xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision 9cfc5c90)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 
36 #include "mlx5_ib.h"
37 
38 #define MAX_PREFETCH_LEN (4*1024*1024U)
39 
40 /* Timeout in ms to wait for an active mmu notifier to complete when handling
41  * a pagefault. */
42 #define MMU_NOTIFIER_TIMEOUT 1000
43 
44 struct workqueue_struct *mlx5_ib_page_fault_wq;
45 
46 void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
47 			      unsigned long end)
48 {
49 	struct mlx5_ib_mr *mr;
50 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / sizeof(u64)) - 1;
51 	u64 idx = 0, blk_start_idx = 0;
52 	int in_block = 0;
53 	u64 addr;
54 
55 	if (!umem || !umem->odp_data) {
56 		pr_err("invalidation called on NULL umem or non-ODP umem\n");
57 		return;
58 	}
59 
60 	mr = umem->odp_data->private;
61 
62 	if (!mr || !mr->ibmr.pd)
63 		return;
64 
65 	start = max_t(u64, ib_umem_start(umem), start);
66 	end = min_t(u64, ib_umem_end(umem), end);
67 
68 	/*
69 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
70 	 * while we are doing the invalidation, no page fault will attempt to
71 	 * overwrite the same MTTs.  Concurent invalidations might race us,
72 	 * but they will write 0s as well, so no difference in the end result.
73 	 */
74 
75 	for (addr = start; addr < end; addr += (u64)umem->page_size) {
76 		idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
77 		/*
78 		 * Strive to write the MTTs in chunks, but avoid overwriting
79 		 * non-existing MTTs. The huristic here can be improved to
80 		 * estimate the cost of another UMR vs. the cost of bigger
81 		 * UMR.
82 		 */
83 		if (umem->odp_data->dma_list[idx] &
84 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
85 			if (!in_block) {
86 				blk_start_idx = idx;
87 				in_block = 1;
88 			}
89 		} else {
90 			u64 umr_offset = idx & umr_block_mask;
91 
92 			if (in_block && umr_offset == 0) {
93 				mlx5_ib_update_mtt(mr, blk_start_idx,
94 						   idx - blk_start_idx, 1);
95 				in_block = 0;
96 			}
97 		}
98 	}
99 	if (in_block)
100 		mlx5_ib_update_mtt(mr, blk_start_idx, idx - blk_start_idx + 1,
101 				   1);
102 
103 	/*
104 	 * We are now sure that the device will not access the
105 	 * memory. We can safely unmap it, and mark it as dirty if
106 	 * needed.
107 	 */
108 
109 	ib_umem_odp_unmap_dma_pages(umem, start, end);
110 }
111 
112 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
113 {
114 	struct ib_odp_caps *caps = &dev->odp_caps;
115 
116 	memset(caps, 0, sizeof(*caps));
117 
118 	if (!MLX5_CAP_GEN(dev->mdev, pg))
119 		return;
120 
121 	caps->general_caps = IB_ODP_SUPPORT;
122 
123 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
124 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
125 
126 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
127 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
128 
129 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
130 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
131 
132 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
133 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
134 
135 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
136 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
137 
138 	return;
139 }
140 
141 static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
142 						   u32 key)
143 {
144 	u32 base_key = mlx5_base_mkey(key);
145 	struct mlx5_core_mr *mmr = __mlx5_mr_lookup(dev->mdev, base_key);
146 	struct mlx5_ib_mr *mr = container_of(mmr, struct mlx5_ib_mr, mmr);
147 
148 	if (!mmr || mmr->key != key || !mr->live)
149 		return NULL;
150 
151 	return container_of(mmr, struct mlx5_ib_mr, mmr);
152 }
153 
154 static void mlx5_ib_page_fault_resume(struct mlx5_ib_qp *qp,
155 				      struct mlx5_ib_pfault *pfault,
156 				      int error) {
157 	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
158 	int ret = mlx5_core_page_fault_resume(dev->mdev, qp->mqp.qpn,
159 					      pfault->mpfault.flags,
160 					      error);
161 	if (ret)
162 		pr_err("Failed to resolve the page fault on QP 0x%x\n",
163 		       qp->mqp.qpn);
164 }
165 
166 /*
167  * Handle a single data segment in a page-fault WQE.
