xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision b08918fb)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 
40 #include <linux/mlx5/eq.h>
41 
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44 	u32			bytes_committed;
45 	u32			token;
46 	u8			event_subtype;
47 	u8			type;
48 	union {
49 		/* Initiator or send message responder pagefault details. */
50 		struct {
51 			/* Received packet size, only valid for responders. */
52 			u32	packet_size;
53 			/*
54 			 * Number of resource holding WQE, depends on type.
55 			 */
56 			u32	wq_num;
57 			/*
58 			 * WQE index. Refers to either the send queue or
59 			 * receive queue, according to event_subtype.
60 			 */
61 			u16	wqe_index;
62 		} wqe;
63 		/* RDMA responder pagefault details */
64 		struct {
65 			u32	r_key;
66 			/*
67 			 * Received packet size, minimal size page fault
68 			 * resolution required for forward progress.
69 			 */
70 			u32	packet_size;
71 			u32	rdma_op_len;
72 			u64	rdma_va;
73 		} rdma;
74 	};
75 
76 	struct mlx5_ib_pf_eq	*eq;
77 	struct work_struct	work;
78 };
79 
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81 
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85 
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91 
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93 
94 static u64 mlx5_imr_ksm_entries;
95 
96 static int check_parent(struct ib_umem_odp *odp,
97 			       struct mlx5_ib_mr *parent)
98 {
99 	struct mlx5_ib_mr *mr = odp->private;
100 
101 	return mr && mr->parent == parent && !odp->dying;
102 }
103 
104 static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
105 {
106 	if (WARN_ON(!mr || !is_odp_mr(mr)))
107 		return NULL;
108 
109 	return to_ib_umem_odp(mr->umem)->per_mm;
110 }
111 
112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
113 {
114 	struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
115 	struct ib_ucontext_per_mm *per_mm = odp->per_mm;
116 	struct rb_node *rb;
117 
118 	down_read(&per_mm->umem_rwsem);
119 	while (1) {
120 		rb = rb_next(&odp->interval_tree.rb);
121 		if (!rb)
122 			goto not_found;
123 		odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
124 		if (check_parent(odp, parent))
125 			goto end;
126 	}
127 not_found:
128 	odp = NULL;
129 end:
130 	up_read(&per_mm->umem_rwsem);
131 	return odp;
132 }
133 
134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
135 				      struct mlx5_ib_mr *parent)
136 {
137 	struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
138 	struct ib_umem_odp *odp;
139 	struct rb_node *rb;
140 
141 	down_read(&per_mm->umem_rwsem);
142 	odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
143 	if (!odp)
144 		goto end;
145 
146 	while (1) {
147 		if (check_parent(odp, parent))
148 			goto end;
149 		rb = rb_next(&odp->interval_tree.rb);
150 		if (!rb)
151 			goto not_found;
152 		odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
153 		if (ib_umem_start(odp) > start + length)
154 			goto not_found;
155 	}
156 not_found:
157 	odp = NULL;
158 end:
159 	up_read(&per_mm->umem_rwsem);
160 	return odp;
161 }
162 
163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
164 			   size_t nentries, struct mlx5_ib_mr *mr, int flags)
165 {
166 	struct ib_pd *pd = mr->ibmr.pd;
167 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
168 	struct ib_umem_odp *odp;
169 	unsigned long va;
170 	int i;
171 
172 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
173 		for (i = 0; i < nentries; i++, pklm++) {
174 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
175 			pklm->key = cpu_to_be32(dev->null_mkey);
176 			pklm->va = 0;
177 		}
178 		return;
179 	}
180 
181 	odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
182 			 nentries * MLX5_IMR_MTT_SIZE, mr);
183 
184 	for (i = 0; i < nentries; i++, pklm++) {
185 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
186 		va = (offset + i) * MLX5_IMR_MTT_SIZE;
187 		if (odp && odp->umem.address == va) {
188 			struct mlx5_ib_mr *mtt = odp->private;
189 
190 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
191 			odp = odp_next(odp);
192 		} else {
193 			pklm->key = cpu_to_be32(dev->null_mkey);
194 		}
195 		mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
196 			    i, va, be32_to_cpu(pklm->key));
197 	}
198 }
199 
200 static void mr_leaf_free_action(struct work_struct *work)
201 {
202 	struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
203 	int idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
204 	struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
205 
206 	mr->parent = NULL;
207 	synchronize_srcu(&mr->dev->mr_srcu);
208 
209 	ib_umem_release(&odp->umem);
210 	if (imr->live)
211 		mlx5_ib_update_xlt(imr, idx, 1, 0,
212 				   MLX5_IB_UPD_XLT_INDIRECT |
213 				   MLX5_IB_UPD_XLT_ATOMIC);
214 	mlx5_mr_cache_free(mr->dev, mr);
215 
216 	if (atomic_dec_and_test(&imr->num_leaf_free))
217 		wake_up(&imr->q_leaf_free);
218 }
219 
220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
221 			      unsigned long end)
222 {
223 	struct mlx5_ib_mr *mr;
224 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
225 				    sizeof(struct mlx5_mtt)) - 1;
226 	u64 idx = 0, blk_start_idx = 0;
227 	int in_block = 0;
228 	u64 addr;
229 
230 	if (!umem_odp) {
231 		pr_err("invalidation called on NULL umem or non-ODP umem\n");
232 		return;
233 	}
234 
235 	mr = umem_odp->private;
236 
237 	if (!mr || !mr->ibmr.pd)
238 		return;
239 
240 	start = max_t(u64, ib_umem_start(umem_odp), start);
241 	end = min_t(u64, ib_umem_end(umem_odp), end);
242 
243 	/*
244 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
245 	 * while we are doing the invalidation, no page fault will attempt to
246 	 * overwrite the same MTTs.  Concurent invalidations might race us,
247 	 * but they will write 0s as well, so no difference in the end result.
248 	 */
249 	mutex_lock(&umem_odp->umem_mutex);
250 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
251 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
252 		/*
253 		 * Strive to write the MTTs in chunks, but avoid overwriting
254 		 * non-existing MTTs. The huristic here can be improved to
255 		 * estimate the cost of another UMR vs. the cost of bigger
256 		 * UMR.
