1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem.h> 34 #include <rdma/ib_umem_odp.h> 35 #include <linux/kernel.h> 36 37 #include "mlx5_ib.h" 38 #include "cmd.h" 39 40 #include <linux/mlx5/eq.h> 41 42 /* Contains the details of a pagefault. */ 43 struct mlx5_pagefault { 44 u32 bytes_committed; 45 u32 token; 46 u8 event_subtype; 47 u8 type; 48 union { 49 /* Initiator or send message responder pagefault details. */ 50 struct { 51 /* Received packet size, only valid for responders. */ 52 u32 packet_size; 53 /* 54 * Number of resource holding WQE, depends on type. 55 */ 56 u32 wq_num; 57 /* 58 * WQE index. Refers to either the send queue or 59 * receive queue, according to event_subtype. 60 */ 61 u16 wqe_index; 62 } wqe; 63 /* RDMA responder pagefault details */ 64 struct { 65 u32 r_key; 66 /* 67 * Received packet size, minimal size page fault 68 * resolution required for forward progress. 69 */ 70 u32 packet_size; 71 u32 rdma_op_len; 72 u64 rdma_va; 73 } rdma; 74 }; 75 76 struct mlx5_ib_pf_eq *eq; 77 struct work_struct work; 78 }; 79 80 #define MAX_PREFETCH_LEN (4*1024*1024U) 81 82 /* Timeout in ms to wait for an active mmu notifier to complete when handling 83 * a pagefault. */ 84 #define MMU_NOTIFIER_TIMEOUT 1000 85 86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 91 92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 93 94 static u64 mlx5_imr_ksm_entries; 95 96 static int check_parent(struct ib_umem_odp *odp, 97 struct mlx5_ib_mr *parent) 98 { 99 struct mlx5_ib_mr *mr = odp->private; 100 101 return mr && mr->parent == parent && !odp->dying; 102 } 103 104 static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr) 105 { 106 if (WARN_ON(!mr || !is_odp_mr(mr))) 107 return NULL; 108 109 return to_ib_umem_odp(mr->umem)->per_mm; 110 } 111 112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp) 113 { 114 struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent; 115 struct ib_ucontext_per_mm *per_mm = odp->per_mm; 116 struct rb_node *rb; 117 118 down_read(&per_mm->umem_rwsem); 119 while (1) { 120 rb = rb_next(&odp->interval_tree.rb); 121 if (!rb) 122 goto not_found; 123 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb); 124 if (check_parent(odp, parent)) 125 goto end; 126 } 127 not_found: 128 odp = NULL; 129 end: 130 up_read(&per_mm->umem_rwsem); 131 return odp; 132 } 133 134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length, 135 struct mlx5_ib_mr *parent) 136 { 137 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent); 138 struct ib_umem_odp *odp; 139 struct rb_node *rb; 140 141 down_read(&per_mm->umem_rwsem); 142 odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length); 143 if (!odp) 144 goto end; 145 146 while (1) { 147 if (check_parent(odp, parent)) 148 goto end; 149 rb = rb_next(&odp->interval_tree.rb); 150 if (!rb) 151 goto not_found; 152 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb); 153 if (ib_umem_start(odp) > start + length) 154 goto not_found; 155 } 156 not_found: 157 odp = NULL; 158 end: 159 up_read(&per_mm->umem_rwsem); 160 return odp; 161 } 162 163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset, 164 size_t nentries, struct mlx5_ib_mr *mr, int flags) 165 { 166 struct ib_pd *pd = mr->ibmr.pd; 167 struct mlx5_ib_dev *dev = to_mdev(pd->device); 168 struct ib_umem_odp *odp; 169 unsigned long va; 170 int i; 171 172 if (flags & MLX5_IB_UPD_XLT_ZAP) { 173 for (i = 0; i < nentries; i++, pklm++) { 174 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 175 pklm->key = cpu_to_be32(dev->null_mkey); 176 pklm->va = 0; 177 } 178 return; 179 } 180 181 odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE, 182 nentries * MLX5_IMR_MTT_SIZE, mr); 183 184 for (i = 0; i < nentries; i++, pklm++) { 185 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 186 va = (offset + i) * MLX5_IMR_MTT_SIZE; 187 if (odp && odp->umem.address == va) { 188 struct mlx5_ib_mr *mtt = odp->private; 189 190 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 191 odp = odp_next(odp); 192 } else { 193 pklm->key = cpu_to_be32(dev->null_mkey); 194 } 195 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n", 196 i, va, be32_to_cpu(pklm->key)); 197 } 198 } 199 200 static void mr_leaf_free_action(struct work_struct *work) 201 { 202 struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work); 203 int idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 204 struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent; 205 206 mr->parent = NULL; 207 synchronize_srcu(&mr->dev->mr_srcu); 208 209 ib_umem_release(&odp->umem); 210 if (imr->live) 211 mlx5_ib_update_xlt(imr, idx, 1, 0, 212 MLX5_IB_UPD_XLT_INDIRECT | 213 MLX5_IB_UPD_XLT_ATOMIC); 214 mlx5_mr_cache_free(mr->dev, mr); 215 216 if (atomic_dec_and_test(&imr->num_leaf_free)) 217 wake_up(&imr->q_leaf_free); 218 } 219 220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start, 221 unsigned long end) 222 { 223 struct mlx5_ib_mr *mr; 224 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / 225 sizeof(struct mlx5_mtt)) - 1; 226 u64 idx = 0, blk_start_idx = 0; 227 int in_block = 0; 228 u64 addr; 229 230 if (!umem_odp) { 231 pr_err("invalidation called on NULL umem or non-ODP umem\n"); 232 return; 233 } 234 235 mr = umem_odp->private; 236 237 if (!mr || !mr->ibmr.pd) 238 return; 239 240 start = max_t(u64, ib_umem_start(umem_odp), start); 241 end = min_t(u64, ib_umem_end(umem_odp), end); 242 243 /* 244 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 245 * while we are doing the invalidation, no page fault will attempt to 246 * overwrite the same MTTs. Concurent invalidations might race us, 247 * but they will write 0s as well, so no difference in the end result. 