1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem.h> 34 #include <rdma/ib_umem_odp.h> 35 #include <linux/kernel.h> 36 37 #include "mlx5_ib.h" 38 #include "cmd.h" 39 40 #include <linux/mlx5/eq.h> 41 42 /* Contains the details of a pagefault. */ 43 struct mlx5_pagefault { 44 u32 bytes_committed; 45 u32 token; 46 u8 event_subtype; 47 u8 type; 48 union { 49 /* Initiator or send message responder pagefault details. */ 50 struct { 51 /* Received packet size, only valid for responders. */ 52 u32 packet_size; 53 /* 54 * Number of resource holding WQE, depends on type. 55 */ 56 u32 wq_num; 57 /* 58 * WQE index. Refers to either the send queue or 59 * receive queue, according to event_subtype. 60 */ 61 u16 wqe_index; 62 } wqe; 63 /* RDMA responder pagefault details */ 64 struct { 65 u32 r_key; 66 /* 67 * Received packet size, minimal size page fault 68 * resolution required for forward progress. 69 */ 70 u32 packet_size; 71 u32 rdma_op_len; 72 u64 rdma_va; 73 } rdma; 74 }; 75 76 struct mlx5_ib_pf_eq *eq; 77 struct work_struct work; 78 }; 79 80 #define MAX_PREFETCH_LEN (4*1024*1024U) 81 82 /* Timeout in ms to wait for an active mmu notifier to complete when handling 83 * a pagefault. */ 84 #define MMU_NOTIFIER_TIMEOUT 1000 85 86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 91 92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 93 94 static u64 mlx5_imr_ksm_entries; 95 96 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, 97 struct mlx5_ib_mr *imr, int flags) 98 { 99 struct mlx5_klm *end = pklm + nentries; 100 101 if (flags & MLX5_IB_UPD_XLT_ZAP) { 102 for (; pklm != end; pklm++, idx++) { 103 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 104 pklm->key = cpu_to_be32(imr->dev->null_mkey); 105 pklm->va = 0; 106 } 107 return; 108 } 109 110 /* 111 * The locking here is pretty subtle. Ideally the implicit_children 112 * xarray would be protected by the umem_mutex, however that is not 113 * possible. Instead this uses a weaker update-then-lock pattern: 114 * 115 * srcu_read_lock() 116 * xa_store() 117 * mutex_lock(umem_mutex) 118 * mlx5_ib_update_xlt() 119 * mutex_unlock(umem_mutex) 120 * destroy lkey 121 * 122 * ie any change the xarray must be followed by the locked update_xlt 123 * before destroying. 124 * 125 * The umem_mutex provides the acquire/release semantic needed to make 126 * the xa_store() visible to a racing thread. While SRCU is not 127 * technically required, using it gives consistent use of the SRCU 128 * locking around the xarray. 129 */ 130 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); 131 lockdep_assert_held(&imr->dev->odp_srcu); 132 133 for (; pklm != end; pklm++, idx++) { 134 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); 135 136 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 137 if (mtt) { 138 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 139 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); 140 } else { 141 pklm->key = cpu_to_be32(imr->dev->null_mkey); 142 pklm->va = 0; 143 } 144 } 145 } 146 147 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr) 148 { 149 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 150 151 /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */ 152 mutex_lock(&odp->umem_mutex); 153 if (odp->npages) { 154 mlx5_mr_cache_invalidate(mr); 155 ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp), 156 ib_umem_end(odp)); 157 WARN_ON(odp->npages); 158 } 159 odp->private = NULL; 160 mutex_unlock(&odp->umem_mutex); 161 162 if (!mr->allocated_from_cache) { 163 mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey); 164 WARN_ON(mr->descs); 165 } 166 } 167 168 /* 169 * This must be called after the mr has been removed from implicit_children 170 * and the SRCU synchronized. NOTE: The MR does not necessarily have to be 171 * empty here, parallel page faults could have raced with the free process and 172 * added pages to it. 173 */ 174 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt) 175 { 176 struct mlx5_ib_mr *imr = mr->parent; 177 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 178 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 179 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 180 int srcu_key; 181 182 /* implicit_child_mr's are not allowed to have deferred work */ 183 WARN_ON(atomic_read(&mr->num_deferred_work)); 184 185 if (need_imr_xlt) { 186 srcu_key = srcu_read_lock(&mr->dev->odp_srcu); 187 mutex_lock(&odp_imr->umem_mutex); 188 mlx5_ib_update_xlt(mr->parent, idx, 1, 0, 189 MLX5_IB_UPD_XLT_INDIRECT | 190 MLX5_IB_UPD_XLT_ATOMIC); 191 mutex_unlock(&odp_imr->umem_mutex); 192 srcu_read_unlock(&mr->dev->odp_srcu, srcu_key); 193 } 194 195 dma_fence_odp_mr(mr); 196 197 mr->parent = NULL; 198 mlx5_mr_cache_free(mr->dev, mr); 199 ib_umem_odp_release(odp); 200 atomic_dec(&imr->num_deferred_work); 201 } 202 203 static void free_implicit_child_mr_work(struct work_struct *work) 204 { 205 struct mlx5_ib_mr *mr = 206 container_of(work, struct mlx5_ib_mr, odp_destroy.work); 207 208 free_implicit_child_mr(mr, true); 209 } 210 211 static void free_implicit_child_mr_rcu(struct rcu_head *head) 212 { 213 struct mlx5_ib_mr *mr = 214 container_of(head, struct mlx5_ib_mr, odp_destroy.rcu); 215 216 /* Freeing a MR is a sleeping operation, so bounce to a work queue */ 217 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); 218 queue_work(system_unbound_wq, &mr->odp_destroy.work); 219 } 220 221 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) 222 { 223 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 224 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 225 struct mlx5_ib_mr *imr = mr->parent; 226 227 xa_lock(&imr->implicit_children); 228 /* 229 * This can race with mlx5_ib_free_implicit_mr(), the first one to 230 * reach the xa lock wins the race and destroys the MR. 231 */ 232 if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) != 233 mr) 234 goto out_unlock; 235 236 atomic_inc(&imr->num_deferred_work); 237 call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu, 238 free_implicit_child_mr_rcu); 239 240 out_unlock: 241 xa_unlock(&imr->implicit_children); 242 } 243 244 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, 245 const struct mmu_notifier_range *range, 246 unsigned long cur_seq) 247 { 248 struct ib_umem_odp *umem_odp = 249 container_of(mni, struct ib_umem_odp, notifier); 250 struct mlx5_ib_mr *mr; 251 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / 