xref: /openbmc/linux/drivers/infiniband/hw/mlx5/odp.c (revision 7f877908)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 
40 #include <linux/mlx5/eq.h>
41 
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44 	u32			bytes_committed;
45 	u32			token;
46 	u8			event_subtype;
47 	u8			type;
48 	union {
49 		/* Initiator or send message responder pagefault details. */
50 		struct {
51 			/* Received packet size, only valid for responders. */
52 			u32	packet_size;
53 			/*
54 			 * Number of resource holding WQE, depends on type.
55 			 */
56 			u32	wq_num;
57 			/*
58 			 * WQE index. Refers to either the send queue or
59 			 * receive queue, according to event_subtype.
60 			 */
61 			u16	wqe_index;
62 		} wqe;
63 		/* RDMA responder pagefault details */
64 		struct {
65 			u32	r_key;
66 			/*
67 			 * Received packet size, minimal size page fault
68 			 * resolution required for forward progress.
69 			 */
70 			u32	packet_size;
71 			u32	rdma_op_len;
72 			u64	rdma_va;
73 		} rdma;
74 	};
75 
76 	struct mlx5_ib_pf_eq	*eq;
77 	struct work_struct	work;
78 };
79 
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81 
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85 
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91 
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93 
94 static u64 mlx5_imr_ksm_entries;
95 
96 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
97 			struct mlx5_ib_mr *imr, int flags)
98 {
99 	struct mlx5_klm *end = pklm + nentries;
100 
101 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
102 		for (; pklm != end; pklm++, idx++) {
103 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
104 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
105 			pklm->va = 0;
106 		}
107 		return;
108 	}
109 
110 	/*
111 	 * The locking here is pretty subtle. Ideally the implicit_children
112 	 * xarray would be protected by the umem_mutex, however that is not
113 	 * possible. Instead this uses a weaker update-then-lock pattern:
114 	 *
115 	 *  srcu_read_lock()
116 	 *    xa_store()
117 	 *    mutex_lock(umem_mutex)
118 	 *     mlx5_ib_update_xlt()
119 	 *    mutex_unlock(umem_mutex)
120 	 *    destroy lkey
121 	 *
122 	 * ie any change the xarray must be followed by the locked update_xlt
123 	 * before destroying.
124 	 *
125 	 * The umem_mutex provides the acquire/release semantic needed to make
126 	 * the xa_store() visible to a racing thread. While SRCU is not
127 	 * technically required, using it gives consistent use of the SRCU
128 	 * locking around the xarray.
129 	 */
130 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131 	lockdep_assert_held(&imr->dev->odp_srcu);
132 
133 	for (; pklm != end; pklm++, idx++) {
134 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
135 
136 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
137 		if (mtt) {
138 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
139 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
140 		} else {
141 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
142 			pklm->va = 0;
143 		}
144 	}
145 }
146 
147 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
148 {
149 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
150 
151 	if (umem_dma & ODP_READ_ALLOWED_BIT)
152 		mtt_entry |= MLX5_IB_MTT_READ;
153 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
154 		mtt_entry |= MLX5_IB_MTT_WRITE;
155 
156 	return mtt_entry;
157 }
158 
159 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
160 			 struct mlx5_ib_mr *mr, int flags)
161 {
162 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
163 	dma_addr_t pa;
164 	size_t i;
165 
166 	if (flags & MLX5_IB_UPD_XLT_ZAP)
167 		return;
168 
169 	for (i = 0; i < nentries; i++) {
170 		pa = odp->dma_list[idx + i];
171 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
172 	}
173 }
174 
175 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
176 			   struct mlx5_ib_mr *mr, int flags)
177 {
178 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
179 		populate_klm(xlt, idx, nentries, mr, flags);
180 	} else {
181 		populate_mtt(xlt, idx, nentries, mr, flags);
182 	}
183 }
184 
185 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
186 {
187 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
188 
189 	/* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
190 	mutex_lock(&odp->umem_mutex);
191 	if (odp->npages) {
192 		mlx5_mr_cache_invalidate(mr);
193 		ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
194 					    ib_umem_end(odp));
195 		WARN_ON(odp->npages);
196 	}
197 	odp->private = NULL;
198 	mutex_unlock(&odp->umem_mutex);
199 
200 	if (!mr->allocated_from_cache) {
201 		mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
202 		WARN_ON(mr->descs);
203 	}
204 }
205 
206 /*
207  * This must be called after the mr has been removed from implicit_children
208  * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
209  * empty here, parallel page faults could have raced with the free process and
210  * added pages to it.
211  */
212 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
213 {
214 	struct mlx5_ib_mr *imr = mr->parent;
215 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
216 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
217 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
218 	int srcu_key;
219 
220 	/* implicit_child_mr's are not allowed to have deferred work */
221 	WARN_ON(atomic_read(&mr->num_deferred_work));
222 
223 	if (need_imr_xlt) {
224 		srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
225 		mutex_lock(&odp_imr->umem_mutex);
226 		mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
227 				   MLX5_IB_UPD_XLT_INDIRECT |
228 				   MLX5_IB_UPD_XLT_ATOMIC);
229 		mutex_unlock(&odp_imr->umem_mutex);
230 		srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
231 	}
232 
233 	dma_fence_odp_mr(mr);
234 
235 	mr->parent = NULL;
236 	mlx5_mr_cache_free(mr->dev, mr);
237 	ib_umem_odp_release(odp);
238 	atomic_dec(&imr->num_deferred_work);
239 }
240 
241 static void free_implicit_child_mr_work(struct work_struct *work)
242 {
243 	struct mlx5_ib_mr *mr =
244 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
245 
246 	free_implicit_child_mr(mr, true);
247 }
248 
249 static void free_implicit_child_mr_rcu(struct rcu_head *head)
250 {
251 	struct mlx5_ib_mr *mr =
252 		container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
253 
254 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
255 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
256 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
257 }
258 
259 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
260 {
261 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
262 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
263 	struct mlx5_ib_mr *imr = mr->parent;
264 
265 	xa_lock(&imr->implicit_children);
266 	/*
267 	 * This can race with mlx5_ib_free_implicit_mr(), the first one to
268 	 * reach the xa lock wins the race and destroys the MR.
