1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem.h> 34 #include <rdma/ib_umem_odp.h> 35 #include <linux/kernel.h> 36 37 #include "mlx5_ib.h" 38 #include "cmd.h" 39 #include "qp.h" 40 41 #include <linux/mlx5/eq.h> 42 43 /* Contains the details of a pagefault. */ 44 struct mlx5_pagefault { 45 u32 bytes_committed; 46 u32 token; 47 u8 event_subtype; 48 u8 type; 49 union { 50 /* Initiator or send message responder pagefault details. */ 51 struct { 52 /* Received packet size, only valid for responders. */ 53 u32 packet_size; 54 /* 55 * Number of resource holding WQE, depends on type. 56 */ 57 u32 wq_num; 58 /* 59 * WQE index. Refers to either the send queue or 60 * receive queue, according to event_subtype. 61 */ 62 u16 wqe_index; 63 } wqe; 64 /* RDMA responder pagefault details */ 65 struct { 66 u32 r_key; 67 /* 68 * Received packet size, minimal size page fault 69 * resolution required for forward progress. 70 */ 71 u32 packet_size; 72 u32 rdma_op_len; 73 u64 rdma_va; 74 } rdma; 75 }; 76 77 struct mlx5_ib_pf_eq *eq; 78 struct work_struct work; 79 }; 80 81 #define MAX_PREFETCH_LEN (4*1024*1024U) 82 83 /* Timeout in ms to wait for an active mmu notifier to complete when handling 84 * a pagefault. */ 85 #define MMU_NOTIFIER_TIMEOUT 1000 86 87 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 88 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 89 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 90 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 91 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 92 93 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 94 95 static u64 mlx5_imr_ksm_entries; 96 97 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, 98 struct mlx5_ib_mr *imr, int flags) 99 { 100 struct mlx5_klm *end = pklm + nentries; 101 102 if (flags & MLX5_IB_UPD_XLT_ZAP) { 103 for (; pklm != end; pklm++, idx++) { 104 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 105 pklm->key = cpu_to_be32(imr->dev->null_mkey); 106 pklm->va = 0; 107 } 108 return; 109 } 110 111 /* 112 * The locking here is pretty subtle. Ideally the implicit_children 113 * xarray would be protected by the umem_mutex, however that is not 114 * possible. Instead this uses a weaker update-then-lock pattern: 115 * 116 * srcu_read_lock() 117 * xa_store() 118 * mutex_lock(umem_mutex) 119 * mlx5_ib_update_xlt() 120 * mutex_unlock(umem_mutex) 121 * destroy lkey 122 * 123 * ie any change the xarray must be followed by the locked update_xlt 124 * before destroying. 125 * 126 * The umem_mutex provides the acquire/release semantic needed to make 127 * the xa_store() visible to a racing thread. While SRCU is not 128 * technically required, using it gives consistent use of the SRCU 129 * locking around the xarray. 130 */ 131 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); 132 lockdep_assert_held(&imr->dev->odp_srcu); 133 134 for (; pklm != end; pklm++, idx++) { 135 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); 136 137 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 138 if (mtt) { 139 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 140 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); 141 } else { 142 pklm->key = cpu_to_be32(imr->dev->null_mkey); 143 pklm->va = 0; 144 } 145 } 146 } 147 148 static u64 umem_dma_to_mtt(dma_addr_t umem_dma) 149 { 150 u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK; 151 152 if (umem_dma & ODP_READ_ALLOWED_BIT) 153 mtt_entry |= MLX5_IB_MTT_READ; 154 if (umem_dma & ODP_WRITE_ALLOWED_BIT) 155 mtt_entry |= MLX5_IB_MTT_WRITE; 156 157 return mtt_entry; 158 } 159 160 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries, 161 struct mlx5_ib_mr *mr, int flags) 162 { 163 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 164 dma_addr_t pa; 165 size_t i; 166 167 if (flags & MLX5_IB_UPD_XLT_ZAP) 168 return; 169 170 for (i = 0; i < nentries; i++) { 171 pa = odp->dma_list[idx + i]; 172 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa)); 173 } 174 } 175 176 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries, 177 struct mlx5_ib_mr *mr, int flags) 178 { 179 if (flags & MLX5_IB_UPD_XLT_INDIRECT) { 180 populate_klm(xlt, idx, nentries, mr, flags); 181 } else { 182 populate_mtt(xlt, idx, nentries, mr, flags); 183 } 184 } 185 186 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr) 187 { 188 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 189 190 /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */ 191 mutex_lock(&odp->umem_mutex); 192 if (odp->npages) { 193 mlx5_mr_cache_invalidate(mr); 194 ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp), 195 ib_umem_end(odp)); 196 WARN_ON(odp->npages); 197 } 198 odp->private = NULL; 199 mutex_unlock(&odp->umem_mutex); 200 201 if (!mr->cache_ent) { 202 mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey); 203 WARN_ON(mr->descs); 204 } 205 } 206 207 /* 208 * This must be called after the mr has been removed from implicit_children 209 * and the SRCU synchronized. NOTE: The MR does not necessarily have to be 210 * empty here, parallel page faults could have raced with the free process and 211 * added pages to it. 212 */ 213 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt) 214 { 215 struct mlx5_ib_mr *imr = mr->parent; 216 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 217 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 218 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 219 int srcu_key; 220 221 /* implicit_child_mr's are not allowed to have deferred work */ 222 WARN_ON(atomic_read(&mr->num_deferred_work)); 223 224 if (need_imr_xlt) { 225 srcu_key = srcu_read_lock(&mr->dev->odp_srcu); 226 mutex_lock(&odp_imr->umem_mutex); 227 mlx5_ib_update_xlt(mr->parent, idx, 1, 0, 228 MLX5_IB_UPD_XLT_INDIRECT | 229 MLX5_IB_UPD_XLT_ATOMIC); 230 mutex_unlock(&odp_imr->umem_mutex); 231 srcu_read_unlock(&mr->dev->odp_srcu, srcu_key); 232 } 233 234 dma_fence_odp_mr(mr); 235 236 mr->parent = NULL; 237 mlx5_mr_cache_free(mr->dev, mr); 238 ib_umem_odp_release(odp); 239 if (atomic_dec_and_test(&imr->num_deferred_work)) 240 wake_up(&imr->q_deferred_work); 241 } 242 243 static void free_implicit_child_mr_work(struct work_struct *work) 244 { 245 struct mlx5_ib_mr *mr = 246 container_of(work, struct mlx5_ib_mr, odp_destroy.work); 247 248 free_implicit_child_mr(mr, true); 249 } 250 251 static void free_implicit_child_mr_rcu(struct rcu_head *head) 252 { 253 struct mlx5_ib_mr *mr = 254 container_of(head, struct mlx5_ib_mr, odp_destroy.rcu); 255 256 /* Freeing a MR is a sleeping operation, so bounce to a work queue */ 257 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); 