_unlock_irqrestore(&eq->lock, flags);
1552 	} else {
1553 		schedule_work(&eq->work);
1554 	}
1555 
1556 	return IRQ_HANDLED;
1557 }
1558 
1559 /* mempool_refill() was proposed but unfortunately wasn't accepted
1560  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1561  * Cheap workaround.
1562  */
1563 static void mempool_refill(mempool_t *pool)
1564 {
1565 	while (pool->curr_nr < pool->min_nr)
1566 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1567 }
1568 
1569 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1570 {
1571 	struct mlx5_ib_pf_eq *eq =
1572 		container_of(work, struct mlx5_ib_pf_eq, work);
1573 
1574 	mempool_refill(eq->pool);
1575 
1576 	spin_lock_irq(&eq->lock);
1577 	mlx5_ib_eq_pf_process(eq);
1578 	spin_unlock_irq(&eq->lock);
1579 }
1580 
1581 enum {
1582 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1583 	MLX5_IB_NUM_PF_DRAIN	= 64,
1584 };
1585 
1586 static int
1587 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1588 {
1589 	struct mlx5_eq_param param = {};
1590 	int err;
1591 
1592 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1593 	spin_lock_init(&eq->lock);
1594 	eq->dev = dev;
1595 
1596 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1597 					       sizeof(struct mlx5_pagefault));
1598 	if (!eq->pool)
1599 		return -ENOMEM;
1600 
1601 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1602 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1603 				 MLX5_NUM_CMD_EQE);
1604 	if (!eq->wq) {
1605 		err = -ENOMEM;
1606 		goto err_mempool;
1607 	}
1608 
1609 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1610 	param = (struct mlx5_eq_param) {
1611 		.irq_index = 0,
1612 		.nent = MLX5_IB_NUM_PF_EQE,
1613 	};
1614 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1615 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1616 	if (IS_ERR(eq->core)) {
1617 		err = PTR_ERR(eq->core);
1618 		goto err_wq;
1619 	}
1620 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1621 	if (err) {
1622 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1623 		goto err_eq;
1624 	}
1625 
1626 	return 0;
1627 err_eq:
1628 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1629 err_wq:
1630 	destroy_workqueue(eq->wq);
1631 err_mempool:
1632 	mempool_destroy(eq->pool);
1633 	return err;
1634 }
1635 
1636 static int
1637 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1638 {
1639 	int err;
1640 
1641 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1642 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1643 	cancel_work_sync(&eq->work);
1644 	destroy_workqueue(eq->wq);
1645 	mempool_destroy(eq->pool);
1646 
1647 	return err;
1648 }
1649 
1650 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1651 {
1652 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1653 		return;
1654 
1655 	switch (ent->order - 2) {
1656 	case MLX5_IMR_MTT_CACHE_ENTRY:
1657 		ent->page = PAGE_SHIFT;
1658 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1659 			   sizeof(struct mlx5_mtt) /
1660 			   MLX5_IB_UMR_OCTOWORD;
1661 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1662 		ent->limit = 0;
1663 		break;
1664 
1665 	case MLX5_IMR_KSM_CACHE_ENTRY:
1666 		ent->page = MLX5_KSM_PAGE_SHIFT;
1667 		ent->xlt = mlx5_imr_ksm_entries *
1668 			   sizeof(struct mlx5_klm) /
1669 			   MLX5_IB_UMR_OCTOWORD;
1670 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1671 		ent->limit = 0;
1672 		break;
1673 	}
1674 }
1675 
1676 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1677 	.advise_mr = mlx5_ib_advise_mr,
1678 };
1679 
1680 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1681 {
1682 	int ret = 0;
1683 
1684 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1685 		return ret;
1686 
1687 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1688 
1689 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1690 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1691 		if (ret) {
1692 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1693 			return ret;
1694 		}
1695 	}
1696 
1697 	ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1698 
1699 	return ret;
1700 }
1701 
1702 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1703 {
1704 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1705 		return;
1706 
1707 	mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1708 }
1709 
1710 int mlx5_ib_odp_init(void)
1711 {
1712 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1713 				       MLX5_IMR_MTT_BITS);
1714 
1715 	return 0;
1716 }
1717 
1718 struct prefetch_mr_work {
1719 	struct work_struct work;