269 	 */
270 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
271 	    mr)
272 		goto out_unlock;
273 
274 	atomic_inc(&imr->num_deferred_work);
275 	call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
276 		  free_implicit_child_mr_rcu);
277 
278 out_unlock:
279 	xa_unlock(&imr->implicit_children);
280 }
281 
282 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
283 				     const struct mmu_notifier_range *range,
284 				     unsigned long cur_seq)
285 {
286 	struct ib_umem_odp *umem_odp =
287 		container_of(mni, struct ib_umem_odp, notifier);
288 	struct mlx5_ib_mr *mr;
289 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
290 				    sizeof(struct mlx5_mtt)) - 1;
291 	u64 idx = 0, blk_start_idx = 0;
292 	u64 invalidations = 0;
293 	unsigned long start;
294 	unsigned long end;
295 	int in_block = 0;
296 	u64 addr;
297 
298 	if (!mmu_notifier_range_blockable(range))
299 		return false;
300 
301 	mutex_lock(&umem_odp->umem_mutex);
302 	mmu_interval_set_seq(mni, cur_seq);
303 	/*
304 	 * If npages is zero then umem_odp->private may not be setup yet. This
305 	 * does not complete until after the first page is mapped for DMA.
306 	 */
307 	if (!umem_odp->npages)
308 		goto out;
309 	mr = umem_odp->private;
310 
311 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
312 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
313 
314 	/*
315 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
316 	 * while we are doing the invalidation, no page fault will attempt to
317 	 * overwrite the same MTTs.  Concurent invalidations might race us,
318 	 * but they will write 0s as well, so no difference in the end result.
319 	 */
320 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
321 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
322 		/*
323 		 * Strive to write the MTTs in chunks, but avoid overwriting
324 		 * non-existing MTTs. The huristic here can be improved to
325 		 * estimate the cost of another UMR vs. the cost of bigger
326 		 * UMR.
327 		 */
328 		if (umem_odp->dma_list[idx] &
329 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
330 			if (!in_block) {
331 				blk_start_idx = idx;
332 				in_block = 1;
333 			}
334 
335 			/* Count page invalidations */
336 			invalidations += idx - blk_start_idx + 1;
337 		} else {
338 			u64 umr_offset = idx & umr_block_mask;
339 
340 			if (in_block && umr_offset == 0) {
341 				mlx5_ib_update_xlt(mr, blk_start_idx,
342 						   idx - blk_start_idx, 0,
343 						   MLX5_IB_UPD_XLT_ZAP |
344 						   MLX5_IB_UPD_XLT_ATOMIC);
345 				in_block = 0;
346 			}
347 		}
348 	}
349 	if (in_block)
350 		mlx5_ib_update_xlt(mr, blk_start_idx,
351 				   idx - blk_start_idx + 1, 0,
352 				   MLX5_IB_UPD_XLT_ZAP |
353 				   MLX5_IB_UPD_XLT_ATOMIC);
354 
355 	mlx5_update_odp_stats(mr, invalidations, invalidations);
356 
357 	/*
358 	 * We are now sure that the device will not access the
359 	 * memory. We can safely unmap it, and mark it as dirty if
360 	 * needed.
361 	 */
362 
363 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
364 
365 	if (unlikely(!umem_odp->npages && mr->parent))
366 		destroy_unused_implicit_child_mr(mr);
367 out:
368 	mutex_unlock(&umem_odp->umem_mutex);
369 	return true;
370 }
371 
372 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
373 	.invalidate = mlx5_ib_invalidate_range,
374 };
375 
376 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
377 {
378 	struct ib_odp_caps *caps = &dev->odp_caps;
379 
380 	memset(caps, 0, sizeof(*caps));
381 
382 	if (!MLX5_CAP_GEN(dev->mdev, pg) ||
383 	    !mlx5_ib_can_use_umr(dev, true, 0))
384 		return;
385 
386 	caps->general_caps = IB_ODP_SUPPORT;
387 
388 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
389 		dev->odp_max_size = U64_MAX;
390 	else
391 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
392 
393 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
394 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
395 
396 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
397 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
398 
399 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
400 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
401 
402 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
403 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
404 
405 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
406 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
407 
408 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
409 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
410 
411 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
412 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
413 
414 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
415 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
416 
417 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
418 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
419 
420 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
421 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
422 
423 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
424 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
425 
426 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
427 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
428 
429 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
430 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
431 
432 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
433 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
434 
435 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
436 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
437 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
438 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
439 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
440 }
441 
442 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
443 				      struct mlx5_pagefault *pfault,
444 				      int error)
445 {
446 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
447 		     pfault->wqe.wq_num : pfault->token;
448 	u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
449 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
450 	int err;
451 
452 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
453 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
454 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
455 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
456 	MLX5_SET(page_fault_resume_in, in, error, !!error);
457 
458 	err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
459 	if (err)
460 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
461 			    wq_num, err);
462 }
463 
464 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
465 						unsigned long idx)
466 {
467 	struct ib_umem_odp *odp;
468 	struct mlx5_ib_mr *mr;
469 	struct mlx5_ib_mr *ret;
470 	int err;
471 
472 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
473 				      idx * MLX5_IMR_MTT_SIZE,
474 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
475 	if (IS_ERR(odp))
476 		return ERR_CAST(odp);
477 
478 	ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
479 	if (IS_ERR(mr))
480 		goto out_umem;
481 
482 	mr->ibmr.pd = imr->ibmr.pd;
483 	mr->access_flags = imr->access_flags;
484 	mr->umem = &odp->umem;
485 	mr->ibmr.lkey = mr->mmkey.key;
486 	mr->ibmr.rkey = mr->mmkey.key;
487 	mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
488 	mr->parent = imr;
489 	odp->private = mr;
490 
491 	err = mlx5_ib_update_xlt(mr, 0,
492 				 MLX5_IMR_MTT_ENTRIES,
493 				 PAGE_SHIFT,
494 				 MLX5_IB_UPD_XLT_ZAP |
495 				 MLX5_IB_UPD_XLT_ENABLE);
496 	if (err) {
497 		ret = ERR_PTR(err);
498 		goto out_mr;
499 	}
500 
501 	/*
502 	 * Once the store to either xarray completes any error unwind has to
503 	 * use synchronize_srcu(). Avoid this with xa_reserve()
504 	 */
505 	ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
506 			 GFP_KERNEL);
507 	if (unlikely(ret)) {
508 		if (xa_is_err(ret)) {
509 			ret = ERR_PTR(xa_err(ret));
510 			goto out_mr;
511 		}
512 		/*
513 		 * Another thread beat us to creating the child mr, use
514 		 * theirs.
