1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem.h> 34 #include <rdma/ib_umem_odp.h> 35 #include <linux/kernel.h> 36 #include <linux/dma-buf.h> 37 #include <linux/dma-resv.h> 38 39 #include "mlx5_ib.h" 40 #include "cmd.h" 41 #include "qp.h" 42 43 #include <linux/mlx5/eq.h> 44 45 /* Contains the details of a pagefault. */ 46 struct mlx5_pagefault { 47 u32 bytes_committed; 48 u32 token; 49 u8 event_subtype; 50 u8 type; 51 union { 52 /* Initiator or send message responder pagefault details. */ 53 struct { 54 /* Received packet size, only valid for responders. */ 55 u32 packet_size; 56 /* 57 * Number of resource holding WQE, depends on type. 58 */ 59 u32 wq_num; 60 /* 61 * WQE index. Refers to either the send queue or 62 * receive queue, according to event_subtype. 63 */ 64 u16 wqe_index; 65 } wqe; 66 /* RDMA responder pagefault details */ 67 struct { 68 u32 r_key; 69 /* 70 * Received packet size, minimal size page fault 71 * resolution required for forward progress. 72 */ 73 u32 packet_size; 74 u32 rdma_op_len; 75 u64 rdma_va; 76 } rdma; 77 }; 78 79 struct mlx5_ib_pf_eq *eq; 80 struct work_struct work; 81 }; 82 83 #define MAX_PREFETCH_LEN (4*1024*1024U) 84 85 /* Timeout in ms to wait for an active mmu notifier to complete when handling 86 * a pagefault. */ 87 #define MMU_NOTIFIER_TIMEOUT 1000 88 89 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 90 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 91 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 92 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 93 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 94 95 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 96 97 static u64 mlx5_imr_ksm_entries; 98 99 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, 100 struct mlx5_ib_mr *imr, int flags) 101 { 102 struct mlx5_klm *end = pklm + nentries; 103 104 if (flags & MLX5_IB_UPD_XLT_ZAP) { 105 for (; pklm != end; pklm++, idx++) { 106 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 107 pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey); 108 pklm->va = 0; 109 } 110 return; 111 } 112 113 /* 114 * The locking here is pretty subtle. Ideally the implicit_children 115 * xarray would be protected by the umem_mutex, however that is not 116 * possible. Instead this uses a weaker update-then-lock pattern: 117 * 118 * xa_store() 119 * mutex_lock(umem_mutex) 120 * mlx5_ib_update_xlt() 121 * mutex_unlock(umem_mutex) 122 * destroy lkey 123 * 124 * ie any change the xarray must be followed by the locked update_xlt 125 * before destroying. 126 * 127 * The umem_mutex provides the acquire/release semantic needed to make 128 * the xa_store() visible to a racing thread. 129 */ 130 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); 131 132 for (; pklm != end; pklm++, idx++) { 133 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); 134 135 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 136 if (mtt) { 137 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 138 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); 139 } else { 140 pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey); 141 pklm->va = 0; 142 } 143 } 144 } 145 146 static u64 umem_dma_to_mtt(dma_addr_t umem_dma) 147 { 148 u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK; 149 150 if (umem_dma & ODP_READ_ALLOWED_BIT) 151 mtt_entry |= MLX5_IB_MTT_READ; 152 if (umem_dma & ODP_WRITE_ALLOWED_BIT) 153 mtt_entry |= MLX5_IB_MTT_WRITE; 154 155 return mtt_entry; 156 } 157 158 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries, 159 struct mlx5_ib_mr *mr, int flags) 160 { 161 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 162 dma_addr_t pa; 163 size_t i; 164 165 if (flags & MLX5_IB_UPD_XLT_ZAP) 166 return; 167 168 for (i = 0; i < nentries; i++) { 169 pa = odp->dma_list[idx + i]; 170 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa)); 171 } 172 } 173 174 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries, 175 struct mlx5_ib_mr *mr, int flags) 176 { 177 if (flags & MLX5_IB_UPD_XLT_INDIRECT) { 178 populate_klm(xlt, idx, nentries, mr, flags); 179 } else { 180 populate_mtt(xlt, idx, nentries, mr, flags); 181 } 182 } 183 184 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr) 185 { 186 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 187 188 /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */ 189 mutex_lock(&odp->umem_mutex); 190 if (odp->npages) { 191 mlx5_mr_cache_invalidate(mr); 192 ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp), 193 ib_umem_end(odp)); 194 WARN_ON(odp->npages); 195 } 196 odp->private = NULL; 197 mutex_unlock(&odp->umem_mutex); 198 199 if (!mr->cache_ent) { 200 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, &mr->mmkey); 201 WARN_ON(mr->descs); 202 } 203 } 204 205 /* 206 * This must be called after the mr has been removed from implicit_children. 207 * NOTE: The MR does not necessarily have to be 208 * empty here, parallel page faults could have raced with the free process and 209 * added pages to it. 210 */ 211 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt) 212 { 213 struct mlx5_ib_mr *imr = mr->parent; 214 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 215 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 216 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 217 218 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 219 220 if (need_imr_xlt) { 221 mutex_lock(&odp_imr->umem_mutex); 222 mlx5_ib_update_xlt(mr->parent, idx, 1, 0, 223 MLX5_IB_UPD_XLT_INDIRECT | 224 MLX5_IB_UPD_XLT_ATOMIC); 225 mutex_unlock(&odp_imr->umem_mutex); 226 } 227 228 dma_fence_odp_mr(mr); 229 230 mr->parent = NULL; 231 mlx5_mr_cache_free(mr_to_mdev(mr), mr); 232 ib_umem_odp_release(odp); 233 } 234 235 static void free_implicit_child_mr_work(struct work_struct *work) 236 { 237 struct mlx5_ib_mr *mr = 238 container_of(work, struct mlx5_ib_mr, odp_destroy.work); 239 struct mlx5_ib_mr *imr = mr->parent; 240 241 free_implicit_child_mr(mr, true); 242 mlx5r_deref_odp_mkey(&imr->mmkey); 243 } 244 245 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) 246 { 247 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 248 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 249 struct mlx5_ib_mr *imr = mr->parent; 250 251 if (!refcount_inc_not_zero(&imr->mmkey.usecount)) 252 return; 253 254 xa_erase(&imr->implicit_children, idx); 255 256 /* Freeing a MR is a sleeping operation, so bounce to a work queue */ 257 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); 258 queue_work(system_unbound_wq, &mr->odp_destroy.work); 259 } 260 261 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, 262 const struct mmu_notifier_range *range, 263 unsigned long cur_seq) 264 { 265 struct ib_umem_odp *umem_odp = 266 container_of(mni, struct ib_umem_odp, notifier); 267 struct mlx5_ib_mr *mr; 