248 */ 249 mutex_lock(&umem_odp->umem_mutex); 250 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { 251 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 252 /* 253 * Strive to write the MTTs in chunks, but avoid overwriting 254 * non-existing MTTs. The huristic here can be improved to 255 * estimate the cost of another UMR vs. the cost of bigger 256 * UMR. 257 */ 258 if (umem_odp->dma_list[idx] & 259 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 260 if (!in_block) { 261 blk_start_idx = idx; 262 in_block = 1; 263 } 264 } else { 265 u64 umr_offset = idx & umr_block_mask; 266 267 if (in_block && umr_offset == 0) { 268 mlx5_ib_update_xlt(mr, blk_start_idx, 269 idx - blk_start_idx, 0, 270 MLX5_IB_UPD_XLT_ZAP | 271 MLX5_IB_UPD_XLT_ATOMIC); 272 in_block = 0; 273 } 274 } 275 } 276 if (in_block) 277 mlx5_ib_update_xlt(mr, blk_start_idx, 278 idx - blk_start_idx + 1, 0, 279 MLX5_IB_UPD_XLT_ZAP | 280 MLX5_IB_UPD_XLT_ATOMIC); 281 mutex_unlock(&umem_odp->umem_mutex); 282 /* 283 * We are now sure that the device will not access the 284 * memory. We can safely unmap it, and mark it as dirty if 285 * needed. 286 */ 287 288 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 289 290 if (unlikely(!umem_odp->npages && mr->parent && 291 !umem_odp->dying)) { 292 WRITE_ONCE(umem_odp->dying, 1); 293 atomic_inc(&mr->parent->num_leaf_free); 294 schedule_work(&umem_odp->work); 295 } 296 } 297 298 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) 299 { 300 struct ib_odp_caps *caps = &dev->odp_caps; 301 302 memset(caps, 0, sizeof(*caps)); 303 304 if (!MLX5_CAP_GEN(dev->mdev, pg) || 305 !mlx5_ib_can_use_umr(dev, true)) 306 return; 307 308 caps->general_caps = IB_ODP_SUPPORT; 309 310 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 311 dev->odp_max_size = U64_MAX; 312 else 313 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 314 315 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) 316 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 317 318 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) 319 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 320 321 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) 322 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 323 324 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) 325 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 326 327 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) 328 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 329 330 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) 331 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 332 333 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) 334 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 335 336 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) 337 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 338 339 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) 340 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 341 342 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) 343 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 344 345 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) 346 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 347 348 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) 349 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 350 351 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) 352 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 353 354 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) 355 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 356 357 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 358 MLX5_CAP_GEN(dev->mdev, null_mkey) && 359 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && 360 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) 361 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 362 363 return; 364 } 365 366 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 367 struct mlx5_pagefault *pfault, 368 int error) 369 { 370 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 371 pfault->wqe.wq_num : pfault->token; 372 u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { }; 373 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = { }; 374 int err; 375 376 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 377 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); 378 MLX5_SET(page_fault_resume_in, in, token, pfault->token); 379 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); 380 MLX5_SET(page_fault_resume_in, in, error, !!error); 381 382 err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out)); 383 if (err) 384 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 385 wq_num, err); 386 } 387 388 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd, 389 struct ib_umem *umem, 390 bool ksm, int access_flags) 391 { 392 struct mlx5_ib_dev *dev = to_mdev(pd->device); 393 struct mlx5_ib_mr *mr; 394 int err; 395 396 mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY : 397 MLX5_IMR_MTT_CACHE_ENTRY); 398 399 if (IS_ERR(mr)) 400 return mr; 401 402 mr->ibmr.pd = pd; 403 404 mr->dev = dev; 405 mr->access_flags = access_flags; 406 mr->mmkey.iova = 0; 407 mr->umem = umem; 408 409 if (ksm) { 410 err = mlx5_ib_update_xlt(mr, 0, 411 mlx5_imr_ksm_entries, 412 MLX5_KSM_PAGE_SHIFT, 413 MLX5_IB_UPD_XLT_INDIRECT | 414 MLX5_IB_UPD_XLT_ZAP | 415 MLX5_IB_UPD_XLT_ENABLE); 416 417 } else { 418 err = mlx5_ib_update_xlt(mr, 0, 419 MLX5_IMR_MTT_ENTRIES, 420 PAGE_SHIFT, 421 MLX5_IB_UPD_XLT_ZAP | 422 MLX5_IB_UPD_XLT_ENABLE | 423 MLX5_IB_UPD_XLT_ATOMIC); 424 } 425 426 if (err) 427 goto fail; 428 429 mr->ibmr.lkey = mr->mmkey.key; 430 mr->ibmr.rkey = mr->mmkey.key; 431 432 mr->live = 1; 433 434 mlx5_ib_dbg(dev, "key %x dev %p mr %p\n", 435 mr->mmkey.key, dev->mdev, mr); 436 437 return mr; 438 439 fail: 440 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 441 mlx5_mr_cache_free(dev, mr); 442 443 return ERR_PTR(err); 444 } 445 446 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr, 447 u64 io_virt, size_t bcnt) 448 { 449 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device); 450 struct ib_umem_odp *odp, *result = NULL; 451 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem); 452 u64 addr = io_virt & MLX5_IMR_MTT_MASK; 453 int nentries = 0, start_idx = 0, ret; 454 struct mlx5_ib_mr *mtt; 455 456 mutex_lock(&odp_mr->umem_mutex); 457 odp = odp_lookup(addr, 1, mr); 458 459 mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n", 460 io_virt, bcnt, addr, odp); 461 462 next_mr: 463 if (likely(odp)) { 464 if (nentries) 465 nentries++; 466 } else { 467 odp = ib_alloc_odp_umem(odp_mr, addr, 468 MLX5_IMR_MTT_SIZE); 469 if (IS_ERR(odp)) { 