xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision ac8b6f14)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 
40 #define MAX_PREFETCH_LEN (4*1024*1024U)
41 
42 /* Timeout in ms to wait for an active mmu notifier to complete when handling
43  * a pagefault. */
44 #define MMU_NOTIFIER_TIMEOUT 1000
45 
46 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
47 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
48 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
49 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
50 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
51 
52 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
53 
54 static u64 mlx5_imr_ksm_entries;
55 
56 static int check_parent(struct ib_umem_odp *odp,
57 			       struct mlx5_ib_mr *parent)
58 {
59 	struct mlx5_ib_mr *mr = odp->private;
60 
61 	return mr && mr->parent == parent && !odp->dying;
62 }
63 
64 struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
65 {
66 	if (WARN_ON(!mr || !mr->umem || !mr->umem->is_odp))
67 		return NULL;
68 
69 	return to_ib_umem_odp(mr->umem)->per_mm;
70 }
71 
72 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
73 {
74 	struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
75 	struct ib_ucontext_per_mm *per_mm = odp->per_mm;
76 	struct rb_node *rb;
77 
78 	down_read(&per_mm->umem_rwsem);
79 	while (1) {
80 		rb = rb_next(&odp->interval_tree.rb);
81 		if (!rb)
82 			goto not_found;
83 		odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
84 		if (check_parent(odp, parent))
85 			goto end;
86 	}
87 not_found:
88 	odp = NULL;
89 end:
90 	up_read(&per_mm->umem_rwsem);
91 	return odp;
92 }
93 
94 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
95 				      struct mlx5_ib_mr *parent)
96 {
97 	struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
98 	struct ib_umem_odp *odp;
99 	struct rb_node *rb;
100 
101 	down_read(&per_mm->umem_rwsem);
102 	odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
103 	if (!odp)
104 		goto end;
105 
106 	while (1) {
107 		if (check_parent(odp, parent))
108 			goto end;
109 		rb = rb_next(&odp->interval_tree.rb);
110 		if (!rb)
111 			goto not_found;
112 		odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
113 		if (ib_umem_start(&odp->umem) > start + length)
114 			goto not_found;
115 	}
116 not_found:
117 	odp = NULL;
118 end:
119 	up_read(&per_mm->umem_rwsem);
120 	return odp;
121 }
122 
123 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
124 			   size_t nentries, struct mlx5_ib_mr *mr, int flags)
125 {
126 	struct ib_pd *pd = mr->ibmr.pd;
127 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
128 	struct ib_umem_odp *odp;
129 	unsigned long va;
130 	int i;
131 
132 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
133 		for (i = 0; i < nentries; i++, pklm++) {
134 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
135 			pklm->key = cpu_to_be32(dev->null_mkey);
136 			pklm->va = 0;
137 		}
138 		return;
139 	}
140 
141 	odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
142 			 nentries * MLX5_IMR_MTT_SIZE, mr);
143 
144 	for (i = 0; i < nentries; i++, pklm++) {
145 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
146 		va = (offset + i) * MLX5_IMR_MTT_SIZE;
147 		if (odp && odp->umem.address == va) {
148 			struct mlx5_ib_mr *mtt = odp->private;
149 
150 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
151 			odp = odp_next(odp);
152 		} else {
153 			pklm->key = cpu_to_be32(dev->null_mkey);
154 		}
155 		mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
156 			    i, va, be32_to_cpu(pklm->key));
157 	}
158 }
159 
160 static void mr_leaf_free_action(struct work_struct *work)
161 {
162 	struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
163 	int idx = ib_umem_start(&odp->umem) >> MLX5_IMR_MTT_SHIFT;
164 	struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
165 
166 	mr->parent = NULL;
167 	synchronize_srcu(&mr->dev->mr_srcu);
168 
169 	ib_umem_release(&odp->umem);
170 	if (imr->live)
171 		mlx5_ib_update_xlt(imr, idx, 1, 0,
172 				   MLX5_IB_UPD_XLT_INDIRECT |
173 				   MLX5_IB_UPD_XLT_ATOMIC);
174 	mlx5_mr_cache_free(mr->dev, mr);
175 
176 	if (atomic_dec_and_test(&imr->num_leaf_free))
177 		wake_up(&imr->q_leaf_free);
178 }
179 
180 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
181 			      unsigned long end)
182 {
183 	struct mlx5_ib_mr *mr;
184 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
185 				    sizeof(struct mlx5_mtt)) - 1;
186 	u64 idx = 0, blk_start_idx = 0;
187 	struct ib_umem *umem;
188 	int in_block = 0;
189 	u64 addr;
190 
191 	if (!umem_odp) {
192 		pr_err("invalidation called on NULL umem or non-ODP umem\n");
193 		return;
194 	}
195 	umem = &umem_odp->umem;
196 
197 	mr = umem_odp->private;
198 
199 	if (!mr || !mr->ibmr.pd)
200 		return;
201 
202 	start = max_t(u64, ib_umem_start(umem), start);
203 	end = min_t(u64, ib_umem_end(umem), end);
204 
205 	/*
206 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
207 	 * while we are doing the invalidation, no page fault will attempt to
208 	 * overwrite the same MTTs.  Concurent invalidations might race us,
209 	 * but they will write 0s as well, so no difference in the end result.