258 queue_work(system_unbound_wq, &mr->odp_destroy.work); 259 } 260 261 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) 262 { 263 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 264 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 265 struct mlx5_ib_mr *imr = mr->parent; 266 267 xa_lock(&imr->implicit_children); 268 /* 269 * This can race with mlx5_ib_free_implicit_mr(), the first one to 270 * reach the xa lock wins the race and destroys the MR. 271 */ 272 if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) != 273 mr) 274 goto out_unlock; 275 276 atomic_inc(&imr->num_deferred_work); 277 call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu, 278 free_implicit_child_mr_rcu); 279 280 out_unlock: 281 xa_unlock(&imr->implicit_children); 282 } 283 284 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, 285 const struct mmu_notifier_range *range, 286 unsigned long cur_seq) 287 { 288 struct ib_umem_odp *umem_odp = 289 container_of(mni, struct ib_umem_odp, notifier); 290 struct mlx5_ib_mr *mr; 291 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / 292 sizeof(struct mlx5_mtt)) - 1; 293 u64 idx = 0, blk_start_idx = 0; 294 u64 invalidations = 0; 295 unsigned long start; 296 unsigned long end; 297 int in_block = 0; 298 u64 addr; 299 300 if (!mmu_notifier_range_blockable(range)) 301 return false; 302 303 mutex_lock(&umem_odp->umem_mutex); 304 mmu_interval_set_seq(mni, cur_seq); 305 /* 306 * If npages is zero then umem_odp->private may not be setup yet. This 307 * does not complete until after the first page is mapped for DMA. 308 */ 309 if (!umem_odp->npages) 310 goto out; 311 mr = umem_odp->private; 312 313 start = max_t(u64, ib_umem_start(umem_odp), range->start); 314 end = min_t(u64, ib_umem_end(umem_odp), range->end); 315 316 /* 317 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 318 * while we are doing the invalidation, no page fault will attempt to 319 * overwrite the same MTTs. Concurent invalidations might race us, 320 * but they will write 0s as well, so no difference in the end result. 321 */ 322 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { 323 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 324 /* 325 * Strive to write the MTTs in chunks, but avoid overwriting 326 * non-existing MTTs. The huristic here can be improved to 327 * estimate the cost of another UMR vs. the cost of bigger 328 * UMR. 329 */ 330 if (umem_odp->dma_list[idx] & 331 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 332 if (!in_block) { 333 blk_start_idx = idx; 334 in_block = 1; 335 } 336 337 /* Count page invalidations */ 338 invalidations += idx - blk_start_idx + 1; 339 } else { 340 u64 umr_offset = idx & umr_block_mask; 341 342 if (in_block && umr_offset == 0) { 343 mlx5_ib_update_xlt(mr, blk_start_idx, 344 idx - blk_start_idx, 0, 345 MLX5_IB_UPD_XLT_ZAP | 346 MLX5_IB_UPD_XLT_ATOMIC); 347 in_block = 0; 348 } 349 } 350 } 351 if (in_block) 352 mlx5_ib_update_xlt(mr, blk_start_idx, 353 idx - blk_start_idx + 1, 0, 354 MLX5_IB_UPD_XLT_ZAP | 355 MLX5_IB_UPD_XLT_ATOMIC); 356 357 mlx5_update_odp_stats(mr, invalidations, invalidations); 358 359 /* 360 * We are now sure that the device will not access the 361 * memory. We can safely unmap it, and mark it as dirty if 362 * needed. 363 */ 364 365 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 366 367 if (unlikely(!umem_odp->npages && mr->parent)) 368 destroy_unused_implicit_child_mr(mr); 369 out: 370 mutex_unlock(&umem_odp->umem_mutex); 371 return true; 372 } 373 374 const struct mmu_interval_notifier_ops mlx5_mn_ops = { 375 .invalidate = mlx5_ib_invalidate_range, 376 }; 377 378 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) 379 { 380 struct ib_odp_caps *caps = &dev->odp_caps; 381 382 memset(caps, 0, sizeof(*caps)); 383 384 if (!MLX5_CAP_GEN(dev->mdev, pg) || 385 !mlx5_ib_can_use_umr(dev, true, 0)) 386 return; 387 388 caps->general_caps = IB_ODP_SUPPORT; 389 390 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 391 dev->odp_max_size = U64_MAX; 392 else 393 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 394 395 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) 396 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 397 398 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) 399 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 400 401 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) 402 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 403 404 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) 405 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 406 407 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) 408 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 409 410 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) 411 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 412 413 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) 414 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 415 416 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) 417 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 418 419 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) 420 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 421 422 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) 423 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 424 425 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) 426 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 427 428 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) 429 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 430 431 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) 432 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 433 434 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) 435 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 436 437 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 438 MLX5_CAP_GEN(dev->mdev, null_mkey) && 439 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && 440 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) 441 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 442 } 443 444 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 445 struct mlx5_pagefault *pfault, 446 int error) 447 { 448 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 449 pfault->wqe.wq_num : pfault->token; 450 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {}; 451 int err; 452 453 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 454 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); 455 MLX5_SET(page_fault_resume_in, in, token, pfault->token); 456 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); 