257 		 */
258 		if (umem_odp->dma_list[idx] &
259 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
260 			if (!in_block) {
261 				blk_start_idx = idx;
262 				in_block = 1;
263 			}
264 		} else {
265 			u64 umr_offset = idx & umr_block_mask;
266 
267 			if (in_block && umr_offset == 0) {
268 				mlx5_ib_update_xlt(mr, blk_start_idx,
269 						   idx - blk_start_idx, 0,
270 						   MLX5_IB_UPD_XLT_ZAP |
271 						   MLX5_IB_UPD_XLT_ATOMIC);
272 				in_block = 0;
273 			}
274 		}
275 	}
276 	if (in_block)
277 		mlx5_ib_update_xlt(mr, blk_start_idx,
278 				   idx - blk_start_idx + 1, 0,
279 				   MLX5_IB_UPD_XLT_ZAP |
280 				   MLX5_IB_UPD_XLT_ATOMIC);
281 	mutex_unlock(&umem_odp->umem_mutex);
282 	/*
283 	 * We are now sure that the device will not access the
284 	 * memory. We can safely unmap it, and mark it as dirty if
285 	 * needed.
286 	 */
287 
288 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
289 
290 	if (unlikely(!umem_odp->npages && mr->parent &&
291 		     !umem_odp->dying)) {
292 		WRITE_ONCE(umem_odp->dying, 1);
293 		atomic_inc(&mr->parent->num_leaf_free);
294 		schedule_work(&umem_odp->work);
295 	}
296 }
297 
298 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
299 {
300 	struct ib_odp_caps *caps = &dev->odp_caps;
301 
302 	memset(caps, 0, sizeof(*caps));
303 
304 	if (!MLX5_CAP_GEN(dev->mdev, pg) ||
305 	    !mlx5_ib_can_use_umr(dev, true))
306 		return;
307 
308 	caps->general_caps = IB_ODP_SUPPORT;
309 
310 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
311 		dev->odp_max_size = U64_MAX;
312 	else
313 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
314 
315 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
316 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
317 
318 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
319 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
320 
321 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
322 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
323 
324 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
325 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
326 
327 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
328 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
329 
330 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
331 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
332 
333 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
334 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
335 
336 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
337 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
338 
339 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
340 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
341 
342 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
343 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
344 
345 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
346 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
347 
348 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
349 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
350 
351 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
352 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
353 
354 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
355 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
356 
357 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
358 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
359 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
360 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
361 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
362 
363 	return;
364 }
365 
366 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
367 				      struct mlx5_pagefault *pfault,
368 				      int error)
369 {
370 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
371 		     pfault->wqe.wq_num : pfault->token;
372 	u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
373 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
374 	int err;
375 
376 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
377 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
378 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
379 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
380 	MLX5_SET(page_fault_resume_in, in, error, !!error);
381 
382 	err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
383 	if (err)
384 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
385 			    wq_num, err);
386 }
387 
388 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
389 					    struct ib_umem *umem,
390 					    bool ksm, int access_flags)
391 {
392 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
393 	struct mlx5_ib_mr *mr;
394 	int err;
395 
396 	mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
397 					    MLX5_IMR_MTT_CACHE_ENTRY);
398 
399 	if (IS_ERR(mr))
400 		return mr;
401 
402 	mr->ibmr.pd = pd;
403 
404 	mr->dev = dev;
405 	mr->access_flags = access_flags;
406 	mr->mmkey.iova = 0;
407 	mr->umem = umem;
408 
409 	if (ksm) {
410 		err = mlx5_ib_update_xlt(mr, 0,
411 					 mlx5_imr_ksm_entries,
412 					 MLX5_KSM_PAGE_SHIFT,
413 					 MLX5_IB_UPD_XLT_INDIRECT |
414 					 MLX5_IB_UPD_XLT_ZAP |
415 					 MLX5_IB_UPD_XLT_ENABLE);
416 
417 	} else {
418 		err = mlx5_ib_update_xlt(mr, 0,
419 					 MLX5_IMR_MTT_ENTRIES,
420 					 PAGE_SHIFT,
421 					 MLX5_IB_UPD_XLT_ZAP |
422 					 MLX5_IB_UPD_XLT_ENABLE |
423 					 MLX5_IB_UPD_XLT_ATOMIC);
424 	}
425 
426 	if (err)
427 		goto fail;
428 
429 	mr->ibmr.lkey = mr->mmkey.key;
430 	mr->ibmr.rkey = mr->mmkey.key;
431 
432 	mr->live = 1;
433 
434 	mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
435 		    mr->mmkey.key, dev->mdev, mr);
436 
437 	return mr;
438 
439 fail:
440 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
441 	mlx5_mr_cache_free(dev, mr);
442 
443 	return ERR_PTR(err);
444 }
445 
446 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
447 						u64 io_virt, size_t bcnt)
448 {
449 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
450 	struct ib_umem_odp *odp, *result = NULL;
451 	struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
452 	u64 addr = io_virt & MLX5_IMR_MTT_MASK;
453 	int nentries = 0, start_idx = 0, ret;
454 	struct mlx5_ib_mr *mtt;
455 
456 	mutex_lock(&odp_mr->umem_mutex);
457 	odp = odp_lookup(addr, 1, mr);
458 
459 	mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
460 		    io_virt, bcnt, addr, odp);
461 
462 next_mr:
463 	if (likely(odp)) {
464 		if (nentries)
465 			nentries++;
466 	} else {
467 		odp = ib_alloc_odp_umem(odp_mr, addr,
468 					MLX5_IMR_MTT_SIZE);
469 		if (IS_ERR(odp)) {
470 			mutex_unlock(&odp_mr->umem_mutex);
471 			return ERR_CAST(odp);
472 		}
473 
474 		mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
475 					mr->access_flags);