210 	 */
211 
212 	for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
213 		idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
214 		/*
215 		 * Strive to write the MTTs in chunks, but avoid overwriting
216 		 * non-existing MTTs. The huristic here can be improved to
217 		 * estimate the cost of another UMR vs. the cost of bigger
218 		 * UMR.
219 		 */
220 		if (umem_odp->dma_list[idx] &
221 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
222 			if (!in_block) {
223 				blk_start_idx = idx;
224 				in_block = 1;
225 			}
226 		} else {
227 			u64 umr_offset = idx & umr_block_mask;
228 
229 			if (in_block && umr_offset == 0) {
230 				mlx5_ib_update_xlt(mr, blk_start_idx,
231 						   idx - blk_start_idx, 0,
232 						   MLX5_IB_UPD_XLT_ZAP |
233 						   MLX5_IB_UPD_XLT_ATOMIC);
234 				in_block = 0;
235 			}
236 		}
237 	}
238 	if (in_block)
239 		mlx5_ib_update_xlt(mr, blk_start_idx,
240 				   idx - blk_start_idx + 1, 0,
241 				   MLX5_IB_UPD_XLT_ZAP |
242 				   MLX5_IB_UPD_XLT_ATOMIC);
243 	/*
244 	 * We are now sure that the device will not access the
245 	 * memory. We can safely unmap it, and mark it as dirty if
246 	 * needed.
247 	 */
248 
249 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
250 
251 	if (unlikely(!umem->npages && mr->parent &&
252 		     !umem_odp->dying)) {
253 		WRITE_ONCE(umem_odp->dying, 1);
254 		atomic_inc(&mr->parent->num_leaf_free);
255 		schedule_work(&umem_odp->work);
256 	}
257 }
258 
259 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
260 {
261 	struct ib_odp_caps *caps = &dev->odp_caps;
262 
263 	memset(caps, 0, sizeof(*caps));
264 
265 	if (!MLX5_CAP_GEN(dev->mdev, pg))
266 		return;
267 
268 	caps->general_caps = IB_ODP_SUPPORT;
269 
270 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
271 		dev->odp_max_size = U64_MAX;
272 	else
273 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
274 
275 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
276 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
277 
278 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
279 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
280 
281 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
282 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
283 
284 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
285 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
286 
287 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
288 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
289 
290 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
291 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
292 
293 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
294 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
295 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
296 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
297 
298 	return;
299 }
300 
301 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
302 				      struct mlx5_pagefault *pfault,
303 				      int error)
304 {
305 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
306 		     pfault->wqe.wq_num : pfault->token;
307 	int ret = mlx5_core_page_fault_resume(dev->mdev,
308 					      pfault->token,
309 					      wq_num,
310 					      pfault->type,
311 					      error);
312 	if (ret)
313 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
314 			    wq_num);
315 }
316 
317 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
318 					    struct ib_umem *umem,
319 					    bool ksm, int access_flags)
320 {
321 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
322 	struct mlx5_ib_mr *mr;
323 	int err;
324 
325 	mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
326 					    MLX5_IMR_MTT_CACHE_ENTRY);
327 
328 	if (IS_ERR(mr))
329 		return mr;
330 
331 	mr->ibmr.pd = pd;
332 
333 	mr->dev = dev;
334 	mr->access_flags = access_flags;
335 	mr->mmkey.iova = 0;
336 	mr->umem = umem;
337 
338 	if (ksm) {
339 		err = mlx5_ib_update_xlt(mr, 0,
340 					 mlx5_imr_ksm_entries,