252 sizeof(struct mlx5_mtt)) - 1; 253 u64 idx = 0, blk_start_idx = 0; 254 u64 invalidations = 0; 255 unsigned long start; 256 unsigned long end; 257 int in_block = 0; 258 u64 addr; 259 260 if (!mmu_notifier_range_blockable(range)) 261 return false; 262 263 mutex_lock(&umem_odp->umem_mutex); 264 mmu_interval_set_seq(mni, cur_seq); 265 /* 266 * If npages is zero then umem_odp->private may not be setup yet. This 267 * does not complete until after the first page is mapped for DMA. 268 */ 269 if (!umem_odp->npages) 270 goto out; 271 mr = umem_odp->private; 272 273 start = max_t(u64, ib_umem_start(umem_odp), range->start); 274 end = min_t(u64, ib_umem_end(umem_odp), range->end); 275 276 /* 277 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 278 * while we are doing the invalidation, no page fault will attempt to 279 * overwrite the same MTTs. Concurent invalidations might race us, 280 * but they will write 0s as well, so no difference in the end result. 281 */ 282 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { 283 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 284 /* 285 * Strive to write the MTTs in chunks, but avoid overwriting 286 * non-existing MTTs. The huristic here can be improved to 287 * estimate the cost of another UMR vs. the cost of bigger 288 * UMR. 289 */ 290 if (umem_odp->dma_list[idx] & 291 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 292 if (!in_block) { 293 blk_start_idx = idx; 294 in_block = 1; 295 } 296 297 /* Count page invalidations */ 298 invalidations += idx - blk_start_idx + 1; 299 } else { 300 u64 umr_offset = idx & umr_block_mask; 301 302 if (in_block && umr_offset == 0) { 303 mlx5_ib_update_xlt(mr, blk_start_idx, 304 idx - blk_start_idx, 0, 305 MLX5_IB_UPD_XLT_ZAP | 306 MLX5_IB_UPD_XLT_ATOMIC); 307 in_block = 0; 308 } 309 } 310 } 311 if (in_block) 312 mlx5_ib_update_xlt(mr, blk_start_idx, 313 idx - blk_start_idx + 1, 0, 314 MLX5_IB_UPD_XLT_ZAP | 315 MLX5_IB_UPD_XLT_ATOMIC); 316 317 mlx5_update_odp_stats(mr, invalidations, invalidations); 318 319 /* 320 * We are now sure that the device will not access the 321 * memory. We can safely unmap it, and mark it as dirty if 322 * needed. 323 */ 324 325 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 326 327 if (unlikely(!umem_odp->npages && mr->parent)) 328 destroy_unused_implicit_child_mr(mr); 329 out: 330 mutex_unlock(&umem_odp->umem_mutex); 331 return true; 332 } 333 334 const struct mmu_interval_notifier_ops mlx5_mn_ops = { 335 .invalidate = mlx5_ib_invalidate_range, 336 }; 337 338 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) 339 { 340 struct ib_odp_caps *caps = &dev->odp_caps; 341 342 memset(caps, 0, sizeof(*caps)); 343 344 if (!MLX5_CAP_GEN(dev->mdev, pg) || 345 !mlx5_ib_can_use_umr(dev, true)) 346 return; 347 348 caps->general_caps = IB_ODP_SUPPORT; 349 350 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 351 dev->odp_max_size = U64_MAX; 352 else 353 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 354 355 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) 356 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 357 358 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) 359 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 360 361 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) 362 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 363 364 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) 365 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 366 367 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) 368 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 369 370 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) 371 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 372 373 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) 374 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 375 376 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) 377 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 378 379 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) 380 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 381 382 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) 383 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 384 385 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) 386 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 387 388 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) 389 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 390 391 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) 392 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 393 394 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) 395 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 396 397 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 398 MLX5_CAP_GEN(dev->mdev, null_mkey) && 399 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && 400 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) 401 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 402 } 403 404 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 405 struct mlx5_pagefault *pfault, 406 int error) 407 { 408 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 409 pfault->wqe.wq_num : pfault->token; 410 u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { }; 411 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = { }; 412 int err; 413 414 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 415 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); 416 MLX5_SET(page_fault_resume_in, in, token, pfault->token); 417 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); 418 MLX5_SET(page_fault_resume_in, in, error, !!error); 419 420 err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out)); 421 if (err) 422 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 423 wq_num, err); 424 } 425 426 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, 427 unsigned long idx) 428 { 429 struct ib_umem_odp *odp; 430 struct mlx5_ib_mr *mr; 431 struct mlx5_ib_mr *ret; 432 int err; 433 434 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), 435 idx * MLX5_IMR_MTT_SIZE, 436 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); 437 if (IS_ERR(odp)) 438 return ERR_CAST(odp); 439 440 ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY); 441 if (IS_ERR(mr)) 442 goto out_umem; 443 444 mr->ibmr.pd = imr->ibmr.pd; 445 mr->access_flags = imr->access_flags; 446 mr->umem = &odp->umem; 447 mr->ibmr.lkey = mr->mmkey.key; 448 mr->ibmr.rkey = mr->mmkey.key; 449 mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE; 450 mr->parent = imr; 451 odp->private = mr; 452 453 err = mlx5_ib_update_xlt(mr, 0, 454 MLX5_IMR_MTT_ENTRIES, 455 PAGE_SHIFT, 456 MLX5_IB_UPD_XLT_ZAP | 457 MLX5_IB_UPD_XLT_ENABLE); 458 if (err) { 459 ret = ERR_PTR(err); 460 goto out_mr; 461 } 462 463 /* 464 * Once the store to either xarray completes any error unwind has to 465 * use synchronize_srcu(). Avoid this with xa_reserve() 466 */ 467 ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, 468 GFP_KERNEL); 469 if (unlikely(ret)) { 470 if (xa_is_err(ret)) { 471 ret = ERR_PTR(xa_err(ret)); 472 goto out_mr; 473 } 474 /* 475 * Another thread beat us to creating the child mr, use 476 * theirs. 