476 		if (IS_ERR(mtt)) {
477 			mutex_unlock(&odp_mr->umem_mutex);
478 			ib_umem_release(&odp->umem);
479 			return ERR_CAST(mtt);
480 		}
481 
482 		odp->private = mtt;
483 		mtt->umem = &odp->umem;
484 		mtt->mmkey.iova = addr;
485 		mtt->parent = mr;
486 		INIT_WORK(&odp->work, mr_leaf_free_action);
487 
488 		if (!nentries)
489 			start_idx = addr >> MLX5_IMR_MTT_SHIFT;
490 		nentries++;
491 	}
492 
493 	/* Return first odp if region not covered by single one */
494 	if (likely(!result))
495 		result = odp;
496 
497 	addr += MLX5_IMR_MTT_SIZE;
498 	if (unlikely(addr < io_virt + bcnt)) {
499 		odp = odp_next(odp);
500 		if (odp && odp->umem.address != addr)
501 			odp = NULL;
502 		goto next_mr;
503 	}
504 
505 	if (unlikely(nentries)) {
506 		ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
507 					 MLX5_IB_UPD_XLT_INDIRECT |
508 					 MLX5_IB_UPD_XLT_ATOMIC);
509 		if (ret) {
510 			mlx5_ib_err(dev, "Failed to update PAS\n");
511 			result = ERR_PTR(ret);
512 		}
513 	}
514 
515 	mutex_unlock(&odp_mr->umem_mutex);
516 	return result;
517 }
518 
519 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
520 					     struct ib_udata *udata,
521 					     int access_flags)
522 {
523 	struct mlx5_ib_mr *imr;
524 	struct ib_umem *umem;
525 
526 	umem = ib_umem_get(udata, 0, 0, access_flags, 0);
527 	if (IS_ERR(umem))
528 		return ERR_CAST(umem);
529 
530 	imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
531 	if (IS_ERR(imr)) {
532 		ib_umem_release(umem);
533 		return ERR_CAST(imr);
534 	}
535 
536 	imr->umem = umem;
537 	init_waitqueue_head(&imr->q_leaf_free);
538 	atomic_set(&imr->num_leaf_free, 0);
539 	atomic_set(&imr->num_pending_prefetch, 0);
540 
541 	return imr;
542 }
543 
544 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
545 			void *cookie)
546 {
547 	struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
548 
549 	if (mr->parent != imr)
550 		return 0;
551 
552 	ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
553 				    ib_umem_end(umem_odp));
554 
555 	if (umem_odp->dying)
556 		return 0;
557 
558 	WRITE_ONCE(umem_odp->dying, 1);
559 	atomic_inc(&imr->num_leaf_free);
560 	schedule_work(&umem_odp->work);
561 
562 	return 0;
563 }
564 
565 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
566 {
567 	struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
568 
569 	down_read(&per_mm->umem_rwsem);
570 	rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
571 				      mr_leaf_free, true, imr);
572 	up_read(&per_mm->umem_rwsem);
573 
574 	wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
575 }
576 
577 #define MLX5_PF_FLAGS_PREFETCH  BIT(0)
578 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
579 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
580 			u64 io_virt, size_t bcnt, u32 *bytes_mapped,
581 			u32 flags)
582 {
583 	int npages = 0, current_seq, page_shift, ret, np;
584 	struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
585 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
586 	bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
587 	u64 access_mask;
588 	u64 start_idx, page_mask;
589 	struct ib_umem_odp *odp;
590 	size_t size;
591 
592 	if (!odp_mr->page_list) {
593 		odp = implicit_mr_get_data(mr, io_virt, bcnt);
594 
595 		if (IS_ERR(odp))
596 			return PTR_ERR(odp);
597 		mr = odp->private;
598 	} else {
599 		odp = odp_mr;
600 	}
601 
602 next_mr:
603 	size = min_t(size_t, bcnt, ib_umem_end(odp) - io_virt);
604 
605 	page_shift = odp->page_shift;
606 	page_mask = ~(BIT(page_shift) - 1);
607 	start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
608 	access_mask = ODP_READ_ALLOWED_BIT;
609 
610 	if (prefetch && !downgrade && !mr->umem->writable) {
611 		/* prefetch with write-access must
612 		 * be supported by the MR
613 		 */
614 		ret = -EINVAL;
615 		goto out;
616 	}
617 
618 	if (mr->umem->writable && !downgrade)
619 		access_mask |= ODP_WRITE_ALLOWED_BIT;
620 
621 	current_seq = READ_ONCE(odp->notifiers_seq);
622 	/*
623 	 * Ensure the sequence number is valid for some time before we call
624 	 * gup.
625 	 */
626 	smp_rmb();
627 
628 	ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
629 					access_mask, current_seq);
630 
631 	if (ret < 0)
632 		goto out;
633 
634 	np = ret;
635 
636 	mutex_lock(&odp->umem_mutex);
637 	if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
638 					current_seq)) {
639 		/*
640 		 * No need to check whether the MTTs really belong to
641 		 * this MR, since ib_umem_odp_map_dma_pages already
642 		 * checks this.
643 		 */
644 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
645 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
646 	} else {
647 		ret = -EAGAIN;
648 	}
649 	mutex_unlock(&odp->umem_mutex);
650 
651 	if (ret < 0) {
652 		if (ret != -EAGAIN)
653 			mlx5_ib_err(dev, "Failed to update mkey page tables\n");
654 		goto out;
655 	}
656 
657 	if (bytes_mapped) {
658 		u32 new_mappings = (np << page_shift) -
659 			(io_virt - round_down(io_virt, 1 << page_shift));
660 		*bytes_mapped += min_t(u32, new_mappings, size);
661 	}
662 
663 	npages += np << (page_shift - PAGE_SHIFT);
664 	bcnt -= size;
665 
666 	if (unlikely(bcnt)) {
667 		struct ib_umem_odp *next;
668 
669 		io_virt += size;
670 		next = odp_next(odp);
671 		if (unlikely(!next || next->umem.address != io_virt)) {
672 			mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
673 				    io_virt, next);
674 			return -EAGAIN;
675 		}
676 		odp = next;
677 		mr = odp->private;
678 		goto next_mr;
679 	}
680 
681 	return npages;
682 
683 out:
684 	if (ret == -EAGAIN) {
685 		unsigned long timeout = msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
686 
687 		if (!wait_for_completion_timeout(&odp->notifier_completion,
688 						 timeout)) {
689 			mlx5_ib_warn(
690 				dev,
691 				"timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
692 				current_seq, odp->notifiers_seq,
693 				odp->notifiers_count);
694 		}
695 	}
696 
697 	return ret;
698 }
699 
700 struct pf_frame {
701 	struct pf_frame *next;
702 	u32 key;
703 	u64 io_virt;
704 	size_t bcnt;
705 	int depth;
706 };
707 
708 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
709 {
710 	if (!mmkey)
711 		return false;
712 	if (mmkey->type == MLX5_MKEY_MW)
713 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
714 	return mmkey->key == key;
715 }
716 
717 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
718 {
719 	struct mlx5_ib_mw *mw;
720 	struct mlx5_ib_devx_mr *devx_mr;
721 
722 	if (mmkey->type == MLX5_MKEY_MW) {
723 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
724 		return mw->ndescs;
725 	}
726 
727 	devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
728 			       mmkey);
729 	return devx_mr->ndescs;
730 }
731 
732 /*
733  * Handle a single data segment in a page-fault WQE or RDMA region.