457 MLX5_SET(page_fault_resume_in, in, error, !!error); 458 459 err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in); 460 if (err) 461 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 462 wq_num, err); 463 } 464 465 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, 466 unsigned long idx) 467 { 468 struct ib_umem_odp *odp; 469 struct mlx5_ib_mr *mr; 470 struct mlx5_ib_mr *ret; 471 int err; 472 473 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), 474 idx * MLX5_IMR_MTT_SIZE, 475 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); 476 if (IS_ERR(odp)) 477 return ERR_CAST(odp); 478 479 ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY); 480 if (IS_ERR(mr)) 481 goto out_umem; 482 483 mr->ibmr.pd = imr->ibmr.pd; 484 mr->access_flags = imr->access_flags; 485 mr->umem = &odp->umem; 486 mr->ibmr.lkey = mr->mmkey.key; 487 mr->ibmr.rkey = mr->mmkey.key; 488 mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE; 489 mr->parent = imr; 490 odp->private = mr; 491 492 err = mlx5_ib_update_xlt(mr, 0, 493 MLX5_IMR_MTT_ENTRIES, 494 PAGE_SHIFT, 495 MLX5_IB_UPD_XLT_ZAP | 496 MLX5_IB_UPD_XLT_ENABLE); 497 if (err) { 498 ret = ERR_PTR(err); 499 goto out_mr; 500 } 501 502 /* 503 * Once the store to either xarray completes any error unwind has to 504 * use synchronize_srcu(). Avoid this with xa_reserve() 505 */ 506 ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, 507 GFP_KERNEL); 508 if (unlikely(ret)) { 509 if (xa_is_err(ret)) { 510 ret = ERR_PTR(xa_err(ret)); 511 goto out_mr; 512 } 513 /* 514 * Another thread beat us to creating the child mr, use 515 * theirs. 516 */ 517 goto out_mr; 518 } 519 520 mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr); 521 return mr; 522 523 out_mr: 524 mlx5_mr_cache_free(imr->dev, mr); 525 out_umem: 526 ib_umem_odp_release(odp); 527 return ret; 528 } 529 530 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 531 struct ib_udata *udata, 532 int access_flags) 533 { 534 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); 535 struct ib_umem_odp *umem_odp; 536 struct mlx5_ib_mr *imr; 537 int err; 538 539 umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags); 540 if (IS_ERR(umem_odp)) 541 return ERR_CAST(umem_odp); 542 543 imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY); 544 if (IS_ERR(imr)) { 545 err = PTR_ERR(imr); 546 goto out_umem; 547 } 548 549 imr->ibmr.pd = &pd->ibpd; 550 imr->access_flags = access_flags; 551 imr->mmkey.iova = 0; 552 imr->umem = &umem_odp->umem; 553 imr->ibmr.lkey = imr->mmkey.key; 554 imr->ibmr.rkey = imr->mmkey.key; 555 imr->umem = &umem_odp->umem; 556 imr->is_odp_implicit = true; 557 atomic_set(&imr->num_deferred_work, 0); 558 init_waitqueue_head(&imr->q_deferred_work); 559 xa_init(&imr->implicit_children); 560 561 err = mlx5_ib_update_xlt(imr, 0, 562 mlx5_imr_ksm_entries, 563 MLX5_KSM_PAGE_SHIFT, 564 MLX5_IB_UPD_XLT_INDIRECT | 565 MLX5_IB_UPD_XLT_ZAP | 566 MLX5_IB_UPD_XLT_ENABLE); 567 if (err) 568 goto out_mr; 569 570 err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key), 571 &imr->mmkey, GFP_KERNEL)); 572 if (err) 573 goto out_mr; 574 575 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); 576 return imr; 577 out_mr: 578 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 579 mlx5_mr_cache_free(dev, imr); 580 out_umem: 581 ib_umem_odp_release(umem_odp); 582 return ERR_PTR(err); 583 } 584 585 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) 586 { 587 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 588 struct mlx5_ib_dev *dev = imr->dev; 589 struct list_head destroy_list; 590 struct mlx5_ib_mr *mtt; 591 struct mlx5_ib_mr *tmp; 592 unsigned long idx; 593 594 INIT_LIST_HEAD(&destroy_list); 595 596 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key)); 597 /* 598 * This stops the SRCU protected page fault path from touching either 599 * the imr or any children. The page fault path can only reach the 600 * children xarray via the imr. 601 */ 602 synchronize_srcu(&dev->odp_srcu); 603 604 xa_lock(&imr->implicit_children); 605 xa_for_each (&imr->implicit_children, idx, mtt) { 606 __xa_erase(&imr->implicit_children, idx); 607 list_add(&mtt->odp_destroy.elm, &destroy_list); 608 } 609 xa_unlock(&imr->implicit_children); 610 611 /* 612 * num_deferred_work can only be incremented inside the odp_srcu, or 613 * under xa_lock while the child is in the xarray. Thus at this point 614 * it is only decreasing, and all work holding it is now on the wq. 615 */ 616 wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work)); 617 618 /* 619 * Fence the imr before we destroy the children. This allows us to 620 * skip updating the XLT of the imr during destroy of the child mkey 621 * the imr points to. 622 */ 623 mlx5_mr_cache_invalidate(imr); 624 625 list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm) 626 free_implicit_child_mr(mtt, false); 627 628 mlx5_mr_cache_free(dev, imr); 629 ib_umem_odp_release(odp_imr); 630 } 631 632 /** 633 * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR 634 * @mr: to fence 635 * 636 * On return no parallel threads will be touching this MR and no DMA will be 637 * active. 638 */ 639 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr) 640 { 641 /* Prevent new page faults and prefetch requests from succeeding */ 642 xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)); 643 644 /* Wait for all running page-fault handlers to finish. */ 645 synchronize_srcu(&mr->dev->odp_srcu); 646 647 wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work)); 648 649 dma_fence_odp_mr(mr); 650 } 651 652 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 653 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, 654 u64 user_va, size_t bcnt, u32 *bytes_mapped, 655 u32 flags) 656 { 657 int page_shift, ret, np; 658 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 659 unsigned long current_seq; 660 u64 access_mask; 661 u64 start_idx; 662 663 page_shift = odp->page_shift; 664 start_idx = (user_va - ib_umem_start(odp)) >> page_shift; 665 access_mask = ODP_READ_ALLOWED_BIT; 666 667 if (odp->umem.writable && !downgrade) 668 access_mask |= ODP_WRITE_ALLOWED_BIT; 669 670 current_seq = mmu_interval_read_begin(&odp->notifier); 671 672 np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask, 673 current_seq); 674 if (np < 0) 675 return np; 676 677 mutex_lock(&odp->umem_mutex); 678 if (!mmu_interval_read_retry(&odp->notifier, current_seq)) { 679 /* 680 * No need to check whether the MTTs really belong to 681 * this MR, since ib_umem_odp_map_dma_pages already 682 * checks this. 683 */ 684 ret = mlx5_ib_update_xlt(mr, start_idx, np, 