268 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / 269 sizeof(struct mlx5_mtt)) - 1; 270 u64 idx = 0, blk_start_idx = 0; 271 u64 invalidations = 0; 272 unsigned long start; 273 unsigned long end; 274 int in_block = 0; 275 u64 addr; 276 277 if (!mmu_notifier_range_blockable(range)) 278 return false; 279 280 mutex_lock(&umem_odp->umem_mutex); 281 mmu_interval_set_seq(mni, cur_seq); 282 /* 283 * If npages is zero then umem_odp->private may not be setup yet. This 284 * does not complete until after the first page is mapped for DMA. 285 */ 286 if (!umem_odp->npages) 287 goto out; 288 mr = umem_odp->private; 289 290 start = max_t(u64, ib_umem_start(umem_odp), range->start); 291 end = min_t(u64, ib_umem_end(umem_odp), range->end); 292 293 /* 294 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 295 * while we are doing the invalidation, no page fault will attempt to 296 * overwrite the same MTTs. Concurent invalidations might race us, 297 * but they will write 0s as well, so no difference in the end result. 298 */ 299 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { 300 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 301 /* 302 * Strive to write the MTTs in chunks, but avoid overwriting 303 * non-existing MTTs. The huristic here can be improved to 304 * estimate the cost of another UMR vs. the cost of bigger 305 * UMR. 306 */ 307 if (umem_odp->dma_list[idx] & 308 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 309 if (!in_block) { 310 blk_start_idx = idx; 311 in_block = 1; 312 } 313 314 /* Count page invalidations */ 315 invalidations += idx - blk_start_idx + 1; 316 } else { 317 u64 umr_offset = idx & umr_block_mask; 318 319 if (in_block && umr_offset == 0) { 320 mlx5_ib_update_xlt(mr, blk_start_idx, 321 idx - blk_start_idx, 0, 322 MLX5_IB_UPD_XLT_ZAP | 323 MLX5_IB_UPD_XLT_ATOMIC); 324 in_block = 0; 325 } 326 } 327 } 328 if (in_block) 329 mlx5_ib_update_xlt(mr, blk_start_idx, 330 idx - blk_start_idx + 1, 0, 331 MLX5_IB_UPD_XLT_ZAP | 332 MLX5_IB_UPD_XLT_ATOMIC); 333 334 mlx5_update_odp_stats(mr, invalidations, invalidations); 335 336 /* 337 * We are now sure that the device will not access the 338 * memory. We can safely unmap it, and mark it as dirty if 339 * needed. 340 */ 341 342 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 343 344 if (unlikely(!umem_odp->npages && mr->parent)) 345 destroy_unused_implicit_child_mr(mr); 346 out: 347 mutex_unlock(&umem_odp->umem_mutex); 348 return true; 349 } 350 351 const struct mmu_interval_notifier_ops mlx5_mn_ops = { 352 .invalidate = mlx5_ib_invalidate_range, 353 }; 354 355 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) 356 { 357 struct ib_odp_caps *caps = &dev->odp_caps; 358 359 memset(caps, 0, sizeof(*caps)); 360 361 if (!MLX5_CAP_GEN(dev->mdev, pg) || 362 !mlx5_ib_can_load_pas_with_umr(dev, 0)) 363 return; 364 365 caps->general_caps = IB_ODP_SUPPORT; 366 367 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 368 dev->odp_max_size = U64_MAX; 369 else 370 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 371 372 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) 373 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 374 375 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) 376 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 377 378 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) 379 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 380 381 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) 382 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 383 384 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) 385 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 386 387 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) 388 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 389 390 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) 391 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 392 393 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) 394 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 395 396 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) 397 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 398 399 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) 400 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 401 402 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) 403 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 404 405 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) 406 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 407 408 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) 409 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 410 411 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) 412 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 413 414 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 415 MLX5_CAP_GEN(dev->mdev, null_mkey) && 416 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && 417 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) 418 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 419 } 420 421 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 422 struct mlx5_pagefault *pfault, 423 int error) 424 { 425 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 426 pfault->wqe.wq_num : pfault->token; 427 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {}; 428 int err; 429 430 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 431 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); 432 MLX5_SET(page_fault_resume_in, in, token, pfault->token); 433 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); 434 MLX5_SET(page_fault_resume_in, in, error, !!error); 435 436 err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in); 437 if (err) 438 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 439 wq_num, err); 440 } 441 442 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, 443 unsigned long idx) 444 { 445 struct ib_umem_odp *odp; 446 struct mlx5_ib_mr *mr; 447 struct mlx5_ib_mr *ret; 448 int err; 449 450 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), 451 idx * MLX5_IMR_MTT_SIZE, 452 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); 453 if (IS_ERR(odp)) 454 return ERR_CAST(odp); 455 456 ret = mr = mlx5_mr_cache_alloc( 457 mr_to_mdev(imr), MLX5_IMR_MTT_CACHE_ENTRY, imr->access_flags); 458 if (IS_ERR(mr)) 459 goto out_umem; 460 461 mr->ibmr.pd = imr->ibmr.pd; 462 mr->ibmr.device = &mr_to_mdev(imr)->ib_dev; 463 mr->umem = &odp->umem; 464 mr->ibmr.lkey = mr->mmkey.key; 465 mr->ibmr.rkey = mr->mmkey.key; 466 mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE; 467 mr->parent = imr; 468 odp->private = mr; 469 470 /* 471 * First refcount is owned by the xarray and second refconut 472 * is returned to the caller. 