168  *
169  * Returns number of pages retrieved on success. The caller will continue to
170  * the next data segment.
171  * Can return the following error codes:
172  * -EAGAIN to designate a temporary error. The caller will abort handling the
173  *  page fault and resolve it.
174  * -EFAULT when there's an error mapping the requested pages. The caller will
175  *  abort the page fault handling and possibly move the QP to an error state.
176  * On other errors the QP should also be closed with an error.
177  */
178 static int pagefault_single_data_segment(struct mlx5_ib_qp *qp,
179 					 struct mlx5_ib_pfault *pfault,
180 					 u32 key, u64 io_virt, size_t bcnt,
181 					 u32 *bytes_mapped)
182 {
183 	struct mlx5_ib_dev *mib_dev = to_mdev(qp->ibqp.pd->device);
184 	int srcu_key;
185 	unsigned int current_seq;
186 	u64 start_idx;
187 	int npages = 0, ret = 0;
188 	struct mlx5_ib_mr *mr;
189 	u64 access_mask = ODP_READ_ALLOWED_BIT;
190 
191 	srcu_key = srcu_read_lock(&mib_dev->mr_srcu);
192 	mr = mlx5_ib_odp_find_mr_lkey(mib_dev, key);
193 	/*
194 	 * If we didn't find the MR, it means the MR was closed while we were
195 	 * handling the ODP event. In this case we return -EFAULT so that the
196 	 * QP will be closed.
197 	 */
198 	if (!mr || !mr->ibmr.pd) {
199 		pr_err("Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
200 		       key);
201 		ret = -EFAULT;
202 		goto srcu_unlock;
203 	}
204 	if (!mr->umem->odp_data) {
205 		pr_debug("skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
206 			 key);
207 		if (bytes_mapped)
208 			*bytes_mapped +=
209 				(bcnt - pfault->mpfault.bytes_committed);
210 		goto srcu_unlock;
211 	}
212 	if (mr->ibmr.pd != qp->ibqp.pd) {
213 		pr_err("Page-fault with different PDs for QP and MR.\n");
214 		ret = -EFAULT;
215 		goto srcu_unlock;
216 	}
217 
218 	current_seq = ACCESS_ONCE(mr->umem->odp_data->notifiers_seq);
219 	/*
220 	 * Ensure the sequence number is valid for some time before we call
221 	 * gup.
222 	 */
223 	smp_rmb();
224 
225 	/*
226 	 * Avoid branches - this code will perform correctly
227 	 * in all iterations (in iteration 2 and above,
228 	 * bytes_committed == 0).
229 	 */
230 	io_virt += pfault->mpfault.bytes_committed;
231 	bcnt -= pfault->mpfault.bytes_committed;
232 
233 	start_idx = (io_virt - (mr->mmr.iova & PAGE_MASK)) >> PAGE_SHIFT;
234 
235 	if (mr->umem->writable)
236 		access_mask |= ODP_WRITE_ALLOWED_BIT;
237 	npages = ib_umem_odp_map_dma_pages(mr->umem, io_virt, bcnt,
238 					   access_mask, current_seq);
239 	if (npages < 0) {
240 		ret = npages;
241 		goto srcu_unlock;
242 	}
243 
244 	if (npages > 0) {
245 		mutex_lock(&mr->umem->odp_data->umem_mutex);
246 		if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
247 			/*
248 			 * No need to check whether the MTTs really belong to
249 			 * this MR, since ib_umem_odp_map_dma_pages already
250 			 * checks this.