685 page_shift, MLX5_IB_UPD_XLT_ATOMIC); 686 } else { 687 ret = -EAGAIN; 688 } 689 mutex_unlock(&odp->umem_mutex); 690 691 if (ret < 0) { 692 if (ret != -EAGAIN) 693 mlx5_ib_err(mr->dev, 694 "Failed to update mkey page tables\n"); 695 goto out; 696 } 697 698 if (bytes_mapped) { 699 u32 new_mappings = (np << page_shift) - 700 (user_va - round_down(user_va, 1 << page_shift)); 701 702 *bytes_mapped += min_t(u32, new_mappings, bcnt); 703 } 704 705 return np << (page_shift - PAGE_SHIFT); 706 707 out: 708 return ret; 709 } 710 711 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, 712 struct ib_umem_odp *odp_imr, u64 user_va, 713 size_t bcnt, u32 *bytes_mapped, u32 flags) 714 { 715 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; 716 unsigned long upd_start_idx = end_idx + 1; 717 unsigned long upd_len = 0; 718 unsigned long npages = 0; 719 int err; 720 int ret; 721 722 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || 723 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) 724 return -EFAULT; 725 726 /* Fault each child mr that intersects with our interval. */ 727 while (bcnt) { 728 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; 729 struct ib_umem_odp *umem_odp; 730 struct mlx5_ib_mr *mtt; 731 u64 len; 732 733 mtt = xa_load(&imr->implicit_children, idx); 734 if (unlikely(!mtt)) { 735 mtt = implicit_get_child_mr(imr, idx); 736 if (IS_ERR(mtt)) { 737 ret = PTR_ERR(mtt); 738 goto out; 739 } 740 upd_start_idx = min(upd_start_idx, idx); 741 upd_len = idx - upd_start_idx + 1; 742 } 743 744 umem_odp = to_ib_umem_odp(mtt->umem); 745 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - 746 user_va; 747 748 ret = pagefault_real_mr(mtt, umem_odp, user_va, len, 749 bytes_mapped, flags); 750 if (ret < 0) 751 goto out; 752 user_va += len; 753 bcnt -= len; 754 npages += ret; 755 } 756 757 ret = npages; 758 759 /* 760 * Any time the implicit_children are changed we must perform an 761 * update of the xlt before exiting to ensure the HW and the 762 * implicit_children remains synchronized. 763 */ 764 out: 765 if (likely(!upd_len)) 766 return ret; 767 768 /* 769 * Notice this is not strictly ordered right, the KSM is updated after 770 * the implicit_children is updated, so a parallel page fault could 771 * see a MR that is not yet visible in the KSM. This is similar to a 772 * parallel page fault seeing a MR that is being concurrently removed 773 * from the KSM. Both of these improbable situations are resolved 774 * safely by resuming the HW and then taking another page fault. The 775 * next pagefault handler will see the new information. 776 */ 777 mutex_lock(&odp_imr->umem_mutex); 778 err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0, 779 MLX5_IB_UPD_XLT_INDIRECT | 780 MLX5_IB_UPD_XLT_ATOMIC); 781 mutex_unlock(&odp_imr->umem_mutex); 782 if (err) { 783 mlx5_ib_err(imr->dev, "Failed to update PAS\n"); 784 return err; 785 } 786 return ret; 787 } 788 789 /* 790 * Returns: 791 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are 792 * not accessible, or the MR is no longer valid. 793 * -EAGAIN/-ENOMEM: The operation should be retried 794 * 795 * -EINVAL/others: General internal malfunction 796 * >0: Number of pages mapped 797 */ 798 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, 799 u32 *bytes_mapped, u32 flags) 800 { 801 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 802 803 if (unlikely(io_virt < mr->mmkey.iova)) 804 return -EFAULT; 805 806 if (!odp->is_implicit_odp) { 807 u64 user_va; 808 809 if (check_add_overflow(io_virt - mr->mmkey.iova, 810 (u64)odp->umem.address, &user_va)) 811 return -EFAULT; 812 if (unlikely(user_va >= ib_umem_end(odp) || 813 ib_umem_end(odp) - user_va < bcnt)) 814 return -EFAULT; 815 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped, 816 flags); 817 } 818 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, 819 flags); 820 } 821 822 struct pf_frame { 823 struct pf_frame *next; 824 u32 key; 825 u64 io_virt; 826 size_t bcnt; 827 int depth; 828 }; 829 830 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key) 831 { 832 if (!mmkey) 833 return false; 834 if (mmkey->type == MLX5_MKEY_MW) 835 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 836 return mmkey->key == key; 837 } 838 839 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey) 840 { 841 struct mlx5_ib_mw *mw; 842 struct mlx5_ib_devx_mr *devx_mr; 843 844 if (mmkey->type == MLX5_MKEY_MW) { 845 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey); 846 return mw->ndescs; 847 } 848 849 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr, 850 mmkey); 851 return devx_mr->ndescs; 852 } 853 854 /* 855 * Handle a single data segment in a page-fault WQE or RDMA region. 856 * 857 * Returns number of OS pages retrieved on success. The caller may continue to 858 * the next data segment. 859 * Can return the following error codes: 860 * -EAGAIN to designate a temporary error. The caller will abort handling the 861 * page fault and resolve it. 862 * -EFAULT when there's an error mapping the requested pages. The caller will 863 * abort the page fault handling. 864 */ 865 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 866 struct ib_pd *pd, u32 key, 867 u64 io_virt, size_t bcnt, 868 u32 *bytes_committed, 869 u32 *bytes_mapped) 870 { 871 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0; 872 struct pf_frame *head = NULL, *frame; 873 struct mlx5_core_mkey *mmkey; 874 struct mlx5_ib_mr *mr; 875 struct mlx5_klm *pklm; 876 u32 *out = NULL; 877 size_t offset; 878 int ndescs; 879 880 srcu_key = srcu_read_lock(&dev->odp_srcu); 881 882 io_virt += *bytes_committed; 883 bcnt -= *bytes_committed; 884 885 next_mr: 886 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); 887 if (!mmkey) { 888 mlx5_ib_dbg( 889 dev, 890 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 891 key); 892 if (bytes_mapped) 893 *bytes_mapped += bcnt; 894 /* 895 * The user could specify a SGL with multiple lkeys and only 896 * some of them are ODP. Treat the non-ODP ones as fully 897 * faulted. 898 */ 899 ret = 0; 900 goto srcu_unlock; 901 } 902 if (!mkey_is_eq(mmkey, key)) { 903 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); 904 ret = -EFAULT; 905 goto srcu_unlock; 906 } 907 908 switch (mmkey->type) { 909 case MLX5_MKEY_MR: 910 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 911 912 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0); 913 if (ret < 0) 914 goto srcu_unlock; 915 916 /* 917 * When prefetching a page, page fault is generated 918 * in order to bring the page to the main memory. 919 * In the current flow, page faults are being counted. 