473 */ 474 refcount_set(&mr->mmkey.usecount, 2); 475 476 err = mlx5_ib_update_xlt(mr, 0, 477 MLX5_IMR_MTT_ENTRIES, 478 PAGE_SHIFT, 479 MLX5_IB_UPD_XLT_ZAP | 480 MLX5_IB_UPD_XLT_ENABLE); 481 if (err) { 482 ret = ERR_PTR(err); 483 goto out_mr; 484 } 485 486 xa_lock(&imr->implicit_children); 487 ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, 488 GFP_KERNEL); 489 if (unlikely(ret)) { 490 if (xa_is_err(ret)) { 491 ret = ERR_PTR(xa_err(ret)); 492 goto out_lock; 493 } 494 /* 495 * Another thread beat us to creating the child mr, use 496 * theirs. 497 */ 498 refcount_inc(&ret->mmkey.usecount); 499 goto out_lock; 500 } 501 xa_unlock(&imr->implicit_children); 502 503 mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr); 504 return mr; 505 506 out_lock: 507 xa_unlock(&imr->implicit_children); 508 out_mr: 509 mlx5_mr_cache_free(mr_to_mdev(imr), mr); 510 out_umem: 511 ib_umem_odp_release(odp); 512 return ret; 513 } 514 515 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 516 struct ib_udata *udata, 517 int access_flags) 518 { 519 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); 520 struct ib_umem_odp *umem_odp; 521 struct mlx5_ib_mr *imr; 522 int err; 523 524 if (!mlx5_ib_can_load_pas_with_umr(dev, 525 MLX5_IMR_MTT_ENTRIES * PAGE_SIZE)) 526 return ERR_PTR(-EOPNOTSUPP); 527 528 umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags); 529 if (IS_ERR(umem_odp)) 530 return ERR_CAST(umem_odp); 531 532 imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags); 533 if (IS_ERR(imr)) { 534 err = PTR_ERR(imr); 535 goto out_umem; 536 } 537 538 imr->ibmr.pd = &pd->ibpd; 539 imr->mmkey.iova = 0; 540 imr->umem = &umem_odp->umem; 541 imr->ibmr.lkey = imr->mmkey.key; 542 imr->ibmr.rkey = imr->mmkey.key; 543 imr->ibmr.device = &dev->ib_dev; 544 imr->umem = &umem_odp->umem; 545 imr->is_odp_implicit = true; 546 xa_init(&imr->implicit_children); 547 548 err = mlx5_ib_update_xlt(imr, 0, 549 mlx5_imr_ksm_entries, 550 MLX5_KSM_PAGE_SHIFT, 551 MLX5_IB_UPD_XLT_INDIRECT | 552 MLX5_IB_UPD_XLT_ZAP | 553 MLX5_IB_UPD_XLT_ENABLE); 554 if (err) 555 goto out_mr; 556 557 err = mlx5r_store_odp_mkey(dev, &imr->mmkey); 558 if (err) 559 goto out_mr; 560 561 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); 562 return imr; 563 out_mr: 564 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 565 mlx5_mr_cache_free(dev, imr); 566 out_umem: 567 ib_umem_odp_release(umem_odp); 568 return ERR_PTR(err); 569 } 570 571 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) 572 { 573 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 574 struct mlx5_ib_dev *dev = mr_to_mdev(imr); 575 struct mlx5_ib_mr *mtt; 576 unsigned long idx; 577 578 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key)); 579 /* 580 * All work on the prefetch list must be completed, xa_erase() prevented 581 * new work from being created. 582 */ 583 mlx5r_deref_wait_odp_mkey(&imr->mmkey); 584 /* 585 * At this point it is forbidden for any other thread to enter 586 * pagefault_mr() on this imr. It is already forbidden to call 587 * pagefault_mr() on an implicit child. Due to this additions to 588 * implicit_children are prevented. 589 * In addition, any new call to destroy_unused_implicit_child_mr() 590 * may return immediately. 591 */ 592 593 /* 594 * Fence the imr before we destroy the children. This allows us to 595 * skip updating the XLT of the imr during destroy of the child mkey 596 * the imr points to. 597 */ 598 mlx5_mr_cache_invalidate(imr); 599 600 xa_for_each(&imr->implicit_children, idx, mtt) { 601 xa_erase(&imr->implicit_children, idx); 602 free_implicit_child_mr(mtt, false); 603 } 604 605 mlx5_mr_cache_free(dev, imr); 606 ib_umem_odp_release(odp_imr); 607 } 608 609 /** 610 * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR 611 * @mr: to fence 612 * 613 * On return no parallel threads will be touching this MR and no DMA will be 614 * active. 615 */ 616 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr) 617 { 618 /* Prevent new page faults and prefetch requests from succeeding */ 619 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)); 620 621 /* Wait for all running page-fault handlers to finish. */ 622 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 623 624 dma_fence_odp_mr(mr); 625 } 626 627 /** 628 * mlx5_ib_fence_dmabuf_mr - Stop all access to the dmabuf MR 629 * @mr: to fence 630 * 631 * On return no parallel threads will be touching this MR and no DMA will be 632 * active. 633 */ 634 void mlx5_ib_fence_dmabuf_mr(struct mlx5_ib_mr *mr) 635 { 636 struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem); 637 638 /* Prevent new page faults and prefetch requests from succeeding */ 639 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)); 640 641 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 642 643 dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL); 644 mlx5_mr_cache_invalidate(mr); 645 umem_dmabuf->private = NULL; 646 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 647 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 648 649 if (!mr->cache_ent) { 650 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, &mr->mmkey); 651 WARN_ON(mr->descs); 652 } 653 } 654 655 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 656 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2) 657 #define MLX5_PF_FLAGS_ENABLE BIT(3) 658 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, 659 u64 user_va, size_t bcnt, u32 *bytes_mapped, 660 u32 flags) 661 { 662 int page_shift, ret, np; 663 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 664 u64 access_mask; 665 u64 start_idx; 666 bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT); 667 u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC; 668 669 if (flags & MLX5_PF_FLAGS_ENABLE) 670 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; 671 672 page_shift = odp->page_shift; 673 start_idx = (user_va - ib_umem_start(odp)) >> page_shift; 674 access_mask = ODP_READ_ALLOWED_BIT; 675 676 if (odp->umem.writable && !downgrade) 677 access_mask |= ODP_WRITE_ALLOWED_BIT; 678 679 np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault); 680 if (np < 0) 681 return np; 682 683 /* 684 * No need to check whether the MTTs really belong to this MR, since 685 * ib_umem_odp_map_dma_and_lock already checks this. 686 */ 687 ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags); 688 mutex_unlock(&odp->umem_mutex); 689 690 if (ret < 0) { 691 if (ret != -EAGAIN) 692 mlx5_ib_err(mr_to_mdev(mr), 693 "Failed to update mkey page tables\n"); 694 goto out; 695 } 696 697 if (bytes_mapped) { 698 u32 new_mappings = (np << page_shift) - 699 (user_va - round_down(user_va, 1 << page_shift)); 700 701 *bytes_mapped += min_t(u32, new_mappings, bcnt); 702 } 703 704 return np << (page_shift - PAGE_SHIFT); 705 706 out: 707 return ret; 708 } 709 710 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, 711 struct ib_umem_odp *odp_imr, u64 user_va, 712 