251 			 */
252 			ret = mlx5_ib_update_mtt(mr, start_idx, npages, 0);
253 		} else {
254 			ret = -EAGAIN;
255 		}
256 		mutex_unlock(&mr->umem->odp_data->umem_mutex);
257 		if (ret < 0) {
258 			if (ret != -EAGAIN)
259 				pr_err("Failed to update mkey page tables\n");
260 			goto srcu_unlock;
261 		}
262 
263 		if (bytes_mapped) {
264 			u32 new_mappings = npages * PAGE_SIZE -
265 				(io_virt - round_down(io_virt, PAGE_SIZE));
266 			*bytes_mapped += min_t(u32, new_mappings, bcnt);
267 		}
268 	}
269 
270 srcu_unlock:
271 	if (ret == -EAGAIN) {
272 		if (!mr->umem->odp_data->dying) {
273 			struct ib_umem_odp *odp_data = mr->umem->odp_data;
274 			unsigned long timeout =
275 				msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
276 
277 			if (!wait_for_completion_timeout(
278 					&odp_data->notifier_completion,
279 					timeout)) {
280 				pr_warn("timeout waiting for mmu notifier completion\n");
281 			}
282 		} else {
283 			/* The MR is being killed, kill the QP as well. */
284 			ret = -EFAULT;
285 		}
286 	}
287 	srcu_read_unlock(&mib_dev->mr_srcu, srcu_key);
288 	pfault->mpfault.bytes_committed = 0;
289 	return ret ? ret : npages;
290 }
291 
292 /**
293  * Parse a series of data segments for page fault handling.
294  *
295  * @qp the QP on which the fault occurred.
296  * @pfault contains page fault information.
297  * @wqe points at the first data segment in the WQE.
298  * @wqe_end points after the end of the WQE.
299  * @bytes_mapped receives the number of bytes that the function was able to
300  *               map. This allows the caller to decide intelligently whether
301  *               enough memory was mapped to resolve the page fault
302  *               successfully (e.g. enough for the next MTU, or the entire
303  *               WQE).
304  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
305  *                  the committed bytes).
306  *
307  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
308  * negative error code.
309  */
310 static int pagefault_data_segments(struct mlx5_ib_qp *qp,
311 				   struct mlx5_ib_pfault *pfault, void *wqe,
312 				   void *wqe_end, u32 *bytes_mapped,
313 				   u32 *total_wqe_bytes, int receive_queue)
314 {
315 	int ret = 0, npages = 0;
316 	u64 io_virt;
317 	u32 key;
318 	u32 byte_count;
319 	size_t bcnt;
320 	int inline_segment;
321 
322 	/* Skip SRQ next-WQE segment. */
323 	if (receive_queue && qp->ibqp.srq)
324 		wqe += sizeof(struct mlx5_wqe_srq_next_seg);
325 
326 	if (bytes_mapped)
327 		*bytes_mapped = 0;
328 	if (total_wqe_bytes)
329 		*total_wqe_bytes = 0;
330 
331 	while (wqe < wqe_end) {
332 		struct mlx5_wqe_data_seg *dseg = wqe;
333 
334 		io_virt = be64_to_cpu(dseg->addr);
335 		key = be32_to_cpu(dseg->lkey);
336 		byte_count = be32_to_cpu(dseg->byte_count);
337 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
338 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
339 
340 		if (inline_segment) {
341 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
342 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
343 				     16);
344 		} else {
345 			wqe += sizeof(*dseg);
346 		}
347 
348 		/* receive WQE end of sg list. */
349 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
350 		    io_virt == 0)
351 			break;
352 
353 		if (!inline_segment && total_wqe_bytes) {
354 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
355 					pfault->mpfault.bytes_committed);
356 		}
357 
358 		/* A zero length data segment designates a length of 2GB. */
359 		if (bcnt == 0)
360 			bcnt = 1U << 31;
361 
362 		if (inline_segment || bcnt <= pfault->mpfault.bytes_committed) {
363 			pfault->mpfault.bytes_committed -=
364 				min_t(size_t, bcnt,
365 				      pfault->mpfault.bytes_committed);
366 			continue;
367 		}
368 
369 		ret = pagefault_single_data_segment(qp, pfault, key, io_virt,
370 						    bcnt, bytes_mapped);
371 		if (ret < 0)
372 			break;
373 		npages += ret;
374 	}
375 
376 	return ret < 0 ? ret : npages;
377 }
378 
379 /*
380  * Parse initiator WQE. Advances the wqe pointer to point at the
381  * scatter-gather list, and set wqe_end to the end of the WQE.