341 					 MLX5_KSM_PAGE_SHIFT,
342 					 MLX5_IB_UPD_XLT_INDIRECT |
343 					 MLX5_IB_UPD_XLT_ZAP |
344 					 MLX5_IB_UPD_XLT_ENABLE);
345 
346 	} else {
347 		err = mlx5_ib_update_xlt(mr, 0,
348 					 MLX5_IMR_MTT_ENTRIES,
349 					 PAGE_SHIFT,
350 					 MLX5_IB_UPD_XLT_ZAP |
351 					 MLX5_IB_UPD_XLT_ENABLE |
352 					 MLX5_IB_UPD_XLT_ATOMIC);
353 	}
354 
355 	if (err)
356 		goto fail;
357 
358 	mr->ibmr.lkey = mr->mmkey.key;
359 	mr->ibmr.rkey = mr->mmkey.key;
360 
361 	mr->live = 1;
362 
363 	mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
364 		    mr->mmkey.key, dev->mdev, mr);
365 
366 	return mr;
367 
368 fail:
369 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
370 	mlx5_mr_cache_free(dev, mr);
371 
372 	return ERR_PTR(err);
373 }
374 
375 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
376 						u64 io_virt, size_t bcnt)
377 {
378 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
379 	struct ib_umem_odp *odp, *result = NULL;
380 	struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
381 	u64 addr = io_virt & MLX5_IMR_MTT_MASK;
382 	int nentries = 0, start_idx = 0, ret;
383 	struct mlx5_ib_mr *mtt;
384 
385 	mutex_lock(&odp_mr->umem_mutex);
386 	odp = odp_lookup(addr, 1, mr);
387 
388 	mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
389 		    io_virt, bcnt, addr, odp);
390 
391 next_mr:
392 	if (likely(odp)) {
393 		if (nentries)
394 			nentries++;
395 	} else {
396 		odp = ib_alloc_odp_umem(odp_mr->per_mm, addr,
397 					MLX5_IMR_MTT_SIZE);
398 		if (IS_ERR(odp)) {
399 			mutex_unlock(&odp_mr->umem_mutex);
400 			return ERR_CAST(odp);
401 		}
402 
403 		mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
404 					mr->access_flags);
405 		if (IS_ERR(mtt)) {
406 			mutex_unlock(&odp_mr->umem_mutex);
407 			ib_umem_release(&odp->umem);
408 			return ERR_CAST(mtt);
409 		}
410 
411 		odp->private = mtt;
412 		mtt->umem = &odp->umem;
413 		mtt->mmkey.iova = addr;
414 		mtt->parent = mr;
415 		INIT_WORK(&odp->work, mr_leaf_free_action);
416 
417 		if (!nentries)
418 			start_idx = addr >> MLX5_IMR_MTT_SHIFT;
419 		nentries++;
420 	}
421 
422 	/* Return first odp if region not covered by single one */
423 	if (likely(!result))
424 		result = odp;
425 
426 	addr += MLX5_IMR_MTT_SIZE;
427 	if (unlikely(addr < io_virt + bcnt)) {
428 		odp = odp_next(odp);
429 		if (odp && odp->umem.address != addr)
430 			odp = NULL;
431 		goto next_mr;
432 	}
433 
434 	if (unlikely(nentries)) {
435 		ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
436 					 MLX5_IB_UPD_XLT_INDIRECT |
437 					 MLX5_IB_UPD_XLT_ATOMIC);
438 		if (ret) {
439 			mlx5_ib_err(dev, "Failed to update PAS\n");
440 			result = ERR_PTR(ret);
441 		}
442 	}
443 
444 	mutex_unlock(&odp_mr->umem_mutex);
445 	return result;
446 }
447 
448 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
449 					     int access_flags)
450 {
451 	struct ib_ucontext *ctx = pd->ibpd.uobject->context;
452 	struct mlx5_ib_mr *imr;
453 	struct ib_umem *umem;
454 
455 	umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
456 	if (IS_ERR(umem))
457 		return ERR_CAST(umem);
458 
459 	imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
460 	if (IS_ERR(imr)) {
461 		ib_umem_release(umem);
462 		return ERR_CAST(imr);
463 	}
464 
465 	imr->umem = umem;
466 	init_waitqueue_head(&imr->q_leaf_free);
467 	atomic_set(&imr->num_leaf_free, 0);
468 
469 	return imr;
470 }
471 
472 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
473 			void *cookie)
474 {
475 	struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
476 	struct ib_umem *umem = &umem_odp->umem;
477 
478 	if (mr->parent != imr)
479 		return 0;
480 
481 	ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
482 				    ib_umem_end(umem));
483 
484 	if (umem_odp->dying)
485 		return 0;
486 
487 	WRITE_ONCE(umem_odp->dying, 1);
488 	atomic_inc(&imr->num_leaf_free);
489 	schedule_work(&umem_odp->work);
490 
491 	return 0;
492 }
493 
494 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