size_t bcnt, u32 *bytes_mapped, u32 flags) 713 { 714 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; 715 unsigned long upd_start_idx = end_idx + 1; 716 unsigned long upd_len = 0; 717 unsigned long npages = 0; 718 int err; 719 int ret; 720 721 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || 722 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) 723 return -EFAULT; 724 725 /* Fault each child mr that intersects with our interval. */ 726 while (bcnt) { 727 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; 728 struct ib_umem_odp *umem_odp; 729 struct mlx5_ib_mr *mtt; 730 u64 len; 731 732 xa_lock(&imr->implicit_children); 733 mtt = xa_load(&imr->implicit_children, idx); 734 if (unlikely(!mtt)) { 735 xa_unlock(&imr->implicit_children); 736 mtt = implicit_get_child_mr(imr, idx); 737 if (IS_ERR(mtt)) { 738 ret = PTR_ERR(mtt); 739 goto out; 740 } 741 upd_start_idx = min(upd_start_idx, idx); 742 upd_len = idx - upd_start_idx + 1; 743 } else { 744 refcount_inc(&mtt->mmkey.usecount); 745 xa_unlock(&imr->implicit_children); 746 } 747 748 umem_odp = to_ib_umem_odp(mtt->umem); 749 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - 750 user_va; 751 752 ret = pagefault_real_mr(mtt, umem_odp, user_va, len, 753 bytes_mapped, flags); 754 755 mlx5r_deref_odp_mkey(&mtt->mmkey); 756 757 if (ret < 0) 758 goto out; 759 user_va += len; 760 bcnt -= len; 761 npages += ret; 762 } 763 764 ret = npages; 765 766 /* 767 * Any time the implicit_children are changed we must perform an 768 * update of the xlt before exiting to ensure the HW and the 769 * implicit_children remains synchronized. 770 */ 771 out: 772 if (likely(!upd_len)) 773 return ret; 774 775 /* 776 * Notice this is not strictly ordered right, the KSM is updated after 777 * the implicit_children is updated, so a parallel page fault could 778 * see a MR that is not yet visible in the KSM. This is similar to a 779 * parallel page fault seeing a MR that is being concurrently removed 780 * from the KSM. Both of these improbable situations are resolved 781 * safely by resuming the HW and then taking another page fault. The 782 * next pagefault handler will see the new information. 783 */ 784 mutex_lock(&odp_imr->umem_mutex); 785 err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0, 786 MLX5_IB_UPD_XLT_INDIRECT | 787 MLX5_IB_UPD_XLT_ATOMIC); 788 mutex_unlock(&odp_imr->umem_mutex); 789 if (err) { 790 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n"); 791 return err; 792 } 793 return ret; 794 } 795 796 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt, 797 u32 *bytes_mapped, u32 flags) 798 { 799 struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem); 800 u32 xlt_flags = 0; 801 int err; 802 unsigned int page_size; 803 804 if (flags & MLX5_PF_FLAGS_ENABLE) 805 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; 806 807 dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL); 808 err = ib_umem_dmabuf_map_pages(umem_dmabuf); 809 if (err) { 810 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 811 return err; 812 } 813 814 page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc, 815 log_page_size, 0, 816 umem_dmabuf->umem.iova); 817 if (unlikely(page_size < PAGE_SIZE)) { 818 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 819 err = -EINVAL; 820 } else { 821 err = mlx5_ib_update_mr_pas(mr, xlt_flags); 822 } 823 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 824 825 if (err) 826 return err; 827 828 if (bytes_mapped) 829 *bytes_mapped += bcnt; 830 831 return ib_umem_num_pages(mr->umem); 832 } 833 834 /* 835 * Returns: 836 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are 837 * not accessible, or the MR is no longer valid. 838 * -EAGAIN/-ENOMEM: The operation should be retried 839 * 840 * -EINVAL/others: General internal malfunction 841 * >0: Number of pages mapped 842 */ 843 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, 844 u32 *bytes_mapped, u32 flags) 845 { 846 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 847 848 if (unlikely(io_virt < mr->mmkey.iova)) 849 return -EFAULT; 850 851 if (mr->umem->is_dmabuf) 852 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags); 853 854 if (!odp->is_implicit_odp) { 855 u64 user_va; 856 857 if (check_add_overflow(io_virt - mr->mmkey.iova, 858 (u64)odp->umem.address, &user_va)) 859 return -EFAULT; 860 if (unlikely(user_va >= ib_umem_end(odp) || 861 ib_umem_end(odp) - user_va < bcnt)) 862 return -EFAULT; 863 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped, 864 flags); 865 } 866 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, 867 flags); 868 } 869 870 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr) 871 { 872 int ret; 873 874 ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address, 875 mr->umem->length, NULL, 876 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE); 877 return ret >= 0 ? 0 : ret; 878 } 879 880 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr) 881 { 882 int ret; 883 884 ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL, 885 MLX5_PF_FLAGS_ENABLE); 886 887 return ret >= 0 ? 0 : ret; 888 } 889 890 struct pf_frame { 891 struct pf_frame *next; 892 u32 key; 893 u64 io_virt; 894 size_t bcnt; 895 int depth; 896 }; 897 898 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key) 899 { 900 if (!mmkey) 901 return false; 902 if (mmkey->type == MLX5_MKEY_MW) 903 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 904 return mmkey->key == key; 905 } 906 907 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey) 908 { 909 struct mlx5_ib_mw *mw; 910 struct mlx5_ib_devx_mr *devx_mr; 911 912 if (mmkey->type == MLX5_MKEY_MW) { 913 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey); 914 return mw->ndescs; 915 } 916 917 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr, 918 mmkey); 919 return devx_mr->ndescs; 920 } 921 922 /* 923 * Handle a single data segment in a page-fault WQE or RDMA region. 924 * 925 * Returns number of OS pages retrieved on success. The caller may continue to 926 * the next data segment. 927 * Can return the following error codes: 928 * -EAGAIN to designate a temporary error. The caller will abort handling the 929 * page fault and resolve it. 930 * -EFAULT when there's an error mapping the requested pages. The caller will 931 * abort the page fault handling. 932 */ 933 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 934 struct ib_pd *pd, u32 key, 935 u64 io_virt, size_t bcnt, 936 u32 *bytes_committed, 937 u32 *bytes_mapped) 938 { 939 int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0; 940 struct pf_frame *head = NULL, *frame; 941 struct mlx5_core_mkey *mmkey; 942 struct mlx5_ib_mr *mr; 943 struct mlx5_klm *pklm; 944 u32 *out = NULL; 945 size_t offset; 946 int ndescs; 947 948 io_virt += *bytes_committed; 949 bcnt -= *bytes_committed; 950 951 next_mr: 952 xa_lock(&dev->odp_mkeys); 953 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); 954 if (!mmkey) { 955 xa_unlock(&dev->odp_mkeys); 956 mlx5_ib_dbg( 957 dev, 958 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 959 key); 960 if (bytes_mapped) 961 *bytes_mapped += bcnt; 962 /* 963 * The user could specify a SGL with multiple lkeys and only 964 * some of them are ODP. Treat the non-ODP ones as fully 965 * faulted. 