920 */ 921 mlx5_update_odp_stats(mr, faults, ret); 922 923 npages += ret; 924 ret = 0; 925 break; 926 927 case MLX5_MKEY_MW: 928 case MLX5_MKEY_INDIRECT_DEVX: 929 ndescs = get_indirect_num_descs(mmkey); 930 931 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 932 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 933 ret = -EFAULT; 934 goto srcu_unlock; 935 } 936 937 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 938 sizeof(*pklm) * (ndescs - 2); 939 940 if (outlen > cur_outlen) { 941 kfree(out); 942 out = kzalloc(outlen, GFP_KERNEL); 943 if (!out) { 944 ret = -ENOMEM; 945 goto srcu_unlock; 946 } 947 cur_outlen = outlen; 948 } 949 950 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 951 bsf0_klm0_pas_mtt0_1); 952 953 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen); 954 if (ret) 955 goto srcu_unlock; 956 957 offset = io_virt - MLX5_GET64(query_mkey_out, out, 958 memory_key_mkey_entry.start_addr); 959 960 for (i = 0; bcnt && i < ndescs; i++, pklm++) { 961 if (offset >= be32_to_cpu(pklm->bcount)) { 962 offset -= be32_to_cpu(pklm->bcount); 963 continue; 964 } 965 966 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 967 if (!frame) { 968 ret = -ENOMEM; 969 goto srcu_unlock; 970 } 971 972 frame->key = be32_to_cpu(pklm->key); 973 frame->io_virt = be64_to_cpu(pklm->va) + offset; 974 frame->bcnt = min_t(size_t, bcnt, 975 be32_to_cpu(pklm->bcount) - offset); 976 frame->depth = depth + 1; 977 frame->next = head; 978 head = frame; 979 980 bcnt -= frame->bcnt; 981 offset = 0; 982 } 983 break; 984 985 default: 986 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 987 ret = -EFAULT; 988 goto srcu_unlock; 989 } 990 991 if (head) { 992 frame = head; 993 head = frame->next; 994 995 key = frame->key; 996 io_virt = frame->io_virt; 997 bcnt = frame->bcnt; 998 depth = frame->depth; 999 kfree(frame); 1000 1001 goto next_mr; 1002 } 1003 1004 srcu_unlock: 1005 while (head) { 1006 frame = head; 1007 head = frame->next; 1008 kfree(frame); 1009 } 1010 kfree(out); 1011 1012 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1013 *bytes_committed = 0; 1014 return ret ? ret : npages; 1015 } 1016 1017 /** 1018 * Parse a series of data segments for page fault handling. 1019 * 1020 * @pfault contains page fault information. 1021 * @wqe points at the first data segment in the WQE. 1022 * @wqe_end points after the end of the WQE. 1023 * @bytes_mapped receives the number of bytes that the function was able to 1024 * map. This allows the caller to decide intelligently whether 1025 * enough memory was mapped to resolve the page fault 1026 * successfully (e.g. enough for the next MTU, or the entire 1027 * WQE). 1028 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus 1029 * the committed bytes). 1030 * 1031 * Returns the number of pages loaded if positive, zero for an empty WQE, or a 1032 * negative error code. 1033 */ 1034 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 1035 struct mlx5_pagefault *pfault, 1036 void *wqe, 1037 void *wqe_end, u32 *bytes_mapped, 1038 u32 *total_wqe_bytes, bool receive_queue) 1039 { 1040 int ret = 0, npages = 0; 1041 u64 io_virt; 1042 u32 key; 1043 u32 byte_count; 1044 size_t bcnt; 1045 int inline_segment; 1046 1047 if (bytes_mapped) 1048 *bytes_mapped = 0; 1049 if (total_wqe_bytes) 1050 *total_wqe_bytes = 0; 1051 1052 while (wqe < wqe_end) { 1053 struct mlx5_wqe_data_seg *dseg = wqe; 1054 1055 io_virt = be64_to_cpu(dseg->addr); 1056 key = be32_to_cpu(dseg->lkey); 1057 byte_count = be32_to_cpu(dseg->byte_count); 1058 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 1059 bcnt = byte_count & ~MLX5_INLINE_SEG; 1060 1061 if (inline_segment) { 1062 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 1063 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 1064 16); 1065 } else { 1066 wqe += sizeof(*dseg); 1067 } 1068 1069 /* receive WQE end of sg list. */ 1070 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && 1071 io_virt == 0) 1072 break; 1073 1074 if (!inline_segment && total_wqe_bytes) { 1075 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 1076 pfault->bytes_committed); 1077 } 1078 1079 /* A zero length data segment designates a length of 2GB. */ 1080 if (bcnt == 0) 1081 bcnt = 1U << 31; 1082 1083 if (inline_segment || bcnt <= pfault->bytes_committed) { 1084 pfault->bytes_committed -= 1085 min_t(size_t, bcnt, 1086 pfault->bytes_committed); 1087 continue; 1088 } 1089 1090 ret = pagefault_single_data_segment(dev, NULL, key, 1091 io_virt, bcnt, 1092 &pfault->bytes_committed, 1093 bytes_mapped); 1094 if (ret < 0) 1095 break; 1096 npages += ret; 1097 } 1098 1099 return ret < 0 ? ret : npages; 1100 } 1101 1102 /* 1103 * Parse initiator WQE. Advances the wqe pointer to point at the 1104 * scatter-gather list, and set wqe_end to the end of the WQE. 1105 */ 1106 static int mlx5_ib_mr_initiator_pfault_handler( 1107 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1108 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1109 { 1110 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1111 u16 wqe_index = pfault->wqe.wqe_index; 1112 struct mlx5_base_av *av; 1113 unsigned ds, opcode; 1114 u32 qpn = qp->trans_qp.base.mqp.qpn; 1115 1116 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1117 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1118 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1119 ds, wqe_length); 1120 return -EFAULT; 1121 } 1122 1123 if (ds == 0) { 1124 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1125 wqe_index, qpn); 1126 return -EFAULT; 1127 } 1128 1129 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1130 *wqe += sizeof(*ctrl); 1131 1132 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1133 MLX5_WQE_CTRL_OPCODE_MASK; 1134 1135 if (qp->ibqp.qp_type == IB_QPT_XRC_INI) 1136 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1137 1138 if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) { 1139 av = *wqe; 1140 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1141 *wqe += sizeof(struct mlx5_av); 1142 else 1143 *wqe += sizeof(struct mlx5_base_av); 1144 } 1145 1146 switch (opcode) { 1147 case MLX5_OPCODE_RDMA_WRITE: 1148 case MLX5_OPCODE_RDMA_WRITE_IMM: 1149 case MLX5_OPCODE_RDMA_READ: 1150 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1151 break; 1152 case MLX5_OPCODE_ATOMIC_CS: 1153 case MLX5_OPCODE_ATOMIC_FA: 1154 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1155 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1156 break; 1157 } 1158 1159 return 0; 1160 } 1161 1162 /* 1163 * Parse responder WQE and set wqe_end to the end of the