470 mutex_unlock(&odp_mr->umem_mutex); 471 return ERR_CAST(odp); 472 } 473 474 mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0, 475 mr->access_flags); 476 if (IS_ERR(mtt)) { 477 mutex_unlock(&odp_mr->umem_mutex); 478 ib_umem_release(&odp->umem); 479 return ERR_CAST(mtt); 480 } 481 482 odp->private = mtt; 483 mtt->umem = &odp->umem; 484 mtt->mmkey.iova = addr; 485 mtt->parent = mr; 486 INIT_WORK(&odp->work, mr_leaf_free_action); 487 488 if (!nentries) 489 start_idx = addr >> MLX5_IMR_MTT_SHIFT; 490 nentries++; 491 } 492 493 /* Return first odp if region not covered by single one */ 494 if (likely(!result)) 495 result = odp; 496 497 addr += MLX5_IMR_MTT_SIZE; 498 if (unlikely(addr < io_virt + bcnt)) { 499 odp = odp_next(odp); 500 if (odp && odp->umem.address != addr) 501 odp = NULL; 502 goto next_mr; 503 } 504 505 if (unlikely(nentries)) { 506 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0, 507 MLX5_IB_UPD_XLT_INDIRECT | 508 MLX5_IB_UPD_XLT_ATOMIC); 509 if (ret) { 510 mlx5_ib_err(dev, "Failed to update PAS\n"); 511 result = ERR_PTR(ret); 512 } 513 } 514 515 mutex_unlock(&odp_mr->umem_mutex); 516 return result; 517 } 518 519 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 520 struct ib_udata *udata, 521 int access_flags) 522 { 523 struct mlx5_ib_mr *imr; 524 struct ib_umem *umem; 525 526 umem = ib_umem_get(udata, 0, 0, access_flags, 0); 527 if (IS_ERR(umem)) 528 return ERR_CAST(umem); 529 530 imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags); 531 if (IS_ERR(imr)) { 532 ib_umem_release(umem); 533 return ERR_CAST(imr); 534 } 535 536 imr->umem = umem; 537 init_waitqueue_head(&imr->q_leaf_free); 538 atomic_set(&imr->num_leaf_free, 0); 539 atomic_set(&imr->num_pending_prefetch, 0); 540 541 return imr; 542 } 543 544 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end, 545 void *cookie) 546 { 547 struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie; 548 549 if (mr->parent != imr) 550 return 0; 551 552 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp), 553 ib_umem_end(umem_odp)); 554 555 if (umem_odp->dying) 556 return 0; 557 558 WRITE_ONCE(umem_odp->dying, 1); 559 atomic_inc(&imr->num_leaf_free); 560 schedule_work(&umem_odp->work); 561 562 return 0; 563 } 564 565 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) 566 { 567 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr); 568 569 down_read(&per_mm->umem_rwsem); 570 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX, 571 mr_leaf_free, true, imr); 572 up_read(&per_mm->umem_rwsem); 573 574 wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free)); 575 } 576 577 #define MLX5_PF_FLAGS_PREFETCH BIT(0) 578 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 579 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 580 u64 io_virt, size_t bcnt, u32 *bytes_mapped, 581 u32 flags) 582 { 583 int npages = 0, current_seq, page_shift, ret, np; 584 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem); 585 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 586 bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH; 587 u64 access_mask; 588 u64 start_idx, page_mask; 589 struct ib_umem_odp *odp; 590 size_t size; 591 592 if (!odp_mr->page_list) { 593 odp = implicit_mr_get_data(mr, io_virt, bcnt); 594 595 if (IS_ERR(odp)) 596 return PTR_ERR(odp); 597 mr = odp->private; 598 } else { 599 odp = odp_mr; 600 } 601 602 next_mr: 603 size = min_t(size_t, bcnt, ib_umem_end(odp) - io_virt); 604 605 page_shift = odp->page_shift; 606 page_mask = ~(BIT(page_shift) - 1); 607 start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift; 608 access_mask = ODP_READ_ALLOWED_BIT; 609 610 if (prefetch && !downgrade && !mr->umem->writable) { 611 /* prefetch with write-access must 612 * be supported by the MR 613 */ 614 ret = -EINVAL; 615 goto out; 616 } 617 618 if (mr->umem->writable && !downgrade) 619 access_mask |= ODP_WRITE_ALLOWED_BIT; 620 621 current_seq = READ_ONCE(odp->notifiers_seq); 622 /* 623 * Ensure the sequence number is valid for some time before we call 624 * gup. 625 */ 626 smp_rmb(); 627 628 ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size, 629 access_mask, current_seq); 630 631 if (ret < 0) 632 goto out; 633 634 np = ret; 635 636 mutex_lock(&odp->umem_mutex); 637 if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem), 638 current_seq)) { 639 /* 640 * No need to check whether the MTTs really belong to 641 * this MR, since ib_umem_odp_map_dma_pages already 642 * checks this. 643 */ 644 ret = mlx5_ib_update_xlt(mr, start_idx, np, 645 page_shift, MLX5_IB_UPD_XLT_ATOMIC); 646 } else { 647 ret = -EAGAIN; 648 } 649 mutex_unlock(&odp->umem_mutex); 650 651 if (ret < 0) { 652 if (ret != -EAGAIN) 653 mlx5_ib_err(dev, "Failed to update mkey page tables\n"); 654 goto out; 655 } 656 657 if (bytes_mapped) { 658 u32 new_mappings = (np << page_shift) - 659 (io_virt - round_down(io_virt, 1 << page_shift)); 660 *bytes_mapped += min_t(u32, new_mappings, size); 661 } 662 663 npages += np << (page_shift - PAGE_SHIFT); 664 bcnt -= size; 665 666 if (unlikely(bcnt)) { 667 struct ib_umem_odp *next; 668 669 io_virt += size; 670 next = odp_next(odp); 671 if (unlikely(!next || next->umem.address != io_virt)) { 672 mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n", 673 io_virt, next); 674 return -EAGAIN; 675 } 676 odp = next; 677 mr = odp->private; 678 goto next_mr; 679 } 680 681 return npages; 682 683 out: 684 if (ret == -EAGAIN) { 685 unsigned long timeout = msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT); 686 687 if (!wait_for_completion_timeout(&odp->notifier_completion, 688 timeout)) { 689 mlx5_ib_warn( 690 dev, 691 "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n", 692 current_seq, odp->notifiers_seq, 693 odp->notifiers_count); 694 } 695 } 696 697 return ret; 698 } 699 700 struct pf_frame { 701 struct pf_frame *next; 702 u32 key; 703 u64 io_virt; 704 size_t bcnt; 705 int depth; 706 }; 707 708 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key) 709 { 710 if (!mmkey) 711 return false; 712 if (mmkey->type == MLX5_MKEY_MW) 713 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 714 return mmkey->key == key; 715 } 716 717 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey) 718 { 719 struct mlx5_ib_mw *mw; 720 struct mlx5_ib_devx_mr *devx_mr; 721 722 if (mmkey->type == MLX5_MKEY_MW) { 723 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey); 724 return mw->ndescs; 725 } 726 727 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr, 728 mmkey); 729 return devx_mr->ndescs; 730 } 731 732 /* 733 * Handle a single data segment in a page-fault WQE or RDMA region. 