966 */ 967 ret = 0; 968 goto end; 969 } 970 refcount_inc(&mmkey->usecount); 971 xa_unlock(&dev->odp_mkeys); 972 973 if (!mkey_is_eq(mmkey, key)) { 974 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); 975 ret = -EFAULT; 976 goto end; 977 } 978 979 switch (mmkey->type) { 980 case MLX5_MKEY_MR: 981 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 982 983 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0); 984 if (ret < 0) 985 goto end; 986 987 mlx5_update_odp_stats(mr, faults, ret); 988 989 npages += ret; 990 ret = 0; 991 break; 992 993 case MLX5_MKEY_MW: 994 case MLX5_MKEY_INDIRECT_DEVX: 995 ndescs = get_indirect_num_descs(mmkey); 996 997 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 998 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 999 ret = -EFAULT; 1000 goto end; 1001 } 1002 1003 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 1004 sizeof(*pklm) * (ndescs - 2); 1005 1006 if (outlen > cur_outlen) { 1007 kfree(out); 1008 out = kzalloc(outlen, GFP_KERNEL); 1009 if (!out) { 1010 ret = -ENOMEM; 1011 goto end; 1012 } 1013 cur_outlen = outlen; 1014 } 1015 1016 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 1017 bsf0_klm0_pas_mtt0_1); 1018 1019 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen); 1020 if (ret) 1021 goto end; 1022 1023 offset = io_virt - MLX5_GET64(query_mkey_out, out, 1024 memory_key_mkey_entry.start_addr); 1025 1026 for (i = 0; bcnt && i < ndescs; i++, pklm++) { 1027 if (offset >= be32_to_cpu(pklm->bcount)) { 1028 offset -= be32_to_cpu(pklm->bcount); 1029 continue; 1030 } 1031 1032 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1033 if (!frame) { 1034 ret = -ENOMEM; 1035 goto end; 1036 } 1037 1038 frame->key = be32_to_cpu(pklm->key); 1039 frame->io_virt = be64_to_cpu(pklm->va) + offset; 1040 frame->bcnt = min_t(size_t, bcnt, 1041 be32_to_cpu(pklm->bcount) - offset); 1042 frame->depth = depth + 1; 1043 frame->next = head; 1044 head = frame; 1045 1046 bcnt -= frame->bcnt; 1047 offset = 0; 1048 } 1049 break; 1050 1051 default: 1052 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 1053 ret = -EFAULT; 1054 goto end; 1055 } 1056 1057 if (head) { 1058 frame = head; 1059 head = frame->next; 1060 1061 key = frame->key; 1062 io_virt = frame->io_virt; 1063 bcnt = frame->bcnt; 1064 depth = frame->depth; 1065 kfree(frame); 1066 1067 mlx5r_deref_odp_mkey(mmkey); 1068 goto next_mr; 1069 } 1070 1071 end: 1072 if (mmkey) 1073 mlx5r_deref_odp_mkey(mmkey); 1074 while (head) { 1075 frame = head; 1076 head = frame->next; 1077 kfree(frame); 1078 } 1079 kfree(out); 1080 1081 *bytes_committed = 0; 1082 return ret ? ret : npages; 1083 } 1084 1085 /* 1086 * Parse a series of data segments for page fault handling. 1087 * 1088 * @dev: Pointer to mlx5 IB device 1089 * @pfault: contains page fault information. 1090 * @wqe: points at the first data segment in the WQE. 1091 * @wqe_end: points after the end of the WQE. 1092 * @bytes_mapped: receives the number of bytes that the function was able to 1093 * map. This allows the caller to decide intelligently whether 1094 * enough memory was mapped to resolve the page fault 1095 * successfully (e.g. enough for the next MTU, or the entire 1096 * WQE). 1097 * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus 1098 * the committed bytes). 1099 * @receive_queue: receive WQE end of sg list 1100 * 1101 * Returns the number of pages loaded if positive, zero for an empty WQE, or a 1102 * negative error code. 1103 */ 1104 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 1105 struct mlx5_pagefault *pfault, 1106 void *wqe, 1107 void *wqe_end, u32 *bytes_mapped, 1108 u32 *total_wqe_bytes, bool receive_queue) 1109 { 1110 int ret = 0, npages = 0; 1111 u64 io_virt; 1112 u32 key; 1113 u32 byte_count; 1114 size_t bcnt; 1115 int inline_segment; 1116 1117 if (bytes_mapped) 1118 *bytes_mapped = 0; 1119 if (total_wqe_bytes) 1120 *total_wqe_bytes = 0; 1121 1122 while (wqe < wqe_end) { 1123 struct mlx5_wqe_data_seg *dseg = wqe; 1124 1125 io_virt = be64_to_cpu(dseg->addr); 1126 key = be32_to_cpu(dseg->lkey); 1127 byte_count = be32_to_cpu(dseg->byte_count); 1128 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 1129 bcnt = byte_count & ~MLX5_INLINE_SEG; 1130 1131 if (inline_segment) { 1132 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 1133 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 1134 16); 1135 } else { 1136 wqe += sizeof(*dseg); 1137 } 1138 1139 /* receive WQE end of sg list. */ 1140 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && 1141 io_virt == 0) 1142 break; 1143 1144 if (!inline_segment && total_wqe_bytes) { 1145 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 1146 pfault->bytes_committed); 1147 } 1148 1149 /* A zero length data segment designates a length of 2GB. */ 1150 if (bcnt == 0) 1151 bcnt = 1U << 31; 1152 1153 if (inline_segment || bcnt <= pfault->bytes_committed) { 1154 pfault->bytes_committed -= 1155 min_t(size_t, bcnt, 1156 pfault->bytes_committed); 1157 continue; 1158 } 1159 1160 ret = pagefault_single_data_segment(dev, NULL, key, 1161 io_virt, bcnt, 1162 &pfault->bytes_committed, 1163 bytes_mapped); 1164 if (ret < 0) 1165 break; 1166 npages += ret; 1167 } 1168 1169 return ret < 0 ? ret : npages; 1170 } 1171 1172 /* 1173 * Parse initiator WQE. Advances the wqe pointer to point at the 1174 * scatter-gather list, and set wqe_end to the end of the WQE. 1175 */ 1176 static int mlx5_ib_mr_initiator_pfault_handler( 1177 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1178 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1179 { 1180 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1181 u16 wqe_index = pfault->wqe.wqe_index; 1182 struct mlx5_base_av *av; 1183 unsigned ds, opcode; 1184 u32 qpn = qp->trans_qp.base.mqp.qpn; 1185 1186 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1187 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1188 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1189 ds, wqe_length); 1190 return -EFAULT; 1191 } 1192 1193 if (ds == 0) { 1194 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1195 wqe_index, qpn); 1196 return -EFAULT; 1197 } 1198 1199 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1200 *wqe += sizeof(*ctrl); 1201 1202 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1203 MLX5_WQE_CTRL_OPCODE_MASK; 1204 1205 if (qp->ibqp.qp_type == IB_QPT_XRC_INI) 1206 