WQE. 1164 */ 1165 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1166 struct mlx5_ib_srq *srq, 1167 void **wqe, void **wqe_end, 1168 int wqe_length) 1169 { 1170 int wqe_size = 1 << srq->msrq.wqe_shift; 1171 1172 if (wqe_size > wqe_length) { 1173 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1174 return -EFAULT; 1175 } 1176 1177 *wqe_end = *wqe + wqe_size; 1178 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1179 1180 return 0; 1181 } 1182 1183 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1184 struct mlx5_ib_qp *qp, 1185 void *wqe, void **wqe_end, 1186 int wqe_length) 1187 { 1188 struct mlx5_ib_wq *wq = &qp->rq; 1189 int wqe_size = 1 << wq->wqe_shift; 1190 1191 if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) { 1192 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1193 return -EFAULT; 1194 } 1195 1196 if (wqe_size > wqe_length) { 1197 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1198 return -EFAULT; 1199 } 1200 1201 *wqe_end = wqe + wqe_size; 1202 1203 return 0; 1204 } 1205 1206 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1207 u32 wq_num, int pf_type) 1208 { 1209 struct mlx5_core_rsc_common *common = NULL; 1210 struct mlx5_core_srq *srq; 1211 1212 switch (pf_type) { 1213 case MLX5_WQE_PF_TYPE_RMP: 1214 srq = mlx5_cmd_get_srq(dev, wq_num); 1215 if (srq) 1216 common = &srq->common; 1217 break; 1218 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1219 case MLX5_WQE_PF_TYPE_RESP: 1220 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1221 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP); 1222 break; 1223 default: 1224 break; 1225 } 1226 1227 return common; 1228 } 1229 1230 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1231 { 1232 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1233 1234 return to_mibqp(mqp); 1235 } 1236 1237 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1238 { 1239 struct mlx5_core_srq *msrq = 1240 container_of(res, struct mlx5_core_srq, common); 1241 1242 return to_mibsrq(msrq); 1243 } 1244 1245 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1246 struct mlx5_pagefault *pfault) 1247 { 1248 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1249 u16 wqe_index = pfault->wqe.wqe_index; 1250 void *wqe, *wqe_start = NULL, *wqe_end = NULL; 1251 u32 bytes_mapped, total_wqe_bytes; 1252 struct mlx5_core_rsc_common *res; 1253 int resume_with_error = 1; 1254 struct mlx5_ib_qp *qp; 1255 size_t bytes_copied; 1256 int ret = 0; 1257 1258 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1259 if (!res) { 1260 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1261 return; 1262 } 1263 1264 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1265 res->res != MLX5_RES_XSRQ) { 1266 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1267 pfault->type); 1268 goto resolve_page_fault; 1269 } 1270 1271 wqe_start = (void *)__get_free_page(GFP_KERNEL); 1272 if (!wqe_start) { 1273 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1274 goto resolve_page_fault; 1275 } 1276 1277 wqe = wqe_start; 1278 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1279 if (qp && sq) { 1280 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1281 &bytes_copied); 1282 if (ret) 1283 goto read_user; 1284 ret = mlx5_ib_mr_initiator_pfault_handler( 1285 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1286 } else if (qp && !sq) { 1287 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1288 &bytes_copied); 1289 if (ret) 1290 goto read_user; 1291 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1292 dev, qp, wqe, &wqe_end, bytes_copied); 1293 } else if (!qp) { 1294 struct mlx5_ib_srq *srq = res_to_srq(res); 1295 1296 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1297 &bytes_copied); 1298 if (ret) 1299 goto read_user; 1300 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1301 dev, srq, &wqe, &wqe_end, bytes_copied); 1302 } 1303 1304 if (ret < 0 || wqe >= wqe_end) 1305 goto resolve_page_fault; 1306 1307 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1308 &total_wqe_bytes, !sq); 1309 if (ret == -EAGAIN) 1310 goto out; 1311 1312 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1313 goto resolve_page_fault; 1314 1315 out: 1316 ret = 0; 1317 resume_with_error = 0; 1318 1319 read_user: 1320 if (ret) 1321 mlx5_ib_err( 1322 dev, 1323 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", 1324 ret, wqe_index, pfault->token); 1325 1326 resolve_page_fault: 1327 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1328 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1329 pfault->wqe.wq_num, resume_with_error, 1330 pfault->type); 1331 mlx5_core_res_put(res); 1332 free_page((unsigned long)wqe_start); 1333 } 1334 1335 static int pages_in_range(u64 address, u32 length) 1336 { 1337 return (ALIGN(address + length, PAGE_SIZE) - 1338 (address & PAGE_MASK)) >> PAGE_SHIFT; 1339 } 1340 1341 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1342 struct mlx5_pagefault *pfault) 1343 { 1344 u64 address; 1345 u32 length; 1346 u32 prefetch_len = pfault->bytes_committed; 1347 int prefetch_activated = 0; 1348 u32 rkey = pfault->rdma.r_key; 1349 int ret; 1350 1351 /* The RDMA responder handler handles the page fault in two parts. 1352 * First it brings the necessary pages for the current packet 1353 * (and uses the pfault context), and then (after resuming the QP) 1354 * prefetches more pages. The second operation cannot use the pfault 1355 * context and therefore uses the dummy_pfault context allocated on 1356 * the stack */ 1357 pfault->rdma.rdma_va += pfault->bytes_committed; 1358 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1359 pfault->rdma.rdma_op_len); 1360 pfault->bytes_committed = 0; 1361 1362 address = pfault->rdma.rdma_va; 1363 length = pfault->rdma.rdma_op_len; 1364 1365 /* For some operations, the hardware cannot tell the exact message 1366 * length, and in those cases it reports zero. Use prefetch 1367 * logic. */ 1368 if (length == 0) { 1369 prefetch_activated = 1; 1370 length = pfault->rdma.packet_size; 1371 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1372 } 1373 1374 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1375 &pfault->bytes_committed, NULL); 1376 if (ret == -EAGAIN) { 1377 /* We're racing with an invalidation, don't prefetch */ 1378 prefetch_activated = 0; 1379 } else if (ret < 0 || pages_in_range(address, length) > ret) { 1380 mlx5_ib_page_fault_resume(dev, pfault, 1); 1381 if (ret != -ENOENT) 1382 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", 1383 ret, pfault->token, pfault->type); 1384 return; 1385 } 1386 1387 