734 * 735 * Returns number of OS pages retrieved on success. The caller may continue to 736 * the next data segment. 737 * Can return the following error codes: 738 * -EAGAIN to designate a temporary error. The caller will abort handling the 739 * page fault and resolve it. 740 * -EFAULT when there's an error mapping the requested pages. The caller will 741 * abort the page fault handling. 742 */ 743 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 744 struct ib_pd *pd, u32 key, 745 u64 io_virt, size_t bcnt, 746 u32 *bytes_committed, 747 u32 *bytes_mapped, u32 flags) 748 { 749 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0; 750 bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH; 751 struct pf_frame *head = NULL, *frame; 752 struct mlx5_core_mkey *mmkey; 753 struct mlx5_ib_mr *mr; 754 struct mlx5_klm *pklm; 755 u32 *out = NULL; 756 size_t offset; 757 int ndescs; 758 759 srcu_key = srcu_read_lock(&dev->mr_srcu); 760 761 io_virt += *bytes_committed; 762 bcnt -= *bytes_committed; 763 764 next_mr: 765 mmkey = xa_load(&dev->mdev->priv.mkey_table, mlx5_base_mkey(key)); 766 if (!mkey_is_eq(mmkey, key)) { 767 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); 768 ret = -EFAULT; 769 goto srcu_unlock; 770 } 771 772 if (prefetch && mmkey->type != MLX5_MKEY_MR) { 773 mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n"); 774 ret = -EINVAL; 775 goto srcu_unlock; 776 } 777 778 switch (mmkey->type) { 779 case MLX5_MKEY_MR: 780 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 781 if (!mr->live || !mr->ibmr.pd) { 782 mlx5_ib_dbg(dev, "got dead MR\n"); 783 ret = -EFAULT; 784 goto srcu_unlock; 785 } 786 787 if (prefetch) { 788 if (!is_odp_mr(mr) || 789 mr->ibmr.pd != pd) { 790 mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n", 791 is_odp_mr(mr) ? "MR is not ODP" : 792 "PD is not of the MR"); 793 ret = -EINVAL; 794 goto srcu_unlock; 795 } 796 } 797 798 if (!is_odp_mr(mr)) { 799 mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 800 key); 801 if (bytes_mapped) 802 *bytes_mapped += bcnt; 803 ret = 0; 804 goto srcu_unlock; 805 } 806 807 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags); 808 if (ret < 0) 809 goto srcu_unlock; 810 811 npages += ret; 812 ret = 0; 813 break; 814 815 case MLX5_MKEY_MW: 816 case MLX5_MKEY_INDIRECT_DEVX: 817 ndescs = get_indirect_num_descs(mmkey); 818 819 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 820 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 821 ret = -EFAULT; 822 goto srcu_unlock; 823 } 824 825 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 826 sizeof(*pklm) * (ndescs - 2); 827 828 if (outlen > cur_outlen) { 829 kfree(out); 830 out = kzalloc(outlen, GFP_KERNEL); 831 if (!out) { 832 ret = -ENOMEM; 833 goto srcu_unlock; 834 } 835 cur_outlen = outlen; 836 } 837 838 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 839 bsf0_klm0_pas_mtt0_1); 840 841 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen); 842 if (ret) 843 goto srcu_unlock; 844 845 offset = io_virt - MLX5_GET64(query_mkey_out, out, 846 memory_key_mkey_entry.start_addr); 847 848 for (i = 0; bcnt && i < ndescs; i++, pklm++) { 849 if (offset >= be32_to_cpu(pklm->bcount)) { 850 offset -= be32_to_cpu(pklm->bcount); 851 continue; 852 } 853 854 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 855 if (!frame) { 856 ret = -ENOMEM; 857 goto srcu_unlock; 858 } 859 860 frame->key = be32_to_cpu(pklm->key); 861 frame->io_virt = be64_to_cpu(pklm->va) + offset; 862 frame->bcnt = min_t(size_t, bcnt, 863 be32_to_cpu(pklm->bcount) - offset); 864 frame->depth = depth + 1; 865 frame->next = head; 866 head = frame; 867 868 bcnt -= frame->bcnt; 869 offset = 0; 870 } 871 break; 872 873 default: 874 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 875 ret = -EFAULT; 876 goto srcu_unlock; 877 } 878 879 if (head) { 880 frame = head; 881 head = frame->next; 882 883 key = frame->key; 884 io_virt = frame->io_virt; 885 bcnt = frame->bcnt; 886 depth = frame->depth; 887 kfree(frame); 888 889 goto next_mr; 890 } 891 892 srcu_unlock: 893 while (head) { 894 frame = head; 895 head = frame->next; 896 kfree(frame); 897 } 898 kfree(out); 899 900 srcu_read_unlock(&dev->mr_srcu, srcu_key); 901 *bytes_committed = 0; 902 return ret ? ret : npages; 903 } 904 905 /** 906 * Parse a series of data segments for page fault handling. 907 * 908 * @pfault contains page fault information. 909 * @wqe points at the first data segment in the WQE. 910 * @wqe_end points after the end of the WQE. 911 * @bytes_mapped receives the number of bytes that the function was able to 912 * map. This allows the caller to decide intelligently whether 913 * enough memory was mapped to resolve the page fault 914 * successfully (e.g. enough for the next MTU, or the entire 915 * WQE). 916 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus 917 * the committed bytes). 