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1207 1208 if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) { 1209 av = *wqe; 1210 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1211 *wqe += sizeof(struct mlx5_av); 1212 else 1213 *wqe += sizeof(struct mlx5_base_av); 1214 } 1215 1216 switch (opcode) { 1217 case MLX5_OPCODE_RDMA_WRITE: 1218 case MLX5_OPCODE_RDMA_WRITE_IMM: 1219 case MLX5_OPCODE_RDMA_READ: 1220 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1221 break; 1222 case MLX5_OPCODE_ATOMIC_CS: 1223 case MLX5_OPCODE_ATOMIC_FA: 1224 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1225 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1226 break; 1227 } 1228 1229 return 0; 1230 } 1231 1232 /* 1233 * Parse responder WQE and set wqe_end to the end of the WQE. 1234 */ 1235 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1236 struct mlx5_ib_srq *srq, 1237 void **wqe, void **wqe_end, 1238 int wqe_length) 1239 { 1240 int wqe_size = 1 << srq->msrq.wqe_shift; 1241 1242 if (wqe_size > wqe_length) { 1243 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1244 return -EFAULT; 1245 } 1246 1247 *wqe_end = *wqe + wqe_size; 1248 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1249 1250 return 0; 1251 } 1252 1253 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1254 struct mlx5_ib_qp *qp, 1255 void *wqe, void **wqe_end, 1256 int wqe_length) 1257 { 1258 struct mlx5_ib_wq *wq = &qp->rq; 1259 int wqe_size = 1 << wq->wqe_shift; 1260 1261 if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) { 1262 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1263 return -EFAULT; 1264 } 1265 1266 if (wqe_size > wqe_length) { 1267 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1268 return -EFAULT; 1269 } 1270 1271 *wqe_end = wqe + wqe_size; 1272 1273 return 0; 1274 } 1275 1276 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1277 u32 wq_num, int pf_type) 1278 { 1279 struct mlx5_core_rsc_common *common = NULL; 1280 struct mlx5_core_srq *srq; 1281 1282 switch (pf_type) { 1283 case MLX5_WQE_PF_TYPE_RMP: 1284 srq = mlx5_cmd_get_srq(dev, wq_num); 1285 if (srq) 1286 common = &srq->common; 1287 break; 1288 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1289 case MLX5_WQE_PF_TYPE_RESP: 1290 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1291 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP); 1292 break; 1293 default: 1294 break; 1295 } 1296 1297 return common; 1298 } 1299 1300 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1301 { 1302 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1303 1304 return to_mibqp(mqp); 1305 } 1306 1307 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1308 { 1309 struct mlx5_core_srq *msrq = 1310 container_of(res, struct mlx5_core_srq, common); 1311 1312 return to_mibsrq(msrq); 1313 } 1314 1315 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1316 struct mlx5_pagefault *pfault) 1317 { 1318 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1319 u16 wqe_index = pfault->wqe.wqe_index; 1320 void *wqe, *wqe_start = NULL, *wqe_end = NULL; 1321 u32 bytes_mapped, total_wqe_bytes; 1322 struct mlx5_core_rsc_common *res; 1323 int resume_with_error = 1; 1324 struct mlx5_ib_qp *qp; 1325 size_t bytes_copied; 1326 int ret = 0; 1327 1328 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1329 if (!res) { 1330 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1331 return; 1332 } 1333 1334 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1335 res->res != MLX5_RES_XSRQ) { 1336 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1337 pfault->type); 1338 goto resolve_page_fault; 1339 } 1340 1341 wqe_start = (void *)__get_free_page(GFP_KERNEL); 1342 if (!wqe_start) { 1343 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1344 goto resolve_page_fault; 1345 } 1346 1347 wqe = wqe_start; 1348 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1349 if (qp && sq) { 1350 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1351 &bytes_copied); 1352 if (ret) 1353 goto read_user; 1354 ret = mlx5_ib_mr_initiator_pfault_handler( 1355 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1356 } else if (qp && !sq) { 1357 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1358 &bytes_copied); 1359 if (ret) 1360 goto read_user; 1361 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1362 dev, qp, wqe, &wqe_end, bytes_copied); 1363 } else if (!qp) { 1364 struct mlx5_ib_srq *srq = res_to_srq(res); 1365 1366 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1367 &bytes_copied); 1368 if (ret) 1369 goto read_user; 1370 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1371 dev, srq, &wqe, &wqe_end, bytes_copied); 1372 } 1373 1374 if (ret < 0 || wqe >= wqe_end) 1375 goto resolve_page_fault; 1376 1377 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1378 &total_wqe_bytes, !sq); 1379 if (ret == -EAGAIN) 1380 goto out; 1381 1382 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1383 goto resolve_page_fault; 1384 1385 out: 1386 ret = 0; 1387 resume_with_error = 0; 1388 1389 read_user: 1390 if (ret) 1391 mlx5_ib_err( 1392 dev, 1393 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", 1394 ret, wqe_index, pfault->token); 1395 1396 resolve_page_fault: 1397 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1398 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1399 pfault->wqe.wq_num, resume_with_error, 1400 pfault->type); 1401 mlx5_core_res_put(res); 1402 free_page((unsigned long)wqe_start); 1403 } 1404 1405 static int pages_in_range(u64 address, u32 length) 1406 { 1407 return (ALIGN(address + length, PAGE_SIZE) - 1408 (address & PAGE_MASK)) >> PAGE_SHIFT; 1409 } 1410 1411 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1412 struct mlx5_pagefault *pfault) 1413 { 1414 u64 address; 1415 u32 length; 1416 u32 prefetch_len = pfault->bytes_committed; 1417 int prefetch_activated = 0; 1418 u32 rkey = pfault->rdma.r_key; 1419 int ret; 1420 1421 /* The RDMA responder handler handles the page fault in two parts. 