1720 	u32 pf_flags;
1721 	u32 num_sge;
1722 	struct {
1723 		u64 io_virt;
1724 		struct mlx5_ib_mr *mr;
1725 		size_t length;
1726 	} frags[];
1727 };
1728 
1729 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1730 {
1731 	u32 i;
1732 
1733 	for (i = 0; i < work->num_sge; ++i)
1734 		if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work))
1735 			wake_up(&work->frags[i].mr->q_deferred_work);
1736 	kvfree(work);
1737 }
1738 
1739 static struct mlx5_ib_mr *
1740 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1741 		    u32 lkey)
1742 {
1743 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1744 	struct mlx5_core_mkey *mmkey;
1745 	struct ib_umem_odp *odp;
1746 	struct mlx5_ib_mr *mr;
1747 
1748 	lockdep_assert_held(&dev->odp_srcu);
1749 
1750 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1751 	if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1752 		return NULL;
1753 
1754 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1755 
1756 	if (mr->ibmr.pd != pd)
1757 		return NULL;
1758 
1759 	odp = to_ib_umem_odp(mr->umem);
1760 
1761 	/* prefetch with write-access must be supported by the MR */
1762 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1763 	    !odp->umem.writable)
1764 		return NULL;
1765 
1766 	return mr;
1767 }
1768 
1769 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1770 {
1771 	struct prefetch_mr_work *work =
1772 		container_of(w, struct prefetch_mr_work, work);
1773 	u32 bytes_mapped = 0;
1774 	u32 i;
1775 
1776 	for (i = 0; i < work->num_sge; ++i)
1777 		pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1778 			     work->frags[i].length, &bytes_mapped,
1779 			     work->pf_flags);
1780 
1781 	destroy_prefetch_work(work);
1782 }
1783 
1784 static bool init_prefetch_work(struct ib_pd *pd,
1785 			       enum ib_uverbs_advise_mr_advice advice,
1786 			       u32 pf_flags, struct prefetch_mr_work *work,
1787 			       struct ib_sge *sg_list, u32 num_sge)
1788 {
1789 	u32 i;
1790 
1791 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1792 	work->pf_flags = pf_flags;
1793 
1794 	for (i = 0; i < num_sge; ++i) {
1795 		work->frags[i].io_virt = sg_list[i].addr;
1796 		work->frags[i].length = sg_list[i].length;
1797 		work->frags[i].mr =
1798 			get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1799 		if (!work->frags[i].mr) {
1800 			work->num_sge = i - 1;
1801 			if (i)
1802 				destroy_prefetch_work(work);
1803 			return false;
1804 		}
1805 
1806 		/* Keep the MR pointer will valid outside the SRCU */
1807 		atomic_inc(&work->frags[i].mr->num_deferred_work);
1808 	}
1809 	work->num_sge = num_sge;
1810 	return true;
1811 }
1812 
1813 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1814 				    enum ib_uverbs_advise_mr_advice advice,
1815 				    u32 pf_flags, struct ib_sge *sg_list,
1816 				    u32 num_sge)
1817 {
1818 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1819 	u32 bytes_mapped = 0;
1820 	int srcu_key;
1821 	int ret = 0;
1822 	u32 i;
1823 
1824 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1825 	for (i = 0; i < num_sge; ++i) {
1826 		struct mlx5_ib_mr *mr;
1827 
1828 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1829 		if (!mr) {
1830 			ret = -ENOENT;
1831 			goto out;
1832 		}
1833 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1834 				   &bytes_mapped, pf_flags);
1835 		if (ret < 0)
1836 			goto out;
1837 	}
1838 	ret = 0;
1839 
1840 out:
1841 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1842 	return ret;
1843 }
1844 
1845 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1846 			       enum ib_uverbs_advise_mr_advice advice,
1847 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1848 {
1849 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1850 	u32 pf_flags = 0;
1851 	struct prefetch_mr_work *work;
1852 	int srcu_key;
1853 
1854 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1855 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1856 
1857 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1858 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1859 						num_sge);
1860 
1861 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1862 	if (!work)
1863 		return -ENOMEM;
1864 
1865 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1866 	if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1867 		srcu_read_unlock(&dev->odp_srcu, srcu_key);
1868 		return -EINVAL;
1869 	}
1870 	queue_work(system_unbound_wq, &work->work);
1871 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1872 	return 0;
1873 }
1874