477 */ 478 goto out_mr; 479 } 480 481 mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr); 482 return mr; 483 484 out_mr: 485 mlx5_mr_cache_free(imr->dev, mr); 486 out_umem: 487 ib_umem_odp_release(odp); 488 return ret; 489 } 490 491 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 492 struct ib_udata *udata, 493 int access_flags) 494 { 495 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); 496 struct ib_umem_odp *umem_odp; 497 struct mlx5_ib_mr *imr; 498 int err; 499 500 umem_odp = ib_umem_odp_alloc_implicit(udata, access_flags); 501 if (IS_ERR(umem_odp)) 502 return ERR_CAST(umem_odp); 503 504 imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY); 505 if (IS_ERR(imr)) { 506 err = PTR_ERR(imr); 507 goto out_umem; 508 } 509 510 imr->ibmr.pd = &pd->ibpd; 511 imr->access_flags = access_flags; 512 imr->mmkey.iova = 0; 513 imr->umem = &umem_odp->umem; 514 imr->ibmr.lkey = imr->mmkey.key; 515 imr->ibmr.rkey = imr->mmkey.key; 516 imr->umem = &umem_odp->umem; 517 imr->is_odp_implicit = true; 518 atomic_set(&imr->num_deferred_work, 0); 519 xa_init(&imr->implicit_children); 520 521 err = mlx5_ib_update_xlt(imr, 0, 522 mlx5_imr_ksm_entries, 523 MLX5_KSM_PAGE_SHIFT, 524 MLX5_IB_UPD_XLT_INDIRECT | 525 MLX5_IB_UPD_XLT_ZAP | 526 MLX5_IB_UPD_XLT_ENABLE); 527 if (err) 528 goto out_mr; 529 530 err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key), 531 &imr->mmkey, GFP_KERNEL)); 532 if (err) 533 goto out_mr; 534 535 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); 536 return imr; 537 out_mr: 538 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 539 mlx5_mr_cache_free(dev, imr); 540 out_umem: 541 ib_umem_odp_release(umem_odp); 542 return ERR_PTR(err); 543 } 544 545 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) 546 { 547 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 548 struct mlx5_ib_dev *dev = imr->dev; 549 struct list_head destroy_list; 550 struct mlx5_ib_mr *mtt; 551 struct mlx5_ib_mr *tmp; 552 unsigned long idx; 553 554 INIT_LIST_HEAD(&destroy_list); 555 556 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key)); 557 /* 558 * This stops the SRCU protected page fault path from touching either 559 * the imr or any children. The page fault path can only reach the 560 * children xarray via the imr. 561 */ 562 synchronize_srcu(&dev->odp_srcu); 563 564 xa_lock(&imr->implicit_children); 565 xa_for_each (&imr->implicit_children, idx, mtt) { 566 __xa_erase(&imr->implicit_children, idx); 567 list_add(&mtt->odp_destroy.elm, &destroy_list); 568 } 569 xa_unlock(&imr->implicit_children); 570 571 /* 572 * num_deferred_work can only be incremented inside the odp_srcu, or 573 * under xa_lock while the child is in the xarray. Thus at this point 574 * it is only decreasing, and all work holding it is now on the wq. 575 */ 576 if (atomic_read(&imr->num_deferred_work)) { 577 flush_workqueue(system_unbound_wq); 578 WARN_ON(atomic_read(&imr->num_deferred_work)); 579 } 580 581 /* 582 * Fence the imr before we destroy the children. This allows us to 583 * skip updating the XLT of the imr during destroy of the child mkey 584 * the imr points to. 585 */ 586 mlx5_mr_cache_invalidate(imr); 587 588 list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm) 589 free_implicit_child_mr(mtt, false); 590 591 mlx5_mr_cache_free(dev, imr); 592 ib_umem_odp_release(odp_imr); 593 } 594 595 /** 596 * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR 597 * @mr: to fence 598 * 599 * On return no parallel threads will be touching this MR and no DMA will be 600 * active. 601 */ 602 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr) 603 { 604 /* Prevent new page faults and prefetch requests from succeeding */ 605 xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)); 606 607 /* Wait for all running page-fault handlers to finish. */ 608 synchronize_srcu(&mr->dev->odp_srcu); 609 610 if (atomic_read(&mr->num_deferred_work)) { 611 flush_workqueue(system_unbound_wq); 612 WARN_ON(atomic_read(&mr->num_deferred_work)); 613 } 614 615 dma_fence_odp_mr(mr); 616 } 617 618 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 619 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, 620 u64 user_va, size_t bcnt, u32 *bytes_mapped, 621 u32 flags) 622 { 623 int page_shift, ret, np; 624 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 625 unsigned long current_seq; 626 u64 access_mask; 627 u64 start_idx, page_mask; 628 629 page_shift = odp->page_shift; 630 page_mask = ~(BIT(page_shift) - 1); 631 start_idx = (user_va - (mr->mmkey.iova & page_mask)) >> page_shift; 632 access_mask = ODP_READ_ALLOWED_BIT; 633 634 if (odp->umem.writable && !downgrade) 635 access_mask |= ODP_WRITE_ALLOWED_BIT; 636 637 current_seq = mmu_interval_read_begin(&odp->notifier); 638 639 np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask, 640 current_seq); 641 if (np < 0) 642 return np; 643 644 mutex_lock(&odp->umem_mutex); 645 if (!mmu_interval_read_retry(&odp->notifier, current_seq)) { 646 /* 647 * No need to check whether the MTTs really belong to 648 * this MR, since ib_umem_odp_map_dma_pages already 649 * checks this. 650 */ 651 ret = mlx5_ib_update_xlt(mr, start_idx, np, 652 page_shift, MLX5_IB_UPD_XLT_ATOMIC); 653 } else { 654 ret = -EAGAIN; 655 } 656 mutex_unlock(&odp->umem_mutex); 657 658 if (ret < 0) { 659 if (ret != -EAGAIN) 660 mlx5_ib_err(mr->dev, 661 "Failed to update mkey page tables\n"); 662 goto out; 663 } 664 665 if (bytes_mapped) { 666 u32 new_mappings = (np << page_shift) - 667 (user_va - round_down(user_va, 1 << page_shift)); 668 669 *bytes_mapped += min_t(u32, new_mappings, bcnt); 670 } 671 672 return np << (page_shift - PAGE_SHIFT); 673 674 out: 675 return ret; 