515 		 */
516 		goto out_mr;
517 	}
518 
519 	mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
520 	return mr;
521 
522 out_mr:
523 	mlx5_mr_cache_free(imr->dev, mr);
524 out_umem:
525 	ib_umem_odp_release(odp);
526 	return ret;
527 }
528 
529 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
530 					     struct ib_udata *udata,
531 					     int access_flags)
532 {
533 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
534 	struct ib_umem_odp *umem_odp;
535 	struct mlx5_ib_mr *imr;
536 	int err;
537 
538 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
539 	if (IS_ERR(umem_odp))
540 		return ERR_CAST(umem_odp);
541 
542 	imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
543 	if (IS_ERR(imr)) {
544 		err = PTR_ERR(imr);
545 		goto out_umem;
546 	}
547 
548 	imr->ibmr.pd = &pd->ibpd;
549 	imr->access_flags = access_flags;
550 	imr->mmkey.iova = 0;
551 	imr->umem = &umem_odp->umem;
552 	imr->ibmr.lkey = imr->mmkey.key;
553 	imr->ibmr.rkey = imr->mmkey.key;
554 	imr->umem = &umem_odp->umem;
555 	imr->is_odp_implicit = true;
556 	atomic_set(&imr->num_deferred_work, 0);
557 	xa_init(&imr->implicit_children);
558 
559 	err = mlx5_ib_update_xlt(imr, 0,
560 				 mlx5_imr_ksm_entries,
561 				 MLX5_KSM_PAGE_SHIFT,
562 				 MLX5_IB_UPD_XLT_INDIRECT |
563 				 MLX5_IB_UPD_XLT_ZAP |
564 				 MLX5_IB_UPD_XLT_ENABLE);
565 	if (err)
566 		goto out_mr;
567 
568 	err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
569 			      &imr->mmkey, GFP_KERNEL));
570 	if (err)
571 		goto out_mr;
572 
573 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
574 	return imr;
575 out_mr:
576 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
577 	mlx5_mr_cache_free(dev, imr);
578 out_umem:
579 	ib_umem_odp_release(umem_odp);
580 	return ERR_PTR(err);
581 }
582 
583 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
584 {
585 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
586 	struct mlx5_ib_dev *dev = imr->dev;
587 	struct list_head destroy_list;
588 	struct mlx5_ib_mr *mtt;
589 	struct mlx5_ib_mr *tmp;
590 	unsigned long idx;
591 
592 	INIT_LIST_HEAD(&destroy_list);
593 
594 	xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
595 	/*
596 	 * This stops the SRCU protected page fault path from touching either
597 	 * the imr or any children. The page fault path can only reach the
598 	 * children xarray via the imr.
599 	 */
600 	synchronize_srcu(&dev->odp_srcu);
601 
602 	xa_lock(&imr->implicit_children);
603 	xa_for_each (&imr->implicit_children, idx, mtt) {
604 		__xa_erase(&imr->implicit_children, idx);
605 		list_add(&mtt->odp_destroy.elm, &destroy_list);
606 	}
607 	xa_unlock(&imr->implicit_children);
608 
609 	/*
610 	 * num_deferred_work can only be incremented inside the odp_srcu, or
611 	 * under xa_lock while the child is in the xarray. Thus at this point
612 	 * it is only decreasing, and all work holding it is now on the wq.
613 	 */
614 	if (atomic_read(&imr->num_deferred_work)) {
615 		flush_workqueue(system_unbound_wq);
616 		WARN_ON(atomic_read(&imr->num_deferred_work));
617 	}
618 
619 	/*
620 	 * Fence the imr before we destroy the children. This allows us to
621 	 * skip updating the XLT of the imr during destroy of the child mkey
622 	 * the imr points to.
623 	 */
624 	mlx5_mr_cache_invalidate(imr);
625 
626 	list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
627 		free_implicit_child_mr(mtt, false);
628 
629 	mlx5_mr_cache_free(dev, imr);
630 	ib_umem_odp_release(odp_imr);
631 }
632 
633 /**
634  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
635  * @mr: to fence
636  *
637  * On return no parallel threads will be touching this MR and no DMA will be
638  * active.
639  */
640 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
641 {
642 	/* Prevent new page faults and prefetch requests from succeeding */
643 	xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
644 
645 	/* Wait for all running page-fault handlers to finish. */
646 	synchronize_srcu(&mr->dev->odp_srcu);
647 
648 	if (atomic_read(&mr->num_deferred_work)) {
649 		flush_workqueue(system_unbound_wq);
650 		WARN_ON(atomic_read(&mr->num_deferred_work));
651 	}
652 
653 	dma_fence_odp_mr(mr);
654 }
655 
656 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
657 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
658 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
659 			     u32 flags)
660 {
661 	int page_shift, ret, np;
662 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
663 	unsigned long current_seq;
664 	u64 access_mask;
665 	u64 start_idx;
666 
667 	page_shift = odp->page_shift;
668 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
669 	access_mask = ODP_READ_ALLOWED_BIT;
670 
671 	if (odp->umem.writable && !downgrade)
672 		access_mask |= ODP_WRITE_ALLOWED_BIT;
673 
674 	current_seq = mmu_interval_read_begin(&odp->notifier);
675 
676 	np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
677 				       current_seq);
678 	if (np < 0)
679 		return np;
680 
681 	mutex_lock(&odp->umem_mutex);
682 	if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
683 		/*
684 		 * No need to check whether the MTTs really belong to
685 		 * this MR, since ib_umem_odp_map_dma_pages already
686 		 * checks this.
687 		 */
688 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
689 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
690 	} else {
691 		ret = -EAGAIN;
692 	}
693 	mutex_unlock(&odp->umem_mutex);
694 
695 	if (ret < 0) {
696 		if (ret != -EAGAIN)
697 			mlx5_ib_err(mr->dev,
698 				    "Failed to update mkey page tables\n");
699 		goto out;
700 	}
701 
702 	if (bytes_mapped) {
703 		u32 new_mappings = (np << page_shift) -
704 			(user_va - round_down(user_va, 1 << page_shift));
705 
706 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
707 	}
708 
709 	return np << (page_shift - PAGE_SHIFT);
710 
711 out:
712 	return ret;
713 }
714 
715 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
716 				 struct ib_umem_odp *odp_imr, u64 user_va,
717 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
718 {
719 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
720 	unsigned long upd_start_idx = end_idx + 1;
721 	unsigned long upd_len = 0;
722 	unsigned long npages = 0;
723 	int err;
724 	int ret;
725 
726 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
727 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
728 		return -EFAULT;
729 
730 	/* Fault each child mr that intersects with our interval. */
731 	while (bcnt) {
732 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
733 		struct ib_umem_odp *umem_odp;
734 		struct mlx5_ib_mr *mtt;
735 		u64 len;
736 
737 		mtt = xa_load(&imr->implicit_children, idx);
738 		if (unlikely(!mtt)) {
739 			mtt = implicit_get_child_mr(imr, idx);
740 			if (IS_ERR(mtt)) {
741 				ret = PTR_ERR(mtt);
742 				goto out;
743 			}
744 			upd_start_idx = min(upd_start_idx, idx);
745 			upd_len = idx - upd_start_idx + 1;
746 		}
747 
748 		umem_odp = to_ib_umem_odp(mtt->umem);
749 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
750 		      user_va;
751 
752 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
753 					bytes_mapped, flags);
754 		if (ret < 0)
755 			goto out;
756 		user_va += len;
757 		bcnt -= len;
758 		npages += ret;
759 	}
760 
761 	ret = npages;
762 
763 	/*
764 	 * Any time the implicit_children are changed we must perform an
765 	 * update of the xlt before exiting to ensure the HW and the
766 	 * implicit_children remains synchronized.