495 {
496 	struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
497 
498 	down_read(&per_mm->umem_rwsem);
499 	rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
500 				      mr_leaf_free, true, imr);
501 	up_read(&per_mm->umem_rwsem);
502 
503 	wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
504 }
505 
506 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
507 			u64 io_virt, size_t bcnt, u32 *bytes_mapped)
508 {
509 	struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
510 	u64 access_mask = ODP_READ_ALLOWED_BIT;
511 	int npages = 0, page_shift, np;
512 	u64 start_idx, page_mask;
513 	struct ib_umem_odp *odp;
514 	int current_seq;
515 	size_t size;
516 	int ret;
517 
518 	if (!odp_mr->page_list) {
519 		odp = implicit_mr_get_data(mr, io_virt, bcnt);
520 
521 		if (IS_ERR(odp))
522 			return PTR_ERR(odp);
523 		mr = odp->private;
524 
525 	} else {
526 		odp = odp_mr;
527 	}
528 
529 next_mr:
530 	size = min_t(size_t, bcnt, ib_umem_end(&odp->umem) - io_virt);
531 
532 	page_shift = mr->umem->page_shift;
533 	page_mask = ~(BIT(page_shift) - 1);
534 	start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
535 
536 	if (mr->umem->writable)
537 		access_mask |= ODP_WRITE_ALLOWED_BIT;
538 
539 	current_seq = READ_ONCE(odp->notifiers_seq);
540 	/*
541 	 * Ensure the sequence number is valid for some time before we call
542 	 * gup.
543 	 */
544 	smp_rmb();
545 
546 	ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
547 					access_mask, current_seq);
548 
549 	if (ret < 0)
550 		goto out;
551 
552 	np = ret;
553 
554 	mutex_lock(&odp->umem_mutex);
555 	if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
556 					current_seq)) {
557 		/*
558 		 * No need to check whether the MTTs really belong to
559 		 * this MR, since ib_umem_odp_map_dma_pages already
560 		 * checks this.
561 		 */
562 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
563 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
564 	} else {
565 		ret = -EAGAIN;
566 	}
567 	mutex_unlock(&odp->umem_mutex);
568 
569 	if (ret < 0) {
570 		if (ret != -EAGAIN)
571 			mlx5_ib_err(dev, "Failed to update mkey page tables\n");
572 		goto out;
573 	}
574 
575 	if (bytes_mapped) {
576 		u32 new_mappings = (np << page_shift) -
577 			(io_virt - round_down(io_virt, 1 << page_shift));
578 		*bytes_mapped += min_t(u32, new_mappings, size);
579 	}
580 
581 	npages += np << (page_shift - PAGE_SHIFT);
582 	bcnt -= size;
583 
584 	if (unlikely(bcnt)) {
585 		struct ib_umem_odp *next;
586 
587 		io_virt += size;
588 		next = odp_next(odp);
589 		if (unlikely(!next || next->umem.address != io_virt)) {
590 			mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
591 				    io_virt, next);
592 			return -EAGAIN;
593 		}
594 		odp = next;
595 		mr = odp->private;
596 		goto next_mr;
597 	}
598 
599 	return npages;
600 
601 out:
602 	if (ret == -EAGAIN) {
603 		if (mr->parent || !odp->dying) {
604 			unsigned long timeout =
605 				msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
606 
607 			if (!wait_for_completion_timeout(
608 					&odp->notifier_completion,
609 					timeout)) {
610 				mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
611 					     current_seq, odp->notifiers_seq);
612 			}
613 		} else {
614 			/* The MR is being killed, kill the QP as well. */
615 			ret = -EFAULT;
616 		}
617 	}
618 
619 	return ret;
620 }
621 
622 struct pf_frame {
623 	struct pf_frame *next;
624 	u32 key;
625 	u64 io_virt;
626 	size_t bcnt;
627 	int depth;
628 };
629 
630 /*
631  * Handle a single data segment in a page-fault WQE or RDMA region.
632  *
633  * Returns number of OS pages retrieved on success. The caller may continue to
634  * the next data segment.
635  * Can return the following error codes:
636  * -EAGAIN to designate a temporary error. The caller will abort handling the
637  *  page fault and resolve it.
638  * -EFAULT when there's an error mapping the requested pages. The caller will
639  *  abort the page fault handling.