mlx5_ib_page_fault_resume(dev, pfault, 0); 1388 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", 1389 pfault->token, pfault->type, 1390 prefetch_activated); 1391 1392 /* At this point, there might be a new pagefault already arriving in 1393 * the eq, switch to the dummy pagefault for the rest of the 1394 * processing. We're still OK with the objects being alive as the 1395 * work-queue is being fenced. */ 1396 1397 if (prefetch_activated) { 1398 u32 bytes_committed = 0; 1399 1400 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1401 prefetch_len, 1402 &bytes_committed, NULL); 1403 if (ret < 0 && ret != -EAGAIN) { 1404 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", 1405 ret, pfault->token, address, prefetch_len); 1406 } 1407 } 1408 } 1409 1410 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1411 { 1412 u8 event_subtype = pfault->event_subtype; 1413 1414 switch (event_subtype) { 1415 case MLX5_PFAULT_SUBTYPE_WQE: 1416 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1417 break; 1418 case MLX5_PFAULT_SUBTYPE_RDMA: 1419 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1420 break; 1421 default: 1422 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1423 event_subtype); 1424 mlx5_ib_page_fault_resume(dev, pfault, 1); 1425 } 1426 } 1427 1428 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1429 { 1430 struct mlx5_pagefault *pfault = container_of(work, 1431 struct mlx5_pagefault, 1432 work); 1433 struct mlx5_ib_pf_eq *eq = pfault->eq; 1434 1435 mlx5_ib_pfault(eq->dev, pfault); 1436 mempool_free(pfault, eq->pool); 1437 } 1438 1439 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1440 { 1441 struct mlx5_eqe_page_fault *pf_eqe; 1442 struct mlx5_pagefault *pfault; 1443 struct mlx5_eqe *eqe; 1444 int cc = 0; 1445 1446 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1447 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1448 if (!pfault) { 1449 schedule_work(&eq->work); 1450 break; 1451 } 1452 1453 pf_eqe = &eqe->data.page_fault; 1454 pfault->event_subtype = eqe->sub_type; 1455 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); 1456 1457 mlx5_ib_dbg(eq->dev, 1458 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", 1459 eqe->sub_type, pfault->bytes_committed); 1460 1461 switch (eqe->sub_type) { 1462 case MLX5_PFAULT_SUBTYPE_RDMA: 1463 /* RDMA based event */ 1464 pfault->type = 1465 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1466 pfault->token = 1467 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1468 MLX5_24BIT_MASK; 1469 pfault->rdma.r_key = 1470 be32_to_cpu(pf_eqe->rdma.r_key); 1471 pfault->rdma.packet_size = 1472 be16_to_cpu(pf_eqe->rdma.packet_length); 1473 pfault->rdma.rdma_op_len = 1474 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1475 pfault->rdma.rdma_va = 1476 be64_to_cpu(pf_eqe->rdma.rdma_va); 1477 mlx5_ib_dbg(eq->dev, 1478 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", 1479 pfault->type, pfault->token, 1480 pfault->rdma.r_key); 1481 mlx5_ib_dbg(eq->dev, 1482 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1483 pfault->rdma.rdma_op_len, 1484 pfault->rdma.rdma_va); 1485 break; 1486 1487 case MLX5_PFAULT_SUBTYPE_WQE: 1488 /* WQE based event */ 1489 pfault->type = 1490 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1491 pfault->token = 1492 be32_to_cpu(pf_eqe->wqe.token); 1493 pfault->wqe.wq_num = 1494 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1495 MLX5_24BIT_MASK; 1496 pfault->wqe.wqe_index = 1497 be16_to_cpu(pf_eqe->wqe.wqe_index); 1498 pfault->wqe.packet_size = 1499 be16_to_cpu(pf_eqe->wqe.packet_length); 1500 mlx5_ib_dbg(eq->dev, 1501 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1502 pfault->type, pfault->token, 1503 pfault->wqe.wq_num, 1504 pfault->wqe.wqe_index); 1505 break; 1506 1507 default: 1508 mlx5_ib_warn(eq->dev, 1509 "Unsupported page fault event sub-type: 0x%02hhx\n", 1510 eqe->sub_type); 1511 /* Unsupported page faults should still be 1512 * resolved by the page fault handler 1513 */ 1514 } 1515 1516 pfault->eq = eq; 1517 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1518 queue_work(eq->wq, &pfault->work); 1519 1520 cc = mlx5_eq_update_cc(eq->core, ++cc); 1521 } 1522 1523 mlx5_eq_update_ci(eq->core, cc, 1); 1524 } 1525 1526 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, 1527 void *data) 1528 { 1529 struct mlx5_ib_pf_eq *eq = 1530 container_of(nb, struct mlx5_ib_pf_eq, irq_nb); 1531 unsigned long flags; 1532 1533 if (spin_trylock_irqsave(&eq->lock, flags)) { 1534 mlx5_ib_eq_pf_process(eq); 1535 spin_unlock_irqrestore(&eq->lock, flags); 1536 } else { 1537 schedule_work(&eq->work); 1538 } 1539 1540 return IRQ_HANDLED; 1541 } 1542 1543 /* mempool_refill() was proposed but unfortunately wasn't accepted 1544 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1545 * Cheap workaround. 1546 */ 1547 static void mempool_refill(mempool_t *pool) 1548 { 1549 while (pool->curr_nr < pool->min_nr) 1550 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1551 } 1552 1553 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1554 { 1555 struct mlx5_ib_pf_eq *eq = 1556 container_of(work, struct mlx5_ib_pf_eq, work); 1557 1558 mempool_refill(eq->pool); 1559 1560 spin_lock_irq(&eq->lock); 1561 mlx5_ib_eq_pf_process(eq); 1562 spin_unlock_irq(&eq->lock); 1563 } 1564 1565 enum { 1566 MLX5_IB_NUM_PF_EQE = 0x1000, 1567 MLX5_IB_NUM_PF_DRAIN = 64, 1568 }; 1569 1570 static int 1571 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1572 { 1573 struct mlx5_eq_param param = {}; 1574 int err; 1575 1576 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1577 spin_lock_init(&eq->lock); 1578 eq->dev = dev; 1579 1580 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1581 sizeof(struct mlx5_pagefault)); 1582 if (!eq->pool) 1583 return -ENOMEM; 1584 1585 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1586 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1587 MLX5_NUM_CMD_EQE); 1588 if (!eq->wq) { 1589 err = -ENOMEM; 1590 goto err_mempool; 1591 } 1592 1593 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; 1594 param = (struct mlx5_eq_param) { 1595 .irq_index = 0, 1596 .nent = MLX5_IB_NUM_PF_EQE, 1597 }; 1598 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; 1599 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); 1600 if (IS_ERR(eq->core)) { 1601 err = PTR_ERR(eq->core); 1602 goto err_wq; 1603 } 1604 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); 1605 if (err) { 1606 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); 1607 goto err_eq; 1608 } 1609 1610 return 0; 1611 err_eq: 1612 mlx5_eq_destroy_generic(dev->mdev, eq->core); 1613 