767 	 */
768 out:
769 	if (likely(!upd_len))
770 		return ret;
771 
772 	/*
773 	 * Notice this is not strictly ordered right, the KSM is updated after
774 	 * the implicit_children is updated, so a parallel page fault could
775 	 * see a MR that is not yet visible in the KSM.  This is similar to a
776 	 * parallel page fault seeing a MR that is being concurrently removed
777 	 * from the KSM. Both of these improbable situations are resolved
778 	 * safely by resuming the HW and then taking another page fault. The
779 	 * next pagefault handler will see the new information.
780 	 */
781 	mutex_lock(&odp_imr->umem_mutex);
782 	err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
783 				 MLX5_IB_UPD_XLT_INDIRECT |
784 					 MLX5_IB_UPD_XLT_ATOMIC);
785 	mutex_unlock(&odp_imr->umem_mutex);
786 	if (err) {
787 		mlx5_ib_err(imr->dev, "Failed to update PAS\n");
788 		return err;
789 	}
790 	return ret;
791 }
792 
793 /*
794  * Returns:
795  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
796  *           not accessible, or the MR is no longer valid.
797  *  -EAGAIN/-ENOMEM: The operation should be retried
798  *
799  *  -EINVAL/others: General internal malfunction
800  *  >0: Number of pages mapped
801  */
802 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
803 			u32 *bytes_mapped, u32 flags)
804 {
805 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
806 
807 	if (unlikely(io_virt < mr->mmkey.iova))
808 		return -EFAULT;
809 
810 	if (!odp->is_implicit_odp) {
811 		u64 user_va;
812 
813 		if (check_add_overflow(io_virt - mr->mmkey.iova,
814 				       (u64)odp->umem.address, &user_va))
815 			return -EFAULT;
816 		if (unlikely(user_va >= ib_umem_end(odp) ||
817 			     ib_umem_end(odp) - user_va < bcnt))
818 			return -EFAULT;
819 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
820 					 flags);
821 	}
822 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
823 				     flags);
824 }
825 
826 struct pf_frame {
827 	struct pf_frame *next;
828 	u32 key;
829 	u64 io_virt;
830 	size_t bcnt;
831 	int depth;
832 };
833 
834 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
835 {
836 	if (!mmkey)
837 		return false;
838 	if (mmkey->type == MLX5_MKEY_MW)
839 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
840 	return mmkey->key == key;
841 }
842 
843 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
844 {
845 	struct mlx5_ib_mw *mw;
846 	struct mlx5_ib_devx_mr *devx_mr;
847 
848 	if (mmkey->type == MLX5_MKEY_MW) {
849 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
850 		return mw->ndescs;
851 	}
852 
853 	devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
854 			       mmkey);
855 	return devx_mr->ndescs;
856 }
857 
858 /*
859  * Handle a single data segment in a page-fault WQE or RDMA region.
860  *
861  * Returns number of OS pages retrieved on success. The caller may continue to
862  * the next data segment.
863  * Can return the following error codes:
864  * -EAGAIN to designate a temporary error. The caller will abort handling the
865  *  page fault and resolve it.
866  * -EFAULT when there's an error mapping the requested pages. The caller will
867  *  abort the page fault handling.
868  */
869 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
870 					 struct ib_pd *pd, u32 key,
871 					 u64 io_virt, size_t bcnt,
872 					 u32 *bytes_committed,
873 					 u32 *bytes_mapped)
874 {
875 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
876 	struct pf_frame *head = NULL, *frame;
877 	struct mlx5_core_mkey *mmkey;
878 	struct mlx5_ib_mr *mr;
879 	struct mlx5_klm *pklm;
880 	u32 *out = NULL;
881 	size_t offset;
882 	int ndescs;
883 
884 	srcu_key = srcu_read_lock(&dev->odp_srcu);
885 
886 	io_virt += *bytes_committed;
887 	bcnt -= *bytes_committed;
888 
889 next_mr:
890 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
891 	if (!mmkey) {
892 		mlx5_ib_dbg(
893 			dev,
894 			"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
895 			key);
896 		if (bytes_mapped)
897 			*bytes_mapped += bcnt;
898 		/*
899 		 * The user could specify a SGL with multiple lkeys and only
900 		 * some of them are ODP. Treat the non-ODP ones as fully
901 		 * faulted.
902 		 */
903 		ret = 0;
904 		goto srcu_unlock;
905 	}
906 	if (!mkey_is_eq(mmkey, key)) {
907 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
908 		ret = -EFAULT;
909 		goto srcu_unlock;
910 	}
911 
912 	switch (mmkey->type) {
913 	case MLX5_MKEY_MR:
914 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
915 
916 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
917 		if (ret < 0)
918 			goto srcu_unlock;
919 
920 		/*
921 		 * When prefetching a page, page fault is generated
922 		 * in order to bring the page to the main memory.
923 		 * In the current flow, page faults are being counted.