918 * 919 * Returns the number of pages loaded if positive, zero for an empty WQE, or a 920 * negative error code. 921 */ 922 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 923 struct mlx5_pagefault *pfault, 924 void *wqe, 925 void *wqe_end, u32 *bytes_mapped, 926 u32 *total_wqe_bytes, bool receive_queue) 927 { 928 int ret = 0, npages = 0; 929 u64 io_virt; 930 u32 key; 931 u32 byte_count; 932 size_t bcnt; 933 int inline_segment; 934 935 if (bytes_mapped) 936 *bytes_mapped = 0; 937 if (total_wqe_bytes) 938 *total_wqe_bytes = 0; 939 940 while (wqe < wqe_end) { 941 struct mlx5_wqe_data_seg *dseg = wqe; 942 943 io_virt = be64_to_cpu(dseg->addr); 944 key = be32_to_cpu(dseg->lkey); 945 byte_count = be32_to_cpu(dseg->byte_count); 946 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 947 bcnt = byte_count & ~MLX5_INLINE_SEG; 948 949 if (inline_segment) { 950 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 951 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 952 16); 953 } else { 954 wqe += sizeof(*dseg); 955 } 956 957 /* receive WQE end of sg list. */ 958 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && 959 io_virt == 0) 960 break; 961 962 if (!inline_segment && total_wqe_bytes) { 963 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 964 pfault->bytes_committed); 965 } 966 967 /* A zero length data segment designates a length of 2GB. */ 968 if (bcnt == 0) 969 bcnt = 1U << 31; 970 971 if (inline_segment || bcnt <= pfault->bytes_committed) { 972 pfault->bytes_committed -= 973 min_t(size_t, bcnt, 974 pfault->bytes_committed); 975 continue; 976 } 977 978 ret = pagefault_single_data_segment(dev, NULL, key, 979 io_virt, bcnt, 980 &pfault->bytes_committed, 981 bytes_mapped, 0); 982 if (ret < 0) 983 break; 984 npages += ret; 985 } 986 987 return ret < 0 ? ret : npages; 988 } 989 990 static const u32 mlx5_ib_odp_opcode_cap[] = { 991 [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND, 992 [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND, 993 [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND, 994 [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE, 995 [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE, 996 [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ, 997 [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC, 998 [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC, 999 }; 1000 1001 /* 1002 * Parse initiator WQE. Advances the wqe pointer to point at the 1003 * scatter-gather list, and set wqe_end to the end of the WQE. 1004 */ 1005 static int mlx5_ib_mr_initiator_pfault_handler( 1006 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1007 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1008 { 1009 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1010 u16 wqe_index = pfault->wqe.wqe_index; 1011 u32 transport_caps; 1012 struct mlx5_base_av *av; 1013 unsigned ds, opcode; 1014 #if defined(DEBUG) 1015 u32 ctrl_wqe_index, ctrl_qpn; 1016 #endif 1017 u32 qpn = qp->trans_qp.base.mqp.qpn; 1018 1019 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1020 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1021 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1022 ds, wqe_length); 1023 return -EFAULT; 1024 } 1025 1026 if (ds == 0) { 1027 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1028 wqe_index, qpn); 1029 return -EFAULT; 1030 } 1031 1032 #if defined(DEBUG) 1033 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) & 1034 MLX5_WQE_CTRL_WQE_INDEX_MASK) >> 1035 MLX5_WQE_CTRL_WQE_INDEX_SHIFT; 1036 if (wqe_index != ctrl_wqe_index) { 1037 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n", 1038 wqe_index, qpn, 1039 ctrl_wqe_index); 1040 return -EFAULT; 1041 } 1042 1043 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >> 1044 MLX5_WQE_CTRL_QPN_SHIFT; 1045 if (qpn != ctrl_qpn) { 1046 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n", 1047 wqe_index, qpn, 1048 ctrl_qpn); 1049 return -EFAULT; 1050 } 1051 #endif /* DEBUG */ 1052 1053 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1054 *wqe += sizeof(*ctrl); 1055 1056 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1057 MLX5_WQE_CTRL_OPCODE_MASK; 1058 1059 switch (qp->ibqp.qp_type) { 1060 case IB_QPT_XRC_INI: 1061 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1062 transport_caps = dev->odp_caps.per_transport_caps.xrc_odp_caps; 1063 break; 1064 case IB_QPT_RC: 1065 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps; 1066 break; 1067 case IB_QPT_UD: 1068 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps; 1069 break; 1070 default: 1071 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n", 1072 qp->ibqp.qp_type); 1073 return -EFAULT; 1074 } 1075 1076 if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) || 1077 !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) { 1078 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n", 1079 opcode); 1080 return -EFAULT; 1081 } 1082 1083 if (qp->ibqp.qp_type == IB_QPT_UD) { 1084 av = *wqe; 1085 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1086 *wqe += sizeof(struct mlx5_av); 1087 else 1088 *wqe += sizeof(struct mlx5_base_av); 1089 } 1090 1091 switch (opcode) { 1092 case MLX5_OPCODE_RDMA_WRITE: 1093 case MLX5_OPCODE_RDMA_WRITE_IMM: 1094 case MLX5_OPCODE_RDMA_READ: 1095 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1096 break; 1097 case MLX5_OPCODE_ATOMIC_CS: 1098 case MLX5_OPCODE_ATOMIC_FA: 1099 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1100 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1101 break; 1102 } 1103 1104 return 0; 1105 } 1106 1107 /* 1108 * Parse responder WQE and set wqe_end to the end of the WQE. 1109 */ 1110 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1111 struct mlx5_ib_srq *srq, 1112 void **wqe, void **wqe_end, 1113 int wqe_length) 1114 { 1115 int wqe_size = 1 << srq->msrq.wqe_shift; 1116 1117 if (wqe_size > wqe_length) { 1118 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1119 return -EFAULT; 1120 } 1121 1122 *wqe_end = *wqe + wqe_size; 1123 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1124 1125 return 0; 1126 } 1127 1128 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1129 struct mlx5_ib_qp *qp, 1130 void *wqe, void **wqe_end, 1131 int wqe_length) 1132 { 1133 struct mlx5_ib_wq *wq = &qp->rq; 1134 int wqe_size = 1 << wq->wqe_shift; 1135 1136 if (qp->wq_sig) { 1137 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1138 return -EFAULT; 1139 } 1140 1141 if (wqe_size > wqe_length) { 1142 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1143 return -EFAULT; 1144 } 1145 1146 switch (qp->ibqp.qp_type) { 1147 case IB_QPT_RC: 1148 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps & 1149 IB_ODP_SUPPORT_RECV)) 1150 goto invalid_transport_or_opcode; 1151 break; 1152 default: 1153 invalid_transport_or_opcode: 1154 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n", 1155 qp->ibqp.qp_type); 1156 return -EFAULT; 1157 } 1158 1159 *wqe_end = wqe + wqe_size; 1160 1161 return 0; 1162 } 1163 1164 