734  *
735  * Returns number of OS pages retrieved on success. The caller may continue to
736  * the next data segment.
737  * Can return the following error codes:
738  * -EAGAIN to designate a temporary error. The caller will abort handling the
739  *  page fault and resolve it.
740  * -EFAULT when there's an error mapping the requested pages. The caller will
741  *  abort the page fault handling.
742  */
743 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
744 					 struct ib_pd *pd, u32 key,
745 					 u64 io_virt, size_t bcnt,
746 					 u32 *bytes_committed,
747 					 u32 *bytes_mapped, u32 flags)
748 {
749 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
750 	bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
751 	struct pf_frame *head = NULL, *frame;
752 	struct mlx5_core_mkey *mmkey;
753 	struct mlx5_ib_mr *mr;
754 	struct mlx5_klm *pklm;
755 	u32 *out = NULL;
756 	size_t offset;
757 	int ndescs;
758 
759 	srcu_key = srcu_read_lock(&dev->mr_srcu);
760 
761 	io_virt += *bytes_committed;
762 	bcnt -= *bytes_committed;
763 
764 next_mr:
765 	mmkey = xa_load(&dev->mdev->priv.mkey_table, mlx5_base_mkey(key));
766 	if (!mkey_is_eq(mmkey, key)) {
767 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
768 		ret = -EFAULT;
769 		goto srcu_unlock;
770 	}
771 
772 	if (prefetch && mmkey->type != MLX5_MKEY_MR) {
773 		mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n");
774 		ret = -EINVAL;
775 		goto srcu_unlock;
776 	}
777 
778 	switch (mmkey->type) {
779 	case MLX5_MKEY_MR:
780 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
781 		if (!mr->live || !mr->ibmr.pd) {
782 			mlx5_ib_dbg(dev, "got dead MR\n");
783 			ret = -EFAULT;
784 			goto srcu_unlock;
785 		}
786 
787 		if (prefetch) {
788 			if (!is_odp_mr(mr) ||
789 			    mr->ibmr.pd != pd) {
790 				mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n",
791 					    is_odp_mr(mr) ?  "MR is not ODP" :
792 					    "PD is not of the MR");
793 				ret = -EINVAL;
794 				goto srcu_unlock;
795 			}
796 		}
797 
798 		if (!is_odp_mr(mr)) {
799 			mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
800 				    key);
801 			if (bytes_mapped)
802 				*bytes_mapped += bcnt;
803 			ret = 0;
804 			goto srcu_unlock;
805 		}
806 
807 		ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags);
808 		if (ret < 0)
809 			goto srcu_unlock;
810 
811 		npages += ret;
812 		ret = 0;
813 		break;
814 
815 	case MLX5_MKEY_MW:
816 	case MLX5_MKEY_INDIRECT_DEVX:
817 		ndescs = get_indirect_num_descs(mmkey);
818 
819 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
820 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
821 			ret = -EFAULT;
822 			goto srcu_unlock;
823 		}
824 
825 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
826 			sizeof(*pklm) * (ndescs - 2);
827 
828 		if (outlen > cur_outlen) {
829 			kfree(out);
830 			out = kzalloc(outlen, GFP_KERNEL);
831 			if (!out) {
832 				ret = -ENOMEM;
833 				goto srcu_unlock;
834 			}
835 			cur_outlen = outlen;
836 		}
837 
838 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
839 						       bsf0_klm0_pas_mtt0_1);
840 
841 		ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
842 		if (ret)
843 			goto srcu_unlock;
844 
845 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
846 					      memory_key_mkey_entry.start_addr);
847 
848 		for (i = 0; bcnt && i < ndescs; i++, pklm++) {
849 			if (offset >= be32_to_cpu(pklm->bcount)) {
850 				offset -= be32_to_cpu(pklm->bcount);
851 				continue;
852 			}
853 
854 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
855 			if (!frame) {
856 				ret = -ENOMEM;
857 				goto srcu_unlock;
858 			}
859 
860 			frame->key = be32_to_cpu(pklm->key);
861 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
862 			frame->bcnt = min_t(size_t, bcnt,
863 					    be32_to_cpu(pklm->bcount) - offset);
864 			frame->depth = depth + 1;
865 			frame->next = head;
866 			head = frame;
867 
868 			bcnt -= frame->bcnt;
869 			offset = 0;
870 		}
871 		break;
872 
873 	default:
874 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
875 		ret = -EFAULT;
876 		goto srcu_unlock;
877 	}
878 
879 	if (head) {
880 		frame = head;
881 		head = frame->next;
882 
883 		key = frame->key;
884 		io_virt = frame->io_virt;
885 		bcnt = frame->bcnt;
886 		depth = frame->depth;
887 		kfree(frame);
888 
889 		goto next_mr;
890 	}
891 
892 srcu_unlock:
893 	while (head) {
894 		frame = head;
895 		head = frame->next;
896 		kfree(frame);
897 	}
898 	kfree(out);
899 
900 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
901 	*bytes_committed = 0;
902 	return ret ? ret : npages;
903 }
904 
905 /**
906  * Parse a series of data segments for page fault handling.
907  *
908  * @pfault contains page fault information.
909  * @wqe points at the first data segment in the WQE.
910  * @wqe_end points after the end of the WQE.
911  * @bytes_mapped receives the number of bytes that the function was able to
912  *               map. This allows the caller to decide intelligently whether
913  *               enough memory was mapped to resolve the page fault
914  *               successfully (e.g. enough for the next MTU, or the entire
915  *               WQE).
916  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
917  *                  the committed bytes).
918  *
919  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
920  * negative error code.