924 		 */
925 		mlx5_update_odp_stats(mr, faults, ret);
926 
927 		npages += ret;
928 		ret = 0;
929 		break;
930 
931 	case MLX5_MKEY_MW:
932 	case MLX5_MKEY_INDIRECT_DEVX:
933 		ndescs = get_indirect_num_descs(mmkey);
934 
935 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
936 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
937 			ret = -EFAULT;
938 			goto srcu_unlock;
939 		}
940 
941 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
942 			sizeof(*pklm) * (ndescs - 2);
943 
944 		if (outlen > cur_outlen) {
945 			kfree(out);
946 			out = kzalloc(outlen, GFP_KERNEL);
947 			if (!out) {
948 				ret = -ENOMEM;
949 				goto srcu_unlock;
950 			}
951 			cur_outlen = outlen;
952 		}
953 
954 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
955 						       bsf0_klm0_pas_mtt0_1);
956 
957 		ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
958 		if (ret)
959 			goto srcu_unlock;
960 
961 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
962 					      memory_key_mkey_entry.start_addr);
963 
964 		for (i = 0; bcnt && i < ndescs; i++, pklm++) {
965 			if (offset >= be32_to_cpu(pklm->bcount)) {
966 				offset -= be32_to_cpu(pklm->bcount);
967 				continue;
968 			}
969 
970 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
971 			if (!frame) {
972 				ret = -ENOMEM;
973 				goto srcu_unlock;
974 			}
975 
976 			frame->key = be32_to_cpu(pklm->key);
977 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
978 			frame->bcnt = min_t(size_t, bcnt,
979 					    be32_to_cpu(pklm->bcount) - offset);
980 			frame->depth = depth + 1;
981 			frame->next = head;
982 			head = frame;
983 
984 			bcnt -= frame->bcnt;
985 			offset = 0;
986 		}
987 		break;
988 
989 	default:
990 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
991 		ret = -EFAULT;
992 		goto srcu_unlock;
993 	}
994 
995 	if (head) {
996 		frame = head;
997 		head = frame->next;
998 
999 		key = frame->key;
1000 		io_virt = frame->io_virt;
1001 		bcnt = frame->bcnt;
1002 		depth = frame->depth;
1003 		kfree(frame);
1004 
1005 		goto next_mr;
1006 	}
1007 
1008 srcu_unlock:
1009 	while (head) {
1010 		frame = head;
1011 		head = frame->next;
1012 		kfree(frame);
1013 	}
1014 	kfree(out);
1015 
1016 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1017 	*bytes_committed = 0;
1018 	return ret ? ret : npages;
1019 }
1020 
1021 /**
1022  * Parse a series of data segments for page fault handling.
1023  *
1024  * @pfault contains page fault information.
1025  * @wqe points at the first data segment in the WQE.
1026  * @wqe_end points after the end of the WQE.
1027  * @bytes_mapped receives the number of bytes that the function was able to
1028  *               map. This allows the caller to decide intelligently whether
1029  *               enough memory was mapped to resolve the page fault
1030  *               successfully (e.g. enough for the next MTU, or the entire
1031  *               WQE).
1032  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1033  *                  the committed bytes).
1034  *
1035  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1036  * negative error code.
1037  */
1038 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1039 				   struct mlx5_pagefault *pfault,
1040 				   void *wqe,
1041 				   void *wqe_end, u32 *bytes_mapped,
1042 				   u32 *total_wqe_bytes, bool receive_queue)
1043 {
1044 	int ret = 0, npages = 0;
1045 	u64 io_virt;
1046 	u32 key;
1047 	u32 byte_count;
1048 	size_t bcnt;
1049 	int inline_segment;
1050 
1051 	if (bytes_mapped)
1052 		*bytes_mapped = 0;
1053 	if (total_wqe_bytes)
1054 		*total_wqe_bytes = 0;
1055 
1056 	while (wqe < wqe_end) {
1057 		struct mlx5_wqe_data_seg *dseg = wqe;
1058 
1059 		io_virt = be64_to_cpu(dseg->addr);
1060 		key = be32_to_cpu(dseg->lkey);
1061 		byte_count = be32_to_cpu(dseg->byte_count);
1062 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1063 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1064 
1065 		if (inline_segment) {
1066 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1067 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1068 				     16);
1069 		} else {
1070 			wqe += sizeof(*dseg);
1071 		}
1072 
1073 		/* receive WQE end of sg list. */
1074 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1075 		    io_virt == 0)
1076 			break;
1077 
1078 		if (!inline_segment && total_wqe_bytes) {
1079 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1080 					pfault->bytes_committed);
1081 		}
1082 
1083 		/* A zero length data segment designates a length of 2GB. */
1084 		if (bcnt == 0)
1085 			bcnt = 1U << 31;
1086 
1087 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1088 			pfault->bytes_committed -=
1089 				min_t(size_t, bcnt,
1090 				      pfault->bytes_committed);
1091 			continue;
1092 		}
1093 
1094 		ret = pagefault_single_data_segment(dev, NULL, key,
1095 						    io_virt, bcnt,
1096 						    &pfault->bytes_committed,
1097 						    bytes_mapped);
1098 		if (ret < 0)
1099 			break;
1100 		npages += ret;
1101 	}
1102 
1103 	return ret < 0 ? ret : npages;
1104 }
1105 
1106 /*
1107  * Parse initiator WQE. Advances the wqe pointer to point at the
1108  * scatter-gather list, and set wqe_end to the end of the WQE.
1109  */
1110 static int mlx5_ib_mr_initiator_pfault_handler(
1111 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1112 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1113 {
1114 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1115 	u16 wqe_index = pfault->wqe.wqe_index;
1116 	struct mlx5_base_av *av;
1117 	unsigned ds, opcode;
1118 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1119 
1120 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1121 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1122 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1123 			    ds, wqe_length);
1124 		return -EFAULT;
1125 	}
1126 
1127 	if (ds == 0) {
1128 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1129 			    wqe_index, qpn);
1130 		return -EFAULT;
1131 	}
1132 
1133 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1134 	*wqe += sizeof(*ctrl);
1135 
1136 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1137 		 MLX5_WQE_CTRL_OPCODE_MASK;
1138 
1139 	if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1140 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1141 
1142 	if (qp->ibqp.qp_type == IB_QPT_UD ||
1143 	    qp->qp_sub_type == MLX5_IB_QPT_DCI) {
1144 		av = *wqe;
1145 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1146 			*wqe += sizeof(struct mlx5_av);
1147 		else
1148 			*wqe += sizeof(struct mlx5_base_av);
1149 	}
1150 
1151 	switch (opcode) {
1152 	case MLX5_OPCODE_RDMA_WRITE:
1153 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1154 	case MLX5_OPCODE_RDMA_READ:
1155 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1156 		break;
1157 	case MLX5_OPCODE_ATOMIC_CS:
1158 	case MLX5_OPCODE_ATOMIC_FA:
1159 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1160 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1161 		break;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 /*
1168  * Parse responder WQE and set wqe_end to the end of the WQE.