640  */
641 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
642 					 u32 key, u64 io_virt, size_t bcnt,
643 					 u32 *bytes_committed,
644 					 u32 *bytes_mapped)
645 {
646 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
647 	struct pf_frame *head = NULL, *frame;
648 	struct mlx5_core_mkey *mmkey;
649 	struct mlx5_ib_mw *mw;
650 	struct mlx5_ib_mr *mr;
651 	struct mlx5_klm *pklm;
652 	u32 *out = NULL;
653 	size_t offset;
654 
655 	srcu_key = srcu_read_lock(&dev->mr_srcu);
656 
657 	io_virt += *bytes_committed;
658 	bcnt -= *bytes_committed;
659 
660 next_mr:
661 	mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
662 	if (!mmkey || mmkey->key != key) {
663 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
664 		ret = -EFAULT;
665 		goto srcu_unlock;
666 	}
667 
668 	switch (mmkey->type) {
669 	case MLX5_MKEY_MR:
670 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
671 		if (!mr->live || !mr->ibmr.pd) {
672 			mlx5_ib_dbg(dev, "got dead MR\n");
673 			ret = -EFAULT;
674 			goto srcu_unlock;
675 		}
676 
677 		if (!mr->umem->is_odp) {
678 			mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
679 				    key);
680 			if (bytes_mapped)
681 				*bytes_mapped += bcnt;
682 			ret = 0;
683 			goto srcu_unlock;
684 		}
685 
686 		ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
687 		if (ret < 0)
688 			goto srcu_unlock;
689 
690 		npages += ret;
691 		ret = 0;
692 		break;
693 
694 	case MLX5_MKEY_MW:
695 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
696 
697 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
698 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
699 			ret = -EFAULT;
700 			goto srcu_unlock;
701 		}
702 
703 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
704 			sizeof(*pklm) * (mw->ndescs - 2);
705 
706 		if (outlen > cur_outlen) {
707 			kfree(out);
708 			out = kzalloc(outlen, GFP_KERNEL);
709 			if (!out) {
710 				ret = -ENOMEM;
711 				goto srcu_unlock;
712 			}
713 			cur_outlen = outlen;
714 		}
715 
716 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
717 						       bsf0_klm0_pas_mtt0_1);
718 
719 		ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
720 		if (ret)
721 			goto srcu_unlock;
722 
723 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
724 					      memory_key_mkey_entry.start_addr);
725 
726 		for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
727 			if (offset >= be32_to_cpu(pklm->bcount)) {
728 				offset -= be32_to_cpu(pklm->bcount);
729 				continue;
730 			}
731 
732 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
733 			if (!frame) {
734 				ret = -ENOMEM;
735 				goto srcu_unlock;
736 			}
737 
738 			frame->key = be32_to_cpu(pklm->key);
739 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
740 			frame->bcnt = min_t(size_t, bcnt,
741 					    be32_to_cpu(pklm->bcount) - offset);
742 			frame->depth = depth + 1;
743 			frame->next = head;
744 			head = frame;
745 
746 			bcnt -= frame->bcnt;
747 			offset = 0;
748 		}
749 		break;
750 
751 	default:
752 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
753 		ret = -EFAULT;
754 		goto srcu_unlock;
755 	}
756 
757 	if (head) {
758 		frame = head;
759 		head = frame->next;
760 
761 		key = frame->key;
762 		io_virt = frame->io_virt;
763 		bcnt = frame->bcnt;
764 		depth = frame->depth;
765 		kfree(frame);
766 
767 		goto next_mr;
768 	}
769 
770 srcu_unlock:
771 	while (head) {
772 		frame = head;
773 		head = frame->next;
774 		kfree(frame);
775 	}
776 	kfree(out);
777 
778 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
779 	*bytes_committed = 0;
780 	return ret ? ret : npages;
781 }
782 
783 /**
784  * Parse a series of data segments for page fault handling.
785  *
786  * @qp the QP on which the fault occurred.
787  * @pfault contains page fault information.
788  * @wqe points at the first data segment in the WQE.
789  * @wqe_end points after the end of the WQE.
790  * @bytes_mapped receives the number of bytes that the function was able to
791  *               map. This allows the caller to decide intelligently whether
792  *               enough memory was mapped to resolve the page fault
793  *               successfully (e.g. enough for the next MTU, or the entire
794  *               WQE).
795  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
796  *                  the committed bytes).
797  *
798  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
799  * negative error code.