1422 * First it brings the necessary pages for the current packet 1423 * (and uses the pfault context), and then (after resuming the QP) 1424 * prefetches more pages. The second operation cannot use the pfault 1425 * context and therefore uses the dummy_pfault context allocated on 1426 * the stack */ 1427 pfault->rdma.rdma_va += pfault->bytes_committed; 1428 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1429 pfault->rdma.rdma_op_len); 1430 pfault->bytes_committed = 0; 1431 1432 address = pfault->rdma.rdma_va; 1433 length = pfault->rdma.rdma_op_len; 1434 1435 /* For some operations, the hardware cannot tell the exact message 1436 * length, and in those cases it reports zero. Use prefetch 1437 * logic. */ 1438 if (length == 0) { 1439 prefetch_activated = 1; 1440 length = pfault->rdma.packet_size; 1441 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1442 } 1443 1444 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1445 &pfault->bytes_committed, NULL); 1446 if (ret == -EAGAIN) { 1447 /* We're racing with an invalidation, don't prefetch */ 1448 prefetch_activated = 0; 1449 } else if (ret < 0 || pages_in_range(address, length) > ret) { 1450 mlx5_ib_page_fault_resume(dev, pfault, 1); 1451 if (ret != -ENOENT) 1452 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", 1453 ret, pfault->token, pfault->type); 1454 return; 1455 } 1456 1457 mlx5_ib_page_fault_resume(dev, pfault, 0); 1458 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", 1459 pfault->token, pfault->type, 1460 prefetch_activated); 1461 1462 /* At this point, there might be a new pagefault already arriving in 1463 * the eq, switch to the dummy pagefault for the rest of the 1464 * processing. We're still OK with the objects being alive as the 1465 * work-queue is being fenced. */ 1466 1467 if (prefetch_activated) { 1468 u32 bytes_committed = 0; 1469 1470 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1471 prefetch_len, 1472 &bytes_committed, NULL); 1473 if (ret < 0 && ret != -EAGAIN) { 1474 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", 1475 ret, pfault->token, address, prefetch_len); 1476 } 1477 } 1478 } 1479 1480 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1481 { 1482 u8 event_subtype = pfault->event_subtype; 1483 1484 switch (event_subtype) { 1485 case MLX5_PFAULT_SUBTYPE_WQE: 1486 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1487 break; 1488 case MLX5_PFAULT_SUBTYPE_RDMA: 1489 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1490 break; 1491 default: 1492 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1493 event_subtype); 1494 mlx5_ib_page_fault_resume(dev, pfault, 1); 1495 } 1496 } 1497 1498 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1499 { 1500 struct mlx5_pagefault *pfault = container_of(work, 1501 struct mlx5_pagefault, 1502 work); 1503 struct mlx5_ib_pf_eq *eq = pfault->eq; 1504 1505 mlx5_ib_pfault(eq->dev, pfault); 1506 mempool_free(pfault, eq->pool); 1507 } 1508 1509 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1510 { 1511 struct mlx5_eqe_page_fault *pf_eqe; 1512 struct mlx5_pagefault *pfault; 1513 struct mlx5_eqe *eqe; 1514 int cc = 0; 1515 1516 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1517 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1518 if (!pfault) { 1519 schedule_work(&eq->work); 1520 break; 1521 } 1522 1523 pf_eqe = &eqe->data.page_fault; 1524 pfault->event_subtype = eqe->sub_type; 1525 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); 1526 1527 mlx5_ib_dbg(eq->dev, 1528 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", 1529 eqe->sub_type, pfault->bytes_committed); 1530 1531 switch (eqe->sub_type) { 1532 case MLX5_PFAULT_SUBTYPE_RDMA: 1533 /* RDMA based event */ 1534 pfault->type = 1535 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1536 pfault->token = 1537 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1538 MLX5_24BIT_MASK; 1539 pfault->rdma.r_key = 1540 be32_to_cpu(pf_eqe->rdma.r_key); 1541 pfault->rdma.packet_size = 1542 be16_to_cpu(pf_eqe->rdma.packet_length); 1543 pfault->rdma.rdma_op_len = 1544 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1545 pfault->rdma.rdma_va = 1546 be64_to_cpu(pf_eqe->rdma.rdma_va); 1547 mlx5_ib_dbg(eq->dev, 1548 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", 1549 pfault->type, pfault->token, 1550 pfault->rdma.r_key); 1551 mlx5_ib_dbg(eq->dev, 1552 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1553 pfault->rdma.rdma_op_len, 1554 pfault->rdma.rdma_va); 1555 break; 1556 1557 case MLX5_PFAULT_SUBTYPE_WQE: 1558 /* WQE based event */ 1559 pfault->type = 1560 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1561 pfault->token = 1562 be32_to_cpu(pf_eqe->wqe.token); 1563 pfault->wqe.wq_num = 1564 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1565 MLX5_24BIT_MASK; 1566 pfault->wqe.wqe_index = 1567 be16_to_cpu(pf_eqe->wqe.wqe_index); 1568 pfault->wqe.packet_size = 1569 be16_to_cpu(pf_eqe->wqe.packet_length); 1570 mlx5_ib_dbg(eq->dev, 1571 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1572 pfault->type, pfault->token, 1573 pfault->wqe.wq_num, 1574 pfault->wqe.wqe_index); 1575 break; 1576 1577 default: 1578 mlx5_ib_warn(eq->dev, 1579 "Unsupported page fault event sub-type: 0x%02hhx\n", 1580 eqe->sub_type); 1581 /* Unsupported page faults should still be 1582 * resolved by the page fault handler 1583 */ 1584 } 1585 1586 pfault->eq = eq; 1587 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1588 queue_work(eq->wq, &pfault->work); 1589 1590 cc = mlx5_eq_update_cc(eq->core, ++cc); 1591 } 1592 1593 mlx5_eq_update_ci(eq->core, cc, 1); 1594 } 1595 1596 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, 1597 void *data) 1598 { 1599 struct mlx5_ib_pf_eq *eq = 1600 container_of(nb, struct mlx5_ib_pf_eq, irq_nb); 1601 unsigned long flags; 1602 1603 if (spin_trylock_irqsave(&eq->lock, flags)) { 1604 mlx5_ib_eq_pf_process(eq); 1605 spin_unlock_irqrestore(&eq->lock, flags); 1606 } else { 1607 schedule_work(&eq->work); 1608 } 1609 1610 return IRQ_HANDLED; 1611 } 1612 1613 /* mempool_refill() was proposed but unfortunately wasn't accepted 1614 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1615 * Cheap workaround. 1616 */ 1617 static void mempool_refill(mempool_t *pool) 1618 { 1619 while (pool->curr_nr < pool->min_nr) 1620 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1621 } 1622 1623 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1624 { 1625 struct mlx5_ib_pf_eq *eq = 1626 container_of(work, struct mlx5_ib_pf_eq, work); 1627 1628 mempool_refill(eq->pool); 1629 1630 spin_lock_irq(&eq->lock); 1631 mlx5_ib_eq_pf_process(eq); 1632 spin_unlock_irq(&eq->lock); 1633 } 1634 1635 enum { 1636 MLX5_IB_NUM_PF_EQE = 0x1000, 1637 MLX5_IB_NUM_PF_DRAIN = 64, 1638 }; 1639 1640 static int 1641 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1642 { 1643 struct mlx5_eq_param param = {}; 1644 int err; 1645 1646 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1647 spin_lock_init(&eq->lock); 1648 eq->dev = dev; 1649 1650 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1651 sizeof(struct mlx5_pagefault)); 1652 if (!eq->pool) 1653 return -ENOMEM; 1654 1655 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1656 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1657 MLX5_NUM_CMD_EQE); 1658 if (!eq->wq) { 1659 err = -ENOMEM; 1660 goto err_mempool; 1661 } 1662 1663 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; 1664 param = (struct mlx5_eq_param) { 1665 .irq_index = 0, 1666 .nent = MLX5_IB_NUM_PF_EQE, 1667 }; 1668 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; 1669 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); 