1169  */
1170 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1171 						   struct mlx5_ib_srq *srq,
1172 						   void **wqe, void **wqe_end,
1173 						   int wqe_length)
1174 {
1175 	int wqe_size = 1 << srq->msrq.wqe_shift;
1176 
1177 	if (wqe_size > wqe_length) {
1178 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1179 		return -EFAULT;
1180 	}
1181 
1182 	*wqe_end = *wqe + wqe_size;
1183 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1184 
1185 	return 0;
1186 }
1187 
1188 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1189 						  struct mlx5_ib_qp *qp,
1190 						  void *wqe, void **wqe_end,
1191 						  int wqe_length)
1192 {
1193 	struct mlx5_ib_wq *wq = &qp->rq;
1194 	int wqe_size = 1 << wq->wqe_shift;
1195 
1196 	if (qp->wq_sig) {
1197 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1198 		return -EFAULT;
1199 	}
1200 
1201 	if (wqe_size > wqe_length) {
1202 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1203 		return -EFAULT;
1204 	}
1205 
1206 	*wqe_end = wqe + wqe_size;
1207 
1208 	return 0;
1209 }
1210 
1211 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1212 						       u32 wq_num, int pf_type)
1213 {
1214 	struct mlx5_core_rsc_common *common = NULL;
1215 	struct mlx5_core_srq *srq;
1216 
1217 	switch (pf_type) {
1218 	case MLX5_WQE_PF_TYPE_RMP:
1219 		srq = mlx5_cmd_get_srq(dev, wq_num);
1220 		if (srq)
1221 			common = &srq->common;
1222 		break;
1223 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1224 	case MLX5_WQE_PF_TYPE_RESP:
1225 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1226 		common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1227 		break;
1228 	default:
1229 		break;
1230 	}
1231 
1232 	return common;
1233 }
1234 
1235 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1236 {
1237 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1238 
1239 	return to_mibqp(mqp);
1240 }
1241 
1242 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1243 {
1244 	struct mlx5_core_srq *msrq =
1245 		container_of(res, struct mlx5_core_srq, common);
1246 
1247 	return to_mibsrq(msrq);
1248 }
1249 
1250 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1251 					  struct mlx5_pagefault *pfault)
1252 {
1253 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1254 	u16 wqe_index = pfault->wqe.wqe_index;
1255 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1256 	u32 bytes_mapped, total_wqe_bytes;
1257 	struct mlx5_core_rsc_common *res;
1258 	int resume_with_error = 1;
1259 	struct mlx5_ib_qp *qp;
1260 	size_t bytes_copied;
1261 	int ret = 0;
1262 
1263 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1264 	if (!res) {
1265 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1266 		return;
1267 	}
1268 
1269 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1270 	    res->res != MLX5_RES_XSRQ) {
1271 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1272 			    pfault->type);
1273 		goto resolve_page_fault;
1274 	}
1275 
1276 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1277 	if (!wqe_start) {
1278 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1279 		goto resolve_page_fault;
1280 	}
1281 
1282 	wqe = wqe_start;
1283 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1284 	if (qp && sq) {
1285 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1286 					  &bytes_copied);
1287 		if (ret)
1288 			goto read_user;
1289 		ret = mlx5_ib_mr_initiator_pfault_handler(
1290 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1291 	} else if (qp && !sq) {
1292 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1293 					  &bytes_copied);
1294 		if (ret)
1295 			goto read_user;
1296 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1297 			dev, qp, wqe, &wqe_end, bytes_copied);
1298 	} else if (!qp) {
1299 		struct mlx5_ib_srq *srq = res_to_srq(res);
1300 
1301 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1302 					   &bytes_copied);
1303 		if (ret)
1304 			goto read_user;
1305 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1306 			dev, srq, &wqe, &wqe_end, bytes_copied);
1307 	}
1308 
1309 	if (ret < 0 || wqe >= wqe_end)
1310 		goto resolve_page_fault;
1311 
1312 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1313 				      &total_wqe_bytes, !sq);
1314 	if (ret == -EAGAIN)
1315 		goto out;
1316 
1317 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1318 		goto resolve_page_fault;
1319 
1320 out:
1321 	ret = 0;
1322 	resume_with_error = 0;
1323 
1324 read_user:
1325 	if (ret)
1326 		mlx5_ib_err(
1327 			dev,
1328 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1329 			ret, wqe_index, pfault->token);
1330 
1331 resolve_page_fault:
1332 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1333 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1334 		    pfault->wqe.wq_num, resume_with_error,
1335 		    pfault->type);
1336 	mlx5_core_res_put(res);
1337 	free_page((unsigned long)wqe_start);
1338 }
1339 
1340 static int pages_in_range(u64 address, u32 length)
1341 {
1342 	return (ALIGN(address + length, PAGE_SIZE) -
1343 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1344 }
1345 
1346 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1347 					   struct mlx5_pagefault *pfault)
1348 {
1349 	u64 address;
1350 	u32 length;
1351 	u32 prefetch_len = pfault->bytes_committed;
1352 	int prefetch_activated = 0;
1353 	u32 rkey = pfault->rdma.r_key;
1354 	int ret;
1355 
1356 	/* The RDMA responder handler handles the page fault in two parts.