921  */
922 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
923 				   struct mlx5_pagefault *pfault,
924 				   void *wqe,
925 				   void *wqe_end, u32 *bytes_mapped,
926 				   u32 *total_wqe_bytes, bool receive_queue)
927 {
928 	int ret = 0, npages = 0;
929 	u64 io_virt;
930 	u32 key;
931 	u32 byte_count;
932 	size_t bcnt;
933 	int inline_segment;
934 
935 	if (bytes_mapped)
936 		*bytes_mapped = 0;
937 	if (total_wqe_bytes)
938 		*total_wqe_bytes = 0;
939 
940 	while (wqe < wqe_end) {
941 		struct mlx5_wqe_data_seg *dseg = wqe;
942 
943 		io_virt = be64_to_cpu(dseg->addr);
944 		key = be32_to_cpu(dseg->lkey);
945 		byte_count = be32_to_cpu(dseg->byte_count);
946 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
947 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
948 
949 		if (inline_segment) {
950 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
951 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
952 				     16);
953 		} else {
954 			wqe += sizeof(*dseg);
955 		}
956 
957 		/* receive WQE end of sg list. */
958 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
959 		    io_virt == 0)
960 			break;
961 
962 		if (!inline_segment && total_wqe_bytes) {
963 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
964 					pfault->bytes_committed);
965 		}
966 
967 		/* A zero length data segment designates a length of 2GB. */
968 		if (bcnt == 0)
969 			bcnt = 1U << 31;
970 
971 		if (inline_segment || bcnt <= pfault->bytes_committed) {
972 			pfault->bytes_committed -=
973 				min_t(size_t, bcnt,
974 				      pfault->bytes_committed);
975 			continue;
976 		}
977 
978 		ret = pagefault_single_data_segment(dev, NULL, key,
979 						    io_virt, bcnt,
980 						    &pfault->bytes_committed,
981 						    bytes_mapped, 0);
982 		if (ret < 0)
983 			break;
984 		npages += ret;
985 	}
986 
987 	return ret < 0 ? ret : npages;
988 }
989 
990 static const u32 mlx5_ib_odp_opcode_cap[] = {
991 	[MLX5_OPCODE_SEND]	       = IB_ODP_SUPPORT_SEND,
992 	[MLX5_OPCODE_SEND_IMM]	       = IB_ODP_SUPPORT_SEND,
993 	[MLX5_OPCODE_SEND_INVAL]       = IB_ODP_SUPPORT_SEND,
994 	[MLX5_OPCODE_RDMA_WRITE]       = IB_ODP_SUPPORT_WRITE,
995 	[MLX5_OPCODE_RDMA_WRITE_IMM]   = IB_ODP_SUPPORT_WRITE,
996 	[MLX5_OPCODE_RDMA_READ]	       = IB_ODP_SUPPORT_READ,
997 	[MLX5_OPCODE_ATOMIC_CS]	       = IB_ODP_SUPPORT_ATOMIC,
998 	[MLX5_OPCODE_ATOMIC_FA]	       = IB_ODP_SUPPORT_ATOMIC,
999 };
1000 
1001 /*
1002  * Parse initiator WQE. Advances the wqe pointer to point at the
1003  * scatter-gather list, and set wqe_end to the end of the WQE.
1004  */
1005 static int mlx5_ib_mr_initiator_pfault_handler(
1006 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1007 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1008 {
1009 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1010 	u16 wqe_index = pfault->wqe.wqe_index;
1011 	u32 transport_caps;
1012 	struct mlx5_base_av *av;
1013 	unsigned ds, opcode;
1014 #if defined(DEBUG)
1015 	u32 ctrl_wqe_index, ctrl_qpn;
1016 #endif
1017 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1018 
1019 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1020 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1021 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1022 			    ds, wqe_length);
1023 		return -EFAULT;
1024 	}
1025 
1026 	if (ds == 0) {
1027 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1028 			    wqe_index, qpn);
1029 		return -EFAULT;
1030 	}
1031 
1032 #if defined(DEBUG)
1033 	ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
1034 			MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
1035 			MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
1036 	if (wqe_index != ctrl_wqe_index) {
1037 		mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
1038 			    wqe_index, qpn,
1039 			    ctrl_wqe_index);
1040 		return -EFAULT;
1041 	}
1042 
1043 	ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
1044 		MLX5_WQE_CTRL_QPN_SHIFT;
1045 	if (qpn != ctrl_qpn) {
1046 		mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
1047 			    wqe_index, qpn,
1048 			    ctrl_qpn);
1049 		return -EFAULT;
1050 	}
1051 #endif /* DEBUG */
1052 
1053 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1054 	*wqe += sizeof(*ctrl);
1055 
1056 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1057 		 MLX5_WQE_CTRL_OPCODE_MASK;
1058 
1059 	switch (qp->ibqp.qp_type) {
1060 	case IB_QPT_XRC_INI:
1061 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1062 		transport_caps = dev->odp_caps.per_transport_caps.xrc_odp_caps;
1063 		break;
1064 	case IB_QPT_RC:
1065 		transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
1066 		break;
1067 	case IB_QPT_UD:
1068 		transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
1069 		break;
1070 	default:
1071 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
1072 			    qp->ibqp.qp_type);
1073 		return -EFAULT;
1074 	}
1075 
1076 	if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
1077 		     !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
1078 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
1079 			    opcode);
1080 		return -EFAULT;
1081 	}
1082 
1083 	if (qp->ibqp.qp_type == IB_QPT_UD) {
1084 		av = *wqe;
1085 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1086 			*wqe += sizeof(struct mlx5_av);
1087 		else
1088 			*wqe += sizeof(struct mlx5_base_av);
1089 	}
1090 
1091 	switch (opcode) {
1092 	case MLX5_OPCODE_RDMA_WRITE:
1093 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1094 	case MLX5_OPCODE_RDMA_READ:
1095 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1096 		break;
1097 	case MLX5_OPCODE_ATOMIC_CS:
1098 	case MLX5_OPCODE_ATOMIC_FA:
1099 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1100 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1101 		break;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Parse responder WQE and set wqe_end to the end of the WQE.