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1165 u32 wq_num, int pf_type) 1166 { 1167 struct mlx5_core_rsc_common *common = NULL; 1168 struct mlx5_core_srq *srq; 1169 1170 switch (pf_type) { 1171 case MLX5_WQE_PF_TYPE_RMP: 1172 srq = mlx5_cmd_get_srq(dev, wq_num); 1173 if (srq) 1174 common = &srq->common; 1175 break; 1176 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1177 case MLX5_WQE_PF_TYPE_RESP: 1178 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1179 common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP); 1180 break; 1181 default: 1182 break; 1183 } 1184 1185 return common; 1186 } 1187 1188 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1189 { 1190 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1191 1192 return to_mibqp(mqp); 1193 } 1194 1195 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1196 { 1197 struct mlx5_core_srq *msrq = 1198 container_of(res, struct mlx5_core_srq, common); 1199 1200 return to_mibsrq(msrq); 1201 } 1202 1203 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1204 struct mlx5_pagefault *pfault) 1205 { 1206 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1207 u16 wqe_index = pfault->wqe.wqe_index; 1208 void *wqe = NULL, *wqe_end = NULL; 1209 u32 bytes_mapped, total_wqe_bytes; 1210 struct mlx5_core_rsc_common *res; 1211 int resume_with_error = 1; 1212 struct mlx5_ib_qp *qp; 1213 size_t bytes_copied; 1214 int ret = 0; 1215 1216 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1217 if (!res) { 1218 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1219 return; 1220 } 1221 1222 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1223 res->res != MLX5_RES_XSRQ) { 1224 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1225 pfault->type); 1226 goto resolve_page_fault; 1227 } 1228 1229 wqe = (void *)__get_free_page(GFP_KERNEL); 1230 if (!wqe) { 1231 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1232 goto resolve_page_fault; 1233 } 1234 1235 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1236 if (qp && sq) { 1237 ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1238 &bytes_copied); 1239 if (ret) 1240 goto read_user; 1241 ret = mlx5_ib_mr_initiator_pfault_handler( 1242 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1243 } else if (qp && !sq) { 1244 ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1245 &bytes_copied); 1246 if (ret) 1247 goto read_user; 1248 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1249 dev, qp, wqe, &wqe_end, bytes_copied); 1250 } else if (!qp) { 1251 struct mlx5_ib_srq *srq = res_to_srq(res); 1252 1253 ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1254 &bytes_copied); 1255 if (ret) 1256 goto read_user; 1257 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1258 dev, srq, &wqe, &wqe_end, bytes_copied); 1259 } 1260 1261 if (ret < 0 || wqe >= wqe_end) 1262 goto resolve_page_fault; 1263 1264 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1265 &total_wqe_bytes, !sq); 1266 if (ret == -EAGAIN) 1267 goto out; 1268 1269 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1270 goto resolve_page_fault; 1271 1272 out: 1273 ret = 0; 1274 resume_with_error = 0; 1275 1276 read_user: 1277 if (ret) 1278 mlx5_ib_err( 1279 dev, 1280 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", 1281 ret, wqe_index, pfault->token); 1282 1283 resolve_page_fault: 1284 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1285 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1286 pfault->wqe.wq_num, resume_with_error, 1287 pfault->type); 1288 mlx5_core_res_put(res); 1289 free_page((unsigned long)wqe); 1290 } 1291 1292 static int pages_in_range(u64 address, u32 length) 1293 { 1294 return (ALIGN(address + length, PAGE_SIZE) - 1295 (address & PAGE_MASK)) >> PAGE_SHIFT; 1296 } 1297 1298 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1299 struct mlx5_pagefault *pfault) 1300 { 1301 u64 address; 1302 u32 length; 1303 u32 prefetch_len = pfault->bytes_committed; 1304 int prefetch_activated = 0; 1305 u32 rkey = pfault->rdma.r_key; 1306 int ret; 1307 1308 /* The RDMA responder handler handles the page fault in two parts. 1309 * First it brings the necessary pages for the current packet 1310 * (and uses the pfault context), and then (after resuming the QP) 1311 * prefetches more pages. The second operation cannot use the pfault 1312 * context and therefore uses the dummy_pfault context allocated on 1313 * the stack */ 1314 pfault->rdma.rdma_va += pfault->bytes_committed; 1315 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1316 pfault->rdma.rdma_op_len); 1317 pfault->bytes_committed = 0; 1318 1319 address = pfault->rdma.rdma_va; 1320 length = pfault->rdma.rdma_op_len; 1321 1322 /* For some operations, the hardware cannot tell the exact message 1323 * length, and in those cases it reports zero. Use prefetch 1324 * logic. */ 1325 if (length == 0) { 1326 prefetch_activated = 1; 1327 length = pfault->rdma.packet_size; 1328 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1329 } 1330 1331 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1332 &pfault->bytes_committed, NULL, 1333 0); 1334 if (ret == -EAGAIN) { 1335 /* We're racing with an invalidation, don't prefetch */ 1336 prefetch_activated = 0; 1337 } else if (ret < 0 || pages_in_range(address, length) > ret) { 1338 mlx5_ib_page_fault_resume(dev, pfault, 1); 1339 if (ret != -ENOENT) 1340 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", 1341 ret, pfault->token, pfault->type); 1342 return; 1343 } 1344 1345 mlx5_ib_page_fault_resume(dev, pfault, 0); 1346 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", 1347 pfault->token, pfault->type, 1348 prefetch_activated); 1349 1350 /* At this point, there might be a new pagefault already arriving in 1351 * the eq, switch to the dummy pagefault for the rest of the 1352 * processing. We're still OK with the objects being alive as the 1353 * work-queue is being fenced. */ 1354 1355 if (prefetch_activated) { 1356 u32 bytes_committed = 0; 1357 1358 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1359 prefetch_len, 1360 &bytes_committed, NULL, 1361 0); 1362 if (ret < 0 && ret != -EAGAIN) { 1363 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", 