800  */
801 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
802 				   struct mlx5_pagefault *pfault,
803 				   struct mlx5_ib_qp *qp, void *wqe,
804 				   void *wqe_end, u32 *bytes_mapped,
805 				   u32 *total_wqe_bytes, int receive_queue)
806 {
807 	int ret = 0, npages = 0;
808 	u64 io_virt;
809 	u32 key;
810 	u32 byte_count;
811 	size_t bcnt;
812 	int inline_segment;
813 
814 	/* Skip SRQ next-WQE segment. */
815 	if (receive_queue && qp->ibqp.srq)
816 		wqe += sizeof(struct mlx5_wqe_srq_next_seg);
817 
818 	if (bytes_mapped)
819 		*bytes_mapped = 0;
820 	if (total_wqe_bytes)
821 		*total_wqe_bytes = 0;
822 
823 	while (wqe < wqe_end) {
824 		struct mlx5_wqe_data_seg *dseg = wqe;
825 
826 		io_virt = be64_to_cpu(dseg->addr);
827 		key = be32_to_cpu(dseg->lkey);
828 		byte_count = be32_to_cpu(dseg->byte_count);
829 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
830 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
831 
832 		if (inline_segment) {
833 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
834 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
835 				     16);
836 		} else {
837 			wqe += sizeof(*dseg);
838 		}
839 
840 		/* receive WQE end of sg list. */
841 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
842 		    io_virt == 0)
843 			break;
844 
845 		if (!inline_segment && total_wqe_bytes) {
846 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
847 					pfault->bytes_committed);
848 		}
849 
850 		/* A zero length data segment designates a length of 2GB. */
851 		if (bcnt == 0)
852 			bcnt = 1U << 31;
853 
854 		if (inline_segment || bcnt <= pfault->bytes_committed) {
855 			pfault->bytes_committed -=
856 				min_t(size_t, bcnt,
857 				      pfault->bytes_committed);
858 			continue;
859 		}
860 
861 		ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
862 						    &pfault->bytes_committed,
863 						    bytes_mapped);
864 		if (ret < 0)
865 			break;
866 		npages += ret;
867 	}
868 
869 	return ret < 0 ? ret : npages;
870 }
871 
872 static const u32 mlx5_ib_odp_opcode_cap[] = {
873 	[MLX5_OPCODE_SEND]	       = IB_ODP_SUPPORT_SEND,
874 	[MLX5_OPCODE_SEND_IMM]	       = IB_ODP_SUPPORT_SEND,
875 	[MLX5_OPCODE_SEND_INVAL]       = IB_ODP_SUPPORT_SEND,
876 	[MLX5_OPCODE_RDMA_WRITE]       = IB_ODP_SUPPORT_WRITE,
877 	[MLX5_OPCODE_RDMA_WRITE_IMM]   = IB_ODP_SUPPORT_WRITE,
878 	[MLX5_OPCODE_RDMA_READ]	       = IB_ODP_SUPPORT_READ,
879 	[MLX5_OPCODE_ATOMIC_CS]	       = IB_ODP_SUPPORT_ATOMIC,
880 	[MLX5_OPCODE_ATOMIC_FA]	       = IB_ODP_SUPPORT_ATOMIC,
881 };
882 
883 /*
884  * Parse initiator WQE. Advances the wqe pointer to point at the
885  * scatter-gather list, and set wqe_end to the end of the WQE.
886  */
887 static int mlx5_ib_mr_initiator_pfault_handler(
888 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
889 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
890 {
891 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
892 	u16 wqe_index = pfault->wqe.wqe_index;
893 	u32 transport_caps;
894 	struct mlx5_base_av *av;
895 	unsigned ds, opcode;
896 #if defined(DEBUG)
897 	u32 ctrl_wqe_index, ctrl_qpn;
898 #endif
899 	u32 qpn = qp->trans_qp.base.mqp.qpn;
900 
901 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
902 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
903 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
904 			    ds, wqe_length);
905 		return -EFAULT;
906 	}
907 
908 	if (ds == 0) {
909 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
910 			    wqe_index, qpn);
911 		return -EFAULT;
912 	}
913 
914 #if defined(DEBUG)
915 	ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
916 			MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
917 			MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
918 	if (wqe_index != ctrl_wqe_index) {
919 		mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
920 			    wqe_index, qpn,
921 			    ctrl_wqe_index);
922 		return -EFAULT;
923 	}
924 
925 	ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
926 		MLX5_WQE_CTRL_QPN_SHIFT;
927 	if (qpn != ctrl_qpn) {
928 		mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
929 			    wqe_index, qpn,
930 			    ctrl_qpn);
931 		return -EFAULT;
932 	}
933 #endif /* DEBUG */
934 
935 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
936 	*wqe += sizeof(*ctrl);
937 
938 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
939 		 MLX5_WQE_CTRL_OPCODE_MASK;
940 
941 	switch (qp->ibqp.qp_type) {
942 	case IB_QPT_RC:
943 		transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
944 		break;
945 	case IB_QPT_UD:
946 		transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
947 		break;
948 	default:
949 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
950 			    qp->ibqp.qp_type);
951 		return -EFAULT;
952 	}
953 
954 	if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
955 		     !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
956 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
957 			    opcode);
958 		return -EFAULT;
959 	}
960 
961 	if (qp->ibqp.qp_type != IB_QPT_RC) {
962 		av = *wqe;
963 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
964 			*wqe += sizeof(struct mlx5_av);
965 		else
966 			*wqe += sizeof(struct mlx5_base_av);
967 	}
968 
969 	switch (opcode) {
970 	case MLX5_OPCODE_RDMA_WRITE:
971 	case MLX5_OPCODE_RDMA_WRITE_IMM:
972 	case MLX5_OPCODE_RDMA_READ:
973 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
974 		break;
975 	case MLX5_OPCODE_ATOMIC_CS:
976 	case MLX5_OPCODE_ATOMIC_FA:
977 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
978 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
979 		break;
980 	}
981 
982 	return 0;
983 }
984 
985 /*
986  * Parse responder WQE. Advances the wqe pointer to point at the
987  * scatter-gather list, and set wqe_end to the end of the WQE.