1109  */
1110 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1111 						   struct mlx5_ib_srq *srq,
1112 						   void **wqe, void **wqe_end,
1113 						   int wqe_length)
1114 {
1115 	int wqe_size = 1 << srq->msrq.wqe_shift;
1116 
1117 	if (wqe_size > wqe_length) {
1118 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1119 		return -EFAULT;
1120 	}
1121 
1122 	*wqe_end = *wqe + wqe_size;
1123 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1124 
1125 	return 0;
1126 }
1127 
1128 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1129 						  struct mlx5_ib_qp *qp,
1130 						  void *wqe, void **wqe_end,
1131 						  int wqe_length)
1132 {
1133 	struct mlx5_ib_wq *wq = &qp->rq;
1134 	int wqe_size = 1 << wq->wqe_shift;
1135 
1136 	if (qp->wq_sig) {
1137 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1138 		return -EFAULT;
1139 	}
1140 
1141 	if (wqe_size > wqe_length) {
1142 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1143 		return -EFAULT;
1144 	}
1145 
1146 	switch (qp->ibqp.qp_type) {
1147 	case IB_QPT_RC:
1148 		if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1149 		      IB_ODP_SUPPORT_RECV))
1150 			goto invalid_transport_or_opcode;
1151 		break;
1152 	default:
1153 invalid_transport_or_opcode:
1154 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1155 			    qp->ibqp.qp_type);
1156 		return -EFAULT;
1157 	}
1158 
1159 	*wqe_end = wqe + wqe_size;
1160 
1161 	return 0;
1162 }
1163 
1164 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1165 						       u32 wq_num, int pf_type)
1166 {
1167 	struct mlx5_core_rsc_common *common = NULL;
1168 	struct mlx5_core_srq *srq;
1169 
1170 	switch (pf_type) {
1171 	case MLX5_WQE_PF_TYPE_RMP:
1172 		srq = mlx5_cmd_get_srq(dev, wq_num);
1173 		if (srq)
1174 			common = &srq->common;
1175 		break;
1176 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1177 	case MLX5_WQE_PF_TYPE_RESP:
1178 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1179 		common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1180 		break;
1181 	default:
1182 		break;
1183 	}
1184 
1185 	return common;
1186 }
1187 
1188 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1189 {
1190 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1191 
1192 	return to_mibqp(mqp);
1193 }
1194 
1195 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1196 {
1197 	struct mlx5_core_srq *msrq =
1198 		container_of(res, struct mlx5_core_srq, common);
1199 
1200 	return to_mibsrq(msrq);
1201 }
1202 
1203 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1204 					  struct mlx5_pagefault *pfault)
1205 {
1206 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1207 	u16 wqe_index = pfault->wqe.wqe_index;
1208 	void *wqe = NULL, *wqe_end = NULL;
1209 	u32 bytes_mapped, total_wqe_bytes;
1210 	struct mlx5_core_rsc_common *res;
1211 	int resume_with_error = 1;
1212 	struct mlx5_ib_qp *qp;
1213 	size_t bytes_copied;
1214 	int ret = 0;
1215 
1216 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1217 	if (!res) {
1218 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1219 		return;
1220 	}
1221 
1222 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1223 	    res->res != MLX5_RES_XSRQ) {
1224 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1225 			    pfault->type);
1226 		goto resolve_page_fault;
1227 	}
1228 
1229 	wqe = (void *)__get_free_page(GFP_KERNEL);
1230 	if (!wqe) {
1231 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1232 		goto resolve_page_fault;
1233 	}
1234 
1235 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1236 	if (qp && sq) {
1237 		ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1238 					       &bytes_copied);
1239 		if (ret)
1240 			goto read_user;
1241 		ret = mlx5_ib_mr_initiator_pfault_handler(
1242 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1243 	} else if (qp && !sq) {
1244 		ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1245 					       &bytes_copied);
1246 		if (ret)
1247 			goto read_user;
1248 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1249 			dev, qp, wqe, &wqe_end, bytes_copied);
1250 	} else if (!qp) {
1251 		struct mlx5_ib_srq *srq = res_to_srq(res);
1252 
1253 		ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1254 						&bytes_copied);
1255 		if (ret)
1256 			goto read_user;
1257 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1258 			dev, srq, &wqe, &wqe_end, bytes_copied);
1259 	}
1260 
1261 	if (ret < 0 || wqe >= wqe_end)
1262 		goto resolve_page_fault;
1263 
1264 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1265 				      &total_wqe_bytes, !sq);
1266 	if (ret == -EAGAIN)
1267 		goto out;
1268 
1269 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1270 		goto resolve_page_fault;
1271 
1272 out:
1273 	ret = 0;
1274 	resume_with_error = 0;
1275 
1276 read_user:
1277 	if (ret)
1278 		mlx5_ib_err(
1279 			dev,
1280 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1281 			ret, wqe_index, pfault->token);
1282 
1283 resolve_page_fault:
1284 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1285 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1286 		    pfault->wqe.wq_num, resume_with_error,
1287 		    pfault->type);
1288 	mlx5_core_res_put(res);
1289 	free_page((unsigned long)wqe);
1290 }
1291 
1292 static int pages_in_range(u64 address, u32 length)
1293 {
1294 	return (ALIGN(address + length, PAGE_SIZE) -
1295 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1296 }
1297 
1298 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1299 					   struct mlx5_pagefault *pfault)
1300 {
1301 	u64 address;
1302 	u32 length;
1303 	u32 prefetch_len = pfault->bytes_committed;
1304 	int prefetch_activated = 0;
1305 	u32 rkey = pfault->rdma.r_key;
1306 	int ret;
1307 
1308 	/* The RDMA responder handler handles the page fault in two parts.