676 } 677 678 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, 679 struct ib_umem_odp *odp_imr, u64 user_va, 680 size_t bcnt, u32 *bytes_mapped, u32 flags) 681 { 682 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; 683 unsigned long upd_start_idx = end_idx + 1; 684 unsigned long upd_len = 0; 685 unsigned long npages = 0; 686 int err; 687 int ret; 688 689 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || 690 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) 691 return -EFAULT; 692 693 /* Fault each child mr that intersects with our interval. */ 694 while (bcnt) { 695 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; 696 struct ib_umem_odp *umem_odp; 697 struct mlx5_ib_mr *mtt; 698 u64 len; 699 700 mtt = xa_load(&imr->implicit_children, idx); 701 if (unlikely(!mtt)) { 702 mtt = implicit_get_child_mr(imr, idx); 703 if (IS_ERR(mtt)) { 704 ret = PTR_ERR(mtt); 705 goto out; 706 } 707 upd_start_idx = min(upd_start_idx, idx); 708 upd_len = idx - upd_start_idx + 1; 709 } 710 711 umem_odp = to_ib_umem_odp(mtt->umem); 712 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - 713 user_va; 714 715 ret = pagefault_real_mr(mtt, umem_odp, user_va, len, 716 bytes_mapped, flags); 717 if (ret < 0) 718 goto out; 719 user_va += len; 720 bcnt -= len; 721 npages += ret; 722 } 723 724 ret = npages; 725 726 /* 727 * Any time the implicit_children are changed we must perform an 728 * update of the xlt before exiting to ensure the HW and the 729 * implicit_children remains synchronized. 730 */ 731 out: 732 if (likely(!upd_len)) 733 return ret; 734 735 /* 736 * Notice this is not strictly ordered right, the KSM is updated after 737 * the implicit_children is updated, so a parallel page fault could 738 * see a MR that is not yet visible in the KSM. This is similar to a 739 * parallel page fault seeing a MR that is being concurrently removed 740 * from the KSM. Both of these improbable situations are resolved 741 * safely by resuming the HW and then taking another page fault. The 742 * next pagefault handler will see the new information. 743 */ 744 mutex_lock(&odp_imr->umem_mutex); 745 err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0, 746 MLX5_IB_UPD_XLT_INDIRECT | 747 MLX5_IB_UPD_XLT_ATOMIC); 748 mutex_unlock(&odp_imr->umem_mutex); 749 if (err) { 750 mlx5_ib_err(imr->dev, "Failed to update PAS\n"); 751 return err; 752 } 753 return ret; 754 } 755 756 /* 757 * Returns: 758 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are 759 * not accessible, or the MR is no longer valid. 760 * -EAGAIN/-ENOMEM: The operation should be retried 761 * 762 * -EINVAL/others: General internal malfunction 763 * >0: Number of pages mapped 764 */ 765 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, 766 u32 *bytes_mapped, u32 flags) 767 { 768 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 769 770 if (!odp->is_implicit_odp) { 771 if (unlikely(io_virt < ib_umem_start(odp) || 772 ib_umem_end(odp) - io_virt < bcnt)) 773 return -EFAULT; 774 return pagefault_real_mr(mr, odp, io_virt, bcnt, bytes_mapped, 775 flags); 776 } 777 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, 778 flags); 779 } 780 781 struct pf_frame { 782 struct pf_frame *next; 783 u32 key; 784 u64 io_virt; 785 size_t bcnt; 786 int depth; 787 }; 788 789 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key) 790 { 791 if (!mmkey) 792 return false; 793 if (mmkey->type == MLX5_MKEY_MW) 794 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 795 return mmkey->key == key; 796 } 797 798 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey) 799 { 800 struct mlx5_ib_mw *mw; 801 struct mlx5_ib_devx_mr *devx_mr; 802 803 if (mmkey->type == MLX5_MKEY_MW) { 804 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey); 805 return mw->ndescs; 806 } 807 808 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr, 809 mmkey); 810 return devx_mr->ndescs; 811 } 812 813 /* 814 * Handle a single data segment in a page-fault WQE or RDMA region. 815 * 816 * Returns number of OS pages retrieved on success. The caller may continue to 817 * the next data segment. 818 * Can return the following error codes: 819 * -EAGAIN to designate a temporary error. The caller will abort handling the 820 * page fault and resolve it. 821 * -EFAULT when there's an error mapping the requested pages. The caller will 822 * abort the page fault handling. 823 */ 824 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 825 struct ib_pd *pd, u32 key, 826 u64 io_virt, size_t bcnt, 827 u32 *bytes_committed, 828 u32 *bytes_mapped) 829 { 830 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0; 831 struct pf_frame *head = NULL, *frame; 832 struct mlx5_core_mkey *mmkey; 833 struct mlx5_ib_mr *mr; 834 struct mlx5_klm *pklm; 835 u32 *out = NULL; 836 size_t offset; 837 int ndescs; 838 839 srcu_key = srcu_read_lock(&dev->odp_srcu); 840 841 io_virt += *bytes_committed; 842 bcnt -= *bytes_committed; 843 844 next_mr: 845 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); 846 if (!mmkey) { 847 mlx5_ib_dbg( 848 dev, 849 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 850 key); 851 if (bytes_mapped) 852 *bytes_mapped += bcnt; 853 /* 854 * The user could specify a SGL with multiple lkeys and only 855 * some of them are ODP. Treat the non-ODP ones as fully 856 * faulted. 857 */ 858 ret = 0; 859 goto srcu_unlock; 860 } 861 if (!mkey_is_eq(mmkey, key)) { 862 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); 863 ret = -EFAULT; 864 goto srcu_unlock; 865 } 866 867 switch (mmkey->type) { 868 case MLX5_MKEY_MR: 869 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 870 871 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0); 872 if (ret < 0) 873 goto srcu_unlock; 874 875 /* 876 * When prefetching a page, page fault is generated 877 * in order to bring the page to the main memory. 878 * In the current flow, page faults are being counted. 