988  */
989 static int mlx5_ib_mr_responder_pfault_handler(
990 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
991 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
992 {
993 	struct mlx5_ib_wq *wq = &qp->rq;
994 	int wqe_size = 1 << wq->wqe_shift;
995 
996 	if (qp->ibqp.srq) {
997 		mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
998 		return -EFAULT;
999 	}
1000 
1001 	if (qp->wq_sig) {
1002 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1003 		return -EFAULT;
1004 	}
1005 
1006 	if (wqe_size > wqe_length) {
1007 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1008 		return -EFAULT;
1009 	}
1010 
1011 	switch (qp->ibqp.qp_type) {
1012 	case IB_QPT_RC:
1013 		if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1014 		      IB_ODP_SUPPORT_RECV))
1015 			goto invalid_transport_or_opcode;
1016 		break;
1017 	default:
1018 invalid_transport_or_opcode:
1019 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1020 			    qp->ibqp.qp_type);
1021 		return -EFAULT;
1022 	}
1023 
1024 	*wqe_end = *wqe + wqe_size;
1025 
1026 	return 0;
1027 }
1028 
1029 static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
1030 					      u32 wq_num)
1031 {
1032 	struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
1033 
1034 	if (!mqp) {
1035 		mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
1036 		return NULL;
1037 	}
1038 
1039 	return to_mibqp(mqp);
1040 }
1041 
1042 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1043 					  struct mlx5_pagefault *pfault)
1044 {
1045 	int ret;
1046 	void *wqe, *wqe_end;
1047 	u32 bytes_mapped, total_wqe_bytes;
1048 	char *buffer = NULL;
1049 	int resume_with_error = 1;
1050 	u16 wqe_index = pfault->wqe.wqe_index;
1051 	int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
1052 	struct mlx5_ib_qp *qp;
1053 
1054 	buffer = (char *)__get_free_page(GFP_KERNEL);
1055 	if (!buffer) {
1056 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1057 		goto resolve_page_fault;
1058 	}
1059 
1060 	qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
1061 	if (!qp)
1062 		goto resolve_page_fault;
1063 
1064 	ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
1065 				    PAGE_SIZE, &qp->trans_qp.base);
1066 	if (ret < 0) {
1067 		mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
1068 			    ret, wqe_index, pfault->token);
1069 		goto resolve_page_fault;
1070 	}
1071 
1072 	wqe = buffer;
1073 	if (requestor)
1074 		ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
1075 							  &wqe_end, ret);
1076 	else
1077 		ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
1078 							  &wqe_end, ret);
1079 	if (ret < 0)
1080 		goto resolve_page_fault;
1081 
1082 	if (wqe >= wqe_end) {
1083 		mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
1084 		goto resolve_page_fault;
1085 	}
1086 
1087 	ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
1088 				      &bytes_mapped, &total_wqe_bytes,
1089 				      !requestor);
1090 	if (ret == -EAGAIN) {
1091 		resume_with_error = 0;
1092 		goto resolve_page_fault;
1093 	} else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
1094 		goto resolve_page_fault;
1095 	}
1096 
1097 	resume_with_error = 0;
1098 resolve_page_fault:
1099 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1100 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1101 		    pfault->wqe.wq_num, resume_with_error,
1102 		    pfault->type);
1103 	free_page((unsigned long)buffer);
1104 }
1105 
1106 static int pages_in_range(u64 address, u32 length)
1107 {
1108 	return (ALIGN(address + length, PAGE_SIZE) -
1109 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1110 }
1111 
1112 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1113 					   struct mlx5_pagefault *pfault)
1114 {
1115 	u64 address;
1116 	u32 length;
1117 	u32 prefetch_len = pfault->bytes_committed;
1118 	int prefetch_activated = 0;
1119 	u32 rkey = pfault->rdma.r_key;
1120 	int ret;
1121 
1122 	/* The RDMA responder handler handles the page fault in two parts.