1309 	 * First it brings the necessary pages for the current packet
1310 	 * (and uses the pfault context), and then (after resuming the QP)
1311 	 * prefetches more pages. The second operation cannot use the pfault
1312 	 * context and therefore uses the dummy_pfault context allocated on
1313 	 * the stack */
1314 	pfault->rdma.rdma_va += pfault->bytes_committed;
1315 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1316 					 pfault->rdma.rdma_op_len);
1317 	pfault->bytes_committed = 0;
1318 
1319 	address = pfault->rdma.rdma_va;
1320 	length  = pfault->rdma.rdma_op_len;
1321 
1322 	/* For some operations, the hardware cannot tell the exact message
1323 	 * length, and in those cases it reports zero. Use prefetch
1324 	 * logic. */
1325 	if (length == 0) {
1326 		prefetch_activated = 1;
1327 		length = pfault->rdma.packet_size;
1328 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1329 	}
1330 
1331 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1332 					    &pfault->bytes_committed, NULL,
1333 					    0);
1334 	if (ret == -EAGAIN) {
1335 		/* We're racing with an invalidation, don't prefetch */
1336 		prefetch_activated = 0;
1337 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1338 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1339 		if (ret != -ENOENT)
1340 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1341 				    ret, pfault->token, pfault->type);
1342 		return;
1343 	}
1344 
1345 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1346 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1347 		    pfault->token, pfault->type,
1348 		    prefetch_activated);
1349 
1350 	/* At this point, there might be a new pagefault already arriving in
1351 	 * the eq, switch to the dummy pagefault for the rest of the
1352 	 * processing. We're still OK with the objects being alive as the
1353 	 * work-queue is being fenced. */
1354 
1355 	if (prefetch_activated) {
1356 		u32 bytes_committed = 0;
1357 
1358 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1359 						    prefetch_len,
1360 						    &bytes_committed, NULL,
1361 						    0);
1362 		if (ret < 0 && ret != -EAGAIN) {
1363 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1364 				    ret, pfault->token, address, prefetch_len);
1365 		}
1366 	}
1367 }
1368 
1369 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1370 {
1371 	u8 event_subtype = pfault->event_subtype;
1372 
1373 	switch (event_subtype) {
1374 	case MLX5_PFAULT_SUBTYPE_WQE:
1375 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1376 		break;
1377 	case MLX5_PFAULT_SUBTYPE_RDMA:
1378 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1379 		break;
1380 	default:
1381 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1382 			    event_subtype);
1383 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1384 	}
1385 }
1386 
1387 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1388 {
1389 	struct mlx5_pagefault *pfault = container_of(work,
1390 						     struct mlx5_pagefault,
1391 						     work);
1392 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1393 
1394 	mlx5_ib_pfault(eq->dev, pfault);
1395 	mempool_free(pfault, eq->pool);
1396 }
1397 
1398 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1399 {
1400 	struct mlx5_eqe_page_fault *pf_eqe;
1401 	struct mlx5_pagefault *pfault;
1402 	struct mlx5_eqe *eqe;
1403 	int cc = 0;
1404 
1405 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1406 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1407 		if (!pfault) {
1408 			schedule_work(&eq->work);
1409 			break;
1410 		}
1411 
1412 		pf_eqe = &eqe->data.page_fault;
1413 		pfault->event_subtype = eqe->sub_type;
1414 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1415 
1416 		mlx5_ib_dbg(eq->dev,
1417 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1418 			    eqe->sub_type, pfault->bytes_committed);
1419 
1420 		switch (eqe->sub_type) {
1421 		case MLX5_PFAULT_SUBTYPE_RDMA:
1422 			/* RDMA based event */
1423 			pfault->type =
1424 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1425 			pfault->token =
1426 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1427 				MLX5_24BIT_MASK;
1428 			pfault->rdma.r_key =
1429 				be32_to_cpu(pf_eqe->rdma.r_key);
1430 			pfault->rdma.packet_size =
1431 				be16_to_cpu(pf_eqe->rdma.packet_length);
1432 			pfault->rdma.rdma_op_len =
1433 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1434 			pfault->rdma.rdma_va =
1435 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1436 			mlx5_ib_dbg(eq->dev,
1437 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1438 				    pfault->type, pfault->token,
1439 				    pfault->rdma.r_key);
1440 			mlx5_ib_dbg(eq->dev,
1441 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1442 				    pfault->rdma.rdma_op_len,
1443 				    pfault->rdma.rdma_va);
1444 			break;
1445 
1446 		case MLX5_PFAULT_SUBTYPE_WQE:
1447 			/* WQE based event */
1448 			pfault->type =
1449 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1450 			pfault->token =
1451 				be32_to_cpu(pf_eqe->wqe.token);
1452 			pfault->wqe.wq_num =
1453 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1454 				MLX5_24BIT_MASK;
1455 			pfault->wqe.wqe_index =
1456 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1457 			pfault->wqe.packet_size =
1458 				be16_to_cpu(pf_eqe->wqe.packet_length);
1459 			mlx5_ib_dbg(eq->dev,
1460 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1461 				    pfault->type, pfault->token,
1462 				    pfault->wqe.wq_num,
1463 				    pfault->wqe.wqe_index);
1464 			break;
1465 
1466 		default:
1467 			mlx5_ib_warn(eq->dev,
1468 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1469 				     eqe->sub_type);
1470 			/* Unsupported page faults should still be
1471 			 * resolved by the page fault handler
1472 			 */
1473 		}
1474 
1475 		pfault->eq = eq;
1476 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1477 		queue_work(eq->wq, &pfault->work);
1478 
1479 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1480 	}
1481 
1482 	mlx5_eq_update_ci(eq->core, cc, 1);
1483 }
1484 
1485 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1486 			     void *data)
1487 {
1488 	struct mlx5_ib_pf_eq *eq =
1489 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1490 	unsigned long flags;
1491 
1492 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1493 		mlx5_ib_eq_pf_process(eq);
1494 		spin_unlock_irqrestore(&eq->lock, flags);
1495 	} else {
1496 		schedule_work(&eq->work);
1497 	}
1498 
1499 	return IRQ_HANDLED;
1500 }
1501 
1502 /* mempool_refill() was proposed but unfortunately wasn't accepted
1503  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1504  * Cheap workaround.
1505  */
1506 static void mempool_refill(mempool_t *pool)
1507 {
1508 	while (pool->curr_nr < pool->min_nr)
1509 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1510 }
1511 
1512 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1513 {
1514 	struct mlx5_ib_pf_eq *eq =
1515 		container_of(work, struct mlx5_ib_pf_eq, work);
1516 
1517 	mempool_refill(eq->pool);
1518 
1519 	spin_lock_irq(&eq->lock);
1520 	mlx5_ib_eq_pf_process(eq);
1521 	spin_unlock_irq(&eq->lock);
1522 }
1523 
1524 enum {
1525 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1526 	MLX5_IB_NUM_PF_DRAIN	= 64,
1527 };
1528 
1529 static int
1530 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1531 {
1532 	struct mlx5_eq_param param = {};
1533 	int err;
1534 
1535 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1536 	spin_lock_init(&eq->lock);
1537 	eq->dev = dev;
1538 
1539 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1540 					       sizeof(struct mlx5_pagefault));