879 */ 880 mlx5_update_odp_stats(mr, faults, ret); 881 882 npages += ret; 883 ret = 0; 884 break; 885 886 case MLX5_MKEY_MW: 887 case MLX5_MKEY_INDIRECT_DEVX: 888 ndescs = get_indirect_num_descs(mmkey); 889 890 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 891 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 892 ret = -EFAULT; 893 goto srcu_unlock; 894 } 895 896 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 897 sizeof(*pklm) * (ndescs - 2); 898 899 if (outlen > cur_outlen) { 900 kfree(out); 901 out = kzalloc(outlen, GFP_KERNEL); 902 if (!out) { 903 ret = -ENOMEM; 904 goto srcu_unlock; 905 } 906 cur_outlen = outlen; 907 } 908 909 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 910 bsf0_klm0_pas_mtt0_1); 911 912 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen); 913 if (ret) 914 goto srcu_unlock; 915 916 offset = io_virt - MLX5_GET64(query_mkey_out, out, 917 memory_key_mkey_entry.start_addr); 918 919 for (i = 0; bcnt && i < ndescs; i++, pklm++) { 920 if (offset >= be32_to_cpu(pklm->bcount)) { 921 offset -= be32_to_cpu(pklm->bcount); 922 continue; 923 } 924 925 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 926 if (!frame) { 927 ret = -ENOMEM; 928 goto srcu_unlock; 929 } 930 931 frame->key = be32_to_cpu(pklm->key); 932 frame->io_virt = be64_to_cpu(pklm->va) + offset; 933 frame->bcnt = min_t(size_t, bcnt, 934 be32_to_cpu(pklm->bcount) - offset); 935 frame->depth = depth + 1; 936 frame->next = head; 937 head = frame; 938 939 bcnt -= frame->bcnt; 940 offset = 0; 941 } 942 break; 943 944 default: 945 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 946 ret = -EFAULT; 947 goto srcu_unlock; 948 } 949 950 if (head) { 951 frame = head; 952 head = frame->next; 953 954 key = frame->key; 955 io_virt = frame->io_virt; 956 bcnt = frame->bcnt; 957 depth = frame->depth; 958 kfree(frame); 959 960 goto next_mr; 961 } 962 963 srcu_unlock: 964 while (head) { 965 frame = head; 966 head = frame->next; 967 kfree(frame); 968 } 969 kfree(out); 970 971 srcu_read_unlock(&dev->odp_srcu, srcu_key); 972 *bytes_committed = 0; 973 return ret ? ret : npages; 974 } 975 976 /** 977 * Parse a series of data segments for page fault handling. 978 * 979 * @pfault contains page fault information. 980 * @wqe points at the first data segment in the WQE. 981 * @wqe_end points after the end of the WQE. 982 * @bytes_mapped receives the number of bytes that the function was able to 983 * map. This allows the caller to decide intelligently whether 984 * enough memory was mapped to resolve the page fault 985 * successfully (e.g. enough for the next MTU, or the entire 986 * WQE). 987 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus 988 * the committed bytes). 989 * 990 * Returns the number of pages loaded if positive, zero for an empty WQE, or a 991 * negative error code. 992 */ 993 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 994 struct mlx5_pagefault *pfault, 995 void *wqe, 996 void *wqe_end, u32 *bytes_mapped, 997 u32 *total_wqe_bytes, bool receive_queue) 998 { 999 int ret = 0, npages = 0; 1000 u64 io_virt; 1001 u32 key; 1002 u32 byte_count; 1003 size_t bcnt; 1004 int inline_segment; 1005 1006 if (bytes_mapped) 1007 *bytes_mapped = 0; 1008 if (total_wqe_bytes) 1009 *total_wqe_bytes = 0; 1010 1011 while (wqe < wqe_end) { 1012 struct mlx5_wqe_data_seg *dseg = wqe; 1013 1014 io_virt = be64_to_cpu(dseg->addr); 1015 key = be32_to_cpu(dseg->lkey); 1016 byte_count = be32_to_cpu(dseg->byte_count); 1017 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 1018 bcnt = byte_count & ~MLX5_INLINE_SEG; 1019 1020 if (inline_segment) { 1021 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 1022 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 1023 16); 1024 } else { 1025 wqe += sizeof(*dseg); 1026 } 1027 1028 /* receive WQE end of sg list. */ 1029 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && 1030 io_virt == 0) 1031 break; 1032 1033 if (!inline_segment && total_wqe_bytes) { 1034 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 1035 pfault->bytes_committed); 1036 } 1037 1038 /* A zero length data segment designates a length of 2GB. */ 1039 if (bcnt == 0) 1040 bcnt = 1U << 31; 1041 1042 if (inline_segment || bcnt <= pfault->bytes_committed) { 1043 pfault->bytes_committed -= 1044 min_t(size_t, bcnt, 1045 pfault->bytes_committed); 1046 continue; 1047 } 1048 1049 ret = pagefault_single_data_segment(dev, NULL, key, 1050 io_virt, bcnt, 1051 &pfault->bytes_committed, 1052 bytes_mapped); 1053 if (ret < 0) 1054 break; 1055 npages += ret; 1056 } 1057 1058 return ret < 0 ? ret : npages; 1059 } 1060 1061 /* 1062 * Parse initiator WQE. Advances the wqe pointer to point at the 1063 * scatter-gather list, and set wqe_end to the end of the WQE. 1064 */ 1065 static int mlx5_ib_mr_initiator_pfault_handler( 1066 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1067 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1068 { 1069 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1070 u16 wqe_index = pfault->wqe.wqe_index; 1071 struct mlx5_base_av *av; 1072 unsigned ds, opcode; 1073 u32 qpn = qp->trans_qp.base.mqp.qpn; 1074 1075 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1076 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1077 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1078 ds, wqe_length); 1079 return -EFAULT; 1080 } 1081 1082 if (ds == 0) { 1083 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1084 wqe_index, qpn); 1085 return -EFAULT; 1086 } 1087 1088 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1089 *wqe += sizeof(*ctrl); 1090 1091 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1092 MLX5_WQE_CTRL_OPCODE_MASK; 1093 1094 if (qp->ibqp.qp_type == IB_QPT_XRC_INI) 1095 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1096 1097 if (qp->ibqp.qp_type == IB_QPT_UD || 1098 qp->qp_sub_type == MLX5_IB_QPT_DCI) { 1099 av = *wqe; 1100 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1101 *wqe += sizeof(struct mlx5_av); 1102 else 1103 *wqe += sizeof(struct mlx5_base_av); 1104 } 1105 1106 switch (opcode) { 1107 case MLX5_OPCODE_RDMA_WRITE: 1108 case MLX5_OPCODE_RDMA_WRITE_IMM: 1109 case MLX5_OPCODE_RDMA_READ: 1110 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1111 break; 1112 case MLX5_OPCODE_ATOMIC_CS: 1113 case MLX5_OPCODE_ATOMIC_FA: 1114 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1115 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1116 break; 1117 } 1118 1119 return 0; 1120 } 1121 1122 /* 1123 * Parse responder WQE and set wqe_end to the end of the WQE. 1124 */ 1125 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1126 struct mlx5_ib_srq *srq, 1127 void **wqe, void **wqe_end, 1128 int wqe_length) 1129 { 1130 int wqe_size = 1 << srq->msrq.wqe_shift; 1131 1132 if (wqe_size > wqe_length) { 1133 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1134 return -EFAULT; 1135 } 1136 1137 *wqe_end = *wqe + wqe_size; 1138 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1139 