1364 ret, pfault->token, address, prefetch_len); 1365 } 1366 } 1367 } 1368 1369 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1370 { 1371 u8 event_subtype = pfault->event_subtype; 1372 1373 switch (event_subtype) { 1374 case MLX5_PFAULT_SUBTYPE_WQE: 1375 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1376 break; 1377 case MLX5_PFAULT_SUBTYPE_RDMA: 1378 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1379 break; 1380 default: 1381 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1382 event_subtype); 1383 mlx5_ib_page_fault_resume(dev, pfault, 1); 1384 } 1385 } 1386 1387 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1388 { 1389 struct mlx5_pagefault *pfault = container_of(work, 1390 struct mlx5_pagefault, 1391 work); 1392 struct mlx5_ib_pf_eq *eq = pfault->eq; 1393 1394 mlx5_ib_pfault(eq->dev, pfault); 1395 mempool_free(pfault, eq->pool); 1396 } 1397 1398 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1399 { 1400 struct mlx5_eqe_page_fault *pf_eqe; 1401 struct mlx5_pagefault *pfault; 1402 struct mlx5_eqe *eqe; 1403 int cc = 0; 1404 1405 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1406 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1407 if (!pfault) { 1408 schedule_work(&eq->work); 1409 break; 1410 } 1411 1412 pf_eqe = &eqe->data.page_fault; 1413 pfault->event_subtype = eqe->sub_type; 1414 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); 1415 1416 mlx5_ib_dbg(eq->dev, 1417 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", 1418 eqe->sub_type, pfault->bytes_committed); 1419 1420 switch (eqe->sub_type) { 1421 case MLX5_PFAULT_SUBTYPE_RDMA: 1422 /* RDMA based event */ 1423 pfault->type = 1424 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1425 pfault->token = 1426 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1427 MLX5_24BIT_MASK; 1428 pfault->rdma.r_key = 1429 be32_to_cpu(pf_eqe->rdma.r_key); 1430 pfault->rdma.packet_size = 1431 be16_to_cpu(pf_eqe->rdma.packet_length); 1432 pfault->rdma.rdma_op_len = 1433 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1434 pfault->rdma.rdma_va = 1435 be64_to_cpu(pf_eqe->rdma.rdma_va); 1436 mlx5_ib_dbg(eq->dev, 1437 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", 1438 pfault->type, pfault->token, 1439 pfault->rdma.r_key); 1440 mlx5_ib_dbg(eq->dev, 1441 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1442 pfault->rdma.rdma_op_len, 1443 pfault->rdma.rdma_va); 1444 break; 1445 1446 case MLX5_PFAULT_SUBTYPE_WQE: 1447 /* WQE based event */ 1448 pfault->type = 1449 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1450 pfault->token = 1451 be32_to_cpu(pf_eqe->wqe.token); 1452 pfault->wqe.wq_num = 1453 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1454 MLX5_24BIT_MASK; 1455 pfault->wqe.wqe_index = 1456 be16_to_cpu(pf_eqe->wqe.wqe_index); 1457 pfault->wqe.packet_size = 1458 be16_to_cpu(pf_eqe->wqe.packet_length); 1459 mlx5_ib_dbg(eq->dev, 1460 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1461 pfault->type, pfault->token, 1462 pfault->wqe.wq_num, 1463 pfault->wqe.wqe_index); 1464 break; 1465 1466 default: 1467 mlx5_ib_warn(eq->dev, 1468 "Unsupported page fault event sub-type: 0x%02hhx\n", 1469 eqe->sub_type); 1470 /* Unsupported page faults should still be 1471 * resolved by the page fault handler 1472 */ 1473 } 1474 1475 pfault->eq = eq; 1476 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1477 queue_work(eq->wq, &pfault->work); 1478 1479 cc = mlx5_eq_update_cc(eq->core, ++cc); 1480 } 1481 1482 mlx5_eq_update_ci(eq->core, cc, 1); 1483 } 1484 1485 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, 1486 void *data) 1487 { 1488 struct mlx5_ib_pf_eq *eq = 1489 container_of(nb, struct mlx5_ib_pf_eq, irq_nb); 1490 unsigned long flags; 1491 1492 if (spin_trylock_irqsave(&eq->lock, flags)) { 1493 mlx5_ib_eq_pf_process(eq); 1494 spin_unlock_irqrestore(&eq->lock, flags); 1495 } else { 1496 schedule_work(&eq->work); 1497 } 1498 1499 return IRQ_HANDLED; 1500 } 1501 1502 /* mempool_refill() was proposed but unfortunately wasn't accepted 1503 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1504 * Cheap workaround. 1505 */ 1506 static void mempool_refill(mempool_t *pool) 1507 { 1508 while (pool->curr_nr < pool->min_nr) 1509 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1510 } 1511 1512 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1513 { 1514 struct mlx5_ib_pf_eq *eq = 1515 container_of(work, struct mlx5_ib_pf_eq, work); 1516 1517 mempool_refill(eq->pool); 1518 1519 spin_lock_irq(&eq->lock); 1520 mlx5_ib_eq_pf_process(eq); 1521 spin_unlock_irq(&eq->lock); 1522 } 1523 1524 enum { 1525 MLX5_IB_NUM_PF_EQE = 0x1000, 1526 MLX5_IB_NUM_PF_DRAIN = 64, 1527 }; 1528 1529 static int 1530 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1531 { 1532 struct mlx5_eq_param param = {}; 1533 int err; 1534 1535 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1536 spin_lock_init(&eq->lock); 1537 eq->dev = dev; 1538 1539 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1540 sizeof(struct mlx5_pagefault)); 1541 if (!eq->pool) 1542 return -ENOMEM; 1543 1544 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1545 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1546 MLX5_NUM_CMD_EQE); 1547 if (!eq->wq) { 1548 err = -ENOMEM; 1549 goto err_mempool; 1550 } 1551 1552 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; 1553 param = (struct mlx5_eq_param) { 1554 .irq_index = 0, 1555 .nent = MLX5_IB_NUM_PF_EQE, 1556 }; 1557 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; 1558 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); 1559 if (IS_ERR(eq->core)) { 1560 err = PTR_ERR(eq->core); 1561 goto err_wq; 1562 } 1563 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); 1564 if (err) { 1565 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); 1566 goto err_eq; 1567 } 1568 1569 return 0; 1570 err_eq: 1571 mlx5_eq_destroy_generic(dev->mdev, eq->core); 1572 err_wq: 1573 destroy_workqueue(eq->wq); 1574 err_mempool: 1575 mempool_destroy(eq->pool); 1576 return err; 1577 } 1578 1579 static int 1580 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1581 { 1582 int err; 1583 