err_wq: 1614 destroy_workqueue(eq->wq); 1615 err_mempool: 1616 mempool_destroy(eq->pool); 1617 return err; 1618 } 1619 1620 static int 1621 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1622 { 1623 int err; 1624 1625 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); 1626 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1627 cancel_work_sync(&eq->work); 1628 destroy_workqueue(eq->wq); 1629 mempool_destroy(eq->pool); 1630 1631 return err; 1632 } 1633 1634 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) 1635 { 1636 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1637 return; 1638 1639 switch (ent->order - 2) { 1640 case MLX5_IMR_MTT_CACHE_ENTRY: 1641 ent->page = PAGE_SHIFT; 1642 ent->xlt = MLX5_IMR_MTT_ENTRIES * 1643 sizeof(struct mlx5_mtt) / 1644 MLX5_IB_UMR_OCTOWORD; 1645 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 1646 ent->limit = 0; 1647 break; 1648 1649 case MLX5_IMR_KSM_CACHE_ENTRY: 1650 ent->page = MLX5_KSM_PAGE_SHIFT; 1651 ent->xlt = mlx5_imr_ksm_entries * 1652 sizeof(struct mlx5_klm) / 1653 MLX5_IB_UMR_OCTOWORD; 1654 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; 1655 ent->limit = 0; 1656 break; 1657 } 1658 } 1659 1660 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1661 .advise_mr = mlx5_ib_advise_mr, 1662 }; 1663 1664 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1665 { 1666 int ret = 0; 1667 1668 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1669 return ret; 1670 1671 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1672 1673 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { 1674 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); 1675 if (ret) { 1676 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); 1677 return ret; 1678 } 1679 } 1680 1681 ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq); 1682 1683 return ret; 1684 } 1685 1686 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1687 { 1688 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1689 return; 1690 1691 mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq); 1692 } 1693 1694 int mlx5_ib_odp_init(void) 1695 { 1696 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1697 MLX5_IMR_MTT_BITS); 1698 1699 return 0; 1700 } 1701 1702 struct prefetch_mr_work { 1703 struct work_struct work; 1704 u32 pf_flags; 1705 u32 num_sge; 1706 struct { 1707 u64 io_virt; 1708 struct mlx5_ib_mr *mr; 1709 size_t length; 1710 } frags[]; 1711 }; 1712 1713 static void destroy_prefetch_work(struct prefetch_mr_work *work) 1714 { 1715 u32 i; 1716 1717 for (i = 0; i < work->num_sge; ++i) 1718 if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work)) 1719 wake_up(&work->frags[i].mr->q_deferred_work); 1720 kvfree(work); 1721 } 1722 1723 static struct mlx5_ib_mr * 1724 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 1725 u32 lkey) 1726 { 1727 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1728 struct mlx5_core_mkey *mmkey; 1729 struct ib_umem_odp *odp; 1730 struct mlx5_ib_mr *mr; 1731 1732 lockdep_assert_held(&dev->odp_srcu); 1733 1734 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); 1735 if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR) 1736 return NULL; 1737 1738 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1739 1740 if (mr->ibmr.pd != pd) 1741 return NULL; 1742 1743 odp = to_ib_umem_odp(mr->umem); 1744 1745 /* prefetch with write-access must be supported by the MR */ 1746 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1747 !odp->umem.writable) 1748 return NULL; 1749 1750 return mr; 1751 } 1752 1753 static void mlx5_ib_prefetch_mr_work(struct work_struct *w) 1754 { 1755 struct prefetch_mr_work *work = 1756 container_of(w, struct prefetch_mr_work, work); 1757 u32 bytes_mapped = 0; 1758 u32 i; 1759 1760 for (i = 0; i < work->num_sge; ++i) 1761 pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, 1762 work->frags[i].length, &bytes_mapped, 1763 work->pf_flags); 1764 1765 destroy_prefetch_work(work); 1766 } 1767 1768 static bool init_prefetch_work(struct ib_pd *pd, 1769 enum ib_uverbs_advise_mr_advice advice, 1770 u32 pf_flags, struct prefetch_mr_work *work, 1771 struct ib_sge *sg_list, u32 num_sge) 1772 { 1773 u32 i; 1774 1775 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1776 work->pf_flags = pf_flags; 1777 1778 for (i = 0; i < num_sge; ++i) { 1779 work->frags[i].io_virt = sg_list[i].addr; 1780 work->frags[i].length = sg_list[i].length; 1781 work->frags[i].mr = 1782 get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1783 if (!work->frags[i].mr) { 1784 work->num_sge = i - 1; 1785 if (i) 1786 destroy_prefetch_work(work); 1787 return false; 1788 } 1789 1790 /* Keep the MR pointer will valid outside the SRCU */ 1791 atomic_inc(&work->frags[i].mr->num_deferred_work); 1792 } 1793 work->num_sge = num_sge; 1794 return true; 1795 } 1796 1797 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, 1798 enum ib_uverbs_advise_mr_advice advice, 1799 u32 pf_flags, struct ib_sge *sg_list, 1800 u32 num_sge) 1801 { 1802 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1803 u32 bytes_mapped = 0; 1804 int srcu_key; 1805 int ret = 0; 1806 u32 i; 1807 1808 srcu_key = srcu_read_lock(&dev->odp_srcu); 1809 for (i = 0; i < num_sge; ++i) { 1810 struct mlx5_ib_mr *mr; 1811 1812 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1813 if (!mr) { 1814 ret = -ENOENT; 1815 goto out; 1816 } 1817 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, 1818 &bytes_mapped, pf_flags); 1819 if (ret < 0) 1820 goto out; 1821 } 1822 ret = 0; 1823 1824 out: 1825 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1826 return ret; 1827 } 1828 1829 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 1830 enum ib_uverbs_advise_mr_advice advice, 1831 u32 flags, struct ib_sge *sg_list, u32 num_sge) 1832 { 1833 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1834 u32 pf_flags = 0; 1835 struct prefetch_mr_work *work; 1836 int srcu_key; 1837 1838 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 1839 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 1840 1841 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 1842 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, 1843 num_sge); 1844 1845 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); 1846 if (!work) 1847 return -ENOMEM; 1848 1849 srcu_key = srcu_read_lock(&dev->odp_srcu); 1850 if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) { 1851 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1852 return -EINVAL; 1853 } 1854 queue_work(system_unbound_wq, &work->work); 1855 srcu_read_unlock(&dev->odp_srcu, srcu_key); 1856 return 0; 1857 } 1858