1140 return 0; 1141 } 1142 1143 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1144 struct mlx5_ib_qp *qp, 1145 void *wqe, void **wqe_end, 1146 int wqe_length) 1147 { 1148 struct mlx5_ib_wq *wq = &qp->rq; 1149 int wqe_size = 1 << wq->wqe_shift; 1150 1151 if (qp->wq_sig) { 1152 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1153 return -EFAULT; 1154 } 1155 1156 if (wqe_size > wqe_length) { 1157 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1158 return -EFAULT; 1159 } 1160 1161 *wqe_end = wqe + wqe_size; 1162 1163 return 0; 1164 } 1165 1166 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1167 u32 wq_num, int pf_type) 1168 { 1169 struct mlx5_core_rsc_common *common = NULL; 1170 struct mlx5_core_srq *srq; 1171 1172 switch (pf_type) { 1173 case MLX5_WQE_PF_TYPE_RMP: 1174 srq = mlx5_cmd_get_srq(dev, wq_num); 1175 if (srq) 1176 common = &srq->common; 1177 break; 1178 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1179 case MLX5_WQE_PF_TYPE_RESP: 1180 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1181 common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP); 1182 break; 1183 default: 1184 break; 1185 } 1186 1187 return common; 1188 } 1189 1190 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1191 { 1192 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1193 1194 return to_mibqp(mqp); 1195 } 1196 1197 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1198 { 1199 struct mlx5_core_srq *msrq = 1200 container_of(res, struct mlx5_core_srq, common); 1201 1202 return to_mibsrq(msrq); 1203 } 1204 1205 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1206 struct mlx5_pagefault *pfault) 1207 { 1208 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1209 u16 wqe_index = pfault->wqe.wqe_index; 1210 void *wqe, *wqe_start = NULL, *wqe_end = NULL; 1211 u32 bytes_mapped, total_wqe_bytes; 1212 struct mlx5_core_rsc_common *res; 1213 int resume_with_error = 1; 1214 struct mlx5_ib_qp *qp; 1215 size_t bytes_copied; 1216 int ret = 0; 1217 1218 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1219 if (!res) { 1220 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1221 return; 1222 } 1223 1224 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1225 res->res != MLX5_RES_XSRQ) { 1226 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1227 pfault->type); 1228 goto resolve_page_fault; 1229 } 1230 1231 wqe_start = (void *)__get_free_page(GFP_KERNEL); 1232 if (!wqe_start) { 1233 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1234 goto resolve_page_fault; 1235 } 1236 1237 wqe = wqe_start; 1238 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1239 if (qp && sq) { 1240 ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1241 &bytes_copied); 1242 if (ret) 1243 goto read_user; 1244 ret = mlx5_ib_mr_initiator_pfault_handler( 1245 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1246 } else if (qp && !sq) { 1247 ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1248 &bytes_copied); 1249 if (ret) 1250 goto read_user; 1251 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1252 dev, qp, wqe, &wqe_end, bytes_copied); 1253 } else if (!qp) { 1254 struct mlx5_ib_srq *srq = res_to_srq(res); 1255 1256 ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1257 &bytes_copied); 1258 if (ret) 1259 goto read_user; 1260 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1261 dev, srq, &wqe, &wqe_end, bytes_copied); 1262 } 1263 1264 if (ret < 0 || wqe >= wqe_end) 1265 goto resolve_page_fault; 1266 1267 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1268 &total_wqe_bytes, !sq); 1269 if (ret == -EAGAIN) 1270 goto out; 1271 1272 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1273 goto resolve_page_fault; 1274 1275 out: 1276 ret = 0; 1277 resume_with_error = 0; 1278 1279 read_user: 1280 if (ret) 1281 mlx5_ib_err( 1282 dev, 1283 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", 1284 ret, wqe_index, pfault->token); 1285 1286 resolve_page_fault: 1287 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1288 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1289 pfault->wqe.wq_num, resume_with_error, 1290 pfault->type); 1291 mlx5_core_res_put(res); 1292 free_page((unsigned long)wqe_start); 1293 } 1294 1295 static int pages_in_range(u64 address, u32 length) 1296 { 1297 return (ALIGN(address + length, PAGE_SIZE) - 1298 (address & PAGE_MASK)) >> PAGE_SHIFT; 1299 } 1300 1301 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1302 struct mlx5_pagefault *pfault) 1303 { 1304 u64 address; 1305 u32 length; 1306 u32 prefetch_len = pfault->bytes_committed; 1307 int prefetch_activated = 0; 1308 u32 rkey = pfault->rdma.r_key; 1309 int ret; 1310 1311 /* The RDMA responder handler handles the page fault in two parts. 1312 * First it brings the necessary pages for the current packet 1313 * (and uses the pfault context), and then (after resuming the QP) 1314 * prefetches more pages. The second operation cannot use the pfault 1315 * context and therefore uses the dummy_pfault context allocated on 1316 * the stack */ 1317 pfault->rdma.rdma_va += pfault->bytes_committed; 1318 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1319 pfault->rdma.rdma_op_len); 1320 pfault->bytes_committed = 0; 1321 1322 address = pfault->rdma.rdma_va; 1323 length = pfault->rdma.rdma_op_len; 1324 1325 /* For some operations, the hardware cannot tell the exact message 1326 * length, and in those cases it reports zero. Use prefetch 1327 * logic. */ 1328 if (length == 0) { 1329 prefetch_activated = 1; 1330 length = pfault->rdma.packet_size; 1331 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1332 } 1333 1334 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1335 &pfault->bytes_committed, NULL); 1336 if (ret == -EAGAIN) { 1337 /* We're racing with an invalidation, don't prefetch */ 1338 prefetch_activated = 0; 1339 } else if (ret < 0 || pages_in_range(address, length) > ret) { 1340 mlx5_ib_page_fault_resume(dev, pfault, 1); 1341 if (ret != -ENOENT) 1342 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", 1343 ret, pfault->token, pfault->type); 1344 return; 1345 } 1346 1347 mlx5_ib_page_fault_resume(dev, pfault, 0); 1348 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", 1349 pfault->token, pfault->type, 1350 prefetch_activated); 1351 1352 /* At this point, there might be a new pagefault already arriving in 1353 * the eq, switch to the dummy pagefault for the rest of