382  */
383 static int mlx5_ib_mr_initiator_pfault_handler(
384 	struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
385 	void **wqe, void **wqe_end, int wqe_length)
386 {
387 	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
388 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
389 	u16 wqe_index = pfault->mpfault.wqe.wqe_index;
390 	unsigned ds, opcode;
391 #if defined(DEBUG)
392 	u32 ctrl_wqe_index, ctrl_qpn;
393 #endif
394 
395 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
396 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
397 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
398 			    ds, wqe_length);
399 		return -EFAULT;
400 	}
401 
402 	if (ds == 0) {
403 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
404 			    wqe_index, qp->mqp.qpn);
405 		return -EFAULT;
406 	}
407 
408 #if defined(DEBUG)
409 	ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
410 			MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
411 			MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
412 	if (wqe_index != ctrl_wqe_index) {
413 		mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
414 			    wqe_index, qp->mqp.qpn,
415 			    ctrl_wqe_index);
416 		return -EFAULT;
417 	}
418 
419 	ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
420 		MLX5_WQE_CTRL_QPN_SHIFT;
421 	if (qp->mqp.qpn != ctrl_qpn) {
422 		mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
423 			    wqe_index, qp->mqp.qpn,
424 			    ctrl_qpn);
425 		return -EFAULT;
426 	}
427 #endif /* DEBUG */
428 
429 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
430 	*wqe += sizeof(*ctrl);
431 
432 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
433 		 MLX5_WQE_CTRL_OPCODE_MASK;
434 	switch (qp->ibqp.qp_type) {
435 	case IB_QPT_RC:
436 		switch (opcode) {
437 		case MLX5_OPCODE_SEND:
438 		case MLX5_OPCODE_SEND_IMM:
439 		case MLX5_OPCODE_SEND_INVAL:
440 			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
441 			      IB_ODP_SUPPORT_SEND))
442 				goto invalid_transport_or_opcode;
443 			break;
444 		case MLX5_OPCODE_RDMA_WRITE:
445 		case MLX5_OPCODE_RDMA_WRITE_IMM:
446 			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
447 			      IB_ODP_SUPPORT_WRITE))
448 				goto invalid_transport_or_opcode;
449 			*wqe += sizeof(struct mlx5_wqe_raddr_seg);
450 			break;
451 		case MLX5_OPCODE_RDMA_READ:
452 			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
453 			      IB_ODP_SUPPORT_READ))
454 				goto invalid_transport_or_opcode;
455 			*wqe += sizeof(struct mlx5_wqe_raddr_seg);
456 			break;
457 		default:
458 			goto invalid_transport_or_opcode;
459 		}
460 		break;
461 	case IB_QPT_UD:
462 		switch (opcode) {
463 		case MLX5_OPCODE_SEND:
464 		case MLX5_OPCODE_SEND_IMM:
465 			if (!(dev->odp_caps.per_transport_caps.ud_odp_caps &
466 			      IB_ODP_SUPPORT_SEND))
467 				goto invalid_transport_or_opcode;
468 			*wqe += sizeof(struct mlx5_wqe_datagram_seg);
469 			break;
470 		default:
471 			goto invalid_transport_or_opcode;
472 		}
473 		break;
474 	default:
475 invalid_transport_or_opcode:
476 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode or transport. transport: 0x%x opcode: 0x%x.\n",
477 			    qp->ibqp.qp_type, opcode);
478 		return -EFAULT;
479 	}
480 
481 	return 0;
482 }
483 
484 /*
485  * Parse responder WQE. Advances the wqe pointer to point at the
486  * scatter-gather list, and set wqe_end to the end of the WQE.