1357 	 * First it brings the necessary pages for the current packet
1358 	 * (and uses the pfault context), and then (after resuming the QP)
1359 	 * prefetches more pages. The second operation cannot use the pfault
1360 	 * context and therefore uses the dummy_pfault context allocated on
1361 	 * the stack */
1362 	pfault->rdma.rdma_va += pfault->bytes_committed;
1363 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1364 					 pfault->rdma.rdma_op_len);
1365 	pfault->bytes_committed = 0;
1366 
1367 	address = pfault->rdma.rdma_va;
1368 	length  = pfault->rdma.rdma_op_len;
1369 
1370 	/* For some operations, the hardware cannot tell the exact message
1371 	 * length, and in those cases it reports zero. Use prefetch
1372 	 * logic. */
1373 	if (length == 0) {
1374 		prefetch_activated = 1;
1375 		length = pfault->rdma.packet_size;
1376 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1377 	}
1378 
1379 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1380 					    &pfault->bytes_committed, NULL);
1381 	if (ret == -EAGAIN) {
1382 		/* We're racing with an invalidation, don't prefetch */
1383 		prefetch_activated = 0;
1384 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1385 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1386 		if (ret != -ENOENT)
1387 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1388 				    ret, pfault->token, pfault->type);
1389 		return;
1390 	}
1391 
1392 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1393 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1394 		    pfault->token, pfault->type,
1395 		    prefetch_activated);
1396 
1397 	/* At this point, there might be a new pagefault already arriving in
1398 	 * the eq, switch to the dummy pagefault for the rest of the
1399 	 * processing. We're still OK with the objects being alive as the
1400 	 * work-queue is being fenced. */
1401 
1402 	if (prefetch_activated) {
1403 		u32 bytes_committed = 0;
1404 
1405 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1406 						    prefetch_len,
1407 						    &bytes_committed, NULL);
1408 		if (ret < 0 && ret != -EAGAIN) {
1409 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1410 				    ret, pfault->token, address, prefetch_len);
1411 		}
1412 	}
1413 }
1414 
1415 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1416 {
1417 	u8 event_subtype = pfault->event_subtype;
1418 
1419 	switch (event_subtype) {
1420 	case MLX5_PFAULT_SUBTYPE_WQE:
1421 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1422 		break;
1423 	case MLX5_PFAULT_SUBTYPE_RDMA:
1424 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1425 		break;
1426 	default:
1427 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1428 			    event_subtype);
1429 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1430 	}
1431 }
1432 
1433 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1434 {
1435 	struct mlx5_pagefault *pfault = container_of(work,
1436 						     struct mlx5_pagefault,
1437 						     work);
1438 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1439 
1440 	mlx5_ib_pfault(eq->dev, pfault);
1441 	mempool_free(pfault, eq->pool);
1442 }
1443 
1444 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1445 {
1446 	struct mlx5_eqe_page_fault *pf_eqe;
1447 	struct mlx5_pagefault *pfault;
1448 	struct mlx5_eqe *eqe;
1449 	int cc = 0;
1450 
1451 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1452 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1453 		if (!pfault) {
1454 			schedule_work(&eq->work);
1455 			break;
1456 		}
1457 
1458 		pf_eqe = &eqe->data.page_fault;
1459 		pfault->event_subtype = eqe->sub_type;
1460 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1461 
1462 		mlx5_ib_dbg(eq->dev,
1463 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1464 			    eqe->sub_type, pfault->bytes_committed);
1465 
1466 		switch (eqe->sub_type) {
1467 		case MLX5_PFAULT_SUBTYPE_RDMA:
1468 			/* RDMA based event */
1469 			pfault->type =
1470 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1471 			pfault->token =
1472 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1473 				MLX5_24BIT_MASK;
1474 			pfault->rdma.r_key =
1475 				be32_to_cpu(pf_eqe->rdma.r_key);
1476 			pfault->rdma.packet_size =
1477 				be16_to_cpu(pf_eqe->rdma.packet_length);
1478 			pfault->rdma.rdma_op_len =
1479 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1480 			pfault->rdma.rdma_va =
1481 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1482 			mlx5_ib_dbg(eq->dev,
1483 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1484 				    pfault->type, pfault->token,
1485 				    pfault->rdma.r_key);
1486 			mlx5_ib_dbg(eq->dev,
1487 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1488 				    pfault->rdma.rdma_op_len,
1489 				    pfault->rdma.rdma_va);
1490 			break;
1491 
1492 		case MLX5_PFAULT_SUBTYPE_WQE:
1493 			/* WQE based event */
1494 			pfault->type =
1495 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1496 			pfault->token =
1497 				be32_to_cpu(pf_eqe->wqe.token);
1498 			pfault->wqe.wq_num =
1499 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1500 				MLX5_24BIT_MASK;
1501 			pfault->wqe.wqe_index =
1502 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1503 			pfault->wqe.packet_size =
1504 				be16_to_cpu(pf_eqe->wqe.packet_length);
1505 			mlx5_ib_dbg(eq->dev,
1506 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1507 				    pfault->type, pfault->token,
1508 				    pfault->wqe.wq_num,
1509 				    pfault->wqe.wqe_index);
1510 			break;
1511 
1512 		default:
1513 			mlx5_ib_warn(eq->dev,
1514 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1515 				     eqe->sub_type);
1516 			/* Unsupported page faults should still be
1517 			 * resolved by the page fault handler
1518 			 */
1519 		}
1520 
1521 		pfault->eq = eq;
1522 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1523 		queue_work(eq->wq, &pfault->work);
1524 
1525 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1526 	}
1527 
1528 	mlx5_eq_update_ci(eq->core, cc, 1);
1529 }
1530 
1531 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1532 			     void *data)
1533 {
1534 	struct mlx5_ib_pf_eq *eq =
1535 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1536 	unsigned long flags;
1537 
1538 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1539 		mlx5_ib_eq_pf_process(eq);
1540 		spin_unlock_irqrestore(&eq->lock, flags);
1541 	} else {
1542 		schedule_work(&eq->work);
1543 	}
1544 
1545 	return IRQ_HANDLED;
1546 }
1547 
1548 /* mempool_refill() was proposed but unfortunately wasn't accepted
1549  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1550  * Cheap workaround.