the 1354 * processing. We're still OK with the objects being alive as the 1355 * work-queue is being fenced. */ 1356 1357 if (prefetch_activated) { 1358 u32 bytes_committed = 0; 1359 1360 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1361 prefetch_len, 1362 &bytes_committed, NULL); 1363 if (ret < 0 && ret != -EAGAIN) { 1364 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", 1365 ret, pfault->token, address, prefetch_len); 1366 } 1367 } 1368 } 1369 1370 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1371 { 1372 u8 event_subtype = pfault->event_subtype; 1373 1374 switch (event_subtype) { 1375 case MLX5_PFAULT_SUBTYPE_WQE: 1376 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1377 break; 1378 case MLX5_PFAULT_SUBTYPE_RDMA: 1379 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1380 break; 1381 default: 1382 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1383 event_subtype); 1384 mlx5_ib_page_fault_resume(dev, pfault, 1); 1385 } 1386 } 1387 1388 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1389 { 1390 struct mlx5_pagefault *pfault = container_of(work, 1391 struct mlx5_pagefault, 1392 work); 1393 struct mlx5_ib_pf_eq *eq = pfault->eq; 1394 1395 mlx5_ib_pfault(eq->dev, pfault); 1396 mempool_free(pfault, eq->pool); 1397 } 1398 1399 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1400 { 1401 struct mlx5_eqe_page_fault *pf_eqe; 1402 struct mlx5_pagefault *pfault; 1403 struct mlx5_eqe *eqe; 1404 int cc = 0; 1405 1406 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1407 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1408 if (!pfault) { 1409 schedule_work(&eq->work); 1410 break; 1411 } 1412 1413 pf_eqe = &eqe->data.page_fault; 1414 pfault->event_subtype = eqe->sub_type; 1415 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); 1416 1417 mlx5_ib_dbg(eq->dev, 1418 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", 1419 eqe->sub_type, pfault->bytes_committed); 1420 1421 switch (eqe->sub_type) { 1422 case MLX5_PFAULT_SUBTYPE_RDMA: 1423 /* RDMA based event */ 1424 pfault->type = 1425 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1426 pfault->token = 1427 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1428 MLX5_24BIT_MASK; 1429 pfault->rdma.r_key = 1430 be32_to_cpu(pf_eqe->rdma.r_key); 1431 pfault->rdma.packet_size = 1432 be16_to_cpu(pf_eqe->rdma.packet_length); 1433 pfault->rdma.rdma_op_len = 1434 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1435 pfault->rdma.rdma_va = 1436 be64_to_cpu(pf_eqe->rdma.rdma_va); 1437 mlx5_ib_dbg(eq->dev, 1438 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", 1439 pfault->type, pfault->token, 1440 pfault->rdma.r_key); 1441 mlx5_ib_dbg(eq->dev, 1442 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1443 pfault->rdma.rdma_op_len, 1444 pfault->rdma.rdma_va); 1445 break; 1446 1447 case MLX5_PFAULT_SUBTYPE_WQE: 1448 /* WQE based event */ 1449 pfault->type = 1450 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1451 pfault->token = 1452 be32_to_cpu(pf_eqe->wqe.token); 1453 pfault->wqe.wq_num = 1454 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1455 MLX5_24BIT_MASK; 1456 pfault->wqe.wqe_index = 1457 be16_to_cpu(pf_eqe->wqe.wqe_index); 1458 pfault->wqe.packet_size = 1459 be16_to_cpu(pf_eqe->wqe.packet_length); 1460 mlx5_ib_dbg(eq->dev, 1461 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1462 pfault->type, pfault->token, 1463 pfault->wqe.wq_num, 1464 pfault->wqe.wqe_index); 1465 break; 1466 1467 default: 1468 mlx5_ib_warn(eq->dev, 1469 "Unsupported page fault event sub-type: 0x%02hhx\n", 1470 eqe->sub_type); 1471 /* Unsupported page faults should still be 1472 * resolved by the page fault handler 1473 */ 1474 } 1475 1476 pfault->eq = eq; 1477 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1478 queue_work(eq->wq, &pfault->work); 1479 1480 cc = mlx5_eq_update_cc(eq->core, ++cc); 1481 } 1482 1483 mlx5_eq_update_ci(eq->core, cc, 1); 1484 } 1485 1486 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, 1487 void *data) 1488 { 1489 struct mlx5_ib_pf_eq *eq = 1490 container_of(nb, struct mlx5_ib_pf_eq, irq_nb); 1491 unsigned long flags; 1492 1493 if (spin_trylock_irqsave(&eq->lock, flags)) { 1494 mlx5_ib_eq_pf_process(eq); 1495 spin_unlock_irqrestore(&eq->lock, flags); 1496 } else { 1497 schedule_work(&eq->work); 1498 } 1499 1500 return IRQ_HANDLED; 1501 } 1502 1503 /* mempool_refill() was proposed but unfortunately wasn't accepted 1504 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1505 * Cheap workaround. 1506 */ 1507 static void mempool_refill(mempool_t *pool) 1508 { 1509 while (pool->curr_nr < pool->min_nr) 1510 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1511 } 1512 1513 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1514 { 1515 struct mlx5_ib_pf_eq *eq = 1516 container_of(work, struct mlx5_ib_pf_eq, work); 1517 1518 mempool_refill(eq->pool); 1519 1520 spin_lock_irq(&eq->lock); 1521 mlx5_ib_eq_pf_process(eq); 1522 spin_unlock_irq(&eq->lock); 1523 } 1524 1525 enum { 1526 MLX5_IB_NUM_PF_EQE = 0x1000, 1527 MLX5_IB_NUM_PF_DRAIN = 64, 1528 }; 1529 1530 static int 1531 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1532 { 1533 struct mlx5_eq_param param = {}; 1534 int err; 1535 1536 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1537 spin_lock_init(&eq->lock); 1538 eq->dev = dev; 1539 1540 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1541 sizeof(struct mlx5_pagefault)); 1542 if (!eq->pool) 1543 return -ENOMEM; 1544 1545 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1546 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1547 MLX5_NUM_CMD_EQE); 1548 if (!eq->wq) { 1549 err = -ENOMEM; 1550 goto err_mempool; 1551 } 1552 1553 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; 1554 param = (struct mlx5_eq_param) { 1555 .irq_index = 0, 1556 .nent = MLX5_IB_NUM_PF_EQE, 1557 }; 1558 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; 1559 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); 1560 if (IS_ERR(eq->core)) { 1561 err = PTR_ERR(eq->core); 1562 goto err_wq; 1563 } 1564 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); 1565 if (err) { 1566 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); 1567 goto err_eq; 1568 } 1569 1570 return 0; 1571 err_eq: 1572 mlx5_eq_destroy_generic(dev->mdev, eq->core); 1573 err_wq: 1574 destroy_workqueue(eq->wq); 1575 err_mempool: 1576 mempool_destroy(eq->pool); 1577 return err; 1578 } 1579 