487  */
488 static int mlx5_ib_mr_responder_pfault_handler(
489 	struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
490 	void **wqe, void **wqe_end, int wqe_length)
491 {
492 	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
493 	struct mlx5_ib_wq *wq = &qp->rq;
494 	int wqe_size = 1 << wq->wqe_shift;
495 
496 	if (qp->ibqp.srq) {
497 		mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
498 		return -EFAULT;
499 	}
500 
501 	if (qp->wq_sig) {
502 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
503 		return -EFAULT;
504 	}
505 
506 	if (wqe_size > wqe_length) {
507 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
508 		return -EFAULT;
509 	}
510 
511 	switch (qp->ibqp.qp_type) {
512 	case IB_QPT_RC:
513 		if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
514 		      IB_ODP_SUPPORT_RECV))
515 			goto invalid_transport_or_opcode;
516 		break;
517 	default:
518 invalid_transport_or_opcode:
519 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
520 			    qp->ibqp.qp_type);
521 		return -EFAULT;
522 	}
523 
524 	*wqe_end = *wqe + wqe_size;
525 
526 	return 0;
527 }
528 
529 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_qp *qp,
530 					  struct mlx5_ib_pfault *pfault)
531 {
532 	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
533 	int ret;
534 	void *wqe, *wqe_end;
535 	u32 bytes_mapped, total_wqe_bytes;
536 	char *buffer = NULL;
537 	int resume_with_error = 0;
538 	u16 wqe_index = pfault->mpfault.wqe.wqe_index;
539 	int requestor = pfault->mpfault.flags & MLX5_PFAULT_REQUESTOR;
540 
541 	buffer = (char *)__get_free_page(GFP_KERNEL);
542 	if (!buffer) {
543 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
544 		resume_with_error = 1;
545 		goto resolve_page_fault;
546 	}
547 
548 	ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
549 				    PAGE_SIZE);
550 	if (ret < 0) {
551 		mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%x, wqe_index=%x, qpn=%x\n",
552 			    -ret, wqe_index, qp->mqp.qpn);
553 		resume_with_error = 1;
554 		goto resolve_page_fault;
555 	}
556 
557 	wqe = buffer;
558 	if (requestor)
559 		ret = mlx5_ib_mr_initiator_pfault_handler(qp, pfault, &wqe,
560 							  &wqe_end, ret);
561 	else
562 		ret = mlx5_ib_mr_responder_pfault_handler(qp, pfault, &wqe,
563 							  &wqe_end, ret);
564 	if (ret < 0) {
565 		resume_with_error = 1;
566 		goto resolve_page_fault;
567 	}
568 
569 	if (wqe >= wqe_end) {
570 		mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
571 		resume_with_error = 1;
572 		goto resolve_page_fault;
573 	}
574 
575 	ret = pagefault_data_segments(qp, pfault, wqe, wqe_end, &bytes_mapped,
576 				      &total_wqe_bytes, !requestor);
577 	if (ret == -EAGAIN) {
578 		goto resolve_page_fault;
579 	} else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
580 		mlx5_ib_err(dev, "Error getting user pages for page fault. Error: 0x%x\n",
581 			    -ret);
582 		resume_with_error = 1;
583 		goto resolve_page_fault;
584 	}
585 
586 resolve_page_fault:
587 	mlx5_ib_page_fault_resume(qp, pfault, resume_with_error);
588 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, flags: 0x%x\n",
589 		    qp->mqp.qpn, resume_with_error, pfault->mpfault.flags);
590 
591 	free_page((unsigned long)buffer);
592 }
593 
594 static int pages_in_range(u64 address, u32 length)
595 {
596 	return (ALIGN(address + length, PAGE_SIZE) -
597 		(address & PAGE_MASK)) >> PAGE_SHIFT;
598 }
599 
600 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_qp *qp,
601 					   struct mlx5_ib_pfault *pfault)
602 {
603 	struct mlx5_pagefault *mpfault = &pfault->mpfault;
604 	u64 address;
605 	u32 length;
606 	u32 prefetch_len = mpfault->bytes_committed;
607 	int prefetch_activated = 0;
608 	u32 rkey = mpfault->rdma.r_key;
609 	int ret;
610 
611 	/* The RDMA responder handler handles the page fault in two parts.