1123 	 * First it brings the necessary pages for the current packet
1124 	 * (and uses the pfault context), and then (after resuming the QP)
1125 	 * prefetches more pages. The second operation cannot use the pfault
1126 	 * context and therefore uses the dummy_pfault context allocated on
1127 	 * the stack */
1128 	pfault->rdma.rdma_va += pfault->bytes_committed;
1129 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1130 					 pfault->rdma.rdma_op_len);
1131 	pfault->bytes_committed = 0;
1132 
1133 	address = pfault->rdma.rdma_va;
1134 	length  = pfault->rdma.rdma_op_len;
1135 
1136 	/* For some operations, the hardware cannot tell the exact message
1137 	 * length, and in those cases it reports zero. Use prefetch
1138 	 * logic. */
1139 	if (length == 0) {
1140 		prefetch_activated = 1;
1141 		length = pfault->rdma.packet_size;
1142 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1143 	}
1144 
1145 	ret = pagefault_single_data_segment(dev, rkey, address, length,
1146 					    &pfault->bytes_committed, NULL);
1147 	if (ret == -EAGAIN) {
1148 		/* We're racing with an invalidation, don't prefetch */
1149 		prefetch_activated = 0;
1150 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1151 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1152 		if (ret != -ENOENT)
1153 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1154 				    ret, pfault->token, pfault->type);
1155 		return;
1156 	}
1157 
1158 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1159 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1160 		    pfault->token, pfault->type,
1161 		    prefetch_activated);
1162 
1163 	/* At this point, there might be a new pagefault already arriving in
1164 	 * the eq, switch to the dummy pagefault for the rest of the
1165 	 * processing. We're still OK with the objects being alive as the
1166 	 * work-queue is being fenced. */
1167 
1168 	if (prefetch_activated) {
1169 		u32 bytes_committed = 0;
1170 
1171 		ret = pagefault_single_data_segment(dev, rkey, address,
1172 						    prefetch_len,
1173 						    &bytes_committed, NULL);
1174 		if (ret < 0 && ret != -EAGAIN) {
1175 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1176 				    ret, pfault->token, address, prefetch_len);
1177 		}
1178 	}
1179 }
1180 
1181 void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
1182 		    struct mlx5_pagefault *pfault)
1183 {
1184 	struct mlx5_ib_dev *dev = context;
1185 	u8 event_subtype = pfault->event_subtype;
1186 
1187 	switch (event_subtype) {
1188 	case MLX5_PFAULT_SUBTYPE_WQE:
1189 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1190 		break;
1191 	case MLX5_PFAULT_SUBTYPE_RDMA:
1192 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1193 		break;
1194 	default:
1195 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1196 			    event_subtype);
1197 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1198 	}
1199 }
1200 
1201 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1202 {
1203 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1204 		return;
1205 
1206 	switch (ent->order - 2) {
1207 	case MLX5_IMR_MTT_CACHE_ENTRY:
1208 		ent->page = PAGE_SHIFT;
1209 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1210 			   sizeof(struct mlx5_mtt) /
1211 			   MLX5_IB_UMR_OCTOWORD;
1212 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1213 		ent->limit = 0;
1214 		break;
1215 
1216 	case MLX5_IMR_KSM_CACHE_ENTRY:
1217 		ent->page = MLX5_KSM_PAGE_SHIFT;
1218 		ent->xlt = mlx5_imr_ksm_entries *
1219 			   sizeof(struct mlx5_klm) /
1220 			   MLX5_IB_UMR_OCTOWORD;
1221 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1222 		ent->limit = 0;
1223 		break;
1224 	}
1225 }
1226 
1227 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1228 {
1229 	int ret;
1230 
1231 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1232 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1233 		if (ret) {
1234 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1235 			return ret;
1236 		}
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 int mlx5_ib_odp_init(void)
1243 {
1244 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1245 				       MLX5_IMR_MTT_BITS);
1246 
1247 	return 0;
1248 }
1249 
1250