1580 static int 1581 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1582 { 1583 int err; 1584 1585 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); 1586 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1587 cancel_work_sync(&eq->work); 1588 destroy_workqueue(eq->wq); 1589 mempool_destroy(eq->pool); 1590 1591 return err; 1592 } 1593 1594 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) 1595 { 1596 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1597 return; 1598 1599 switch (ent->order - 2) { 1600 case MLX5_IMR_MTT_CACHE_ENTRY: 1601 ent->page = PAGE_SHIFT; 1602 ent->xlt = MLX5_IMR_MTT_ENTRIES * 1603 sizeof(struct mlx5_mtt) / 1604 MLX5_IB_UMR_OCTOWORD; 1605 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 1606 ent->limit = 0; 1607 break; 1608 1609 case MLX5_IMR_KSM_CACHE_ENTRY: 1610 ent->page = MLX5_KSM_PAGE_SHIFT; 1611 ent->xlt = mlx5_imr_ksm_entries * 1612 sizeof(struct mlx5_klm) / 1613 MLX5_IB_UMR_OCTOWORD; 1614 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; 1615 ent->limit = 0; 1616 break; 1617 } 1618 } 1619 1620 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1621 .advise_mr = mlx5_ib_advise_mr, 1622 }; 1623 1624 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1625 { 1626 int ret = 0; 1627 1628 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1629 return ret; 1630 1631 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1632 1633 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { 1634 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); 1635 if (ret) { 1636 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); 1637 return ret; 1638 } 1639 } 1640 1641 ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq); 1642 1643 return ret; 1644 } 1645 1646 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1647 { 1648 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1649 return; 1650 1651 mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq); 1652 } 1653 1654 int mlx5_ib_odp_init(void) 1655 { 1656 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1657 MLX5_IMR_MTT_BITS); 1658 1659 return 0; 1660 } 1661 1662 struct prefetch_mr_work { 1663 struct work_struct work; 1664 u32 pf_flags; 1665 u32 num_sge; 1666 struct { 1667 u64 io_virt; 1668 struct mlx5_ib_mr *mr; 1669 size_t length; 1670 } frags[]; 1671 }; 1672 1673 static void destroy_prefetch_work(struct prefetch_mr_work *work) 1674 { 1675 u32 i; 1676 1677 for (i = 0; i < work->num_sge; ++i) 1678 atomic_dec(&work->frags[i].mr->num_deferred_work); 1679 kvfree(work); 1680 } 1681 1682 static struct mlx5_ib_mr * 1683 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 1684 u32 lkey) 1685 { 1686 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1687 struct mlx5_core_mkey *mmkey; 1688 struct ib_umem_odp *odp; 1689 struct mlx5_ib_mr *mr; 1690 1691 lockdep_assert_held(&dev->odp_srcu); 1692 1693 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); 1694 if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR) 1695 return NULL; 1696 1697 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1698 1699 if (mr->ibmr.pd != pd) 1700 return NULL; 1701 1702 odp = to_ib_umem_odp(mr->umem); 1703 1704 /* prefetch with write-access must be supported by the MR */ 1705 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1706 !odp->umem.writable) 1707 return NULL; 1708 1709 return mr; 1710 } 1711 1712 static void mlx5_ib_prefetch_mr_work(struct work_struct *w) 1713 { 1714 struct prefetch_mr_work *work = 1715 container_of(w, struct prefetch_mr_work, work); 1716 u32 bytes_mapped = 0; 1717 u32 i; 1718 1719 for (i = 0; i < work->num_sge; ++i) 1720 pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, 1721 work->frags[i].length, &bytes_mapped, 1722 work->pf_flags); 1723 1724 destroy_prefetch_work(work); 1725 } 1726 1727 static bool init_prefetch_work(struct ib_pd *pd, 1728 enum ib_uverbs_advise_mr_advice advice, 1729 u32 pf_flags, struct prefetch_mr_work *work, 1730 struct ib_sge *sg_list, u32 num_sge) 1731 { 1732 u32 i; 1733 1734 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1735 work->pf_flags = pf_flags; 1736 1737 for (i = 0; i < num_sge; ++i) { 1738 work->frags[i].io_virt = sg_list[i].addr; 1739 work->frags[i].length = sg_list[i].length; 1740 work->frags[i].mr = 1741 get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1742 if (!work->frags[i].mr) { 1743 work->num_sge = i - 1; 1744 if (i) 1745 destroy_prefetch_work(work); 1746 return false; 1747 } 1748 1749 /* Keep the MR pointer will valid outside the SRCU */ 1750 atomic_inc(&work->frags[i].mr->num_deferred_work); 1751 } 1752 work->num_sge = num_sge; 1753 return true; 1754 } 1755 1756 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, 1757 enum ib_uverbs_advise_mr_advice advice, 1758 u32 pf_flags, struct ib_sge *sg_list, 1759 u32 num_sge) 1760 { 1761 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1762 u32 bytes_mapped = 0; 1763 int srcu_key; 1764 int ret = 0; 1765 u32 i; 1766 1767 srcu_key = srcu_read_lock(&dev->odp_srcu); 1768 for (i = 0; i < num_sge; ++i) { 1769 struct mlx5_ib_mr *mr; 1770 1771 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1772 if (!mr) { 1773 ret = -ENOENT; 1774 goto out; 1775 } 1776 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, 1777 &bytes_mapped, pf_flags); 1778 if (ret < 0) 1779 goto out; 1780 } 1781 ret = 0; 1782 1783 out: 1784 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1785 return ret; 1786 } 1787 1788 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 1789 enum ib_uverbs_advise_mr_advice advice, 1790 u32 flags, struct ib_sge *sg_list, u32 num_sge) 1791 { 1792 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1793 u32 pf_flags = 0; 1794 struct prefetch_mr_work *work; 1795 int srcu_key; 1796 1797 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 1798 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 1799 1800 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 1801 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, 1802 num_sge); 1803 1804 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); 1805 if (!work) 1806 return -ENOMEM; 1807 1808 srcu_key = srcu_read_lock(&dev->odp_srcu); 1809 if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) { 1810 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1811 return -EINVAL; 1812 } 1813 queue_work(system_unbound_wq, &work->work); 1814 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1815 return 0; 1816 } 1817