612 	 * First it brings the necessary pages for the current packet
613 	 * (and uses the pfault context), and then (after resuming the QP)
614 	 * prefetches more pages. The second operation cannot use the pfault
615 	 * context and therefore uses the dummy_pfault context allocated on
616 	 * the stack */
617 	struct mlx5_ib_pfault dummy_pfault = {};
618 
619 	dummy_pfault.mpfault.bytes_committed = 0;
620 
621 	mpfault->rdma.rdma_va += mpfault->bytes_committed;
622 	mpfault->rdma.rdma_op_len -= min(mpfault->bytes_committed,
623 					 mpfault->rdma.rdma_op_len);
624 	mpfault->bytes_committed = 0;
625 
626 	address = mpfault->rdma.rdma_va;
627 	length  = mpfault->rdma.rdma_op_len;
628 
629 	/* For some operations, the hardware cannot tell the exact message
630 	 * length, and in those cases it reports zero. Use prefetch
631 	 * logic. */
632 	if (length == 0) {
633 		prefetch_activated = 1;
634 		length = mpfault->rdma.packet_size;
635 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
636 	}
637 
638 	ret = pagefault_single_data_segment(qp, pfault, rkey, address, length,
639 					    NULL);
640 	if (ret == -EAGAIN) {
641 		/* We're racing with an invalidation, don't prefetch */
642 		prefetch_activated = 0;
643 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
644 		mlx5_ib_page_fault_resume(qp, pfault, 1);
645 		return;
646 	}
647 
648 	mlx5_ib_page_fault_resume(qp, pfault, 0);
649 
650 	/* At this point, there might be a new pagefault already arriving in
651 	 * the eq, switch to the dummy pagefault for the rest of the
652 	 * processing. We're still OK with the objects being alive as the
653 	 * work-queue is being fenced. */
654 
655 	if (prefetch_activated) {
656 		ret = pagefault_single_data_segment(qp, &dummy_pfault, rkey,
657 						    address,
658 						    prefetch_len,
659 						    NULL);
660 		if (ret < 0) {
661 			pr_warn("Prefetch failed (ret = %d, prefetch_activated = %d) for QPN %d, address: 0x%.16llx, length = 0x%.16x\n",
662 				ret, prefetch_activated,
663 				qp->ibqp.qp_num, address, prefetch_len);
664 		}
665 	}
666 }
667 
668 void mlx5_ib_mr_pfault_handler(struct mlx5_ib_qp *qp,
669 			       struct mlx5_ib_pfault *pfault)
670 {
671 	u8 event_subtype = pfault->mpfault.event_subtype;
672 
673 	switch (event_subtype) {
674 	case MLX5_PFAULT_SUBTYPE_WQE:
675 		mlx5_ib_mr_wqe_pfault_handler(qp, pfault);
676 		break;
677 	case MLX5_PFAULT_SUBTYPE_RDMA:
678 		mlx5_ib_mr_rdma_pfault_handler(qp, pfault);
679 		break;
680 	default:
681 		pr_warn("Invalid page fault event subtype: 0x%x\n",
682 			event_subtype);
683 		mlx5_ib_page_fault_resume(qp, pfault, 1);
684 		break;
685 	}
686 }
687 
688 static void mlx5_ib_qp_pfault_action(struct work_struct *work)
689 {
690 	struct mlx5_ib_pfault *pfault = container_of(work,
691 						     struct mlx5_ib_pfault,
692 						     work);
693 	enum mlx5_ib_pagefault_context context =
694 		mlx5_ib_get_pagefault_context(&pfault->mpfault);
695 	struct mlx5_ib_qp *qp = container_of(pfault, struct mlx5_ib_qp,
696 					     pagefaults[context]);
697 	mlx5_ib_mr_pfault_handler(qp, pfault);
698 }
699 
700 void mlx5_ib_qp_disable_pagefaults(struct mlx5_ib_qp *qp)
701 {
702 	unsigned long flags;
703 
704 	spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
705 	qp->disable_page_faults = 1;
706 	spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
707 
708 	/*
709 	 * Note that at this point, we are guarenteed that no more
710 	 * work queue elements will be posted to the work queue with
711 	 * the QP we are closing.