1584 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); 1585 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1586 cancel_work_sync(&eq->work); 1587 destroy_workqueue(eq->wq); 1588 mempool_destroy(eq->pool); 1589 1590 return err; 1591 } 1592 1593 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) 1594 { 1595 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1596 return; 1597 1598 switch (ent->order - 2) { 1599 case MLX5_IMR_MTT_CACHE_ENTRY: 1600 ent->page = PAGE_SHIFT; 1601 ent->xlt = MLX5_IMR_MTT_ENTRIES * 1602 sizeof(struct mlx5_mtt) / 1603 MLX5_IB_UMR_OCTOWORD; 1604 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 1605 ent->limit = 0; 1606 break; 1607 1608 case MLX5_IMR_KSM_CACHE_ENTRY: 1609 ent->page = MLX5_KSM_PAGE_SHIFT; 1610 ent->xlt = mlx5_imr_ksm_entries * 1611 sizeof(struct mlx5_klm) / 1612 MLX5_IB_UMR_OCTOWORD; 1613 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; 1614 ent->limit = 0; 1615 break; 1616 } 1617 } 1618 1619 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1620 .advise_mr = mlx5_ib_advise_mr, 1621 }; 1622 1623 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1624 { 1625 int ret = 0; 1626 1627 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1628 return ret; 1629 1630 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1631 1632 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { 1633 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); 1634 if (ret) { 1635 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); 1636 return ret; 1637 } 1638 } 1639 1640 ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq); 1641 1642 return ret; 1643 } 1644 1645 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1646 { 1647 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1648 return; 1649 1650 mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq); 1651 } 1652 1653 int mlx5_ib_odp_init(void) 1654 { 1655 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1656 MLX5_IMR_MTT_BITS); 1657 1658 return 0; 1659 } 1660 1661 struct prefetch_mr_work { 1662 struct work_struct work; 1663 struct ib_pd *pd; 1664 u32 pf_flags; 1665 u32 num_sge; 1666 struct ib_sge sg_list[0]; 1667 }; 1668 1669 static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev, 1670 struct ib_sge *sg_list, u32 num_sge, 1671 u32 from) 1672 { 1673 u32 i; 1674 int srcu_key; 1675 1676 srcu_key = srcu_read_lock(&dev->mr_srcu); 1677 1678 for (i = from; i < num_sge; ++i) { 1679 struct mlx5_core_mkey *mmkey; 1680 struct mlx5_ib_mr *mr; 1681 1682 mmkey = xa_load(&dev->mdev->priv.mkey_table, 1683 mlx5_base_mkey(sg_list[i].lkey)); 1684 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1685 atomic_dec(&mr->num_pending_prefetch); 1686 } 1687 1688 srcu_read_unlock(&dev->mr_srcu, srcu_key); 1689 } 1690 1691 static bool num_pending_prefetch_inc(struct ib_pd *pd, 1692 struct ib_sge *sg_list, u32 num_sge) 1693 { 1694 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1695 bool ret = true; 1696 u32 i; 1697 1698 for (i = 0; i < num_sge; ++i) { 1699 struct mlx5_core_mkey *mmkey; 1700 struct mlx5_ib_mr *mr; 1701 1702 mmkey = xa_load(&dev->mdev->priv.mkey_table, 1703 mlx5_base_mkey(sg_list[i].lkey)); 1704 if (!mmkey || mmkey->key != sg_list[i].lkey) { 1705 ret = false; 1706 break; 1707 } 1708 1709 if (mmkey->type != MLX5_MKEY_MR) { 1710 ret = false; 1711 break; 1712 } 1713 1714 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1715 1716 if (mr->ibmr.pd != pd) { 1717 ret = false; 1718 break; 1719 } 1720 1721 if (!mr->live) { 1722 ret = false; 1723 break; 1724 } 1725 1726 atomic_inc(&mr->num_pending_prefetch); 1727 } 1728 1729 if (!ret) 1730 num_pending_prefetch_dec(dev, sg_list, i, 0); 1731 1732 return ret; 1733 } 1734 1735 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags, 1736 struct ib_sge *sg_list, u32 num_sge) 1737 { 1738 u32 i; 1739 int ret = 0; 1740 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1741 1742 for (i = 0; i < num_sge; ++i) { 1743 struct ib_sge *sg = &sg_list[i]; 1744 int bytes_committed = 0; 1745 1746 ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr, 1747 sg->length, 1748 &bytes_committed, NULL, 1749 pf_flags); 1750 if (ret < 0) 1751 break; 1752 } 1753 1754 return ret < 0 ? ret : 0; 1755 } 1756 1757 static void mlx5_ib_prefetch_mr_work(struct work_struct *work) 1758 { 1759 struct prefetch_mr_work *w = 1760 container_of(work, struct prefetch_mr_work, work); 1761 1762 if (ib_device_try_get(w->pd->device)) { 1763 mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list, 1764 w->num_sge); 1765 ib_device_put(w->pd->device); 1766 } 1767 1768 num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list, 1769 w->num_sge, 0); 1770 kvfree(w); 1771 } 1772 1773 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 1774 enum ib_uverbs_advise_mr_advice advice, 1775 u32 flags, struct ib_sge *sg_list, u32 num_sge) 1776 { 1777 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1778 u32 pf_flags = MLX5_PF_FLAGS_PREFETCH; 1779 struct prefetch_mr_work *work; 1780 bool valid_req; 1781 int srcu_key; 1782 1783 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 1784 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 1785 1786 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 1787 return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list, 1788 num_sge); 1789 1790 work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL); 1791 if (!work) 1792 return -ENOMEM; 1793 1794 memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge)); 1795 1796 /* It is guaranteed that the pd when work is executed is the pd when 1797 * work was queued since pd can't be destroyed while it holds MRs and 1798 * destroying a MR leads to flushing the workquque 1799 */ 1800 work->pd = pd; 1801 work->pf_flags = pf_flags; 1802 work->num_sge = num_sge; 1803 1804 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1805 1806 srcu_key = srcu_read_lock(&dev->mr_srcu); 1807 1808 valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge); 1809 if (valid_req) 1810 queue_work(system_unbound_wq, &work->work); 1811 else 1812 kvfree(work); 1813 1814 srcu_read_unlock(&dev->mr_srcu, srcu_key); 1815 1816 return valid_req ? 0 : -EINVAL; 1817 } 1818