1670 if (IS_ERR(eq->core)) { 1671 err = PTR_ERR(eq->core); 1672 goto err_wq; 1673 } 1674 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); 1675 if (err) { 1676 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); 1677 goto err_eq; 1678 } 1679 1680 return 0; 1681 err_eq: 1682 mlx5_eq_destroy_generic(dev->mdev, eq->core); 1683 err_wq: 1684 destroy_workqueue(eq->wq); 1685 err_mempool: 1686 mempool_destroy(eq->pool); 1687 return err; 1688 } 1689 1690 static int 1691 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1692 { 1693 int err; 1694 1695 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); 1696 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1697 cancel_work_sync(&eq->work); 1698 destroy_workqueue(eq->wq); 1699 mempool_destroy(eq->pool); 1700 1701 return err; 1702 } 1703 1704 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) 1705 { 1706 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1707 return; 1708 1709 switch (ent->order - 2) { 1710 case MLX5_IMR_MTT_CACHE_ENTRY: 1711 ent->page = PAGE_SHIFT; 1712 ent->xlt = MLX5_IMR_MTT_ENTRIES * 1713 sizeof(struct mlx5_mtt) / 1714 MLX5_IB_UMR_OCTOWORD; 1715 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 1716 ent->limit = 0; 1717 break; 1718 1719 case MLX5_IMR_KSM_CACHE_ENTRY: 1720 ent->page = MLX5_KSM_PAGE_SHIFT; 1721 ent->xlt = mlx5_imr_ksm_entries * 1722 sizeof(struct mlx5_klm) / 1723 MLX5_IB_UMR_OCTOWORD; 1724 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; 1725 ent->limit = 0; 1726 break; 1727 } 1728 } 1729 1730 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1731 .advise_mr = mlx5_ib_advise_mr, 1732 }; 1733 1734 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1735 { 1736 int ret = 0; 1737 1738 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1739 return ret; 1740 1741 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1742 1743 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { 1744 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); 1745 if (ret) { 1746 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); 1747 return ret; 1748 } 1749 } 1750 1751 ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq); 1752 1753 return ret; 1754 } 1755 1756 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1757 { 1758 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1759 return; 1760 1761 mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq); 1762 } 1763 1764 int mlx5_ib_odp_init(void) 1765 { 1766 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1767 MLX5_IMR_MTT_BITS); 1768 1769 return 0; 1770 } 1771 1772 struct prefetch_mr_work { 1773 struct work_struct work; 1774 u32 pf_flags; 1775 u32 num_sge; 1776 struct { 1777 u64 io_virt; 1778 struct mlx5_ib_mr *mr; 1779 size_t length; 1780 } frags[]; 1781 }; 1782 1783 static void destroy_prefetch_work(struct prefetch_mr_work *work) 1784 { 1785 u32 i; 1786 1787 for (i = 0; i < work->num_sge; ++i) 1788 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey); 1789 1790 kvfree(work); 1791 } 1792 1793 static struct mlx5_ib_mr * 1794 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 1795 u32 lkey) 1796 { 1797 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1798 struct mlx5_core_mkey *mmkey; 1799 struct mlx5_ib_mr *mr = NULL; 1800 1801 xa_lock(&dev->odp_mkeys); 1802 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); 1803 if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR) 1804 goto end; 1805 1806 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1807 1808 if (mr->ibmr.pd != pd) { 1809 mr = NULL; 1810 goto end; 1811 } 1812 1813 /* prefetch with write-access must be supported by the MR */ 1814 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1815 !mr->umem->writable) { 1816 mr = NULL; 1817 goto end; 1818 } 1819 1820 refcount_inc(&mmkey->usecount); 1821 end: 1822 xa_unlock(&dev->odp_mkeys); 1823 return mr; 1824 } 1825 1826 static void mlx5_ib_prefetch_mr_work(struct work_struct *w) 1827 { 1828 struct prefetch_mr_work *work = 1829 container_of(w, struct prefetch_mr_work, work); 1830 u32 bytes_mapped = 0; 1831 int ret; 1832 u32 i; 1833 1834 /* We rely on IB/core that work is executed if we have num_sge != 0 only. */ 1835 WARN_ON(!work->num_sge); 1836 for (i = 0; i < work->num_sge; ++i) { 1837 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, 1838 work->frags[i].length, &bytes_mapped, 1839 work->pf_flags); 1840 if (ret <= 0) 1841 continue; 1842 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret); 1843 } 1844 1845 destroy_prefetch_work(work); 1846 } 1847 1848 static bool init_prefetch_work(struct ib_pd *pd, 1849 enum ib_uverbs_advise_mr_advice advice, 1850 u32 pf_flags, struct prefetch_mr_work *work, 1851 struct ib_sge *sg_list, u32 num_sge) 1852 { 1853 u32 i; 1854 1855 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1856 work->pf_flags = pf_flags; 1857 1858 for (i = 0; i < num_sge; ++i) { 1859 work->frags[i].io_virt = sg_list[i].addr; 1860 work->frags[i].length = sg_list[i].length; 1861 work->frags[i].mr = 1862 get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1863 if (!work->frags[i].mr) { 1864 work->num_sge = i; 1865 return false; 1866 } 1867 } 1868 work->num_sge = num_sge; 1869 return true; 1870 } 1871 1872 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, 1873 enum ib_uverbs_advise_mr_advice advice, 1874 u32 pf_flags, struct ib_sge *sg_list, 1875 u32 num_sge) 1876 { 1877 u32 bytes_mapped = 0; 1878 int ret = 0; 1879 u32 i; 1880 1881 for (i = 0; i < num_sge; ++i) { 1882 struct mlx5_ib_mr *mr; 1883 1884 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1885 if (!mr) 1886 return -ENOENT; 1887 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, 1888 &bytes_mapped, pf_flags); 1889 if (ret < 0) { 1890 mlx5r_deref_odp_mkey(&mr->mmkey); 1891 return ret; 1892 } 1893 mlx5_update_odp_stats(mr, prefetch, ret); 1894 mlx5r_deref_odp_mkey(&mr->mmkey); 1895 } 1896 1897 return 0; 1898 } 1899 1900 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 1901 enum ib_uverbs_advise_mr_advice advice, 1902 u32 flags, struct ib_sge *sg_list, u32 num_sge) 1903 { 1904 u32 pf_flags = 0; 1905 struct prefetch_mr_work *work; 1906 1907 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 1908 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 1909 1910 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 1911 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT; 1912 1913 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 1914 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, 1915 num_sge); 1916 1917 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); 1918 if (!work) 1919 return -ENOMEM; 1920 1921 if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) { 1922 destroy_prefetch_work(work); 1923 return -EINVAL; 1924 } 1925 queue_work(system_unbound_wq, &work->work); 1926 return 0; 1927 } 1928