712 	 */
713 	flush_workqueue(mlx5_ib_page_fault_wq);
714 }
715 
716 void mlx5_ib_qp_enable_pagefaults(struct mlx5_ib_qp *qp)
717 {
718 	unsigned long flags;
719 
720 	spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
721 	qp->disable_page_faults = 0;
722 	spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
723 }
724 
725 static void mlx5_ib_pfault_handler(struct mlx5_core_qp *qp,
726 				   struct mlx5_pagefault *pfault)
727 {
728 	/*
729 	 * Note that we will only get one fault event per QP per context
730 	 * (responder/initiator, read/write), until we resolve the page fault
731 	 * with the mlx5_ib_page_fault_resume command. Since this function is
732 	 * called from within the work element, there is no risk of missing
733 	 * events.
734 	 */
735 	struct mlx5_ib_qp *mibqp = to_mibqp(qp);
736 	enum mlx5_ib_pagefault_context context =
737 		mlx5_ib_get_pagefault_context(pfault);
738 	struct mlx5_ib_pfault *qp_pfault = &mibqp->pagefaults[context];
739 
740 	qp_pfault->mpfault = *pfault;
741 
742 	/* No need to stop interrupts here since we are in an interrupt */
743 	spin_lock(&mibqp->disable_page_faults_lock);
744 	if (!mibqp->disable_page_faults)
745 		queue_work(mlx5_ib_page_fault_wq, &qp_pfault->work);
746 	spin_unlock(&mibqp->disable_page_faults_lock);
747 }
748 
749 void mlx5_ib_odp_create_qp(struct mlx5_ib_qp *qp)
750 {
751 	int i;
752 
753 	qp->disable_page_faults = 1;
754 	spin_lock_init(&qp->disable_page_faults_lock);
755 
756 	qp->mqp.pfault_handler	= mlx5_ib_pfault_handler;
757 
758 	for (i = 0; i < MLX5_IB_PAGEFAULT_CONTEXTS; ++i)
759 		INIT_WORK(&qp->pagefaults[i].work, mlx5_ib_qp_pfault_action);
760 }
761 
762 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *ibdev)
763 {
764 	int ret;
765 
766 	ret = init_srcu_struct(&ibdev->mr_srcu);
767 	if (ret)
768 		return ret;
769 
770 	return 0;
771 }
772 
773 void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *ibdev)
774 {
775 	cleanup_srcu_struct(&ibdev->mr_srcu);
776 }
777 
778 int __init mlx5_ib_odp_init(void)
779 {
780 	mlx5_ib_page_fault_wq =
781 		create_singlethread_workqueue("mlx5_ib_page_faults");
782 	if (!mlx5_ib_page_fault_wq)
783 		return -ENOMEM;
784 
785 	return 0;
786 }
787 
788 void mlx5_ib_odp_cleanup(void)
789 {
790 	destroy_workqueue(mlx5_ib_page_fault_wq);
791 }
792