1541 	if (!eq->pool)
1542 		return -ENOMEM;
1543 
1544 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1545 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1546 				 MLX5_NUM_CMD_EQE);
1547 	if (!eq->wq) {
1548 		err = -ENOMEM;
1549 		goto err_mempool;
1550 	}
1551 
1552 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1553 	param = (struct mlx5_eq_param) {
1554 		.irq_index = 0,
1555 		.nent = MLX5_IB_NUM_PF_EQE,
1556 	};
1557 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1558 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1559 	if (IS_ERR(eq->core)) {
1560 		err = PTR_ERR(eq->core);
1561 		goto err_wq;
1562 	}
1563 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1564 	if (err) {
1565 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1566 		goto err_eq;
1567 	}
1568 
1569 	return 0;
1570 err_eq:
1571 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1572 err_wq:
1573 	destroy_workqueue(eq->wq);
1574 err_mempool:
1575 	mempool_destroy(eq->pool);
1576 	return err;
1577 }
1578 
1579 static int
1580 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1581 {
1582 	int err;
1583 
1584 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1585 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1586 	cancel_work_sync(&eq->work);
1587 	destroy_workqueue(eq->wq);
1588 	mempool_destroy(eq->pool);
1589 
1590 	return err;
1591 }
1592 
1593 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1594 {
1595 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1596 		return;
1597 
1598 	switch (ent->order - 2) {
1599 	case MLX5_IMR_MTT_CACHE_ENTRY:
1600 		ent->page = PAGE_SHIFT;
1601 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1602 			   sizeof(struct mlx5_mtt) /
1603 			   MLX5_IB_UMR_OCTOWORD;
1604 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1605 		ent->limit = 0;
1606 		break;
1607 
1608 	case MLX5_IMR_KSM_CACHE_ENTRY:
1609 		ent->page = MLX5_KSM_PAGE_SHIFT;
1610 		ent->xlt = mlx5_imr_ksm_entries *
1611 			   sizeof(struct mlx5_klm) /
1612 			   MLX5_IB_UMR_OCTOWORD;
1613 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1614 		ent->limit = 0;
1615 		break;
1616 	}
1617 }
1618 
1619 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1620 	.advise_mr = mlx5_ib_advise_mr,
1621 };
1622 
1623 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1624 {
1625 	int ret = 0;
1626 
1627 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1628 		return ret;
1629 
1630 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1631 
1632 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1633 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1634 		if (ret) {
1635 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1636 			return ret;
1637 		}
1638 	}
1639 
1640 	ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1641 
1642 	return ret;
1643 }
1644 
1645 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1646 {
1647 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1648 		return;
1649 
1650 	mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1651 }
1652 
1653 int mlx5_ib_odp_init(void)
1654 {
1655 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1656 				       MLX5_IMR_MTT_BITS);
1657 
1658 	return 0;
1659 }
1660 
1661 struct prefetch_mr_work {
1662 	struct work_struct work;
1663 	struct ib_pd *pd;
1664 	u32 pf_flags;
1665 	u32 num_sge;
1666 	struct ib_sge sg_list[0];
1667 };
1668 
1669 static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev,
1670 				     struct ib_sge *sg_list, u32 num_sge,
1671 				     u32 from)
1672 {
1673 	u32 i;
1674 	int srcu_key;
1675 
1676 	srcu_key = srcu_read_lock(&dev->mr_srcu);
1677 
1678 	for (i = from; i < num_sge; ++i) {
1679 		struct mlx5_core_mkey *mmkey;
1680 		struct mlx5_ib_mr *mr;
1681 
1682 		mmkey = xa_load(&dev->mdev->priv.mkey_table,
1683 				mlx5_base_mkey(sg_list[i].lkey));
1684 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1685 		atomic_dec(&mr->num_pending_prefetch);
1686 	}
1687 
1688 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
1689 }
1690 
1691 static bool num_pending_prefetch_inc(struct ib_pd *pd,
1692 				     struct ib_sge *sg_list, u32 num_sge)
1693 {
1694 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1695 	bool ret = true;
1696 	u32 i;
1697 
1698 	for (i = 0; i < num_sge; ++i) {
1699 		struct mlx5_core_mkey *mmkey;
1700 		struct mlx5_ib_mr *mr;
1701 
1702 		mmkey = xa_load(&dev->mdev->priv.mkey_table,
1703 				mlx5_base_mkey(sg_list[i].lkey));
1704 		if (!mmkey || mmkey->key != sg_list[i].lkey) {
1705 			ret = false;
1706 			break;
1707 		}
1708 
1709 		if (mmkey->type != MLX5_MKEY_MR) {
1710 			ret = false;
1711 			break;
1712 		}
1713 
1714 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1715 
1716 		if (mr->ibmr.pd != pd) {
1717 			ret = false;
1718 			break;
1719 		}
1720 
1721 		if (!mr->live) {
1722 			ret = false;
1723 			break;
1724 		}
1725 
1726 		atomic_inc(&mr->num_pending_prefetch);
1727 	}
1728 
1729 	if (!ret)
1730 		num_pending_prefetch_dec(dev, sg_list, i, 0);
1731 
1732 	return ret;
1733 }
1734 
1735 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags,
1736 				    struct ib_sge *sg_list, u32 num_sge)
1737 {
1738 	u32 i;
1739 	int ret = 0;
1740 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1741 
1742 	for (i = 0; i < num_sge; ++i) {
1743 		struct ib_sge *sg = &sg_list[i];
1744 		int bytes_committed = 0;
1745 
1746 		ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr,
1747 						    sg->length,
1748 						    &bytes_committed, NULL,
1749 						    pf_flags);
1750 		if (ret < 0)
1751 			break;
1752 	}
1753 
1754 	return ret < 0 ? ret : 0;
1755 }
1756 
1757 static void mlx5_ib_prefetch_mr_work(struct work_struct *work)
1758 {
1759 	struct prefetch_mr_work *w =
1760 		container_of(work, struct prefetch_mr_work, work);
1761 
1762 	if (ib_device_try_get(w->pd->device)) {
1763 		mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list,
1764 					 w->num_sge);
1765 		ib_device_put(w->pd->device);
1766 	}
1767 
1768 	num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list,
1769 				 w->num_sge, 0);
1770 	kvfree(w);
1771 }
1772 
1773 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1774 			       enum ib_uverbs_advise_mr_advice advice,
1775 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1776 {
1777 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1778 	u32 pf_flags = MLX5_PF_FLAGS_PREFETCH;
1779 	struct prefetch_mr_work *work;
1780 	bool valid_req;
1781 	int srcu_key;
1782 
1783 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1784 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1785 
1786 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1787 		return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list,
1788 						num_sge);
1789 
1790 	work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL);
1791 	if (!work)
1792 		return -ENOMEM;
1793 
1794 	memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge));
1795 
1796 	/* It is guaranteed that the pd when work is executed is the pd when
1797 	 * work was queued since pd can't be destroyed while it holds MRs and
1798 	 * destroying a MR leads to flushing the workquque
1799 	 */
1800 	work->pd = pd;
1801 	work->pf_flags = pf_flags;
1802 	work->num_sge = num_sge;
1803 
1804 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1805 
1806 	srcu_key = srcu_read_lock(&dev->mr_srcu);
1807 
1808 	valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge);
1809 	if (valid_req)
1810 		queue_work(system_unbound_wq, &work->work);
1811 	else
1812 		kvfree(work);
1813 
1814 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
1815 
1816 	return valid_req ? 0 : -EINVAL;
1817 }
1818