1551  */
1552 static void mempool_refill(mempool_t *pool)
1553 {
1554 	while (pool->curr_nr < pool->min_nr)
1555 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1556 }
1557 
1558 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1559 {
1560 	struct mlx5_ib_pf_eq *eq =
1561 		container_of(work, struct mlx5_ib_pf_eq, work);
1562 
1563 	mempool_refill(eq->pool);
1564 
1565 	spin_lock_irq(&eq->lock);
1566 	mlx5_ib_eq_pf_process(eq);
1567 	spin_unlock_irq(&eq->lock);
1568 }
1569 
1570 enum {
1571 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1572 	MLX5_IB_NUM_PF_DRAIN	= 64,
1573 };
1574 
1575 static int
1576 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1577 {
1578 	struct mlx5_eq_param param = {};
1579 	int err;
1580 
1581 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1582 	spin_lock_init(&eq->lock);
1583 	eq->dev = dev;
1584 
1585 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1586 					       sizeof(struct mlx5_pagefault));
1587 	if (!eq->pool)
1588 		return -ENOMEM;
1589 
1590 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1591 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1592 				 MLX5_NUM_CMD_EQE);
1593 	if (!eq->wq) {
1594 		err = -ENOMEM;
1595 		goto err_mempool;
1596 	}
1597 
1598 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1599 	param = (struct mlx5_eq_param) {
1600 		.irq_index = 0,
1601 		.nent = MLX5_IB_NUM_PF_EQE,
1602 	};
1603 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1604 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1605 	if (IS_ERR(eq->core)) {
1606 		err = PTR_ERR(eq->core);
1607 		goto err_wq;
1608 	}
1609 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1610 	if (err) {
1611 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1612 		goto err_eq;
1613 	}
1614 
1615 	return 0;
1616 err_eq:
1617 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1618 err_wq:
1619 	destroy_workqueue(eq->wq);
1620 err_mempool:
1621 	mempool_destroy(eq->pool);
1622 	return err;
1623 }
1624 
1625 static int
1626 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1627 {
1628 	int err;
1629 
1630 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1631 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1632 	cancel_work_sync(&eq->work);
1633 	destroy_workqueue(eq->wq);
1634 	mempool_destroy(eq->pool);
1635 
1636 	return err;
1637 }
1638 
1639 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1640 {
1641 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1642 		return;
1643 
1644 	switch (ent->order - 2) {
1645 	case MLX5_IMR_MTT_CACHE_ENTRY:
1646 		ent->page = PAGE_SHIFT;
1647 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1648 			   sizeof(struct mlx5_mtt) /
1649 			   MLX5_IB_UMR_OCTOWORD;
1650 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1651 		ent->limit = 0;
1652 		break;
1653 
1654 	case MLX5_IMR_KSM_CACHE_ENTRY:
1655 		ent->page = MLX5_KSM_PAGE_SHIFT;
1656 		ent->xlt = mlx5_imr_ksm_entries *
1657 			   sizeof(struct mlx5_klm) /
1658 			   MLX5_IB_UMR_OCTOWORD;
1659 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1660 		ent->limit = 0;
1661 		break;
1662 	}
1663 }
1664 
1665 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1666 	.advise_mr = mlx5_ib_advise_mr,
1667 };
1668 
1669 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1670 {
1671 	int ret = 0;
1672 
1673 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1674 		return ret;
1675 
1676 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1677 
1678 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1679 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1680 		if (ret) {
1681 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1682 			return ret;
1683 		}
1684 	}
1685 
1686 	ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1687 
1688 	return ret;
1689 }
1690 
1691 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1692 {
1693 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1694 		return;
1695 
1696 	mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1697 }
1698 
1699 int mlx5_ib_odp_init(void)
1700 {
1701 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1702 				       MLX5_IMR_MTT_BITS);
1703 
1704 	return 0;
1705 }
1706 
1707 struct prefetch_mr_work {
1708 	struct work_struct work;
1709 	u32 pf_flags;
1710 	u32 num_sge;
1711 	struct {
1712 		u64 io_virt;
1713 		struct mlx5_ib_mr *mr;
1714 		size_t length;
1715 	} frags[];
1716 };
1717 
1718 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1719 {
1720 	u32 i;
1721 
1722 	for (i = 0; i < work->num_sge; ++i)
1723 		atomic_dec(&work->frags[i].mr->num_deferred_work);
1724 	kvfree(work);
1725 }
1726 
1727 static struct mlx5_ib_mr *
1728 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1729 		    u32 lkey)
1730 {
1731 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1732 	struct mlx5_core_mkey *mmkey;
1733 	struct ib_umem_odp *odp;
1734 	struct mlx5_ib_mr *mr;
1735 
1736 	lockdep_assert_held(&dev->odp_srcu);
1737 
1738 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1739 	if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1740 		return NULL;
1741 
1742 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1743 
1744 	if (mr->ibmr.pd != pd)
1745 		return NULL;
1746 
1747 	odp = to_ib_umem_odp(mr->umem);
1748 
1749 	/* prefetch with write-access must be supported by the MR */
1750 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1751 	    !odp->umem.writable)
1752 		return NULL;
1753 
1754 	return mr;
1755 }
1756 
1757 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1758 {
1759 	struct prefetch_mr_work *work =
1760 		container_of(w, struct prefetch_mr_work, work);
1761 	u32 bytes_mapped = 0;
1762 	u32 i;
1763 
1764 	for (i = 0; i < work->num_sge; ++i)
1765 		pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1766 			     work->frags[i].length, &bytes_mapped,
1767 			     work->pf_flags);
1768 
1769 	destroy_prefetch_work(work);
1770 }
1771 
1772 static bool init_prefetch_work(struct ib_pd *pd,
1773 			       enum ib_uverbs_advise_mr_advice advice,
1774 			       u32 pf_flags, struct prefetch_mr_work *work,
1775 			       struct ib_sge *sg_list, u32 num_sge)
1776 {
1777 	u32 i;
1778 
1779 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1780 	work->pf_flags = pf_flags;
1781 
1782 	for (i = 0; i < num_sge; ++i) {
1783 		work->frags[i].io_virt = sg_list[i].addr;
1784 		work->frags[i].length = sg_list[i].length;
1785 		work->frags[i].mr =
1786 			get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1787 		if (!work->frags[i].mr) {
1788 			work->num_sge = i - 1;
1789 			if (i)
1790 				destroy_prefetch_work(work);
1791 			return false;
1792 		}
1793 
1794 		/* Keep the MR pointer will valid outside the SRCU */
1795 		atomic_inc(&work->frags[i].mr->num_deferred_work);
1796 	}
1797 	work->num_sge = num_sge;
1798 	return true;
1799 }
1800 
1801 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1802 				    enum ib_uverbs_advise_mr_advice advice,
1803 				    u32 pf_flags, struct ib_sge *sg_list,
1804 				    u32 num_sge)
1805 {
1806 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1807 	u32 bytes_mapped = 0;
1808 	int srcu_key;
1809 	int ret = 0;
1810 	u32 i;
1811 
1812 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1813 	for (i = 0; i < num_sge; ++i) {
1814 		struct mlx5_ib_mr *mr;
1815 
1816 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1817 		if (!mr) {
1818 			ret = -ENOENT;
1819 			goto out;
1820 		}
1821 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1822 				   &bytes_mapped, pf_flags);
1823 		if (ret < 0)
1824 			goto out;
1825 	}
1826 	ret = 0;
1827 
1828 out:
1829 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1830 	return ret;
1831 }
1832 
1833 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1834 			       enum ib_uverbs_advise_mr_advice advice,
1835 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1836 {
1837 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1838 	u32 pf_flags = 0;
1839 	struct prefetch_mr_work *work;
1840 	int srcu_key;
1841 
1842 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1843 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1844 
1845 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1846 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1847 						num_sge);
1848 
1849 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1850 	if (!work)
1851 		return -ENOMEM;
1852 
1853 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1854 	if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1855 		srcu_read_unlock(&dev->odp_srcu, srcu_key);
1856 		return -EINVAL;
1857 	}
1858 	queue_work(system_unbound_wq, &work->work);
1859 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1860 	return 0;
1861 }
1862